15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

Problem 1 DECIDABLE?

{ (M, w) | M is a TM that on input w, tries to move its head past the left end of the tape }

Problem 2 DECIDABLE?

{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point }

Problem 1 UNDECIDABLE

{ (M, w) | M is a TM that on input w, tries to move its head past the left end of the tape }

Proof: Assume, for a contradiction, that TM T decides the language

We use T to decide A_{TM}

On input (M,w), make a new TM N that on input w marks the leftmost tape cell and then simulates M(w) (as the leftmost cell was not there). If M tries to move to the marked cell, N moves the head back to the right. If M accepts, N tries to moves its head past the left end of the tape.

Run T on input (N,w)

Problem 2 DECIDABLE

{ (M, w) | M is a TM that on input w, moves its head left at least once, at some point}

On input (M,w), run the machine for |Q_M| + |w| + 1 steps:

Accept If M's head moved left at all **Reject** Otherwise

(Why does this work??)

RICE'S THEOREM, THE RECURSION THEOREM, AND THE FIXED-POINT THEOREM

THURSDAY FEB 27

FIN_{TM} = { M | M is a TM and L(M) is finite}
Is FIN_{TM} Decidable?

FIN_{TM} = { M | M is a TM and L(M) is finite} Is FIN_{TM} Decidable?

Note Properties of this language:

- FIN_{TM} is a language of Turing Machines
- If $M_1 \equiv M_2$ (ie $L(M_1) = L(M_2)$), then either both M_1 and M_2 are in FIN_{TM} or both are not.
- There are TMs M₁ and M₂,
 such that M₁ ∈ FIN_{TM} and M₂ ∉ FIN_{TM}

Let L be a language over Turing machines.

Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
- 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

EXTREMELY POWERFUL!

Let L be a language over Turing machines.

Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
- 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

 $FIN_{TM} = \{ M \mid M \text{ is a TM and L(M) is finite} \}$

Let L be a language over Turing machines.

Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
 - 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

 $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

 $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$

Let L be a language over Turing machines.

Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
 - 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

Proof: Will show:

A_{TM} is mapping reducible to L

Proof: Show L is undecidable

Show: A_{TM} is mapping reducible to L

Proof: Show L is undecidable

Show: A_{TM} is mapping reducible to L

Proof:

Define M_Ø to be a TM that never halts

Assume, WLOG, that $M_{\emptyset} \notin L$ Why?

Let $M_1 \in L$ (such M_1 exists, by assumption)

Show A_{TM} is mapping reducible to L:

Proof:

Define M_Ø to be a TM that never halts

Assume, WLOG, that $M_{\emptyset} \notin L$ Why?

Let $M_1 \in L$ (such M_1 exists, by assumption)

Show A_{TM} is mapping reducible to L:

Map $(M, w) \rightarrow M_w$ where

 $M_w(s)$ = accepts if both M(w) and $M_1(s)$ accept loops otherwise

What is the language of M_w ?

A_{TM} is mapping reducible to L

Problem

Let $S = \{ M \mid M \text{ is a TM with the property:}$ for all w, M(w) accepts implies M(w^R) accepts}.

S is undecidable.

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$ $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

 $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and L(M)} = L(N)\}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

ALL UNDECIDABLE

Where is Rice's Theorm Applicable?

Which are SEMI-DECIDABLE or not?

The rest of the content of today's lecture has been a major source of headaches and misunderstandings

"The recursion theorem is just like tennis. Unless you're exposed to it at age five, you'll never become world class."

-Juris Hartmanis (Turing Award 1993)

(Note: Juris didn't see the recursion theorem until he was in his 20's....)

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

$$(a,b) \rightarrow T \rightarrow t(a,b)$$

$$w \rightarrow R \rightarrow t(\langle R \rangle, w)$$

Recursion Theorem says: A Turing machine can obtain its own description (code), and compute with it

. We can use the operation: "Obtain your own description" in pseudocode!

Given a computable t, we can get a computable r such that $r(w) = t(\langle R \rangle, w)$ where $\langle R \rangle$ is a description of r

Recursion Theorem says: A Turing machine can obtain its own description (code), and compute with it

. We can use the operation: "Obtain your own description" in pseudocode!

Given a computable t, we can get a computable r such that $r(w) = t(\langle R \rangle, w)$ where $\langle R \rangle$ is a description of r

INSIGHT: T (or t) is really R (or r)

Theorem: A_{TM} is undecidable

Proof (using the Recursion Theorem):

Assume H decides A_{TM} (Informal Proof)

Construct machine R such that on input w:

- 1. Obtains its own description < R>
- 2. Runs H on (<R>, w) and flips the output

Running R on input w always does the opposite of what H says it should!

Theorem: A_{TM} is undecidable

Proof (using the Recursion Theorem):

Assume H decides A_{TM} (Formal Proof)

Let
$$T_H(x, w) = \frac{\text{Reject if } H(x, w) \text{ accepts}}{\text{Accept if } H(x, w) \text{ rejects}}$$

(Here x is viewed as a code for a TM)

By the *Recursion Theorem*, there is a **TM** R such that:

$$R(w) = T_H(\langle R \rangle, w) =$$
Reject if H ($\langle R \rangle, w$) accepts
Accept if H ($\langle R \rangle, w$) rejects

Contradiction!

 $MIN_{TM} = {<M>| M \text{ is a minimal TM, wrt } |<M>|}$

Theorem: MIN_{TM} is not RE.

Proof (using the Recursion Theorem):

 $MIN_{TM} = \{ \langle M \rangle | M \text{ is a minimal TM, wrt } | \langle M \rangle | \}$

Theorem: MIN_{TM} is not RE.

Proof (using the Recursion Theorem):

Assume E enumerates MIN_{TM} (Informal Proof)

Construct machine R such that on input w:

- 1. Obtains its own description <R>
- 2. Runs E until a machine D appears with a longer description than of R
- 3. Simulate D on w

Contradiction. Why?

 $MIN_{TM} = \{ \langle M \rangle | M \text{ is a minimal TM, wrt } | \langle M \rangle | \}$

Theorem: MIN_{TM} is not RE.

Proof (using the Recursion Theorem):

Assume E enumerates MIN_{TM} (Formal Proof)

Let $T_E(x, w) = D(w)$ where <D> is first in E's enumeration s.t. |<D>| > |x|

By the *Recursion Theorem*, there is a **TM** R such that:

$$R(w) = T_E(\langle R \rangle, w) = D(w)$$

where $\langle D \rangle$ is first in E's enumeration s.t. $|\langle D \rangle| > |\langle R \rangle|$

Contradiction. Why?

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that $f(\langle R \rangle)$ describes a TM that is *equivalent* to R.

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that $f(\langle R \rangle)$ describes a TM that is *equivalent* to R.

Proof: Pseudocode for the TM R: (Informal Proof)
On input w:

- 1. Obtain the description <R>
- 2. Let g = f(<R>) and interpret g as a code for a TM G
- 3. Accept w iff G(w) accepts

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that $f(\langle R \rangle)$ describes a TM that is *equivalent* to R.

Proof: Let $T_f(x, w) = G(w)$ where $\langle G \rangle = f(x)$ (Here f(x) is viewed as a code for a TM)

By the *Recursion Theorem*, there is a TM R such that:

$$R(w) = T_f(\langle R \rangle, w)$$

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that $f(\langle R \rangle)$ describes a TM that is *equivalent* to R.

Proof: Let
$$T_f(x, w) = G(w)$$
 where $\langle G \rangle = f(x)$
(Here $f(x)$ is viewed as a code for a TM)

By the *Recursion Theorem*, there is a TM R such that:

$$R(w) = T_f(\langle R \rangle, w) = G(w) \text{ where } \langle G \rangle = f(\langle R \rangle)$$

Hence
$$R \equiv G$$
 where $\langle G \rangle = f (\langle R \rangle)$, ie $\langle R \rangle$ " \equiv " $f (\langle R \rangle)$

So R is a fixed point of f!

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that $f(\langle R \rangle)$ describes a TM that is *equivalent* to R.

Example:

Suppose a virus flips the first bit of each word w in Σ^* (or in each TM).

Then there is a TM R that "remains uninfected".

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

$$(a,b) \rightarrow T \rightarrow t(a,b)$$

$$w \rightarrow R \rightarrow t(\langle R \rangle, w)$$

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

So first, need to show how to construct a TM that computes its own description (ie code).

A NOTE ON SELF REFERENCE

Suppose in general we want to design a program that prints its own description. **How?**

Print this sentence.

Print two copies of the following (the stuff inside quotes), and put the second copy in quotes:

"Print two copies of the following (the stuff inside quotes), and put the second copy in quotes:"

Lemma: There is a computable function $q: \Sigma^* \to \Sigma^*$, where for any string w, q(w) is the *description* (code) of a TM P_w that on any input, prints out w and then accepts

TM Q computes q

ATM SELFTHAT PRINTS < SELF>

$$B() = < P_{} M> where $P_{} M(w') = M()$$$

ATM SELFTHAT PRINTS < SELF>

$$\langle B \rangle \rightarrow B$$
 $\langle B \rangle \rightarrow B$
 $\langle B \rangle \rightarrow B$
 $\langle B \rangle \rightarrow B$

$$B() = < P_{} M> where $P_{} M(w') = M()$$$

So, **B** (
$$<$$
B $>$) = $<$ **P** $_{<$ **B** $>$ where **P** $_{<$ **B** $>$ **B** (**w**') = B ($<$ B $>$)

ATM SELFTHAT PRINTS < SELF>

$$B() = < P_{} M> where $P_{} M(w') = M()$$$

So, B (
$$<$$
B $>$) = $<$ P $_{<$ B $>$ B $>$ where P $_{<$ B $>$ B (w') = B ($<$ B $>$)

Now,
$$P_{B>}B (w')=B(B>)=(P_{B>}B)$$

So, let
$$SELF = P_{}B$$

ATM SELF THAT PRINTS <SELF>

ATM SELFTHAT PRINTS <SELF>

A NOTE ON SELF REFERENCE

Suppose in general we want to design a program that prints its own description. **How?**

Print this sentence.

Print two copies of the following (the stuff = B inside quotes), and put the second copy in quotes:

"Print two copies of the following (the stuff = P_{} inside quotes), and put the second copy in quotes:"

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

$$(a,b) \longrightarrow \boxed{T} \longrightarrow t(a,b)$$

$$w \longrightarrow \boxed{R} \longrightarrow t(\langle R \rangle, w)$$

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

$$(a,b) \longrightarrow T \longrightarrow t(a,b)$$

$$W \longrightarrow R \longrightarrow t(\langle R \rangle, w)$$

WWW.FLAC.WS

Read Chapter 6.1 and 6.3 for next time