
FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

15-453

UNDECIDABILITY II:
REDUCTIONS

TUESDAY Feb 18

ATM = { (M,w) | M is a TM that accepts string w }
ATM is undecidable: (constructive proof & subtle)

 Assume machine H semi-decides ATM (such exist, why?)

H((M,w)) =
Accept if M accepts w

Rejects or loops otherwise

Construct a new TM DH as follows: on input M,
run H on (M,M) and output the “opposite” of H
whenever possible.

DH (M) =

Reject if M accepts M
(i.e. if H(M , M) = Accept)

Accept if M rejects M
(i.e. if H(M , M) = Reject)

loops if M loops on M
(i.e. if H(M , M) loops)

DH (M) =

Reject if M accepts M
(i.e. if H(M , M) = Accept)

Accept if M rejects M
(i.e. if H(M , M) = Reject)

loops if M loops on M
(i.e. if H(M , M) loops)

DH

DH DH
DH DH

D
H

DH
DH DH

DH DH
DH DH

Note: It must be the case that DH loops on DH

There is no contradiction here!
Thus we effectively constructed an instance which
does not belong to ATM (namely, (DH, DH))
but H fails to tell us that.

That is:

Given any semi-decision machine H for ATM

(and thus a potential decision machine for ATM),

we can effectively construct an instance which
does not belong to ATM (namely, (DH, DH))

but H fails to tell us that.

So H cannot be a decision machine for ATM

In most cases, we will show that a
language L is undecidable by showing

that if it is decidable, then so is ATM

We reduce deciding ATM to deciding
the language in question

ATM “<“ L

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w } (*)

ETM = { M | M is a TM and L(M) = ∅ } (*)

REGTM = { M | M is a TM and L(M) is regular} (*)

ALLPDA = { P | P is a PDA and L(P) = Σ* } (*)

EQTM = {(M, N) | M, N are TMs and L(M) = L(N)} (*)

ALL UNDECIDABLE
(*) Use Reductions to Prove

Which are SEMI-DECIDABLE?

HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE HALTING PROBLEM

Proof: Assume, for a contradiction, that TM H
decides HALTTM

We use H to construct a TM D that decides ATM

HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE HALTING PROBLEM

Proof: Assume, for a contradiction, that TM H
decides HALTTM

We use H to construct a TM D that decides ATM

On input (M,w), D runs H on (M,w)
If H rejects then reject
If H accepts, run M on w until it halts:

Accept if M accepts and
Reject if M rejects

H

(M,w)

(M,w)

M

w

If M doesn’t
halt: REJECT

If M halts
Does M

halt on w?
D

ACCEPT if halts in accept state
REJECT otherwise

ETM = { M | M is a TM and L(M) = ∅ }
Theorem: ETM is undecidable
Proof: Assume, for a contradiction, that TM Z
decides ETM . Use Z as a subroutine to decide ATM

ETM = { M | M is a TM and L(M) = ∅ }
Theorem: ETM is undecidable
Proof: Assume, for a contradiction, that TM Z
decides ETM .

s If s ≠ w, REJECT
If s = w, run M(w)

Algorithm for deciding ATM: On input (M,w):

Mw

1. Create Mw

2. Run Z on Mw

Use Z as a subroutine to decide ATM

So, L (Mw) = ∅ ⇔ M(w) does not accept
 L(Mw) ≠ ∅ ⇔ M(w) accepts

Z

s If s ≠ w, REJECT
If s = w, run M(w)

Mw

So, L (Mw) = ∅ ⇔ M(w)
does not accept <N>

L(N) = ∅?

Accepts if M does not accept w
Rejects, otherwise

Z

s If s ≠ w, REJECT
If s = w, run M(w)

Mw

<M,w>

L(Mw) = ∅?

So, L (Mw) = ∅ ⇔ M(w)
does not accept

Decision Machine
for ATM

<Mw>

REVERSE accept/reject

REGULARTM = { M | M is a TM and L(M) is regular}

Theorem: REGULARTM is undecidable
Proof: Assume, for a contradiction, that TM R
decides REGULARTM

Use R as a subroutine to decide ATM

REGULARTM = { M | M is a TM and L(M) is regular}

Theorem: REGULARTM is undecidable
Proof: Assume, for a contradiction, that TM R
decides REGULARTM

Use R as a subroutine to decide ATM

s
M’w

1. Create M’w

2. Run R on M’w

So, L (M’w) = Σ* ⇔ M(w) accepts
 L (M’w) = {0n1n} ⇔ M(w) does not accept

If s = 0n1n, accept
Else run M(w)

R

<N>

Is L(N) regular?

s If s = 0n1n, accept
Else run M(w)

Mw′

L(Mw′) = Σ* if M(w) accepts

 {0n1n } otherwise

L(Mw′) is regular ⇔ M(w) accepts

R

s If s = 0n1n, accept
Else run M(w)

Mw′

L(Mw′) = Σ* if M(w) accepts

 {0n1n } otherwise

L(Mw′) is regular ⇔ M(w) accepts

< Mw′>

Is L(Mw′) regular?

Yes ⇔ M accepts w

MAPPING REDUCIBILITY
f : Σ* → Σ* is a computable function if some
Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A ≤m B, if there is a computable function
 f : Σ* → Σ*, where for every w,

w ∈ A ⇔ f(w) ∈ B
f is called a reduction from A to B

Think of f as a “computable coding” from A to B

A B f

f

A is mapping reducible to B, A ≤m B,

Σ* Σ*

Also, ¬ A ≤m ¬ B, why?

if there is a computable f : Σ* → Σ*
such that w ∈ A ⇔ f(w) ∈ B

Theorem: If A ≤m B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from A to B

We build a machine N that decides A as follows:

On input w:

1. Compute f(w)
2. Run M on f(w)

Theorem: If A ≤m B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from A to B

We build a machine N that (semi) decides A as follows:

On input w:

1. Compute f(w)
2. Run M on f(w)

All undecidability proofs from today
can be seen as constructing an f that
reduces ATM to the proper language

(Sometimes you have to consider
the complement of the language.)

ATM ≤m HALTTM (So also, ¬ ATM ≤m¬ HALTTM):

Map (M, w) → (M’, w)
where M’(w) = M(w) if M(w) accepts
 loops otherwise

So (M, w) ∈ ATM ⇔ (M’, w) ∈ HALTTM

All undecidability proofs from today
can be seen as constructing an f that
reduces ATM to the proper language

CLAIM: ATM ≤m ¬ ETM

f: (M,w) → Mw where Mw (s) = M(w)

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = ∅ }

CONSTRUCT f : Σ* → Σ*

¬ ATM ≤m ETM

CLAIM: ATM ≤m ¬ ETM

f: (M,w) → Mw where Mw (s) = M(w)

So, (M, w) ∈ ATM ⇔ Mw ∈ ¬ ETM

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = ∅ }

CONSTRUCT f : Σ* → Σ*

So, M(w) accepts ⇔ L (Mw) ≠ ∅

¬ ATM ≤m ETM

CLAIM: ATM ≤m ¬ ETM

f: (M,w) → Mw where Mw (s) = M(w)

So, (M, w) ∈ ATM ⇔ Mw ∈ ¬ ETM

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = ∅ }

CONSTRUCT f : Σ* → Σ*

So, M(w) accepts ⇔ L (Mw) ≠ ∅

¬ ATM ≤m ETM

So ¬ ETM is NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is ETM SEMI-DECIDABLE?

CLAIM: ATM ≤m REGTM

f: (M,w) → M’w where M’w (s) = accept if s = 0n1n

 M(w) otherwise

REGTM = { M | M is a TM and L(M) is regular}

CONSTRUCT f : Σ* → Σ*

So REGTM is UNDECIDABLE

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ATM ≤m REGTM

f: (M,w) → M’w where M’w (s) = accept if s = 0n1n

 M(w) otherwise

So, (M, w) ∈ ATM ⇔ M’w ∈ REGTM

REGTM = { M | M is a TM and L(M) is regular}

CONSTRUCT f : Σ* → Σ*

So, L (M’w) = Σ* if M(w) accepts
 {0n1n} if not

So REGTM is UNDECIDABLE

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ATM ≤m REGTM

f: (M,w) → M’w where M’w (s) = accept if s = 0n1n

 M(w) otherwise

So, (M, w) ∈ ATM ⇔ M’w ∈ REGTM

REGTM = { M | M is a TM and L(M) is regular}

CONSTRUCT f : Σ* → Σ*

So, L (M’w) = Σ* if M(w) accepts
 {0n1n} if not

So REGTM is UNDECIDABLE

Is REG SEMI-DECIDABLE? (¬ REG is not. Why?)

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ¬ ATM ≤m REGTM

f: (M,w) → M”w where M”w (s) = accept if s = 0n1n

 and M(w) accepts
 Loop otherwise

CONSTRUCT f : Σ* → Σ*

So REGTM is NOT SEMI-
DECIDABLE

REGTM = { M | M is a TM and L(M) is regular}

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ¬ ATM ≤m REGTM

f: (M,w) → M”w where M”w (s) = accept if s = 0n1n

 and M(w) accepts
 Loop otherwise

So, (M, w) ∉ ATM ⇔ M”w ∈ REGTM

CONSTRUCT f : Σ* → Σ*

So, L (M’w) = {0n1n} if M(w) accepts
∅ if not

So REGTM is NOT SEMI-
DECIDABLE

REGTM = { M | M is a TM and L(M) is regular}

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ¬ ATM ≤m REGTM

f: (M,w) → M”w where M”w (s) = accept if s = 0n1n

 and M(w) accepts
 Loop otherwise

So, (M, w) ∉ ATM ⇔ M”w ∈ REGTM

CONSTRUCT f : Σ* → Σ*

So, L (M’w) = {0n1n} if M(w) accepts
∅ if not

So, REG NOT SEMI-DECIDABLE

So REGTM is NOT SEMI-
DECIDABLE

REGTM = { M | M is a TM and L(M) is regular}

ATM = { (M,w) | M is a TM that accepts string w }

ETM = { M | M is a TM and L(M) = ∅ }

REGTM = { M | M is a TM and L(M) is regular}

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w }

ETM = { M | M is a TM and L(M) = ∅ }

REGTM = { M | M is a TM and L(M) is regular}

ALLPDA = { P | P is a PDA and L(P) = Σ* }

EQTM = {(M, N) | M, N are TMs and L(M) = L(N)}

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w }

CLAIM: ETM ≤m EQTM

f : M → (M, M ∅) where M ∅ (s) = Loops

So, M ∈ E TM ⇔ (M, M ∅) ∈ EQTM

ETM = { M | M is a TM and L(M) = ∅ }

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT f : Σ* → Σ*

So EQTM is UNDECIDABLE

CLAIM: ETM ≤m EQTM

f : M → (M, M ∅) where M ∅ (s) = Loops

So, M ∈ E TM ⇔ (M, M ∅) ∈ EQTM

ETM = { M | M is a TM and L(M) = ∅ }

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT f : Σ* → Σ*

So EQTM is UNDECIDABLE

Is EQTM SEMI-DECIDABLE? NO, since,

¬ ATM ≤m ETM ≤m EQTM What about ¬EQTM?

CLAIM: ATM ≤m EQTM

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

So ¬EQTM is not semi-decidable

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ATM ≤m EQTM

f : (M,w) → (Mw, MA)

Where for each s in Σ*,

 Mw (s) = M(w) and MA(s) always accepts

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT f : Σ* → Σ*

So ¬EQTM is not semi-decidable

ATM = { (M,w) | M is a TM that accepts string w }

CLAIM: ATM ≤m EQTM

f : (M,w) → (Mw, MA)

Where for each s in Σ*,

 Mw (s) = M(w) and MA(s) always accepts

So, (M,w) ∈ A TM ⇔ (Mw, MA) ∈ EQTM

EQTM = {(M, N) | M, N are TMs and L(M) =L(N)}

CONSTRUCT f : Σ* → Σ*

So ¬EQTM is not semi-decidable

ATM = { (M,w) | M is a TM that accepts string w }

ETM ≤m EQTM

ATM ≤m ¬ ETM

ATM ≤m REGTM

ATM ≤m ¬REGTM

So, ¬ATM ≤m EQTM

Also, ATM ≤m EQTM

ETM ≤m EQTM

ATM ≤m ¬ ETM

ATM ≤m REGTM

ATM ≤m ¬REGTM

So, ¬ATM ≤m EQTM

Undecidable given a TM to tell if the language it
recognizes is empty. It’s not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Also, ATM ≤m EQTM

ETM ≤m EQTM

ATM ≤m ¬ ETM

ATM ≤m REGTM

ATM ≤m ¬REGTM

So, ¬ATM ≤m EQTM

Undecidable given a TM to tell if the language it
recognizes is empty. It’s not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Undecidable given a TM to tell if it is equivalent
to a FSM. It’s not even semi-decidable, nor is it
semi-decidable to tell if it is not equivalent to a
FSM.

Also, ATM ≤m EQTM

ETM ≤m EQTM

ATM ≤m ¬ ETM

ATM ≤m REGTM

ATM ≤m ¬REGTM

So, ¬ATM ≤m EQTM

Undecidable given a TM to tell if the language it
recognizes is empty. It’s not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Undecidable given a TM to tell if it is equivalent
to a FSM. It’s not even semi-decidable, nor is it
semi-decidable to tell if it is not equivalent to a
FSM.

Undecidable given 2 TMs to tell if they are
equivalent. It’s not even semi-decidable, nor is
it semi-decidable to tell If they are not

Also, ATM ≤m EQTM

CLAIM: ATM ≤m ¬ ALLPDA ¬ ATM ≤m ALLPDA

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

CLAIM: ATM ≤m ¬ ALLPDA

CONSTRUCT f : Σ* → Σ*

¬ ATM ≤m ALLPDA

Idea!

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

More subtle construction

Map (M,w) to a PDA PM,w that recognizes Σ*
if and only if M does not accept w

CLAIM: ATM ≤m ¬ ALLPDA

CONSTRUCT f : Σ* → Σ*

¬ ATM ≤m ALLPDA

Idea!

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

More subtle construction

So, (M, w) ∉ ATM ⇔ PM,w ∈ ALLPDA

Map (M,w) to a PDA PM,w that recognizes Σ*
if and only if M does not accept w

CLAIM: ATM ≤m ¬ ALLPDA

CONSTRUCT f : Σ* → Σ*

¬ ATM ≤m ALLPDA

Idea!

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

More subtle construction

PM,w will recognize all (and only those) strings that
are NOT accepting computation histories for M on w

So, (M, w) ∉ ATM ⇔ PM,w ∈ ALLPDA

CONFIGURATIONS

11010q700110
q7

1 0 0 0 0 0 1 1 1 1

COMPUTATION HISTORIES
An accepting computation history is a
sequence of configurations C1,C2,…,Ck, where

3. Each Ci follows from Ci-1
2. Ck is an accepting configuration,
1. C1 is the start configuration,

COMPUTATION HISTORIES
An accepting computation history is a
sequence of configurations C1,C2,…,Ck, where

An rejecting computation history is a
sequence of configurations C1,C2,…,Ck, where
 1. C1 is the start configuration,
 2. Ck is a rejecting configuration,
 3. Each Ci follows from Ci-1

3. Each Ci follows from Ci-1
2. Ck is an accepting configuration,
1. C1 is the start configuration,

COMPUTATION HISTORIES
An accepting computation history is a
sequence of configurations C1,C2,…,Ck, where

An rejecting computation history is a
sequence of configurations C1,C2,…,Ck, where
 1. C1 is the start configuration,
 2. Ck is a rejecting configuration,
 3. Each Ci follows from Ci-1

3. Each Ci follows from Ci-1
2. Ck is an accepting configuration,
1. C1 is the start configuration,

M accepts w if and only if there exists an accepting
computation history that starts with C1=q0w

1. Do not start with C1 (= q0w) or

2. Do not end with an accepting configuration or
3. Where some Ci does not properly yield Ci+1

PM,w will recognize all strings (read as sequences
of configurations) that:

ε,ε → ε ε,ε → ε

ε,ε → ε

Non-deterministic checks for 1, 2, and 3.

1. Start with C1 (= q0w) and

2. End with an accepting configuration and
3. Where each Ci properly yields Ci+1

PM,w will reject all strings (read as sequences
of configurations) that:

ε,ε → ε ε,ε → ε

ε,ε → ε

Non-deterministic checks for 1, 2, and 3.

q00000
q1000
xq300
x0q40
x0xq3
x0q2x
xq20x
q2x0x
q2x0x

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

PM.w recognizes all strings except
“accepting computation histories” :

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is odd, put Ci on stack and see if Ci+1
R

follows properly:

For example,

If =uaqibv and δ (qi,b) = (qj,c,R),

then Ci properly yields Ci+1 ⇔ Ci+1 = uacqjv

PM.w recognizes all strings except
“accepting computation histories” :

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is odd, put Ci on stack and see if Ci+1
R

follows properly.

For example,

If =uaqibv and δ (qi,b) = (qj,c,L),

then Ck properly yields Ck+1 ⇔ Ck+1 = uqjacv

PM.w recognizes all strings except
“accepting computation histories” :

#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck

If i is even, put Ci
R

 on stack and see if Ci+1
follows properly.

PM.w recognizes all strings except
“accepting computation histories” :

q00000
q1000
xq300
x0q40
x0xq3
x0q2x
xq20x
q2x0x

#q00000#000q1#xq300#0q40x #x0xq3# ... #

0 0 0 q1 

0

0
0
0

q0

ODD

:

q00000
q1000
xq300
x0q40
x0xq3
x0q2x
xq20x
q2x0x

#q00000#000q1#xq300#0q40x #x0xq3# ... #

0 0 0 q1 

0

0
0
0

q0

ODD

:

q00000
q1000
xq300
x0q40
x0xq3
x0q2x
xq20x
q2x0x

#q00000#000q1#xq300#0q40x #x0xq3# ... #

 x q3 0 0


q1

0
0

0

EVEN

:

q00000
q1000
xq300
x0q40
x0xq3
x0q2x
xq20x
q2x0x

#q00000#000q1#xq300#0q40x #x0xq3# ... #


q1

0
0

0

EVEN

 x q3 0 0

:

f: (M,w) → PM,w where

PM,W (s) = accept iff s is NOT an accepting computation of M(w)

So, (M, w) ∉ ATM ⇔ PM,w ∈ ALLPDA

So, (M, w) ∈ ATM ⇔ PM,w ∈ ¬ ALLPDA

EXPLAIN THE PROOF TO YOUR NEIGHBOR

CLAIM: ATM ≤m ¬ ALLPDA

CONSTRUCT f : Σ* → Σ*

¬ ATM ≤m ALLPDA

ATM = { (M,w) | M is a TM that accepts string w }

ALLPDA = { P | P is a PDA and L(P) = Σ* }

ATM = { (M,w) | M is a TM that accepts string w }

HALTTM = { (M,w) | M is a TM that halts on string w }

ETM = { M | M is a TM and L(M) = ∅ }

REGTM = { M | M is a TM and L(M) is regular}

ALLPDA = { P | P is a PDA and L(P) = Σ* }

EQTM = {(M, N) | M, N are TMs and L(M) = L(N)}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?

WWW.FLAC.WS
Read chapter 5.1-5.3 of the book for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68

