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ORACLE MACHINES 

An ORACLE is a set B to which the TM may 
pose membership questions “Is w in B?”  
(formally: TM enters state q?)  
and the TM always receives a correct answer in 
one step 
(formally: if the string on the oracle tape is in B,  
state q? is changed to qYES, otherwise qNO) 

This makes sense even if B is not decidable! 
(We do not assume that the oracle B is a 

computable set!) 



We say A is semi-decidable in B  
if there is an oracle TM M with oracle B that 
semi-decides A 

We say A is decidable in B  
if there is an oracle TM M with oracle B that 
decides A 



HALTTM is DECIDABLE in ATM 

On input (M,w), decide if M halts on w as follows: 

1. Ask the oracle for ATM whether M accepts w. If 
yes, then ACCEPT 

2. Switch the accept and reject states of M to get 
M′. Ask the oracle for ATM whether M′ accepts w. 
If yes, then ACCEPT  

3. REJECT 



ATM is DECIDABLE in HALTTM 

On input (M,w), decide if M accepts w as follows: 

Ask the oracle for HALTTM whether M halts on w.  
If yes, then run M(w) and output its answer.  
If no, then REJECT. 



if A is decidable in B, ie  if there is an 
oracle TM M with oracle B that decides A 

Language A “Turing Reduces” to  
Language B 

A ≤T B 



≤T VERSUS ≤m 

Theorem: If A ≤m B then A ≤T B  
Proof:  
If A ≤m B then there is a computable function  
f : Σ* → Σ*, where for every w, 

w ∈ A ⇔ f(w) ∈ B 
We can thus use an oracle for B to decide A 

Theorem: ¬HALTTM ≤T HALTTM 
Theorem: ¬HALTTM ≤m HALTTM 
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Read Chapter 6.4 for next time 
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