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Problem 1 
{ (M, w) | M is a TM that on input w, tries to 
move its head past the left end of the tape } 

Problem 2 
{ (M, w) | M is a TM that on input w, moves its 
head left at least once, at some point } 

DECIDABLE ? 

DECIDABLE ? 



Problem 1 UNDECIDABLE 

    Assume, for a contradiction, that TM T 
decides the language 

Proof: 

We use T to decide ATM 

On input (M,w), make a new TM  N that  on input w 
marks the leftmost tape cell and then simulates M(w) 
(as tho the leftmost cell was not there). If M tries to 
move to the marked cell, N moves the head back to 
the right. If M accepts, N tries to moves its head past 
the left end of the tape. 

Run T on input (N,w) 

{ (M, w) | M is a TM that on input w, tries to 
move its head past the left end of the tape } 



Problem 2 DECIDABLE 

On input (M,w), run the machine for  
|QM| + |w| + 1 steps: 

Accept  If M’s head moved left at all 
Reject  Otherwise 

{ (M, w) | M is a TM that on input w, moves its 
head left at least once, at some point} 

(Why does this work??) 



RICE’S THEOREM,  
THE RECURSION THEOREM, 

 AND THE FIXED-POINT 
THEOREM  

THURSDAY FEB 27 



 
 
 

FINTM = { M | M is a TM and L(M) is finite} 

Is FINTM  Decidable? 
 
 
 
 
 



 
 
 

FINTM = { M | M is a TM and L(M) is finite} 

Is FINTM  Decidable? 
 
Note Properties of this language: 
 
• FINTM  is a language of Turing Machines 

 
• If M1 ≡ M2 (ie L(M1) = L( M2)),  then either both 

M1 and M2  are in FINTM  or both are not. 
 

• There are TMs M1 and M2,  
such that  M1 ∈ FINTM and M2 ∉ FINTM  

 
 
 
 



RICE’S THEOREM 

Then L is undecidable 
 
 

EXTREMELY POWERFUL! 

Let L be a language over Turing machines. 
Assume that L satisfies the following properties: 

1. For TMs M1 and M2,  if M1 ≡ M2  then  
M1 ∈ L ⇔ M2 ∈ L  

2. There are TMs M1 and M2,  
such that  M1 ∈ L and M2 ∉ L  



RICE’S THEOREM 

Then L is undecidable 
 
 

Let L be a language over Turing machines. 
Assume that L satisfies the following properties: 

1. For TMs M1 and M2,  if M1 ≡ M2  then  
M1 ∈ L ⇔ M2 ∈ L  

2. There are TMs M1 and M2,  
such that  M1 ∈ L and M2 ∉ L  

FINTM = { M | M is a TM and L(M) is finite} 



RICE’S THEOREM 

Then L is undecidable 
 
 

Let L be a language over Turing machines. 
Assume that L satisfies the following properties: 

1. For TMs M1 and M2,  if M1 ≡ M2  then  
M1 ∈ L ⇔ M2 ∈ L  

2. There are TMs M1 and M2,  
such that  M1 ∈ L and M2 ∉ L  

ETM = { M | M is a TM and L(M) = ∅ } 

REGTM = { M | M is a TM and L(M) is regular} 



RICE’S THEOREM 

Then L is undecidable 
 
 

Let L be a language over Turing machines. 
Assume that L satisfies the following properties: 

1. For TMs M1 and M2,  if M1 ≡ M2  then  
M1 ∈ L ⇔ M2 ∈ L  

2. There are TMs M1 and M2,  
such that  M1 ∈ L and M2 ∉ L  

Proof: Will show: 
 ATM is mapping reducible to L 



ATM L f 

f 

Show: ATM is mapping reducible to L 

Σ* Σ* 

(M,w) 

(M,w) 

Proof:  Show  L is undecidable 



ATM L f 

f 

Show: ATM is mapping reducible to L 

Σ* Σ* 

(M,w) 

(M,w) 

 M1 

 M 2 

Proof:  Show  L is undecidable 



  

Proof: 

Assume, WLOG, that M∅  ∉  L   Why?  
Let M1 ∈ L  (such M1 exists, by 
assumption) 

Define M∅  to be a TM that never halts 

Show ATM is mapping reducible to L : 

RICE’S THEOREM 



  

Proof: 

Assume, WLOG, that M∅  ∉  L   Why?  
Let M1 ∈ L  (such M1 exists, by 
assumption) 

Define M∅  to be a TM that never halts 

 Map  (M, w)   Mw where 
 
Mw (s) = accepts if both M(w) and M1(s) accept 
              loops otherwise 
 

What is the language of Mw ?  

Show ATM is mapping reducible to L : 

RICE’S THEOREM 



ATM L f 

f 

ATM is mapping reducible to L 

Σ* Σ* 

≡ M1 

≡ M∅  

(M,w) 

(M,w) 

Mw 

Mw 

QED 



Problem 

Let S = { M | M is a TM with the property: 
           for all w, M(w) accepts implies M(wR) accepts}. 

S is undecidable. 



ATM = { (M,w) | M is a TM that accepts string w } 

HALTTM = { (M,w) | M is a TM that halts on string w } 

ETM = { M | M is a TM and L(M) = ∅ } 

REGTM = { M | M is a TM and L(M) is regular} 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)} 

ALL UNDECIDABLE 
Where is Rice’s Theorm Applicable? 

Which are SEMI-DECIDABLE or not? 



The rest of the content of today’s 
lecture has been a major source of 
headaches and misunderstandings 



“The recursion theorem is just like tennis. 
Unless you're exposed to it at age five, 
you'll never become world class.”  
 

-Juris Hartmanis (Turing Award 1993) 

(Note: Juris didn’t see the recursion 
theorem until he was in his 20’s….) 



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that computes 
a function t : Σ* × Σ* → Σ*.  
 

Then there is a Turing machine R that computes a 
function  r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that computes 
a function t : Σ* × Σ* → Σ*.  
 

Then there is a Turing machine R that computes a 
function  r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 

T (a,b) t(a,b) 

R w t(<R>,w) 



Recursion Theorem says: 
A Turing machine can obtain its own 

description (code), and compute with it 

. We can use the operation: 
“Obtain your own description” 

in pseudocode! 
 
Given a computable t, we can get a computable r  
such that r(w) = t(<R>,w) where <R> is a description of r 
 



Recursion Theorem says: 
A Turing machine can obtain its own 

description (code), and compute with it 

. We can use the operation: 
“Obtain your own description” 

in pseudocode! 
 
Given a computable t, we can get a computable r  
such that r(w) = t(<R>,w) where <R> is a description of r 
 

 INSIGHT: T (or t)  is really R (or r) 



Theorem:  ATM is undecidable 

Proof (using the Recursion Theorem): 

Assume H decides ATM  

1. Obtains its own description < R> 

Construct machine R such that on input w: 

2. Runs H on (<R>, w) and flips the output 

Running R on input w always does the 
opposite of what H says it should! 

(Informal Proof) 



Theorem:  ATM is undecidable 

Proof (using the Recursion Theorem): 

Assume H decides ATM  

Let TH(x, w)  =     Reject if H (x, w) accepts 
Accept if H (x, w) rejects 

(Here x is viewed as a code for a TM) 

By the Recursion Theorem, there is a TM R such that: 
 
R(w) = TH(<R>, w)  = Reject if H (<R>, w) accepts 

Accept if H (<R>, w) rejects 

Contradiction! 

(Formal Proof) 



Theorem:  MINTM is not  RE. 

Proof (using the Recursion Theorem): 

MINTM = {<M>| M is a minimal TM, wrt |<M>|} 



Theorem:  MINTM is not  RE. 

Proof (using the Recursion Theorem): 

Assume E enumerates MINTM  

1. Obtains its own description <R> 
Construct machine R such that on input w: 

2. Runs E until a machine D appears 
with a  longer description than of R 

Contradiction. Why? 

3. Simulate D  on w 

MINTM = {<M>| M is a minimal TM, wrt |<M>|} 

(Informal Proof) 



Theorem:  MINTM is not  RE. 

Proof (using the Recursion Theorem): 

Assume E enumerates MINTM  

where <D> is first in E’s 
enumeration s.t. |<D>| > |x| 

Contradiction. Why? 

MINTM = {<M>| M is a minimal TM, wrt |<M>|} 

Let TE(x, w)  = D(w) 

By the Recursion Theorem, there is a TM R such that: 
 

R(w) = TE(<R>, w)  = D(w)  

where <D> is first in E’s enumeration s.t. |<D>| > |<R>| 

(Formal Proof) 



THE FIXED-POINT THEOREM 
Theorem: Let  f : Σ* → Σ* be a computrable 
function. There is a TM R such that f(<R>) 
describes a TM that is equivalent to R. 



THE FIXED-POINT THEOREM 
Theorem: Let  f : Σ* → Σ* be a computrable 
function. There is a TM R such that f(<R>) 
describes a TM that is equivalent to R. 

Proof:  Pseudocode for the TM R: 

1. Obtain the description <R> 
On input w: 

2. Let g = f(<R>) and interpret g 
as a  code for a TM G 
3. Accept w  iff   G(w) accepts 

(Informal Proof) 



THE FIXED-POINT THEOREM 
Theorem: Let  f : Σ* → Σ* be a computrable 
function. There is a TM R such that f(<R>) 
describes a TM that is equivalent to R. 

Proof: Let Tf(x, w)  = G(w) where <G> = f (x)  
(Here f(x) is viewed as a code for a TM) 

By the Recursion Theorem, there is a TM R such that: 

R(w) = Tf(<R>, w)  = G(w) where <G> = f (<R>)  

Hence R   ≡  G  where <G> = f (<R>),  ie <R> “≡”  f 
(<R>) 

 So R is a fixed point of f !  



THE FIXED-POINT THEOREM 
Theorem: Let  f : Σ* → Σ* be a computrable 
function. There is a TM R such that f(<R>) 
describes a TM that is equivalent to R. 

Proof: Let Tf(x, w)  = G(w) where <G> = f (x)  
(Here f(x) is viewed as a code for a TM) 

By the Recursion Theorem, there is a TM R such that: 

R(w) = Tf(<R>, w)  = G(w) where <G> = f (<R>)  

Hence R  ≡ G  where <G> = f (<R>), ie <R> “≡”  f (<R>) 

 So R is a fixed point of f !  



THE FIXED-POINT THEOREM 
Theorem: Let  f : Σ* → Σ* be a computrable 
function. There is a TM R such that f(<R>) 
describes a TM that is equivalent to R. 

Example: 

Suppose  a virus flips the first bit of each word w 
in Σ*  (or in each TM). 
 
Then there is a TM R that “remains uninfected”.   



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that computes 
a function t : Σ* × Σ* → Σ*.  
 

Then there is a Turing machine R that computes a 
function  r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 

T (a,b) t(a,b) 

R w t(<R>,w) 



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that computes 
a function t : Σ* × Σ* → Σ*.  
 

Then there is a Turing machine R that computes a 
function  r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 

So first, need to show how to construct  a TM 
that  computes its own description (ie code). 



A NOTE ON SELF REFERENCE 
Suppose in general we want to design a  
program that prints its own description. How? 

Print          sentence. this 

Print two copies of the following (the stuff 
inside quotes), and put the second copy in 
quotes: 
“Print two copies of the following (the stuff 
inside quotes), and put the second copy in 
quotes:” 



Lemma: There is a computable function 
q : Σ* → Σ*, where for any string w,  
q(w) is the description (code) of a TM Pw that 
on any input, prints out w and then accepts  

Q w Pw 

s 

w 

<Pw> 
 

TM Q computes q 



A TM  SELF THAT PRINTS <SELF> 

B <M> P<M> 

M 

     (<M>) w’ M 

B (<M>) = < P<M> M>   where  P<M> M (w’) = M (<M>) 



A TM  SELF THAT PRINTS <SELF> 

B <B> P<B> 

B 

     (<B>) w’ B 

B (<M>) = < P<M> M>   where  P<M> M (w’) = M (<M>) 

So, B (<B>) = < P<B>B >  where P<B>B (w’) = B (<B>) 



A TM  SELF THAT PRINTS <SELF> 

B <B> P<B> 

B 

     (<B>) w’ B 

B (<M>) = < P<M> M>   where  P<M> M (w’) = M (<M>) 

So, B (<B>) = < P<B>B >  where P<B>B (w’) = B (<B>) 

Now, P<B>B (w’)= B(<B>)  = <P<B>B >> 

So, let  SELF  =  P<B>B  



A TM  SELF THAT PRINTS <SELF> 

B <M> P<M> 

M 

     (<M>) 

B P<B> w 

w’ 

P<B> 

B 

 (<B>) w’ 

M 

<B> 
B 

SELF 



A TM  SELF THAT PRINTS <SELF> 

B <M> P<M> 

M 

B P<B> w 

w’ 

P<B> 

B 

w’ <B> 

SELF 



A NOTE ON SELF REFERENCE 
Suppose in general we want to design a  
program that prints its own description. How? 

Print          sentence. this 

Print two copies of the following (the stuff 
inside quotes), and put the second copy in 
quotes: 
“Print two copies of the following (the stuff 
inside quotes), and put the second copy in 
quotes:” 

= B 

= P<B> 



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that 
computes a function t : Σ* × Σ* → Σ*. There is 
a Turing machine R that computes a function  
r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 

T (a,b) t(a,b) 

R w t(<R>,w) 



Proof: 

T 
(a,b) t(a,b) 



B <M> 

P<M> 

M 

w’ 

Proof: 

T 
(a,b) t(a,b) 



B <M> 

P<M> 

M 

B  P<BT> w 

w’ 

  P<BT> 

BT 

w’ <BT
> 

Proof: 

T 
(a,b) t(a,b) 
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M 
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w’ 
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w’ <BT
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Proof: 
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(a,b) t(a,b) 
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P<M> 

M 
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w’ 
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Proof: 

T 
(a,b) t(a,b) 

<R> = ??? 
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Proof: 
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Proof: 

T 
(a,b) t(a,b) 

<R> (= <P<BT>BT>) 
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BT 
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Proof: 

T 
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B <M> 

P<M> 

M 

B  P<BT> w 

w’ 

<BT
> 

Proof: 

T 
(a,b) t(a,b) 

T 

<R> (= <P<BT>BT>) 



B <M> 

P<M> 

M 

B  P<BT> w 

w’ 

<BT
> 

Proof: 

T 
(a,b) t(a,b) 

T 
 t(<R>,w) 

R 

w w 

<R> (= <P<BT>BT>) 



THE RECURSION THEOREM 
Theorem: Let T be a Turing machine that 
computes a function t : Σ* × Σ* → Σ*. There is 
a Turing machine R that computes a function  
r : Σ* → Σ*, where for every string w, 

r(w) = t(<R>, w) 

T (a,b) t(a,b) 

R w t(<R>,w) 



WWW.FLAC.WS 
Read Chapter 6.1 and 6.3 for next time 


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58

