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Ay ={ (M,w) | Mis a TM that accepts string w }
A:, IS undecidable: (constructive proof & subtle)

Assume machine H semi-decides Ay, (such exist, why?)

Accept If M accepts w
H( (M,w) ) =
Rejects or loops otherwise

Construct a new TM D as follows: on input M,
run H on (M,M) and output the “opposite” of H
whenever possible.



Dy( M)

Reject if M accepts M
(i.,e.if HC M , M ) =Accept)

Accept if M rejects M
(i.e.if HL M , M ) = Reject)

loops if M loopson M
(l.e.ifH( M , M ) loops)



Reject if Dyaccepts Dy
(l.e. if H( D, , Dy ) = Accept)

Accept if D reiects Dy

Pu(Du) =9 (ie.if H( Dy, Dy ) = Reject)

loops if Dy loops on D,
(.e. it H( D, , D, ) loops)

Note: It must be the case that D, loops on D,

There is no contradiction here!

Thus we effectively constructed an instance which

does not belong to A, (namely, (D, D) )
but H fails to tell us that.



That Is:
Given any semi-decision machine H for Aq,
(and thus a potential decision machine for Ay, ),

we can effectively construct an instance which
does not belong to A, (namely, ( D, Dy ))

but H fails to tell us that.

So H cannot be a decision machine for A,



In most cases, we will show that a
language L Is undecidable by showing
that if it Is decidable, then so Is A4,

We reduce deciding A, to deciding
the language In question

ATM 1 <H L



={(M,w) | Mis a TM that accepts string w }
HALT, = { (M,w) | Mis a TM that halts on string w } (*)

={M|MisaTMand L(M) =d } (*)
REG:, ={M|Mis aTM and L(M) is regular} (*)
EQrv={(M, N)| M, Nare TMs and L(M) = L(N)} (*)

ALLopp ={P|PisaPDAand L(P)=2*} (%)

ALL UNDECIDABLE

(*) Use Reductions to Prove
Which are SEMI-DECIDABLE?



THE HALTING PROBLEM
HALT, ={ (M,w) | Mis a TM that halts on string w }

Theorem: HALT, Is undecidable

Proof: Assume, for a contradiction, that TM H
decides HALTy,

We use H to construct a TM D that decides Aq,



THE HALTING PROBLEM
HALT, ={ (M,w) | Mis a TM that halts on string w }

Theorem: HALT, Is undecidable

Proof: Assume, for a contradiction, that TM H
decides HALTy,

We use H to construct a TM D that decides Aq,

On input (M,w), D runs H on (M,w)
If H rejects then reject
If Haccepts, run M on w until it halts:

Accept if M accepts and
Reject if M rejects



(M,w)
l If M halts

Does M
H

If M doesn't
halt: REJECT

ACCEPT if halts in accept state
REJECT otherwise




E.v={M|MisaTMand L(M) =}
Theorem: E, IS undecidable

Proof: Assume, for a contradiction, that TM Z
decides Eqy. Use Z as a subroutine to decide Aqy



E.v={M|MisaTMand L(M) =}
Theorem: E, IS undecidable

Proof: Assume, for a contradiction, that TM Z
decides Eqy. Use Z as a subroutine to decide Aqy

Algorithm for deciding Aq\,: On input (M,w):

1. Create M,

If s#w, REJECT [
If s =w, run M(w)

S =—>

So,L(M,) =9 < M(w) does not accept
L(M,) #3D < M(w) accepts
2. Run Zon M,



So,L(M,)=9 & M(w)
does not accept

oo




So,L(M,)=9 & M(w)
does not accept

Decision Machine
for Ay,

Accepts if M does not accept w
Rejects, otherwise

REVERSE accept/reject




REGULAR;y, ={ M| Mis aTM and L(M) is regular}

Theorem: REGULAR,, Is undecidable

Proof: Assume, for a contradiction, that TM R
decides REGULARy,

Use R as a subroutine to decide A,



REGULAR;y, ={ M| Mis aTM and L(M) is regular}

Theorem: REGULAR,, Is undecidable

Proof: Assume, for a contradiction, that TM R
decides REGULARy,

Use R as a subroutine to decide A,

1. Create M’
M,

S —p If s =0"1", accept

Else run M(w)

So,L(M',)=2* < M(w) accepts
L (M’,) ={0"1"} & M(w) does not accept
2. Run Ron M’



M 4

W

If s =0"1", accept

Else run M(w)

L(M,,’) =2* if M(w) accepts

{O"1"} otherwise

L(M,,’) is regular & M(w) accepts




M 4

W

If s =0"1", accept

Else run M(w)

L(M,,’) =2* if M(w) accepts

{O"1"} otherwise

L(M,,’) is regular & M(w) accepts

Yes < M accepts w



MAPPING REDUCIBILITY

f:2* > 2*I1s a computable function if some
Turing machine M, on every input w, halts with
just f(w) on its tape

A language A is mapping reducible to language B,
written A <, B, iIf there is a computable function

f.:2* > 2* where for every w,

weAsf(w) eB

fi1s called areduction from Ato B

Think of f as a “computable coding” from Ato B



A I1s mapping reducibleto B, A< B,
If there is acomputablef: 2* - 2*
such thatw e A< f(w) € B

Also, - A< =B, why?



Theorem: If A<, B and B is decidable,
then A is decidable

Proof: Let M decide B and let f be a
reduction from Ato B

We build a machine N that decides A as follows:

On Input w:
1. Compute f(w)
2. Run M on f(w)



Theorem: If A< B and B is (semi) decidable,
then A is (semi) decidable

Proof: Let M (semi) decide B and let f be a
reduction from Ato B

We build a machine N that (semi) decides A as follows:

On Input w:
1. Compute f(w)
2. Run M on f(w)



All undecidability proofs from today
can be seen as constructing an f that
reduces A, to the proper language

(Sometimes you have to consider
the complement of the language. )



All undecidability proofs from today
can be seen as constructing an f that
reduces A, to the proper language

Ay <, HALT, (So also, = Ay £,,— HALT):

Map (M, w)—> (M’, w)
where M’(w) = M(w) If M(w) accepts
loops otherwise

So(M,w) e Ary & (M, w) e HALT,



A ={ (Mw) | Mis aTM that accepts string w }
E.v={M|MisaTMand L(M) =3}

CLAIM: Ary < = Erv | S AL, < Epy

CONSTRUCT f: 2* > 2*

f: (M,w) > M,, where M, (S) = M(w)




A ={ (Mw) | Mis aTM that accepts string w }
E.v={M|MisaTMand L(M) =3}

CLAIM: Ary < = Erv | S AL, < Epy

CONSTRUCT f: 2* > 2*

f: (M,w) > M,, where M, (S) = M(w)

So, M(w) accepts < L (M) #




A ={ (Mw) | Mis aTM that accepts string w }
E.v={M|MisaTMand L(M) =3}

CLAIM: Ary < = Erv | S AL, < Epy

CONSTRUCT f: 2* > 2*

f: (M,w) > M,, where M, (S) = M(w)

So, M(w) accepts < L (M) #

S0 — Eqy,is NOT DECIDABLE, but it is SEMI-
DECIDABLE (why?) Is E;,, SEMI-DECIDABLE?



A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: Apy <, REGry So REGy,, is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f: (M,w) > M’, where M, (S) =acceptifs =0"1"
M(w) otherwise




A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: Apy <, REGry So REGy,, is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f: (M,w) > M’, where M, (S) =acceptifs =0"1"
M(w) otherwise

So,L (M,)=2* If M(w) accepts
{On1n} if not

So, (M,w ) € Ay, & M, € REGq,




A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: Apy <, REGry So REGy,, is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f: (M,w) > M’, where M, (S) =acceptifs =0"1"
M(w) otherwise

So,L (M,)=2* If M(w) accepts
{On1n} if not

So, (M,w ) € Ay, & M, € REGq,

ls REG SEMI-DECIDABLE? (- REG is not. Why?)



A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: — ATM Sm REGTM So REGTM IS NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* > 2*

f: (M,w) > M”,, where M", (S) =acceptifs =0"1"
and M(w) accepts
Loop otherwise




A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: — ATM Sm REGTM So REGTM IS NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* > 2*

f: (M,w) > M”,, where M", (S) =acceptifs =0"1"
and M(w) accepts
Loop otherwise

So, L (M) ={0"1"} if M(w) accepts
& if not

So, (M,w) g A, < M”, € REGp,




A ={ (Mw) | Mis aTM that accepts string w }
REG:, ={M|Mis aTM and L(M) is regular}

CLAIM: — ATM Sm REGTM So REGTM IS NOT SEMI-

DECIDABLE
CONSTRUCT f: 2* > 2*

f: (M,w) > M”,, where M", (S) =acceptifs =0"1"
and M(w) accepts
Loop otherwise

So, L (M) ={0"1"} if M(w) accepts
& if not

So, (M, w) ¢ Ay < M, € REGq,
So, REG NOT SEMI-DECIDABLE




A ={ (Mw) | Mis aTM that accepts string w }
HALT, ={ (M,w) | Mis a TM that halts on string w }

Esy={M|MisaTMand L(M) =&}

REG:, ={M|Mis aTM and L(M) is regular}

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?



={(M,w) | Mis aTM that accepts string w }
HALT, ={ (M,w) | Mis a TM that halts on string w }

={M|MisaTMand L(M) =J}
REG:, ={M|Mis aTM and L(M) is regular}
EQ-v ={(M, N)| M, Nare TMs and L(M) = L(N)}

ALLops ={P|Pis aPDA and L(P) = £*}

ALL UNDECIDABLE

Which are SEMI-DECIDABLE?



E;y={M|MisaTMand L(M) =J }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}

CLAIM: Ery <y EQry So EQ+y is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f:M—> (M, M) where M 4 (S) =Loops




E;y={M|MisaTMand L(M) =J }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}

CLAIM: Ery <y EQry So EQ+y is UNDECIDABLE

CONSTRUCT f: 2* > 2*

f:M—> (M, M) where M 4 (S) =Loops

Is EQ+y SEMI-DECIDABLE? since,



A ={ (Mw) | Mis aTM that accepts string w }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}
CLAIM: Ay < EQqy

So —-EQq, Is semi-decidable



A ={ (Mw) | Mis aTM that accepts string w }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}
CLAIM: Ay < EQqy

So —-EQq, Is semi-decidable

CONSTRUCT f: Z*o> 2*

f:Mw)—> (M, My)
Where for each s in Z*,

M, (S) = M(w) and M,(s) always accepts




A ={ (Mw) | Mis aTM that accepts string w }
EQrv ={(M, N)| M, N are TMs and L(M) =L(N)}
CLAIM: Ay < EQqy

So —-EQq, Is semi-decidable

CONSTRUCT f: Z*o> 2*

f:Mw)—> (M, My)
Where for each s in Z*,

M, (S) = M(w) and M,(s) always accepts

S0, (M,w) € A 1y & (M, My) € EQqy,




Atm <m — Equm

Arm <m REGqy,

ETM Sm EQTM

Also, Ay <, EQty



Aty Sm — B

Undecidable given a TM to tell if the language it
recognizes is empty. It's not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Arm <m REGqy,

ETM Sm EQTM
S0, —Ary S EQqym

Also, Ay <, EQry




Aty Sm — B

Undecidable given a TM to tell if the language it
recognizes is empty. It's not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Arm <m REGqy,

ETM Sm EQTM
S0, —Ary S EQqym

Also, Ay <, EQry

Undecidable given a TM to tell if it is equivalent
to a FSM. It's not even semi-decidable, nor is it
semi-decidable to tell if it is not equivalent to a
FSM.




Undecidable given a TM to tell if the language it
ATI\/I Sm 1 ET|\/| recognizes is empty. It's not even semi-decidable,
altho it is semi-decidable to tell if the language is
non-empty.

Arm <m REGqy,

Undecidable given a TM to tell if it is equivalent
to a FSM. It's not even semi-decidable, nor is it
A < REG semi-decidable to tell if it is not equivalent to a
™ =m ! ™™ | ESM.

ETM Sm EQTM : : :
Undecidable given 2 TMs to tell if they are
So, -A, <.. E equivalent. It's not even semi-decidable, nor is
™ =m QTM it semi-decidable to tell If they are not

Also, Ay <, EQry



={(M,w) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}




={(M,w) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

CLAIM: Ary <o = ALLppa

CONSTRUCT f: 2* > 2*
ldeal More subtle construction

‘g'
A\



A ={ (Mw) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

CONSTRUCT f: 2* > 2*
ldeal More subtle construction

.
32
A

Map (M,w) to a PDA P, that recognizes 2*
If and only If M accept w

So, M,w) ¢ Ay Py € ALLppa




A ={ (Mw) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

CLAIM: Ary <o = ALLppa

CONSTRUCT f: 2* > 2*
ldea! More subtle construction

|
32
A

Map (M,w) to a PDA P, that recognizes 2*
If and only If M accept w

So, (M, W) & Ary < Pyy € ALLppa

Puw Will recognize all (and only those) strings that
are accepting computation histories for M on w



CONFIGURATIONS

11010g-00110

IFI

tufofafofojofufufo



COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,,...,C,, where

1. C, Is the start configuration,
2. C, Is an accepting configuration,
3. Each C, follows from C,,



COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,,...,C,, where

1. C, Is the start configuration,
2. C, Is an accepting configuration,

3. Each C, follows from C,,
An rejecting computation history is a
sequence of configurations C,,C,,...,C,, where
1. C, Is the start configuration,
2. C, Is arejecting configuration,
3. Each C, follows from C, ,



COMPUTATION HISTORIES

An accepting computation history is a
sequence of configurations C,,C,,...,C,, where

1. C, Is the start configuration,
2. C, Is an accepting configuration,
3. Each C, follows from C,,

M accepts w if and only if there exists an accepting
computation history that starts with C,;=q,w



Puw Will recognize all strings (read as sequences
of configurations) that:

1. Do not start with C, ( = qow) or
2. Do not end with an accepting configuration or
3. Where some C; does not properly yield C,,,

\

8,7 :Yt:
l£,£—>£

Non-deterministic checks for 1, 2, and 3.



Pyw Will all strings (read as sequences
of configurations) that:

1. Start with C, (= qyw)
2. End with an accepting configuration
3. Where each C, properly yields C,,,

\

8,7 :Yt:
l£,£—>£

Non-deterministic checks for 1, 2, and 3.



X—X, L

{0¥'|n20} O*GL g,0000

|:|_:.|:|/ \_} q,000

Xx—X R X—XR
X(Q300
_'.u_pu R . .D x0q,0
Dx:;:il DqD’Rl 0x R”u_.u R X0X 05
G 00,
\/ x—hx R XqZOX

O—-0,R

g,X0X

g,LIx0x




Py recognizes all strings except
“accepting computation histories” .

H#C # C,R#C, #C,R#C #CR#...# C,



Py recognizes all strings except
“accepting computation histories” .

H#C # C,R#C, #C,R#C #CR#...# C,

If i is odd, put C,on stack and see if C, R
follows properly:

For example,

If :ua and s (q;,b) = (q;,¢,R),

then C, properly yields C,;, < C; = u



Py recognizes all strings except
“accepting computation histories” .

H#C # C,R#C, #C,R#C #CR#...# C,

If i is odd, put C,on stack and see if C, R
follows properly.

For example,

If : and s (q;,b) = (q;,c,L),
then C, properly yields C,,; & C,,; = uv




Py recognizes all strings except
“accepting computation histories” .

H#C # C,R#C, #C,R#C #CR#...# C,

If i is even, put CRon stack and see if C,,
follows properly.



10|10 |O

@00#00@

Xq300#0q,0x

X0XQ;

X0q,X

X(Q,0x

g,X0X

X0Xqq# ... #



10|10 |O

@00#00@

Xq300#0q,0x




#q,000040000,

%§E§9#0q40x




#9,0000%000q;

%§E§9#0q40x




A ={ (Mw) | Mis aTM that accepts string w }
ALLopp ={P|PisaPDAand L(P) =2*}

CONSTRUCT f: 2* > 2*

f: (M,w) = Py, where

Puw (8) =accept iifs is NOT an accepting computation of M(w)

So, M,w) ¢ Ay Pyw € ALLppa




={(M,w) | Mis aTM that accepts string w }
HALT, ={ (M,w) | Mis a TM that halts on string w }

={M|MisaTMand L(M) =J}
REG:, ={M|Mis aTM and L(M) is regular}
EQrv ={(M, N)| M, Nare TMs and L(M) = L(N)}

ALLpos ={P|Pis aPDA and L(P) = £*}

ALL UNDECIDABLE
Which are SEMI-DECIDABLE?

What about complements?



WWW.FLAC. WS

Read chapter 5.1-5.3 of the book for next time
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