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ATM = { (M,w) | M is a TM that accepts string w } 
ATM is undecidable: (constructive proof & subtle) 

 Assume machine H semi-decides ATM (such exist, why?) 

H( (M,w) ) = 
Accept  if M accepts w 
 
Rejects or loops otherwise  

Construct a new TM DH as follows: on input M, 
run H on (M,M) and output the “opposite” of H 
whenever possible. 



DH (  M  ) = 

Reject if  M  accepts  M 
(i.e. if H(  M  ,  M  ) = Accept) 
 
Accept if  M  rejects  M 
(i.e. if H(  M  ,  M  ) = Reject) 
 
loops if  M  loops on  M 
(i.e. if H(  M  ,  M  ) loops) 



DH (  M  ) = 

Reject if  M  accepts  M 
(i.e. if H(  M  ,  M  ) = Accept) 
 
Accept if  M  rejects  M 
(i.e. if H(  M  ,  M  ) = Reject) 
 
loops if  M  loops on  M 
(i.e. if H(  M  ,  M  ) loops) 

DH 

DH DH 
DH DH 

D
H 

DH 
DH DH 

DH DH 
DH DH 

Note: It must be the case that DH loops on DH 

There is no contradiction here!  
Thus we effectively constructed an instance which 
does not belong to ATM (namely, (DH, DH) )  
but H fails to tell us that.   



That is: 

Given any semi-decision machine H  for  ATM  

(and thus a potential decision machine for ATM ),  

we can effectively construct an instance which 
does not belong to ATM (namely, ( DH, DH ))  

but H fails to tell us that.   

So H cannot be a decision machine for ATM  



In most cases, we will show that a 
language L is undecidable by showing 

that if it is decidable, then so is ATM 

We reduce deciding ATM to deciding 
the language in question 

ATM   “<“   L 



ATM = { (M,w) | M is a TM that accepts string w } 

HALTTM = { (M,w) | M is a TM that halts on string w } (*) 

ETM = { M | M is a TM and L(M) = ∅ } (*)  

REGTM = { M | M is a TM and L(M) is regular} (*) 

ALLPDA = { P | P is a PDA and L(P) = Σ* } (*) 

EQTM = {( M, N) | M, N are TMs and L(M) = L(N)} (*) 

ALL UNDECIDABLE 
(*) Use Reductions to Prove 

Which are SEMI-DECIDABLE? 



HALTTM = { (M,w) | M is a TM that halts on string w } 

Theorem: HALTTM is undecidable 

THE HALTING PROBLEM 

Proof:    Assume, for a contradiction, that TM H 
decides HALTTM 

We use H to construct a TM D that decides ATM 



HALTTM = { (M,w) | M is a TM that halts on string w } 

Theorem: HALTTM is undecidable 

THE HALTING PROBLEM 

Proof:    Assume, for a contradiction, that TM H 
decides HALTTM 

We use H to construct a TM D that decides ATM 

On input (M,w), D runs H on (M,w) 
If H rejects then reject 
If H accepts, run M on w until it halts: 

Accept if M accepts and  
Reject if M rejects 



H 

(M,w) 

(M,w) 

M 

w 

If M doesn’t 
halt: REJECT 

If M halts 
Does M 

halt on w? 
D 

ACCEPT if halts in accept state 
REJECT  otherwise 



ETM = { M | M is a TM and L(M) = ∅ } 
Theorem: ETM is undecidable 
Proof:    Assume, for a contradiction, that TM Z 
decides ETM .  Use Z as a subroutine to decide ATM 



ETM = { M | M is a TM and L(M) = ∅ } 
Theorem: ETM is undecidable 
Proof:    Assume, for a contradiction, that TM Z 
decides ETM .  

s If s ≠ w, REJECT 
If s = w, run M(w) 

Algorithm for deciding ATM: On input (M,w): 

Mw 

1. Create Mw 

2. Run Z on Mw 

Use Z as a subroutine to decide ATM 

So, L (Mw) = ∅  ⇔  M(w) does not accept 
              L(Mw) ≠ ∅  ⇔  M(w) accepts   



Z 

s If s ≠ w, REJECT 
If s = w, run M(w) 

Mw 

So, L (Mw) = ∅  ⇔  M(w) 
does not accept <N> 

L(N) = ∅? 



Accepts if M does not accept w 
Rejects, otherwise 

Z 

s If s ≠ w, REJECT 
If s = w, run M(w) 

Mw 

<M,w> 

L(Mw) = ∅? 

So, L (Mw) = ∅  ⇔  M(w) 
does not accept 

Decision Machine  
for ATM 

<Mw> 

REVERSE accept/reject 



REGULARTM = { M | M is a TM and L(M) is regular} 

Theorem: REGULARTM is undecidable 
Proof:    Assume, for a contradiction, that TM R 
decides REGULARTM 

Use R as a subroutine to decide ATM 



REGULARTM = { M | M is a TM and L(M) is regular} 

Theorem: REGULARTM is undecidable 
Proof:    Assume, for a contradiction, that TM R 
decides REGULARTM 

Use R as a subroutine to decide ATM 

s 
M’w 

1. Create M’w 

2. Run R on M’w 

So, L (M’w) = Σ*    ⇔  M(w) accepts 
                             L (M’w) = {0n1n} ⇔  M(w) does not accept 

If s = 0n1n, accept 
Else run M(w) 



R 

<N> 

Is L(N) regular? 

s If s = 0n1n, accept 
Else run M(w) 

Mw′ 

L(Mw′) = Σ*  if M(w) accepts 

              {0n1n } otherwise 

L(Mw′)  is regular ⇔ M(w) accepts 



R 

s If s = 0n1n, accept 
Else run M(w) 

Mw′ 

L(Mw′) = Σ*  if M(w) accepts 

              {0n1n } otherwise 

L(Mw′)  is regular ⇔ M(w) accepts 

< Mw′> 

Is L(Mw′) regular? 

Yes ⇔ M accepts w 



MAPPING REDUCIBILITY 
f : Σ* → Σ* is a computable function if some 
Turing machine M, on every input w, halts with 
just f(w) on its tape 

A language A is mapping reducible to language B, 
written A ≤m B, if there is a computable function   
              f : Σ* → Σ*, where for every w, 

w ∈ A ⇔ f(w) ∈ B 
f is called a reduction from A to B 

Think of f as a “computable coding” from A to B 
 



A B f 

f 

A is mapping reducible to B,  A ≤m B,   

Σ* Σ* 

Also, ¬ A ≤m ¬ B, why?  

if there is a computable f : Σ* → Σ* 
such that w ∈ A ⇔ f(w) ∈ B 



Theorem: If A ≤m B and B is decidable,  
then A is decidable  

Proof:       Let M decide B and let f be a 
reduction from A to B  

We build a machine N that decides A as follows: 

On input w: 

1. Compute f(w) 
2. Run M on f(w) 



Theorem: If A ≤m B and B is (semi) decidable,  
then A is (semi) decidable  

Proof:       Let M (semi) decide B and let f be a 
reduction from A to B  

We build a machine N that (semi) decides A as follows: 

On input w: 

1. Compute f(w) 
2. Run M on f(w) 



All undecidability proofs from today 
can be seen as constructing an f that 
reduces ATM to the proper language 

 
 

(Sometimes you have to consider 
the complement of the language. ) 



 
ATM ≤m HALTTM  (So also, ¬ ATM ≤m¬ HALTTM): 
  
 

Map  (M, w) → (M’, w)  
where M’(w) = M(w) if M(w) accepts 
                       loops otherwise 
 

So (M, w) ∈ ATM   ⇔   (M’, w) ∈ HALTTM 
 

All undecidability proofs from today 
can be seen as constructing an f that 
reduces ATM to the proper language 

 



CLAIM: ATM ≤m ¬ ETM 

f: (M,w) → Mw  where    Mw (s)  = M(w)  

ATM = { (M,w) | M is a TM that accepts string w } 

ETM = { M | M is a TM and L(M) = ∅ } 

CONSTRUCT f : Σ* → Σ*  

¬ ATM ≤m ETM 



CLAIM: ATM ≤m ¬ ETM 

f: (M,w) → Mw  where    Mw (s)  = M(w)  

So, (M, w ) ∈ ATM ⇔  Mw ∈ ¬ ETM 

ATM = { (M,w) | M is a TM that accepts string w } 

ETM = { M | M is a TM and L(M) = ∅ } 

CONSTRUCT f : Σ* → Σ*  

So, M(w) accepts ⇔  L (Mw) ≠ ∅ 

¬ ATM ≤m ETM 



CLAIM: ATM ≤m ¬ ETM 

f: (M,w) → Mw  where    Mw (s)  = M(w)  

So, (M, w ) ∈ ATM ⇔  Mw ∈ ¬ ETM 

ATM = { (M,w) | M is a TM that accepts string w } 

ETM = { M | M is a TM and L(M) = ∅ } 

CONSTRUCT f : Σ* → Σ*  

So, M(w) accepts ⇔  L (Mw) ≠ ∅ 

¬ ATM ≤m ETM 

So ¬ ETM is NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is ETM  SEMI-DECIDABLE? 



CLAIM: ATM ≤m REGTM 

f: (M,w) → M’w  where    M’w (s)  = accept if s = 0n1n 

                                                      M(w) otherwise 

REGTM = { M | M is a TM and L(M) is regular} 

CONSTRUCT f : Σ* → Σ*  

So REGTM is UNDECIDABLE 

ATM = { (M,w) | M is a TM that accepts string w } 



CLAIM: ATM ≤m REGTM 

f: (M,w) → M’w  where    M’w (s)  = accept if s = 0n1n 

                                                      M(w) otherwise 

So, (M, w ) ∈ ATM ⇔ M’w ∈ REGTM  

REGTM = { M | M is a TM and L(M) is regular} 

CONSTRUCT f : Σ* → Σ*  

So, L (M’w) = Σ*   if M(w) accepts 
          {0n1n}   if not 

So REGTM is UNDECIDABLE 

ATM = { (M,w) | M is a TM that accepts string w } 



CLAIM: ATM ≤m REGTM 

f: (M,w) → M’w  where    M’w (s)  = accept if s = 0n1n 

                                                      M(w) otherwise 

So, (M, w ) ∈ ATM ⇔ M’w ∈ REGTM  

REGTM = { M | M is a TM and L(M) is regular} 

CONSTRUCT f : Σ* → Σ*  

So, L (M’w) = Σ*   if M(w) accepts 
          {0n1n}   if not 

So REGTM is UNDECIDABLE 

Is REG SEMI-DECIDABLE? (¬ REG is not. Why?) 

ATM = { (M,w) | M is a TM that accepts string w } 



CLAIM: ¬ ATM ≤m REGTM 

f: (M,w) → M”w  where    M”w (s)  = accept if s = 0n1n 

                                                         and M(w) accepts 
                                                         Loop otherwise 

CONSTRUCT f : Σ* → Σ*  

So REGTM is NOT SEMI-
DECIDABLE 

REGTM = { M | M is a TM and L(M) is regular} 

ATM = { (M,w) | M is a TM that accepts string w } 



CLAIM: ¬ ATM ≤m REGTM 

f: (M,w) → M”w  where    M”w (s)  = accept if s = 0n1n 

                                                         and M(w) accepts 
                                                         Loop otherwise 

So, (M, w ) ∉  ATM ⇔ M”w ∈ REGTM  

CONSTRUCT f : Σ* → Σ*  

So, L (M’w) = {0n1n} if M(w) accepts 
∅ if not 

So REGTM is NOT SEMI-
DECIDABLE 

REGTM = { M | M is a TM and L(M) is regular} 

ATM = { (M,w) | M is a TM that accepts string w } 



CLAIM: ¬ ATM ≤m REGTM 

f: (M,w) → M”w  where    M”w (s)  = accept if s = 0n1n 

                                                         and M(w) accepts 
                                                         Loop otherwise 

So, (M, w ) ∉  ATM ⇔ M”w ∈ REGTM  

CONSTRUCT f : Σ* → Σ*  

So, L (M’w) = {0n1n} if M(w) accepts 
∅ if not 

So,  REG  NOT SEMI-DECIDABLE  

So REGTM is NOT SEMI-
DECIDABLE 

REGTM = { M | M is a TM and L(M) is regular} 

ATM = { (M,w) | M is a TM that accepts string w } 



ETM = { M | M is a TM and L(M) = ∅ } 

REGTM = { M | M is a TM and L(M) is regular} 

ALL UNDECIDABLE 

Which are SEMI-DECIDABLE? 

ATM = { (M,w) | M is a TM that accepts string w } 

HALTTM = { (M,w) | M is a TM that halts on string w } 



ETM = { M | M is a TM and L(M) = ∅ } 

REGTM = { M | M is a TM and L(M) is regular} 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 

EQTM = {( M, N) | M, N are TMs and L(M) = L(N)} 

ALL UNDECIDABLE 

Which are SEMI-DECIDABLE? 

ATM = { (M,w) | M is a TM that accepts string w } 

HALTTM = { (M,w) | M is a TM that halts on string w } 



CLAIM: ETM ≤m EQTM 

f : M → (M, M ∅ ) where M ∅ (s)  = Loops 
 

So, M ∈ E TM ⇔ (M, M ∅ ) ∈ EQTM  

ETM = { M | M is a TM and L(M) = ∅ } 

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)} 

CONSTRUCT f : Σ* → Σ*  

So EQTM is UNDECIDABLE 



CLAIM: ETM ≤m EQTM 

f : M → (M, M ∅ ) where M ∅ (s)  = Loops 
 

So, M ∈ E TM ⇔ (M, M ∅ ) ∈ EQTM  

ETM = { M | M is a TM and L(M) = ∅ } 

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)} 

CONSTRUCT f : Σ* → Σ*  

So EQTM is UNDECIDABLE 

Is EQTM SEMI-DECIDABLE? NO, since,  

¬ ATM ≤m ETM ≤m EQTM What about ¬EQTM?        



CLAIM: ATM ≤m EQTM 

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)} 

So ¬EQTM is not semi-decidable 

ATM = { (M,w) | M is a TM that accepts string w } 



CLAIM: ATM ≤m EQTM 

f : (M,w) → (Mw, MA)  

Where for each s in Σ*, 

 Mw (s)  = M(w) and MA(s)  always accepts 

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)} 

CONSTRUCT  f :    Σ* →   Σ*  

So ¬EQTM is not semi-decidable 

ATM = { (M,w) | M is a TM that accepts string w } 



CLAIM: ATM ≤m EQTM 

f : (M,w) → (Mw, MA)  

Where for each s in Σ*, 

 Mw (s)  = M(w) and MA(s)  always accepts 

So, (M,w) ∈ A TM ⇔ (Mw, MA) ∈ EQTM  

EQTM = {( M, N) | M, N are TMs and L(M) =L(N)} 

CONSTRUCT  f :    Σ* →   Σ*  

So ¬EQTM is not semi-decidable 

ATM = { (M,w) | M is a TM that accepts string w } 



ETM ≤m EQTM  

ATM ≤m ¬ ETM 

ATM ≤m REGTM 
  
ATM ≤m ¬REGTM 
  

So, ¬ATM ≤m EQTM  

Also,   ATM ≤m EQTM  



ETM ≤m EQTM  

ATM ≤m ¬ ETM 

ATM ≤m REGTM 
  
ATM ≤m ¬REGTM 
  

So, ¬ATM ≤m EQTM  

Undecidable given a TM to tell if the language it 
recognizes is empty. It’s not even semi-decidable, 
altho it is semi-decidable to tell if the language is 
non-empty. 

Also,   ATM ≤m EQTM  



ETM ≤m EQTM  

ATM ≤m ¬ ETM 

ATM ≤m REGTM 
  
ATM ≤m ¬REGTM 
  

So, ¬ATM ≤m EQTM  

Undecidable given a TM to tell if the language it 
recognizes is empty. It’s not even semi-decidable, 
altho it is semi-decidable to tell if the language is 
non-empty. 

Undecidable given a TM to tell if it is equivalent 
to a FSM. It’s not even semi-decidable, nor is it 
semi-decidable to tell if it is not equivalent to a  
FSM. 

Also,   ATM ≤m EQTM  



ETM ≤m EQTM  

ATM ≤m ¬ ETM 

ATM ≤m REGTM 
  
ATM ≤m ¬REGTM 
  

So, ¬ATM ≤m EQTM  

Undecidable given a TM to tell if the language it 
recognizes is empty. It’s not even semi-decidable, 
altho it is semi-decidable to tell if the language is 
non-empty. 

Undecidable given a TM to tell if it is equivalent 
to a FSM. It’s not even semi-decidable, nor is it 
semi-decidable to tell if it is not equivalent to a  
FSM. 

Undecidable given 2 TMs to tell if they are 
equivalent.  It’s not even semi-decidable, nor is 
it semi-decidable to tell If they are not 

Also,   ATM ≤m EQTM  



CLAIM: ATM ≤m ¬ ALLPDA ¬ ATM ≤m ALLPDA 

ATM = { (M,w) | M is a TM that accepts string w } 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 
 



CLAIM: ATM ≤m ¬ ALLPDA 

CONSTRUCT f : Σ* → Σ*  

¬ ATM ≤m ALLPDA 

Idea! 

ATM = { (M,w) | M is a TM that accepts string w } 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 
 

More subtle construction  



Map (M,w) to a PDA PM,w that recognizes Σ*  
if and only if M does not accept w  

CLAIM: ATM ≤m ¬ ALLPDA 

CONSTRUCT f : Σ* → Σ*  

¬ ATM ≤m ALLPDA 

Idea! 

ATM = { (M,w) | M is a TM that accepts string w } 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 
 

More subtle construction  

So, (M, w ) ∉  ATM ⇔ PM,w  ∈ ALLPDA  



Map (M,w) to a PDA PM,w that recognizes Σ*  
if and only if M does not accept w  

CLAIM: ATM ≤m ¬ ALLPDA 

CONSTRUCT f : Σ* → Σ*  

¬ ATM ≤m ALLPDA 

Idea! 

ATM = { (M,w) | M is a TM that accepts string w } 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 
 

More subtle construction  

PM,w  will recognize all (and only those) strings that 
are NOT accepting computation histories for M on w 

So, (M, w ) ∉  ATM ⇔ PM,w  ∈ ALLPDA  



CONFIGURATIONS 

11010q700110 
q7 

1 0 0 0 0 0 1 1 1 1 



COMPUTATION HISTORIES 
An accepting computation history is a 
sequence of configurations C1,C2,…,Ck, where 

3. Each Ci follows from Ci-1 
2. Ck is an accepting configuration, 
1. C1 is the start configuration,  



COMPUTATION HISTORIES 
An accepting computation history is a 
sequence of configurations C1,C2,…,Ck, where 

An rejecting computation history is a 
sequence of configurations C1,C2,…,Ck, where 
  1. C1 is the start configuration,  
 2. Ck is a rejecting configuration,  
 3. Each Ci follows from Ci-1 

3. Each Ci follows from Ci-1 
2. Ck is an accepting configuration, 
1. C1 is the start configuration,  



COMPUTATION HISTORIES 
An accepting computation history is a 
sequence of configurations C1,C2,…,Ck, where 

An rejecting computation history is a 
sequence of configurations C1,C2,…,Ck, where 
  1. C1 is the start configuration,  
 2. Ck is a rejecting configuration,  
 3. Each Ci follows from Ci-1 

3. Each Ci follows from Ci-1 
2. Ck is an accepting configuration, 
1. C1 is the start configuration,  

M accepts w if and only if there exists an accepting 
computation history that starts with C1=q0w 



1. Do not start with C1 ( = q0w) or 

2. Do not end with an accepting configuration or 
3. Where some Ci does not properly yield Ci+1 

PM,w  will recognize all strings (read as sequences 
of configurations) that: 

ε,ε → ε ε,ε → ε 

ε,ε → ε 

Non-deterministic checks for 1, 2, and 3.  



1. Start with C1 ( = q0w)  and 

2. End with an accepting configuration and 
3. Where each Ci properly yields Ci+1 

PM,w  will reject all strings (read as sequences 
of configurations) that: 

ε,ε → ε ε,ε → ε 

ε,ε → ε 

Non-deterministic checks for 1, 2, and 3.  



q00000 
q1000 
xq300 
x0q40 
x0xq3 
x0q2x 
xq20x 
q2x0x 
q2x0x 



#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck 

PM.w recognizes all strings except  
“accepting computation histories” : 



#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck 

If i is odd, put Ci on stack and see if Ci+1
R 

follows properly: 

For example,  

If =uaqibv and δ (qi,b) = (qj,c,R),  

then Ci properly yields Ci+1 ⇔  Ci+1 = uacqjv 

PM.w recognizes all strings except  
“accepting computation histories” : 



#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck 

If i is odd, put Ci on stack and see if Ci+1
R 

follows properly. 

For example,  

If =uaqibv and δ (qi,b) = (qj,c,L),  

then Ck properly yields Ck+1 ⇔  Ck+1 = uqjacv 

PM.w recognizes all strings except  
“accepting computation histories” : 



#C1# C2
R #C3 #C4

R #C5 #C6
R #….# Ck 

If i is even, put Ci
R

 on stack and see if Ci+1 
follows properly. 

 

PM.w recognizes all strings except  
“accepting computation histories” : 



q00000 
q1000 
xq300 
x0q40 
x0xq3 
x0q2x 
xq20x 
q2x0x 

#q00000#000q1#xq300#0q40x #x0xq3# ... # 

0 0 0 q1  

0 

0 
0 
0 

q0 

ODD 

: 



q00000 
q1000 
xq300 
x0q40 
x0xq3 
x0q2x 
xq20x 
q2x0x 

#q00000#000q1#xq300#0q40x #x0xq3# ... # 

0 0 0 q1  

0 

0 
0 
0 

q0 

ODD 

: 



q00000 
q1000 
xq300 
x0q40 
x0xq3 
x0q2x 
xq20x 
q2x0x 

#q00000#000q1#xq300#0q40x #x0xq3# ... # 

 x q3 0 0 

 
q1 

0 
0 

0 

EVEN 

: 



q00000 
q1000 
xq300 
x0q40 
x0xq3 
x0q2x 
xq20x 
q2x0x 

#q00000#000q1#xq300#0q40x #x0xq3# ... # 

 
q1 

0 
0 

0 

EVEN 

 x q3 0 0 

: 



f: (M,w) → PM,w  where     

PM,W (s) = accept iff s  is NOT an accepting computation of M(w) 

So, (M, w ) ∉  ATM ⇔ PM,w  ∈ ALLPDA  

So, (M, w ) ∈ ATM ⇔ PM,w  ∈ ¬ ALLPDA  

EXPLAIN THE PROOF TO YOUR NEIGHBOR 

CLAIM: ATM ≤m ¬ ALLPDA 

CONSTRUCT f : Σ* → Σ*  

¬ ATM ≤m ALLPDA 

ATM = { (M,w) | M is a TM that accepts string w } 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 
 



ATM = { (M,w) | M is a TM that accepts string w } 

HALTTM = { (M,w) | M is a TM that halts on string w } 

ETM = { M | M is a TM and L(M) = ∅ } 

REGTM = { M | M is a TM and L(M) is regular} 

ALLPDA = { P | P is a PDA and L(P) = Σ* } 

EQTM = {( M, N) | M, N are TMs and L(M) = L(N)} 

ALL UNDECIDABLE 
Which are SEMI-DECIDABLE? 

What about complements? 



WWW.FLAC.WS 
Read chapter 5.1-5.3 of the book for next time 
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