15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

UNDECIDABILITY II: REDUCTIONS

TUESDAY Feb 18

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $A_{TM} \text{ is undecidable: (constructive proof \& subtle)}$

Assume machine H semi-decides A_{TM} (such exist, why?)

Construct a new TM D_H as follows: on input M, run H on (M,M) and output the "opposite" of H whenever possible.

Reject if M accepts M
(i.e. if H(M , M) = Accept)

Accept if M rejects M
(i.e. if H(M , M) = Reject)

loops if M loops on M
(i.e. if H(M , M) loops)

$$D_{H}(D_{H}) = \begin{cases} Reject & \text{if } D_{H} \text{ accepts } D_{H} \\ \text{(i.e. if } H(D_{H}, D_{H}) = Accept) \end{cases}$$

$$Accept & \text{if } D_{H} \text{ rejects } D_{H} \\ \text{(i.e. if } H(D_{H}, D_{H}) = Reject) \end{cases}$$

$$loops & \text{if } D_{H} \text{ loops on } D_{H} \\ \text{(i.e. if } H(D_{H}, D_{H}) \text{ loops)}$$

Note: It must be the case that D_H loops on D_H

There is no contradiction here!

Thus we effectively constructed an instance which does not belong to A_{TM} (namely, (D_H, D_H)) but H fails to tell us that.

That is:

Given any semi-decision machine H for A_{TM} (and thus a potential decision machine for A_{TM}), we can effectively construct an instance which does not belong to A_{TM} (namely, (D_{H} , D_{H})) but H fails to tell us that.

So H cannot be a decision machine for A_{TM}

In most cases, we will show that a language L is undecidable by showing that if it is decidable, then so is A_{TM}

We reduce deciding A_{TM} to deciding the language in question

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \} \text{(*)}$ $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \} \text{(*)}$

 $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \} (*)$

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and L(M)} = L(N)\}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$ (*)

ALL UNDECIDABLE

(*) Use Reductions to Prove

Which are SEMI-DECIDABLE?

THE HALTING PROBLEM

 $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string w } \}$

Theorem: HALT_{TM} is undecidable

Proof: Assume, for a contradiction, that TM H decides HALT_{TM}

We use H to construct a TM D that decides A_{TM}

THE HALTING PROBLEM

 $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string w } \}$

Theorem: HALT_{TM} is undecidable

Proof: Assume, for a contradiction, that TM H decides HALT_{TM}

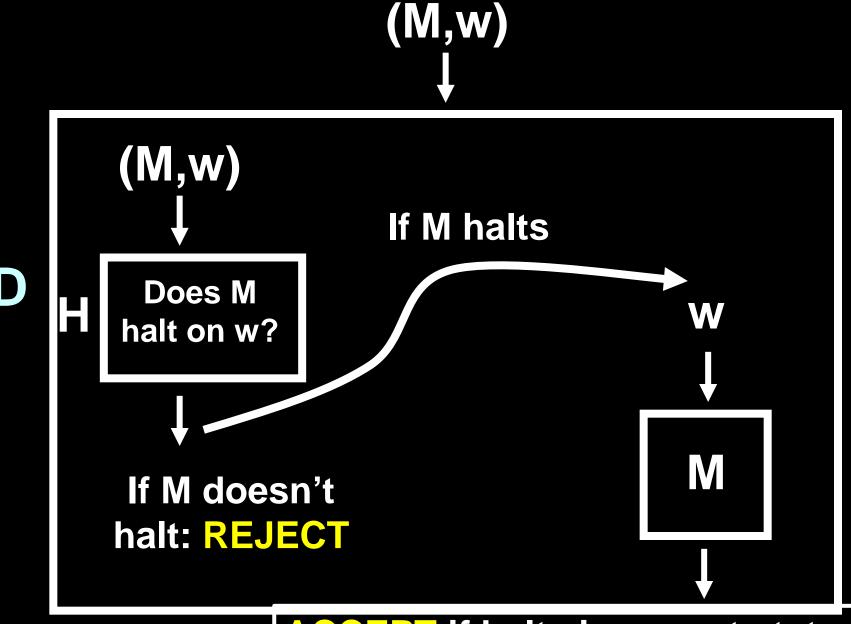
We use H to construct a TM D that decides A_{TM}

On input (M,w), D runs H on (M,w)

If H rejects then reject

If H accepts, run M on w until it halts:

Accept if M accepts and Reject if M rejects



ACCEPT if halts in accept state **REJECT** otherwise

 $\overline{E_{TM}} = \{ M \mid M \text{ is a TM and L(M)} = \emptyset \}$

Theorem: E_{TM} is undecidable

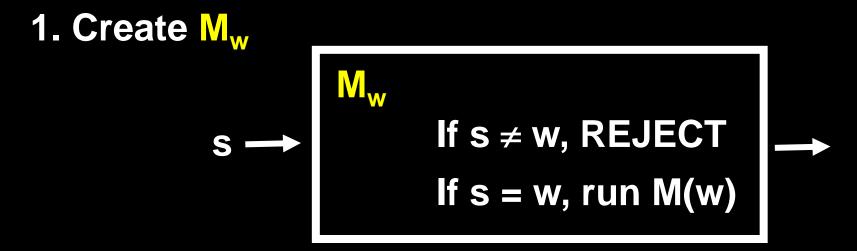
Proof: Assume, for a contradiction, that TM Z decides E_{TM} . Use Z as a subroutine to decide A_{TM}

 $E_{TM} = \{ M \mid M \text{ is a TM and L(M)} = \emptyset \}$

Theorem: E_{TM} is undecidable

Proof: Assume, for a contradiction, that TM Z decides E_{TM} . Use Z as a subroutine to decide A_{TM}

Algorithm for deciding A_{TM}: On input (M,w):

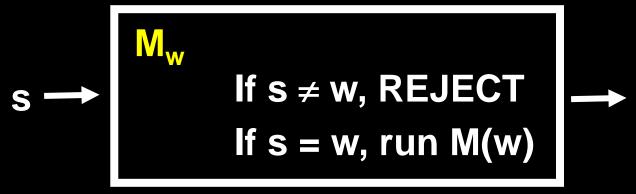


So,
$$L(M_w) = \emptyset \Leftrightarrow M(w)$$
 does not accept $L(M_w) \neq \emptyset \Leftrightarrow M(w)$ accepts

2. Run Z on M_w

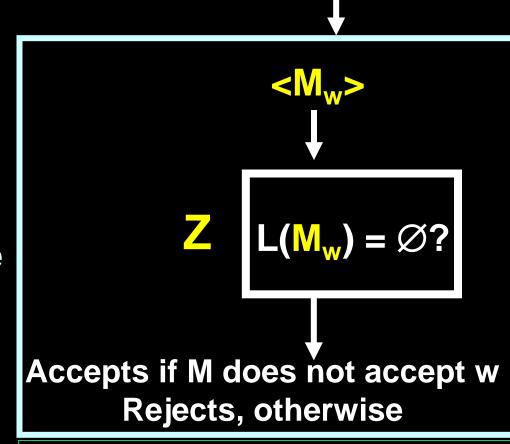
$$s \longrightarrow \begin{matrix} M_w \\ If s \neq w, REJECT \\ If s = w, run M(w) \end{matrix}$$

So, $L(M_w) = \emptyset \Leftrightarrow M(w)$ does not accept



So, $L(M_w) = \emptyset \Leftrightarrow M(w)$ does not accept

Decision Machine for A_{TM}



<M,w>

REVERSE accept/reject

REGULAR_{TM} = { M | M is a TM and L(M) is regular}

Theorem: REGULAR_{TM} is undecidable

Proof: Assume, for a contradiction, that TM R decides REGULAR_{TM}

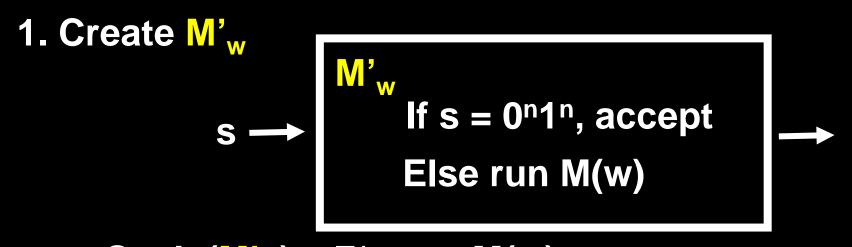
Use R as a subroutine to decide A_{TM}

REGULAR_{TM} = { M | M is a TM and L(M) is regular}

Theorem: REGULAR_{TM} is undecidable

Proof: Assume, for a contradiction, that TM R decides REGULAR_{TM}

Use R as a subroutine to decide A_{TM}



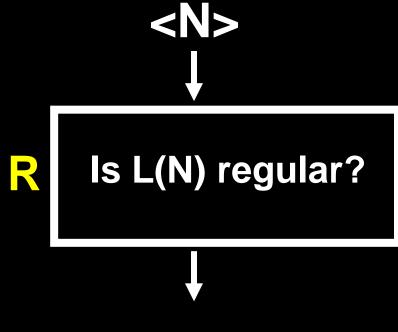
So,
$$L(M'_w) = \Sigma^* \Leftrightarrow M(w)$$
 accepts $L(M'_w) = \{0^n1^n\} \Leftrightarrow M(w)$ does not accept

2. Run R on M'_w

$$s \longrightarrow \begin{array}{c} M_{w}' \\ \text{If } s = 0^{n}1^{n}, \text{ accept} \\ \text{Else run M(w)} \end{array}$$

$$L(M_w') = \Sigma^*$$
 if M(w) accepts $\{0^n1^n\}$ otherwise

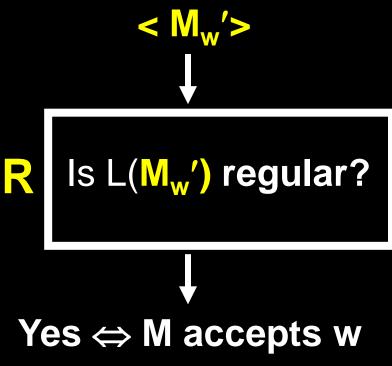
 $L(M_w')$ is regular \Leftrightarrow M(w) accepts



$$s \longrightarrow \begin{array}{c} M_{w}' \\ \text{If } s = 0^{n}1^{n}, \text{ accept} \\ \text{Else run M(w)} \end{array}$$

$$L(M_{w}') = \Sigma^*$$
 if M(w) accepts $\{0^n1^n\}$ otherwise

 $L(M_{w}')$ is regular \Leftrightarrow M(w) accepts



MAPPING REDUCIBILITY

 $f: \Sigma^* \to \Sigma^*$ is a computable function if some Turing machine M, on every input w, halts with just f(w) on its tape

A language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function

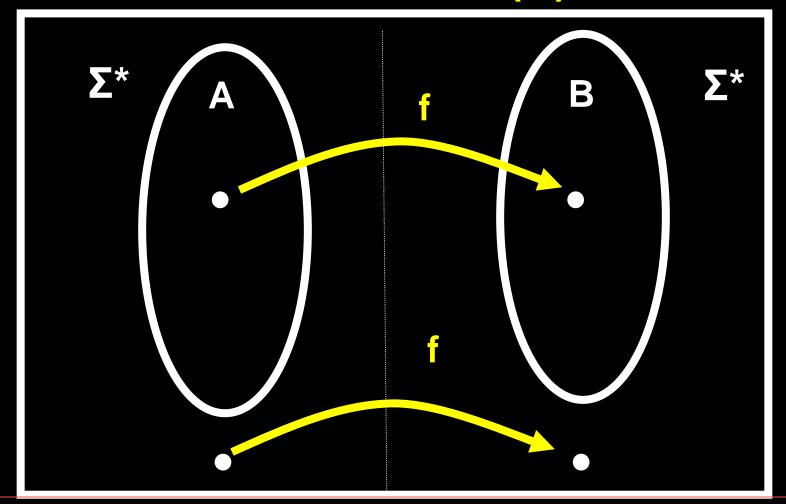
f: $\Sigma^* \rightarrow \Sigma^*$, where for every w,

 $W \in A \Leftrightarrow f(W) \in B$

f is called a reduction from A to B

Think of f as a "computable coding" from A to B

A is mapping reducible to B, $A \leq_m B$, if there is a computable $f: \Sigma^* \to \Sigma^*$ such that $w \in A \Leftrightarrow f(w) \in B$



Also, $\neg A \leq_m \neg B$, why?

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof: Let M decide B and let f be a reduction from A to B

We build a machine N that decides A as follows:

On input w:

- 1. Compute f(w)
- 2. Run M on f(w)

Theorem: If $A \leq_m B$ and B is (semi) decidable, then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a reduction from A to B

We build a machine N that (semi) decides A as follows:

On input w:

- 1. Compute f(w)
- 2. Run M on f(w)

All undecidability proofs from today can be seen as constructing an f that reduces A_{TM} to the proper language

(Sometimes you have to consider the complement of the language.)

All undecidability proofs from today can be seen as constructing an f that reduces A_{TM} to the proper language

 $A_{TM} \leq_m HALT_{TM}$ (So also, $\neg A_{TM} \leq_m \neg HALT_{TM}$):

Map $(M, w) \rightarrow (M', w)$ where M'(w) = M(w) if M(w) accepts loops otherwise

So $(M, w) \in A_{TM} \Leftrightarrow (M', w) \in HALT_{TM}$

CLAIM:
$$A_{TM} \leq_m \neg E_{TM}$$
 $\neg A_{TM} \leq_m E_{TM}$

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

$$f: (M,w) \rightarrow M_w$$
 where $M_w(s) = M(w)$

CLAIM:
$$A_{TM} \leq_m \neg E_{TM}$$
 $\neg A_{TM} \leq_m E_{TM}$

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

$$f: (M,w) \rightarrow M_w$$
 where $M_w(s) = M(w)$

So, M(w) accepts $\Leftrightarrow L(M_w) \neq \emptyset$

So, (M, w)
$$\in A_{TM} \Leftrightarrow M_{W} \in \neg E_{TM}$$

CLAIM:
$$A_{TM} \leq_m \neg E_{TM}$$
 $\neg A_{TM} \leq_m E_{TM}$

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

$$f: (M,w) \rightarrow M_w$$
 where $M_w(s) = M(w)$

So, M(w) accepts $\Leftrightarrow L(M_w) \neq \emptyset$

So, (M, w)
$$\in A_{TM} \Leftrightarrow M_{w} \in \neg E_{TM}$$

So \neg E_{TM} is NOT DECIDABLE, but it is SEMI-DECIDABLE (why?) Is E_{TM} SEMI-DECIDABLE?

CLAIM: $A_{TM} \leq_m REG_{TM}$ So REG_{TM} is UNDECIDABLE

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

f: $(M,w) \rightarrow M'_w$ where $M'_w(s) = accept if <math>s = 0^{n}1^{n}$ M(w) otherwise

CLAIM: $A_{TM} \leq_m REG_{TM}$ So REG_{TM} is UNDECIDABLE

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

f:
$$(M,w) \rightarrow M'_{w}$$
 where $M'_{w}(s) = accept if $s = 0^{n}1^{n}$
 $M(w)$ otherwise$

So, L (M'_w) =
$$\Sigma^*$$
 if M(w) accepts $\{0^n1^n\}$ if not

So, (M, w) $\in A_{TM} \Leftrightarrow M'_{w} \in REG_{TM}$

CLAIM: $A_{TM} \leq_m REG_{TM}$ So REG_{TM} is UNDECIDABLE

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

f:
$$(M,w) \rightarrow M'_{w}$$
 where $M'_{w}(s) = accept if s = 0^{n}1^{n}$
 $M(w)$ otherwise

So, L (M'_w) =
$$\Sigma^*$$
 if M(w) accepts $\{0^n1^n\}$ if not

So, (M, w)
$$\in A_{TM} \Leftrightarrow M'_{w} \in REG_{TM}$$

Is REG SEMI-DECIDABLE? (— REG is not. Why?)

CLAIM: $\neg A_{TM} \leq_m REG_{TM}$ So REG_{TM} is NOT SEMI-DECIDABLE CONSTRUCT $f: \Sigma^* \to \Sigma^*$

f: $(M,w) \rightarrow M''_w$ where $M''_w(s) = accept if <math>s = 0^n1^n$ and M(w) accepts Loop otherwise

CLAIM: $\neg A_{TM} \leq_m REG_{TM}$ So REG_{TM} is NOT SEMI-DECIDABLE CONSTRUCT $f: \Sigma^* \to \Sigma^*$

f:
$$(M,w) \rightarrow M''_w$$
 where $M''_w(s) = accept if s = 0^n1^n$
and $M(w)$ accepts
Loop otherwise

So, L (M'_w) =
$$\{0^n1^n\}$$
 if M(w) accepts \emptyset if not

So, (M, w)
$$\notin$$
 A_{TM} \Leftrightarrow M"_w \in REG_{TM}

CLAIM: $\neg A_{TM} \leq_m REG_{TM}$ So REG_{TM} is NOT SEMI-DECIDABLE CONSTRUCT $f: \Sigma^* \to \Sigma^*$

f:
$$(M,w) \rightarrow M''_w$$
 where M''_w (s) = accept if s = 0^n1^n and $M(w)$ accepts Loop otherwise

So, L (M'_w) =
$$\{0^n1^n\}$$
 if M(w) accepts \emptyset if not

So, (M, w)
$$\notin$$
 A_{TM} \Leftrightarrow M"_w \in REG_{TM}

So, REG NOT SEMI-DECIDABLE

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$ $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

 $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string w } \}$ $E_{TM} = \{ M \mid M \text{ is a TM and L(M)} = \emptyset \}$ $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$ $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and L(M)} = L(N)\}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

 $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$

CLAIM: $E_{TM} \leq_m EQ_{TM}$ So EQ_{TM} is UNDECIDABLE

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

 $f: M \rightarrow (M, M_{\varnothing})$ where $M_{\varnothing}(s) = Loops$

So, $M \in E_{TM} \Leftrightarrow (M, M_{\varnothing}) \in EQ_{TM}$

$$E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$$

$$EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$$

CLAIM:
$$E_{TM} \leq_m EQ_{TM}$$
 So EQ_{TM} is UNDECIDABLE

CONSTRUCT
$$f: \Sigma^* \to \Sigma^*$$

$$f: M \rightarrow (M, M_{\varnothing})$$
 where $M_{\varnothing}(s) = Loops$

So,
$$M \in E_{TM} \Leftrightarrow (M, M_{\varnothing}) \in EQ_{TM}$$

Is EQ_{TM} SEMI-DECIDABLE? NO, since,

$$\neg A_{TM} \leq_m E_{TM} \leq_m EQ_{TM}$$

What about ¬EQ_™?

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$ $EQ_{TM} = \{ (M,N) \mid M, N \text{ are TMs and L(M)} = L(N) \}$ $CLAIM: A_{TM} \leq_m EQ_{TM}$

So ¬EQ_{TM} is not semi-decidable

A_{TM} = { (M,w) | M is a TM that accepts string w }

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$

CLAIM: $A_{TM} \leq_m EQ_{TM}$

So ¬EQ_{TM} is not semi-decidable

CONSTRUCT $f: \Sigma^* \rightarrow \Sigma^*$

 $f: (M,w) \rightarrow (M_w, M_A)$

Where for each s in Σ^* ,

 $M_w(s) = M(w)$ and $M_A(s)$ always accepts

A_{TM} = { (M,w) | M is a TM that accepts string w }

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$

CLAIM: A_{TM} ≤_m EQ_{TM}

So ¬EQ_{TM} is not semi-decidable

CONSTRUCT f: $\Sigma^* \rightarrow \Sigma^*$

 $f: (M,w) \rightarrow (M_w, M_A)$

Where for each s in Σ^* ,

 $M_w(s) = M(w)$ and $M_A(s)$ always accepts

So, $(M,w) \in A_{TM} \Leftrightarrow (M_w, M_A) \in EQ_{TM}$

$$A_{TM} \leq_m \neg E_{TM}$$

$$A_{TM} \leq_m REG_{TM}$$

$$A_{TM} \leq_m \neg REG_{TM}$$

$$E_{TM} \leq_m EQ_{TM}$$

$$A_{TM} \leq_m \neg E_{TM}$$

Undecidable given a TM to tell if the language it recognizes is empty. It's not even semi-decidable, altho it is semi-decidable to tell if the language is non-empty.

$$A_{TM} \leq_m REG_{TM}$$

$$A_{TM} \leq_m \neg REG_{TM}$$

$$E_{TM} \leq_m EQ_{TM}$$

$$A_{TM} \leq_m \neg E_{TM}$$

Undecidable given a TM to tell if the language it recognizes is empty. It's not even semi-decidable, altho it is semi-decidable to tell if the language is non-empty.

$$A_{TM} \leq_m \neg REG_{TM}$$

Undecidable given a TM to tell if it is equivalent to a FSM. It's not even semi-decidable, nor is it semi-decidable to tell if it is not equivalent to a FSM.

$$E_{TM} \leq_m EQ_{TM}$$

$$A_{TM} \leq_m \neg E_{TM}$$

Undecidable given a TM to tell if the language it recognizes is empty. It's not even semi-decidable, altho it is semi-decidable to tell if the language is non-empty.

$$A_{TM} \leq_m \neg REG_{TM}$$

Undecidable given a TM to tell if it is equivalent to a FSM. It's not even semi-decidable, nor is it semi-decidable to tell if it is not equivalent to a FSM.

$$E_{TM} \leq_m EQ_{TM}$$

Undecidable given 2 TMs to tell if they are equivalent. It's not even semi-decidable, nor is it semi-decidable to tell If they are not

Also,
$$A_{TM} \leq_m EQ_{TM}$$

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

CLAIM: $A_{TM} \leq_m \neg ALL_{PDA} | \neg A_{TM} \leq_m ALL_{PDA}$

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

CLAIM: $A_{TM} \leq_m \neg ALL_{PDA} \qquad \neg A_{TM} \leq_m ALL_{PDA}$

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

Idea! More subtle construction

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string w } \}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

CLAIM: $A_{TM} \leq_m \neg ALL_{PDA} \qquad \neg A_{TM} \leq_m ALL_{PDA}$

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

Idea! More subtle construction

Map (M,w) to a PDA $P_{M,w}$ that recognizes Σ^* if and only if M does not accept w

So, (M, w) $\notin A_{TM} \Leftrightarrow P_{M,w} \in ALL_{PDA}$

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

$$ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$$

CLAIM:
$$A_{TM} \leq_m \neg ALL_{PDA} \qquad \neg A_{TM} \leq_m ALL_{PDA}$$

$$\neg A_{TM} \leq_m ALL_{PDA}$$

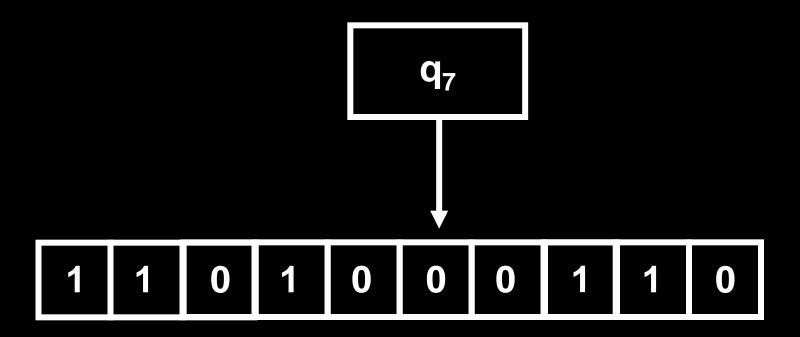
CONSTRUCT $f: \Sigma^* \to \Sigma^*$ Idea! More subtle construction

Map (M,w) to a PDA P_{M,w} that recognizes Σ* if and only if M does not accept w

So, (M, w)
$$\notin A_{TM} \Leftrightarrow P_{M,w} \in ALL_{PDA}$$

P_{M,w} will recognize all (and only those) strings that are NOT accepting computation histories for M on w

CONFIGURATIONS 11010₇00110



COMPUTATION HISTORIES

An accepting computation history is a sequence of configurations $C_1, C_2, ..., C_k$, where

- 1. C₁ is the start configuration,
- 2. C_k is an accepting configuration,
- 3. Each C_i follows from C_{i-1}

COMPUTATION HISTORIES

An accepting computation history is a sequence of configurations $C_1, C_2, ..., C_k$, where

- 1. C₁ is the start configuration,
- 2. C_k is an accepting configuration,
- 3. Each C_i follows from C_{i-1}

An rejecting computation history is a sequence of configurations C₁,C₂,...,C_k, where

- 1. C₁ is the start configuration,
- 2. C_k is a rejecting configuration,
- 3. Each C_i follows from C_{i-1}

COMPUTATION HISTORIES

An accepting computation history is a sequence of configurations C₁,C₂,...,C_k, where

- 1. C₁ is the start configuration,
- 2. C_k is an accepting configuration,
- 3. Each C_i follows from C_{i-1}

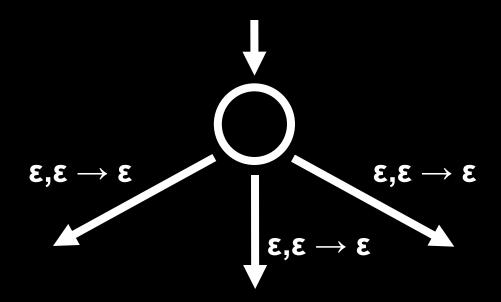
An rejecting computation history is a sequence of configurations C₁,C₂,...,C_k, where

- 1. C₁ is the start configuration,
- 2. C_k is a rejecting configuration,
- 3. Each C_i follows from C_{i-1}

M accepts w if and only if there exists an accepting computation history that starts with $C_1=q_0$ w

P_{M,w} will recognize all strings (read as sequences of configurations) that:

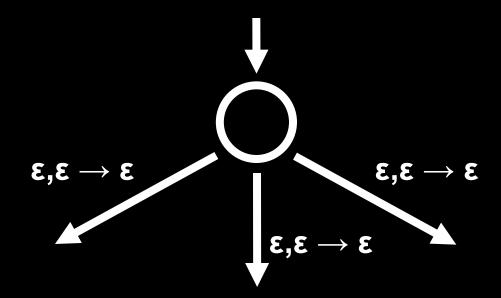
- 1. Do not start with C_1 (= q_0 w) or
- 2. Do not end with an accepting configuration or
- 3. Where some C_i does not properly yield C_{i+1}



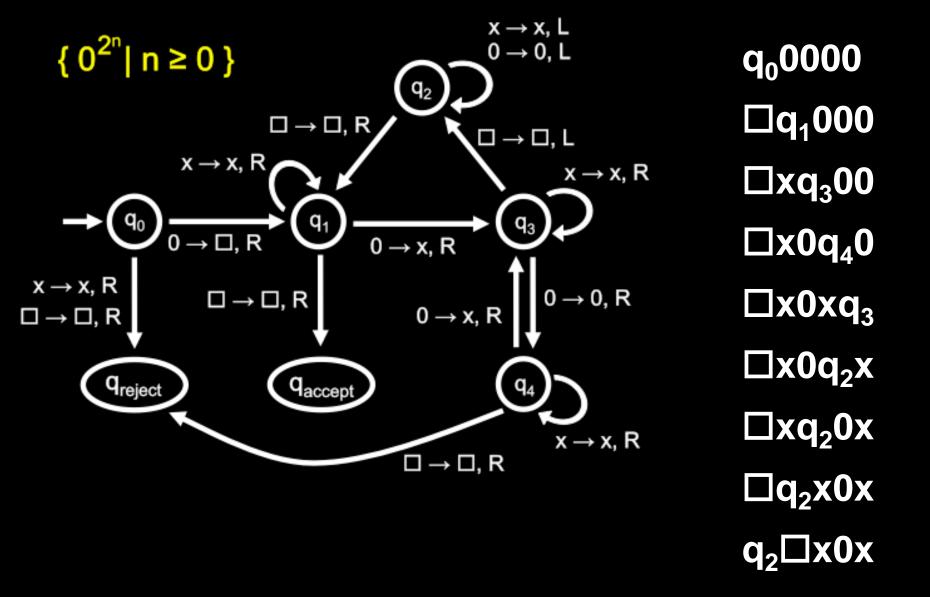
Non-deterministic checks for 1, 2, and 3.

P_{M,w} will reject all strings (read as sequences of configurations) that:

- 1. Start with $C_1 (= q_0 w)$ and
- 2. End with an accepting configuration and
- 3. Where each C_i properly yields C_{i+1}



Non-deterministic checks for 1, 2, and 3.



If i is odd, put C_i on stack and see if C_{i+1}^R follows properly:

For example,

If
$$=uaq_ibv$$
 and $\delta(q_i,b) = (q_i,c,R)$,
then C_i properly yields $C_{i+1} \Leftrightarrow C_{i+1} = ua(q_i)v$

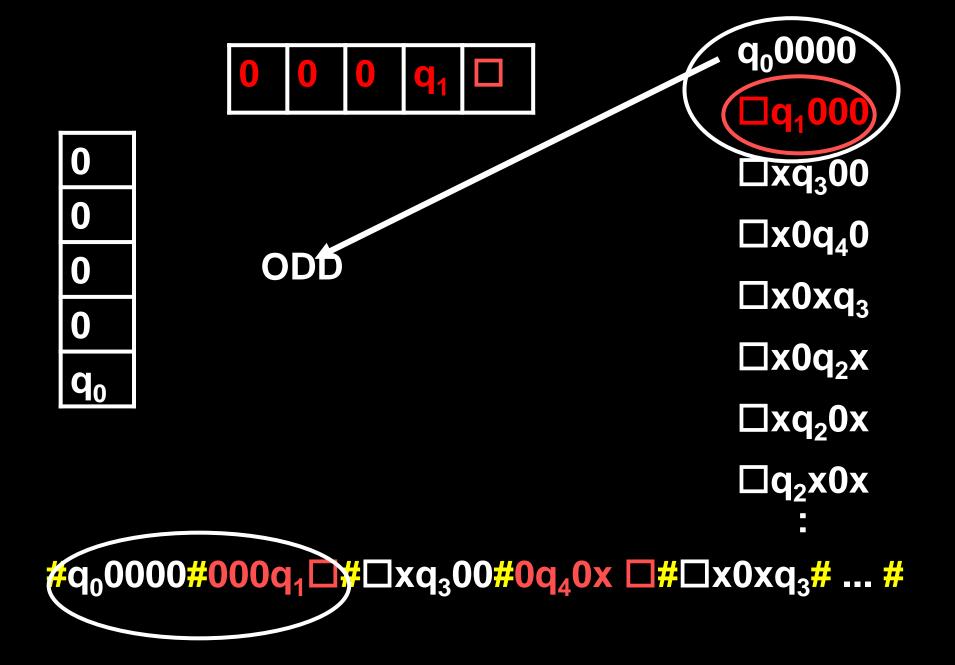
If i is odd, put C_i on stack and see if C_{i+1}^R follows properly.

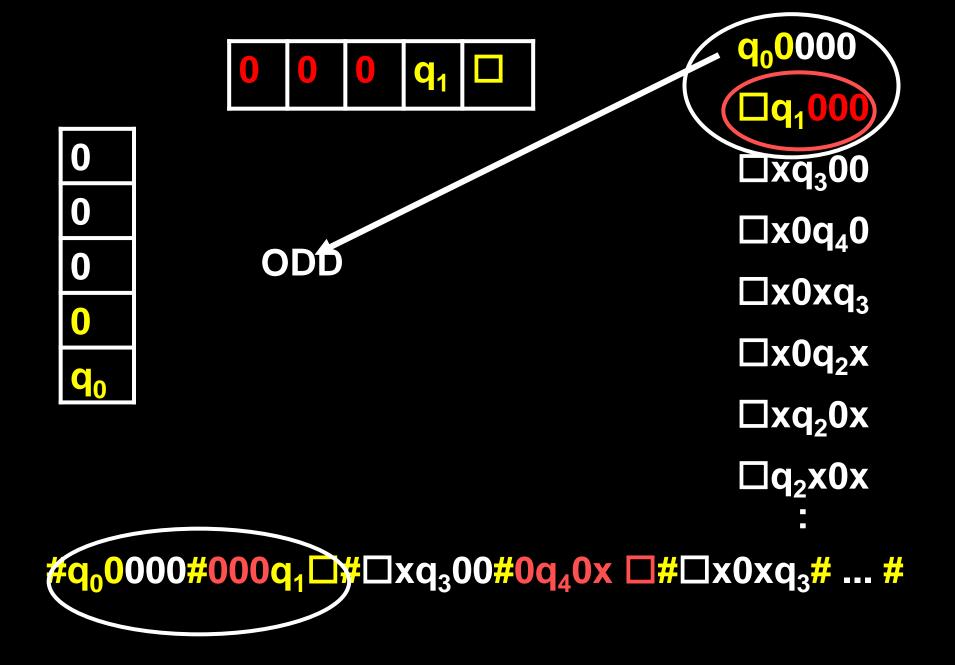
For example,

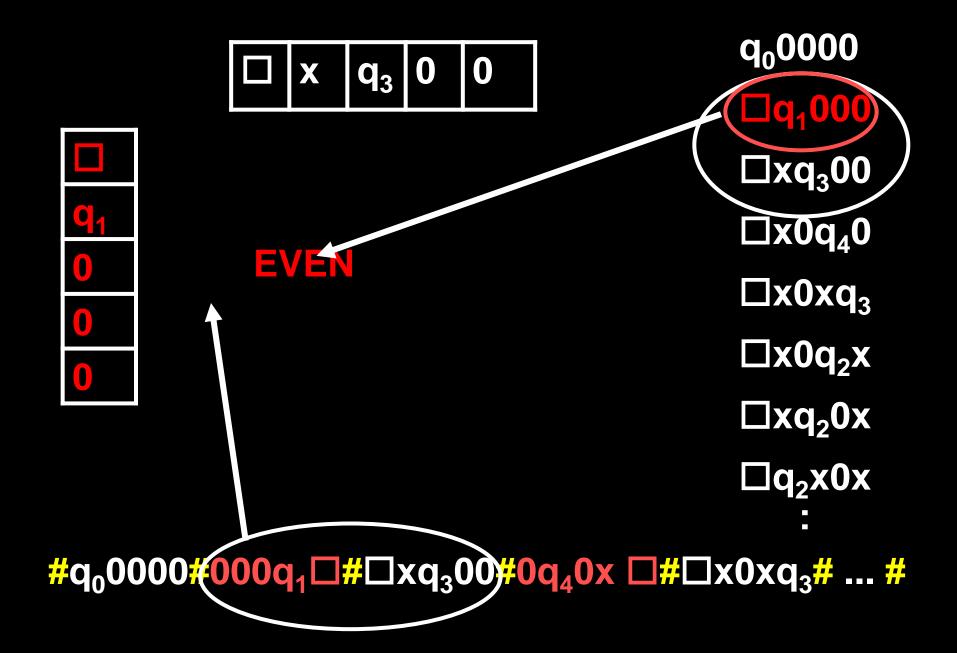
If
$$=uaq_ibv$$
 and $\delta(q_i,b) = (q_j,c,L)$,

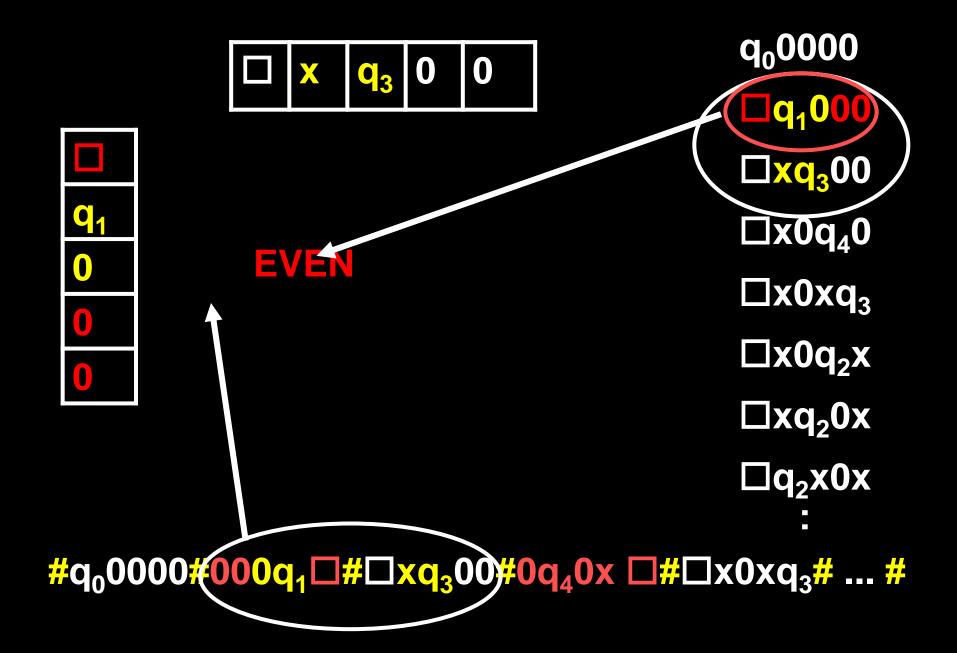
then C_k properly yields $C_{k+1} \Leftrightarrow C_{k+1} = u_{q_jac_j}$

If i is even, put C_i^R on stack and see if C_{i+1} follows properly.









 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

CLAIM: $A_{TM} \leq_m \neg ALL_{PDA} \qquad \neg A_{TM} \leq_m ALL_{PDA}$

$$\neg A_{TM} \leq_m ALL_{PDA}$$

CONSTRUCT $f: \Sigma^* \to \Sigma^*$

 $f: (M,w) \rightarrow P_{M,w}$ where

P_{M,W} (s) = accept iff s is NOT an accepting computation of M(w)

So, (M, w)
$$\notin A_{TM} \Leftrightarrow P_{M,w} \in ALL_{PDA}$$

So, (M, w)
$$\in A_{TM} \Leftrightarrow P_{M,w} \in \neg ALL_{PDA}$$

EXPLAIN THE PROOF TO YOUR NEIGHBOR

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string w }$ $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string w }$ $E_{TM} = \{ M \mid M \text{ is a TM and L(M)} = \emptyset \}$

 $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

What about complements?

WWW.FLAC.WS

Read chapter 5.1-5.3 of the book for next time