15-453

FORMAL LANGUAGES,
AUTOMATA AND
COMPUTABILITY

UNDECIDABILITY II:
REDUCTIONS

TUESDAY Feb 18

Ay ={ (M,w) | Mis a TM that accepts string w }
A:, IS undecidable: (constructive proof & subtle)

Assume machine H semi-decides Ay, (such exist, why?)

Accept If M accepts w
H((M,w)) =
Rejects or loops otherwise

Construct a new TM D as follows: on input M,
run H on (M,M) and output the “opposite” of H
whenever possible.

Dy(M)

Reject if M accepts M
(i.,e.if HC M , M) =Accept)

Accept if M rejects M
(i.e.if HL M , M) = Reject)

loops if M loopson M
(l.e.ifH(M , M) loops)

Reject if Dyaccepts Dy
(l.e. if H(D, , Dy) = Accept)

Accept if D reiects Dy

Pu(Du) =9 (ie.if H(Dy, Dy) = Reject)

loops if Dy loops on D,
(.e. it H(D, , D,) loops)

Note: It must be the case that D, loops on D,

There is no contradiction here!

Thus we effectively constructed an instance which

does not belong to A, (namely, (D, D))
but H fails to tell us that.

That Is:
Given any semi-decision machine H for Aq,
(and thus a potential decision machine for Ay,),

we can effectively construct an instance which
does not belong to A, (namely, (D, Dy))

but H fails to tell us that.

So H cannot be a decision machine for A,

In most cases, we will show that a
language L Is undecidable by showing
that if it Is decidable, then so Is A4,

We reduce deciding A, to deciding
the language In question

ATM 1 <H L

={(M,w) | Mis a TM that accepts string w }
HALT, = { (M,w) | Mis a TM that halts on string w } (*)

={M|MisaTMand L(M) =d } (*)
REG:, ={M|Mis aTM and L(M) is regular} (*)
EQrv={(M, N)| M, Nare TMs and L(M) = L(N)} (*)

ALLopp ={P|PisaPDAand L(P)=2*} (%)

ALL UNDECIDABLE

(*) Use Reductions to Prove
Which are SEMI-DECIDABLE?

THE HALTING PROBLEM
HALT, ={ (M,w) | Mis a TM that halts on string w }

Theorem: HALT, Is undecidable

Proof: Assume, for a contradiction, that TM H
decides HALTy,

We use H to construct a TM D that decides Aq,

THE HALTING PROBLEM
HALT, ={ (M,w) | Mis a TM that halts on string w }

Theorem: HALT, Is undecidable

Proof: Assume, for a contradiction, that TM H
decides HALTy,

We use H to construct a TM D that decides Aq,

On input (M,w), D runs H on (M,w)
If H rejects then reject
If Haccepts, run M on w until it halts:

Accept if M accepts and
Reject if M rejects

(M,w)
l If M halts

Does M
H

If M doesn't
halt: REJECT

ACCEPT if halts in accept state
REJECT otherwise

E.v={M|MisaTMand L(M) =}
Theorem: E, IS undecidable

Proof: Assume, for a contradiction, that TM Z
decides Eqy. Use Z as a subroutine to decide Aqy

E.v={M|MisaTMand L(M) =}
Theorem: E, IS undecidable

Proof: Assume, for a contradiction, that TM Z
decides Eqy. Use Z as a subroutine to decide Aqy

Algorithm for deciding Aq\,: On input (M,w):

1. Create M,

If s#w, REJECT [
If s =w, run M(w)

S =—>

So,L(M,) =9 < M(w) does not accept
L(M,) #3D < M(w) accepts
2. Run Zon M,

So,L(M,)=9 & M(w)
does not accept

oo

So,L(M,)=9 & M(w)
does not accept

Decision Machine
for Ay,

Accepts if M does not accept w
Rejects, otherwise

REVERSE accept/reject

REGULAR;y, ={ M| Mis aTM and L(M) is regular}

Theorem: REGULAR,, Is undecidable

Proof: Assume, for a contradiction, that TM R
decides REGULARy,

Use R as a subroutine to decide A,

REGULAR;y, ={ M| Mis aTM and L(M) is regular}

Theorem: REGULAR,, Is undecidable

Proof: Assume, for a contradiction, that TM R
decides REGULARy,

Use R as a subroutine to decide A,

1. Create M’
M,

S —p If s =0"1", accept

Else run M(w)

So,L(M',)=2* < M(w) accepts
L (M’,) ={0"1"} & M(w) does not accept
2. Run Ron M’

M 4

W

If s =0"1", accept

Else run M(w)

L(M,,’) =2* if M(w) accepts

{O"1"} otherwise

L(M,,’) is regular & M(w) accepts

M 4

W

If s =0"1", accept

Else run M(w)

L(M,,’) =2* if M(w) accepts

{O"1"} otherwise

L(M,,’) is regular & M(w) accepts

Yes < M accepts w

MAPPING REDUCIBILITY

f:2* > 2*I1s a computable function if some
Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A <, B, iIf there is a computable function

f.:2* > 2* where for every w,

weAsf(w) eB

fi1s called areduction from Ato B

Think of f as a “computable coding” from Ato B

A I1s mapping reducibleto B, A< B,
If there is acomputablef: 2* - 2*
such thatw e A< f(w) € B

Also, - A< =B, why?

Theorem: If A<, B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from Ato B

We build a machine N that decides A as follows:

On Input w:
1. Compute f(w)
2. Run M on f(w)

Theorem: If A< B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from Ato B

We build a machine N that (semi) decides A as follows:

On Input w:
1. Compute f(w)
2. Run M on f(w)

All undecidability proofs from today
can be seen as constructing an f that
reduces A, to the proper language

(Sometimes you have to consider
the complement of the language.)

All undecidability proofs from today
can be seen as constructing an f that
reduces A, to the proper language

Ay <, HALT, (So also, = Ay £,,— HALT):

Map (M, w)—> (M’, w)
where M’(w) = M(w) If M(w) accepts
loops otherwise

So(M,w) e Ary & (M, w) e HALT,

A ={ (Mw) | Mis aTM that accepts string w }
E.v={M|MisaTMand L(M) =3}

CLAIM: Ary < = Erv | S AL, < Epy

CONSTRUCT f: 2* > 2*

f: (M,w) > M,, where M, (S) = M(w)

A ={ (Mw) | Mis aTM that accepts string w }
E.v={M|MisaTMand L(M) =3}

CLAIM: Ary < = Erv | S AL, < Epy

CONSTRUCT f: 2* > 2*

f: (M,w) > M,, where M, (S) = M(w)

So, M(w) accepts < L (M) #

A ={ (Mw) | Mis aTM that accepts string w }
E.v={M|MisaTMand L(M) =3}

CLAIM: Ary < = Erv | S AL, < Epy

CONSTRUCT f: 2* > 2*

f: (M,w) > M,, where M, (S) = M(w)

So, M(w) accepts < L (M) #

S0 — Eqy,is NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is E;,, SEMI-DECIDABLE?

A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: Apy <, REGry So REGy,, is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f: (M,w) > M’, where M, (S) =acceptifs =0"1"
M(w) otherwise

A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: Apy <, REGry So REGy,, is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f: (M,w) > M’, where M, (S) =acceptifs =0"1"
M(w) otherwise

So,L (M,)=2* If M(w) accepts
{On1n} if not

So, (M,w) € Ay, & M, € REGq,

A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: Apy <, REGry So REGy,, is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f: (M,w) > M’, where M, (S) =acceptifs =0"1"
M(w) otherwise

So,L (M,)=2* If M(w) accepts
{On1n} if not

So, (M,w) € Ay, & M, € REGq,

ls REG SEMI-DECIDABLE? (- REG is not. Why?)

A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: — ATM Sm REGTM So REGTM IS NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* > 2*

f: (M,w) > M”,, where M", (S) =acceptifs =0"1"
and M(w) accepts
Loop otherwise

A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: — ATM Sm REGTM So REGTM IS NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* > 2*

f: (M,w) > M”,, where M", (S) =acceptifs =0"1"
and M(w) accepts
Loop otherwise

So, L (M) ={0"1"} if M(w) accepts
& if not

So, (M,w) g A, < M”, € REGp,

A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: — ATM Sm REGTM So REGTM IS NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* > 2*

f: (M,w) > M”,, where M", (S) =acceptifs =0"1"
and M(w) accepts
Loop otherwise

So, L (M) ={0"1"} if M(w) accepts
& if not

So, (M, w) ¢ Ay < M, € REGq,
So, REG NOT SEMI-DECIDABLE

A ={ (Mw) | Mis aTM that accepts string w }
HALT, ={ (M,w) | Mis a TM that halts on string w }

Esy={M|MisaTMand L(M) =&}

REG:, ={M|Mis aTM and L(M) is regular}

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

={(M,w) | Mis aTM that accepts string w }
HALT, ={ (M,w) | Mis a TM that halts on string w }

={M|MisaTMand L(M) =J}
REG:, ={M|Mis aTM and L(M) is regular}
EQ-v ={(M, N)| M, Nare TMs and L(M) = L(N)}

ALLops ={P|Pis aPDA and L(P) = £*}

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?

E;y={M|MisaTMand L(M) =J }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}

CLAIM: Ery <y EQry So EQ+y is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f:M—> (M, M) where M 4 (S) =Loops

E;y={M|MisaTMand L(M) =J }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}

CLAIM: Ery <y EQry So EQ+y is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f:M—> (M, M) where M 4 (S) =Loops

Is EQ+y SEMI-DECIDABLE? since,

A ={ (Mw) | Mis aTM that accepts string w }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}
CLAIM: Ay < EQqy

So —-EQq, Is semi-decidable

A ={ (Mw) | Mis aTM that accepts string w }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}
CLAIM: Ay < EQqy

So —-EQq, Is semi-decidable

CONSTRUCT f: Z*o> 2*

f:Mw)—> (M, My)
Where for each s in Z*,

M, (S) = M(w) and M,(s) always accepts

A ={ (Mw) | Mis aTM that accepts string w }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}
CLAIM: Ay < EQqy

So —-EQq, Is semi-decidable

CONSTRUCT f: Z*o> 2*

f:Mw)—> (M, My)
Where for each s in Z*,

M, (S) = M(w) and M,(s) always accepts

S0, (M,w) € A 1y & (M, My) € EQqy,

Atm <m — Equm

Arm <m REGqy,

ETM Sm EQTM

Also, Ay <, EQty

Aty Sm — B

Undecidable given a TM to tell if the language it
recognizes is empty. It's not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Arm <m REGqy,

ETM Sm EQTM
S0, —Ary S EQqym

Also, Ay <, EQry

Aty Sm — B

Undecidable given a TM to tell if the language it
recognizes is empty. It's not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Arm <m REGqy,

ETM Sm EQTM
S0, —Ary S EQqym

Also, Ay <, EQry

Undecidable given a TM to tell if it is equivalent
to a FSM. It's not even semi-decidable, nor is it
semi-decidable to tell if it is not equivalent to a
FSM.

Undecidable given a TM to tell if the language it
ATI\/I Sm 1 ET|\/| recognizes is empty. It's not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Arm <m REGqy,

Undecidable given a TM to tell if it is equivalent
to a FSM. It's not even semi-decidable, nor is it
A < REG semi-decidable to tell if it is not equivalent to a
™ =m ! ™™ | ESM.

ETM Sm EQTM : : :
Undecidable given 2 TMs to tell if they are
So, -A, <.. E equivalent. It's not even semi-decidable, nor is
™ =m QTM it semi-decidable to tell If they are not

Also, Ay <, EQry

={(M,w) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

={(M,w) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

CLAIM: Ary <o = ALLppa

CONSTRUCT f: 2* > 2*
ldeal More subtle construction

‘g'
A\

A ={ (Mw) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

CONSTRUCT f: 2* > 2*
ldeal More subtle construction

.
32
A

Map (M,w) to a PDA P, that recognizes 2*
If and only If M accept w

So, M,w) ¢ Ay Py € ALLppa

A ={ (Mw) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

CLAIM: Ary <o = ALLppa

CONSTRUCT f: 2* > 2*
ldea! More subtle construction

|
32
A

Map (M,w) to a PDA P, that recognizes 2*
If and only If M accept w

So, (M, W) & Ary < Pyy € ALLppa

Puw Will recognize all (and only those) strings that
are accepting computation histories for M on w

CONFIGURATIONS

11010g-00110

IFI

tufofafofojofufufo

COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,,...,C,, where

1. C, Is the start configuration,
2. C, Is an accepting configuration,
3. Each C, follows from C,,

COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,,...,C,, where

1. C, Is the start configuration,
2. C, Is an accepting configuration,

3. Each C, follows from C,,
An rejecting computation history is a
sequence of configurations C,,C,,...,C,, where
1. C, Is the start configuration,
2. C, Is arejecting configuration,
3. Each C, follows from C, ,

COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,,...,C,, where

1. C, Is the start configuration,
2. C, Is an accepting configuration,
3. Each C, follows from C,,

M accepts w if and only if there exists an accepting
computation history that starts with C,;=q,w

Puw Will recognize all strings (read as sequences
of configurations) that:

1. Do not start with C, (= qow) or
2. Do not end with an accepting configuration or
3. Where some C; does not properly yield C,,,

\

8,7 :Yt:
l£,£—>£

Non-deterministic checks for 1, 2, and 3.

Pyw Will all strings (read as sequences
of configurations) that:

1. Start with C, (= qyw)
2. End with an accepting configuration
3. Where each C, properly yields C,,,

\

8,7 :Yt:
l£,£—>£

Non-deterministic checks for 1, 2, and 3.

X—X, L

{0¥'|n20} O*GL g,0000

|:|_:.|:|/ _} q,000

Xx—X R X—XR
X(Q300
_'.u_pu R . .D x0q,0
Dx:;:il DqD’Rl 0x R”u_.u R X0X 05
G 00,
\/ x—hx R XqZOX

O—-0,R

g,X0X

g,LIx0x

Py recognizes all strings except
“accepting computation histories” .

H#C # C,R#C, #C,R#C #CR#...# C,

Py recognizes all strings except
“accepting computation histories” .

H#C # C,R#C, #C,R#C #CR#...# C,

If i is odd, put C,on stack and see if C, R
follows properly:

For example,

If :ua and s (q;,b) = (q;,¢,R),

then C, properly yields C,;, < C; = u

Py recognizes all strings except
“accepting computation histories” .

H#C # C,R#C, #C,R#C #CR#...# C,

If i is odd, put C,on stack and see if C, R
follows properly.

For example,

If : and s (q;,b) = (q;,c,L),
then C, properly yields C,,; & C,,; = uv

Py recognizes all strings except
“accepting computation histories” .

H#C # C,R#C, #C,R#C #CR#...# C,

If i is even, put CRon stack and see if C,,
follows properly.

10|10 |O

@00#00@

Xq300#0q,0x

X0XQ;

X0q,X

X(Q,0x

g,X0X

X0Xqq# ... #

10|10 |O

@00#00@

Xq300#0q,0x

#q,000040000,

%§E§9#0q40x

#9,0000%000q;

%§E§9#0q40x

A ={ (Mw) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

CONSTRUCT f: 2* > 2*

f: (M,w) = Py, where

Puw (8) =accept iifs is NOT an accepting computation of M(w)

So, M,w) ¢ Ay Pyw € ALLppa

={(M,w) | Mis aTM that accepts string w }
HALT, ={ (M,w) | Mis a TM that halts on string w }

={M|MisaTMand L(M) =J}
REG:, ={M|Mis aTM and L(M) is regular}
EQrv ={(M, N)| M, Nare TMs and L(M) = L(N)}

ALLpos ={P|Pis aPDA and L(P) = £*}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?

WWW.FLAC. WS

Read chapter 5.1-5.3 of the book for next time

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68

