
Rank Learning for Factoid Question Answering
with Linguistic and Semantic Constraints

Matthew W. Bilotti, Jonathan Elsas, Jaime Carbonell and Eric Nyberg
Language Technologies Institute

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA, 15213, USA
{ mbilotti, jelsas, jgc, ehn }@cs.cmu.edu

ABSTRACT
This work presents a general rank-learning framework for
passage ranking within Question Answering (QA) systems
using linguistic and semantic features. The framework en-
ables query-time checking of complex linguistic and seman-
tic constraints over keywords. Constraints are composed of
a mixture of keyword and named entity features, as well as
features derived from semantic role labeling. The framework
supports the checking of constraints of arbitrary length re-
lating any number of keywords. We show that a trained
ranking model using this rich feature set achieves greater
than a 20% improvement in Mean Average Precision over
baseline keyword retrieval models. We also show that con-
straints based on semantic role labeling features are par-
ticularly effective for passage retrieval; when they can be
leveraged, an 40% improvement in MAP over the baseline
can be realized.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Question answering, passage retrieval, learning to rank, an-
notation graphs, text annotations, committee perceptron

1. INTRODUCTION
Question Answering (QA) systems aim to deliver specific

answers to user questions posed in natural human language.
A QA system can be thought of as an embedded passage re-
trieval process bookended by Natural Language Processing
(NLP) components that allow the system, to understand the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

question, on the front end, and post-retrieval, to locate an-
swers among the results. If QA systems are ever to become
competitive with the ad hoc keyword search engines that are
ubiquitous in the lives of today’s internet users, both latency
and accuracy must be improved. Both of these goals can be
addressed by improving the quality of the embedded passage
retrieval component.

Poor passage retrieval quality within QA systems stems in
part from a mismatch between what the system wants and
what the embedded retrieval component is able to query.
Internally, QA systems represent their information needs as
sets of linguistic and semantic constraints that a retrieved
passage must satisfy if it answers the question. Many pas-
sage retrieval approaches commonly used in QA systems can
not check these types of constraints at query time. As a
result, QA systems are forced to approximate their informa-
tion needs in terms of classic ad hoc retrieval primitives such
as bag-of-words, proximity and named entity features.

For many questions, the classic feature set poorly approx-
imates the information need, resulting in the retrieval of too
few answer-bearing passages and/or too many false posi-
tives. This degradation in passage retrieval quality overbur-
dens the downstream Answer Generation component, which
must determine whether each retrieved passage is answer-
bearing by comparing it against the linguistic and semantic
constraints specified in the information need. Post-retrieval
constraint-checking involves potentially slow NLP analysis,
which can limit the number of results that can be consid-
ered in the time available. In addition to increasing sys-
tem latency, poor quality retrieval results can also degrade
accuracy when the best answer is ranked so low that the
system does not have a chance to consider it. The focus
of this paper is on improving the quality of results ranked
by a QA system’s embedded passage retrieval component,
thereby providing the best possible foundation for a fast and
accurate end-to-end system.

In this paper, we propose a new approach to passage re-
trieval for QA systems, based on rank-learning techniques,
that integrates linguistic and semantic constraint-checking
into the retrieval process. The approach utilizes a novel
method of decomposing the question representation, viewed
as a graph, into atomic constraints to be matched in can-
didate answer-bearing passages. This decomposition en-
ables partial constraint matching, differential weighting of
constraint types, and graceful back-off to baseline ranking
features such as bag-of-words and named entity matches.
Atomic constraints become features for a trained model able

Figure 1: Block diagram of a pipelined QA system.
This paper studies the impact on passage retrieval
quality of re-ranking baseline search results using
a trained model capable of checking the linguistic
and semantic constraints specified in the system’s
information need.

to judge linguistic and semantic similarity between a re-
trieved passage and the QA system’s information need. We
show that this model provides significant improvements in
Mean Average Precision when used to re-rank passages re-
trieved by a baseline retrieval approach consisting of bag-of-
words and named entity features.

2. PASSAGE RETRIEVAL FOR QA
Consider a Question Answering (QA) system with broad

coverage on the common types of factual, short-answer ques-
tions known as factoids within the research community. For
the purposes of this study, we consider only the first two
modules of the pipelined QA system shown in Figure 1. The
Question Analysis module uses NLP resources to map the
question into a representation we call the information need,
which consists of the linguistic and semantic constraints that
an answer-bearing passage must satisfy. The information
need serves as input to a Baseline Search module responsible
for retrieving text likely to be relevant to that information
need.

The experiments in this paper will focus on measuring the
improvement in passage retrieval quality gained by intro-
ducing our linguistic and semantic rank-learning approach,
depicted as the Trained Ranking Model in Figure 1. The
model re-ranks the top 1000 baseline results with respect to
the linguistic and semantic constraints expressed in the in-
formation need. The evaluation compares the quality of the
trained model’s passage ranking with respect to the baseline
in terms of Mean Average Precision. The Answer Genera-
tion module shown in the figure is included for illustration
purposes only, as end-to-end system accuracy is not explic-
itly evaluated in this paper1.

The baseline passage retrieval approach in our QA system
consists of bag-of-words Indri2 queries with named entity
placeholders to represent the expected answer type. When
scoring passages, as opposed to entire documents, this ap-
proach approximates density-based methods considered to
be strong baselines for QA [22]. For example, consider ques-
tion 1398 from the QA track at TREC3 2002, What year

1Elsewhere, it is shown that an improved passage ranking in
terms of MAP can translate to improved end-to-end system
accuracy or answer Mean Reciprocal Rank (MRR) [2].
2See: http://www.lemurproject.org/indri
3Text REtrieval Conference. See: http://trec.nist.gov

G = (E = {e1, ..., e|E|}, R = {r1, ..., r|R|}, T)

T = (Te = {te1, ..., te|Te|}, T r = {tr1, ..., tr|Tr|})

tei = (name, parent ∨ ∅)

tri = (name, ted, ter); ted, ter ∈ Te

ei = (te); te ∈ Te

ri = (tr, ed, er); tr ∈ Tr; ed, er ∈ E

Figure 2: Formal description of an annotation graph
G, consisting of a set of elements E, a set of relations
R, and a type system T , which defines element types
Te and relation types Tr.

was Alaska purchased? The answer is 1867. The baseline
Indri query combines question keywords with an #any: op-
erator matching occurrences of date, the expected answer
type. The extent restriction operator, [sentence], retrieves
and scores sentence-sized passages individually.

#combine[sentence](#any:date year Alaska purchased)

3. REPRESENTING THE INFORMATION
NEED AS AN ANNOTATION GRAPH

We assume that a QA system analyzes its input question
into an information need representation containing linguistic
and semantic constraints that can be used to rank passages.
Furthermore, we make the weak assumption that the sys-
tem’s information need can be represented as an annotation

graph, a generalized formalism described in this section. An-
notation graphs make it easy to represent keywords and ar-
bitrary linguistic and semantic relationships between them.

Figure 2 gives a formal description of an annotation graph
G, consisting of a set of elements E, a set of relations R, and
a type system T . A type system defines sets of element and
relation types, notated Te and Tr, respectively. Each el-
ement type tei has a name and a pointer to an optional
parent element type. Each tri is a named relation type de-
fined to hold over specific domain and range element types,
or types that inherit from them. The inheritance mechanism
for element types allows for relations defined over element
supertypes to be instantiated over instances of subtypes of
those elements.

The QA system in this paper represents its information
need under the type system Tne+srl, defined in Figure 3.
It supports common named entity types and semantic role
labeling, in which target verbs are related to their argu-

ments, which are assigned PropBank [14] semantic roles by
the ASSERT semantic parser [17]. The type system mod-
els enclosure relations between field pairs, and between fields

and keywords, ordering relations between keyword pairs, and
attachment relations between targets and their arguments.

Figure 4 shows the annotation graph representing the in-
formation need for our example question. Question keywords

year, Alaska and purchased are in the bottom row, and the
pairwise ordering relations holding among them are shown
with curved arrows. Alaska was recognized as a location, so
there is an enclosure relation between them shown as a solid

Tne+srl = (Te, Tr)

Te =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(field, ∅), (arg0, argument),
(keyword, ∅), (arg1, argument),
(k ∈ V, keyword), (arg2, argument),
(sentence, field), (arg3, argument),
(target, field), (arg4, argument),
(argument, field), (argm-adv, argument),
(entity, field), (argm-dir, argument),
(date, entity), (argm-loc, argument),
(location, entity), (argm-mnr, argument),
(org, entity), (argm-tmp, argument)
(person, entity),

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

Tr =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(enclosure, sentence, field),
(enclosure, argument, target),
(enclosure, argument, argument),
(enclosure, argument, entity),
(enclosure, field, keyword),
(ordering, keyword, keyword),
(attachment, target, argument)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

Figure 3: Definition of the type system used in this
paper, which supports named entities and ASSERT
semantic role labeling. Note that there is an ele-
ment type for each keyword k in the vocabulary V .
Leaf element types representing text annotations are
given in monospace type.

arrow. The sentence participates in an enclosure relation
with all of the other fields and keywords in the graph.

The semantic structure in the question is modeled by the
target, argm-tmp and arg1 arguments, the enclosure rela-
tions between them and the keywords, and the attachment

relations between the target and the arguments, shown as
dashed arrows. In this question, Alaska is labeled as arg1

because it is the thing being purchased; the buyer (arg0) is
not specified. The answer is expected to be of type date

and to occur in the temporal adjunct labeled argm-tmp.

4. LEARNING TO RANK FOR FACTOID QA
This section describes our approach to learning to rank

passages according to their linguistic and semantic similar-
ity to an information need. In Section 4.1, we describe how
to select, for any given type system, a set of atomic lin-
guistic and semantic constraints, which are represented as
annotation graph snippets. We show an example of this
decomposition for Tne+srl, the type system underlying the
experiments in this paper, in Section 4.2. In Section 4.3, we
describe how atomic constraints become features useful for
ranking and introduce the learning algorithm used for the
experiments in this paper.

4.1 Selecting Atomic Constraints by
Type System Decomposition

This section presents an algorithm for the decomposition
of a type system into atomic constraints based on the ele-
ment and relation types defined in the type system. All con-
straints are annotation graphs, and the order of a constraint

Figure 4: Information need representation for the
question, What year was Alaska purchased? Solid arrows
indicate enclosure relations, dashed arrows indicate
target-argument attachment relations, and curved ar-
rows indicate keyword ordering relations. The asterisk
indicates the expected answer type.

Table 1: Algorithm for Type System Decomposition

Input:
Type system T = (Te, Tr)
Maximum order n (to generate constraints of order 1 . . . n)
Output:
Set of sets of constraints, one for each order {C1, . . . , Cn}

1. Initialize C1...n = ∅

2. For each tr = (name, domain, range) ∈ Tr:

For each d, r ∈ Te such that d and r are concrete leaf
types inheriting from domain and range, respectively:

Add to C1:

„

E = {(e1, d), (e2, r)},
R = {(name, e1, e2)}, T

«

3. For i = 2, . . . , n:

For each tr = (name, domain, range) ∈ Tr:

For each constraint c = (Ec, Rc, T) ∈ Ci−1:

For each element e ∈ Ec of type domain or a
subtype:

For each r ∈ Te such that r is a concrete
leaf type inheriting from range:

Add to Ci:
„

E = Ec ∪ {(x, r)},
R = Rc ∪ {(name, d, x)}, T)

«

For each element r ∈ Ec of type range or a
subtype:

For each d ∈ Te such that d is a concrete
leaf type inheriting from domain:

Add to Ci:
„

E = Ec ∪ {(x, d)},
R = Rc ∪ {(name, x, r)}, T)

«

Note: keyword is always considered a leaf type for the purposes
of this algorithm.

is equal to the number of relations in the graph. A first-
order constraint, therefore, consists of two elements joined
by a single relation.

The algorithm shown in Table 1 enumerates in set C1

all of the possibilities for first-order constraints by read-
ing the type system’s set of relation definitions Tr and in-
serting all possible domain and range element types allow-
able. The main loop of the algorithm begins at step 3. At
each iteration, the algorithm builds a set of order-i con-
straints based on the constraints of order i − 1. The al-
gorithm builds higher-order constraints by extending lower-
order constraints, adding a single element and relation each
time. The algorithm maintains a list of constraints as it
traverses the type system in a breadth-first fashion.

To illustrate this process by example, consider the follow-
ing first-order constraint, which contains a single enclosure

relation between an arg1 and a person:
„

E = {(a1, arg1), (p, person)},
R = {(enclosure, a1, p)}, Tne+srl

«

To build a second-order constraint, the algorithm can intro-
duce an attachment relation with a target as its source:
„

E = {(t, target), (a1, arg1), (p, person)},
R = {(attachment, t, a1), (enclosure, a1, p)}, Tne+srl

«

The worst-case complexity of this algorithm occurs for a
type system for which every relation can be defined over
any pair of element types, in either direction. The number
of first-order constraints would be:

2 ·

„

|Te|
2

«

· |Tr|

For each constraint of order i − 1, the algorithm constructs
an order-i constraint by adding a new element and a new
relation. In the worst case type system, any element could be
chosen to be extended by any new relation in any direction
and with any new element at the other end of the relation.
The number of new constraints added would be:

2 · i · |Te| · |Tr|

The overall complexity of the algorithm is:

2 ·

„

|Te|
2

«

· |Tr| ·
n

Y

i=2

2 · i · |Te| · |Tr|

= 2n · n! ·

„

|Te|
2

«

· |Te|n−1 · |Tr|n

In the next section, we show the decomposition for Tne+srl,
which does not approach the worst case complexity. It is
likely that more efficient algorithms exist for type system
decomposition, but we leave their design and implementa-
tion for future work.

4.2 Linguistic and Semantic Constraints for
Tne+srl

This section describes the linguistic and semantic con-
straint types obtained by decomposing Tne+srl, the type
system used in the experiments in this study. Though this
feature set provides a comprehensive basis for annotation
graph similarity, we opt to reduce computational complex-
ity in practice. To limit the number of constraints selected
by the algorithm, we set the maximum order n = 3. In

an effort to avoid redundant or sparsely predictive features,
we prune the constraint sets Ci for i > 2 according to the
following set of principles derived from intuition4 about the
NLP tools underlying Tne+srl:

1. A field may participate in at most one enclosure re-
lation with another field. The underlying NLP tools
enforce transitivity of enclosure, so the first-order con-
straints with a single enclosure relation are sufficient
to capture all of the information.

2. When attachment relations are present between tar-

gets and arguments, consider only keyword enclosure.
The attachment and enclosure relations can be thought
of as independent, so they are matched in separate con-
straints.

3. Do not model enclosure of targets and arguments

within other arguments. Though ASSERT allows this,
the interesting linguistic and semantic relations can be
captured by treating nested target-argument struc-
tures as siblings.

4. For keyword ordering, keywords must be enclosed in
the same field. If the keywords were in separate fields,
or none at all, the constraint would never be satisfied.

After running the decomposition algorithm and thinning
the number of constraints using the above-described princi-
ples, we are left with eight classes of atomic linguistic and
semantic constraints, which are shown in Figure 5, and are
discussed individually below, with numbers referring to the
figure. One additional constraint class mentioned below,
Paths(N), is not generated using the algorithm, but using
a separate procedure described below.

1. KEnc(field): This constraint is satisfied by a passage
containing an enclosure relation between an instance
of the given field and a specific keyword that is also
enclosed by that field in the information need.

2. KOrd(field): A passage satisfies this constraint if it
contains a pair of keywords, an instance of the given
field, an enclosure relation between the field and each
of the keywords and a ordering relation between the
keywords, as specified in the information need.

3. FEnc(field1, field2): A passage with an enclosure

relation between an instance of field1 and an instance
of field2 satisfies this constraint.

4. Att(argument): This constraint checks for an at-

tachment relation between a target instance and the
given argument.

5. Ans: This constraint is equivalent to “FEnc(sen-

tence, entity1)” where entity1 is equal to the entity

type expected to be the answer to the question, as
specified in the information need. If it is not specified,
any passage can satisfy this constraint.

6. Args(N): A passage satisfies this constraint if it con-
tains N attachment relations between a single target

instance and N argument types, as specified in the in-
formation need.

4More principled methods of feature selection, such as that
proposed by Geng, et. al. [10], could be applied here, but
we leave that for future work.

Figure 5: Annotation graph snippets representing linguistic and semantic constraints.

7. Ta(argument): To satisfy this constraint, a passage
must match two keywords from the information need,
as well as the following relations: enclosure between a
target instance and one of the keywords, enclosure be-
tween the given argument type and the other keyword,
and attachment between the target and the argument.

8. Taa(argument1, argument2): This constraint is
similar to “Ta(argument)”, but checks for an instance
of each of the given argument types each having an
attachment relation with the same target. To sat-
isfy this constraint, a passage must match three key-

words from the information need, one each having an
enclosure relation with the target, argument1 and
argument2.

9. Paths(N): This powerful constraint requires a pas-
sage to match a path through the annotation graph be-
tween two keywords specified in the information need.
The path is not determined statically, at the time of
type system decomposition, but rather dynamically;
any path between two keywords that exists in the in-
formation need can match against the passage. The
path consists of N enclosure and attachment relations
between argument, entity and target elements in the
graph. A path of length zero means that the two key-

words are enclosed in the same field.

4.3 Rank Learning with Constraint Features
The above-described constraints are snippets of annota-

tion graphs that can be compared against passages repre-
sented as annotation graphs to determine whether the pas-
sages satisfy the constraints. A constraint is considered sat-
isfied by a passage if there exists a sub-graph alignment of
the constraint annotation graph to the passage annotation
graph5. A valid alignment is a mapping from elements of the
constraint sub-graph to those of the passage graph such that
all mapped elements are of the same type, and all relations
that hold between elements in the constraint sub-graph also
hold between the mapped elements in the passage graph.
Satisfied constraints become features useful for ranking by
counting the number of distinct alignments of the constraint
to the passage that exist. See Figure 6 for an illustration of
a constraint graph aligning to a passage annotation graph.

For Tne+srl, we generate 162 count-based features by count-
ing the number of distinct sub-graph alignments to a pas-
sage annotation graph for each constraint annotation graph.
Leveraging this large number of features requires carefully

5Sub-graph alignment is known to be an NP-complete prob-
lem, but the problem instances are small enough to be
tractable for this application.

Table 2: Full Feature Set, with group membership.
Features are parameterized by element types defined
in Figure 3. N is the path length through the anno-
tation graph.

Feature Name Groups

Baseline retrieval score 1-8
KEnc(sentence) 1,2,6,7,8
KOrd(sentence) 2,4,7,8

KEnc(entity) 3,4,8
FEnc(sentence, entity) 3,4,8

Ans 3,4,8
KOrd(entity) 4,8

Att(argument) 5,6,7,8
FEnc(sentence, target) 5,6,7,8

FEnc(sentence, argument) 5,6,7,8
Args(N) 5,6,7,8

KEnc(target) 6,7,8
KEnc(argument) 6,7,8

Ta(argument) 6,7,8
Taa(argument, argument) 6,7,8

KOrd(target) 7,8
KOrd(argument) 7,8

FEnc(argument, entity) 8
Paths(N) 8

setting the feature weights based on annotated training data.
Many machine learning algorithms that have been applied
to document ranking [4, 12] are well suited to this task. In
this work we use an efficient, online linear rank learner, the
Committee Perceptron [7].

The Committee Perceptron algorithm is a generalization
of previous Perceptron variants [5], and is adapted for learn-
ing ranking functions based on preferences between pairs
of judged passages. This algorithm significantly outper-
forms other perceptron variants and performs comparably
or better than other linear rank learning algorithms, such
as RankSVM, yet requires only a fraction of the training
time [7, 12]. Rank learners that minimize the number of
mis-ranked passage-pairs such as RankSVM and the Com-
mittee Perceptron maximize a lower bound on many com-
mon retrieval performance measures such as Mean Aver-
age Precision [7]. The algorithm is described in Table 3.
Here, we adopt the indexed sampling technique proposed by
Scully [19] to avoid the quadratic dependence on the number
of sentences in the collection.

The passage feature vectors used as input to this algo-
rithm are vectors are represented as: piq = 〈f0(pi, q), . . . ,
fM (pi, q)〉 where the fj ; j = 1 . . . M are the constraint-count
features as described in the previous section and f0 is the

Figure 6: Constraint annotation graph (in bold)
aligning to the annotation graph for the answer-
bearing passage, In 1867, ... Seward reached agreement

... to purchase Alaska. The constraint is “Att(arg1)”,
as shown in Figure 5(4). Note that there are two
distinct alignments of the constraint to the passage.
The enclosing sentence and the ordering relations that
exist between keyword pairs are not shown to increase
legibility.

baseline retrieval score. Features are scaled to zero-mean
unit-variance per-question prior to training and testing.

The output of the learning algorithm is a collection of
learned weight vectors, wk ∈ R

M+1; k = 1 . . . Ncom, and
quality indicators for each weight vector, ck. These weight
vectors parameterize an ensemble of linear passage scoring
functions: Score(piq,w) = 〈piq,w〉 where 〈•, •〉 is the inner
product. Scores from the learned ensemble of linear scoring
functions, K, are averaged, weighted by the quality indica-
tor, ck, to produce the overall score for a passage:

Score∗(piq,w
1
, . . . ,wNcom) =

*

piq,

P

k
wk × ck

P

k
ck

+

For all experiments, we fix the committee size Ncom = 30
and the number of passage pairs to sample T = 10000, which
are known to be effective parameter settings for other tasks.

5. EXPERIMENTAL METHODOLOGY
To evaluate the impact of linguistic and semantic constraint-

checking on passage retrieval quality, we introduce the trained
ranking model to re-rank the top 1000 sentences retrieved
by the Indri baseline, and compare the ranking quality in
terms of Mean Average Precision.

5.1 Test Collection
We evaluate on the AQUAINT corpus [11] used in the

TREC 2002 QA track, prepared with sentence segmenta-
tion (MXTerminator [18]), named entity recognition (BBN
Identifinder [1]) and semantic role labeling (ASSERT [17]).
The test collection consists of 1096 factoid questions from

6There is some disagreement in the research community as
to how much data is required for proper evaluation. One
school of thought emphasizes using hundreds of questions
and measuring accuracy in terms of matching the TREC-

Table 3: Committee Perceptron Algorithm for Pas-
sage Ranking.

Input: Number of passage pairs to sample T , Committee size
Ncom, List of training relevant/non-relevant passage pairs S =
R × N = {(pnq ,prq)} Output: Set of feature weight vectors

and their success counters K = {(wk, ck)|k = 1 . . . Ncom}

1. Initialize i = 0, success counter ci = 0, initial parameters
w0, committee K = ∅.

2. For t = 0, . . . , T :

From S, sample query q and relevant/non-relevant
passages (pnq ,prq)

If Score(pnq,wi) ≥ Score(prq,wi) then

(wmin, cmin) ∈ K s.t. cmin = mink ck ∈ K

If ci > cmin then: add (wi, ci) to K

If |K| > Nsub: remove (wmin, cmin) from K

update: wi+1 = wi+(prq−pnq) and i = i+1

Else update: ci = ci + 1

3. Output: K

the TREC 2002 QA track for which reusable, passage-level
relevance judgments are available [13]. The passage-level
judgments were aligned to the sentence segmentation on
the AQUAINT corpus, excluding relevant passages span-
ning more than one sentence. Sentences deemed non-answer-
bearing due to unresolved anaphora were also excluded.

Information need representations were built from the ques-
tions using BBN Identifinder and ASSERT. ASSERT out-
put was hand-corrected to mitigate its poor accuracy on
questions, which are relatively rare among its training data.
Despite this, only 48 of the 109 information needs (44%)
contain ASSERT targets and arguments7. This is because
ASSERT explicitly does not cover verbs, including be, have

and do, common among the TREC questions. In the analy-
sis, we will examine these 48 Deep Structure Questions sep-
arately from the remaining 61 Shallow Structure Questions.

5.2 Feature Groups
As described in Section 4.2, the trained ranking model

uses features based on the atomic linguistic and semantic
constraints in the information need. Table 2 gives the com-
plete list of features. To study the effectiveness of different
types of features, we refer to feature groups numbered 1
through 8, which are described below, in the analysis that
follows the experiments.

1. Keyword Only: bag-of-words features only.

2. Surface Patterns: bag-of-words and relative key-
word ordering.

3. NE + Keywords: bag-of-words and named entities.

4. NE + Surface Patterns: all of the above.

provided answer pattern, as in [20]. Other researchers, such
as Moschitti, et. al. [15], have used question sets nearly as
small as this one with human relevance judgments. When
measuring the quality of a ranked list, we believe that it is
more important to have sufficient depth of relevance judg-
ments than it is to have a large number of topics.
7Similarly, Shen and Lapata [20] observed that about 35%
of TREC factoid questions were answerable using a shallow
semantic parsing method based on FrameNet [9].

5. SRL: verbs, arguments and semantic roles, ignoring
keywords.

6. SRL + Keywords: keywords participating in SRL
relationships.

7. SRL + Surface Patterns: bag-of-words, keyword
ordering and SRL.

8. SRL + NE + Surface Patterns: all of the above,
with arbitrary long-distance semantic relationships be-
tween keyword pairs represented by paths through the
annotation graph.

6. RESULTS AND DISCUSSION
Experimental results analyzed in this section measure the

improvement in passage retrieval quality attributable to re-
ranking using linguistic and semantic features, in terms of
Mean Average Precision (MAP). Feature groups 1 through
8 are studied individually. For all tests we report the p-value
according to the two-sided Fisher’s randomization test [21].
First, we describe the results of experiments on the set of
all questions, and then we take a closer look at the Deep

Structure Questions.

6.1 Experiments on the Full Question Set
For the full set of 109 questions, we perform 5-fold cross

validation, with approximately 88/22 training/testing queries
in each fold. Re-ranking using the trained model yields at
least a 5% improvement improvement in MAP for all feature
groups. Complete results are given in Table 4.

Table 4: Performance results on the full question
set.

MAP % over p-value
baseline

Baseline 0.1901
Feature Group 1 0.2076 9.21 0.0057

2 0.2134 12.26 0.0142
3 0.2142 12.68 0.0036
4 0.2170 14.15 0.0582
5 0.2000 5.21 0.0560
6 0.2157 13.47 0.1171
7 0.2156 13.41 0.1061
8 0.2329 22.51 0.0332

In Table 4, most feature groups show noticeable improve-
ments over the baseline, and those of feature groups 1, 2, 3
and 8 are statistically significant. Groups 5, 6 and 7, which
use semantic role features, show large, but not significant,
gains. Among these data, few questions are helped by the
semantic role features, but for those that are, these features
can be powerfully predictive. In feature group 6, for exam-
ple, re-ranking helps 30% of the questions, improving MAP
by more than 430% on average, and hurts 26%, degrading
quality by 35% on average.

Although these semantic role features do not show signif-
icant improvements when training and testing on the whole
question set, we do see dramatic improvement on a subset of
the questions. We hypothesize that by limiting the training
and testing to the Deep Structure Questions, we can expect
to find larger, more significant improvements in MAP. The
Shallow Structure Questions, in contrast, have zero feature
values for all semantic role labeling features, because AS-

SERT was not able to provide target and argument infor-
mation for these questions.

Table 5: Top 15 (in absolute value) mean feature
weights across folds, trained on the full feature set
and full question set.

Feature Name Mean Weight

Ta(arg1) 203.99
Paths(5) 161.90
Paths(2) 138.04

FEnc(sentence, date) 128.02
Ans 113.67

KPrec(sentence) 94.82
Paths(4) 82.90

Baseline Retrieval Score 74.20
KEnc(date) 57.32
KEnc(org) 55.52

Paths(1) -69.22
Taa(arg1, arg2) -70.28
KEnc(person) -78.54

KPrec(person) -96.54
Paths(3) -180.33

Table 5 shows the 15 features having the greatest mag-
nitude weights learned by the model when training on the
full question set, averaged across all five cross validation
folds. Though some of the semantic role features claimed
the largest magnitude weights, 6 of the 15 most influential
features drawn from the surface patterns and named entity
feature groups. This is a portrait of the model’s difficulty
deciding between semantic role features, which are key for
some questions yet irrelevant for many, and surface patterns
and named entity features, which provide modest help for
all questions.

6.2 Deep vs. Shallow Question Structure
To accurately measure the power of the semantic role fea-

tures, we have to take a more careful look at the Deep Struc-

ture Questions, as defined in Section 5.1. Table 6 reports the
results for the model trained and tested on the Deep Struc-

ture (top half) and Shallow Structure (bottom half) sets sep-
arately. As before, these tests show 5-fold cross-validation
results averaged across test sets.

From the top half of Table 6, we can clearly see that,
for the Deep Structure Questions, the semantic role features
have a significant positive impact on passage retrieval perfor-
mance, realizing over 35% improvements in Mean Average
Precision when those features are used in combination with
keyword information. Feature group 5, which uses semantic
role features alone, shows less of an improvement because
the semantic role features are most useful when describing
linguistic and semantic relationships among keywords that
are not implied by surface patterns alone.

For the Shallow Structure Questions the picture is vastly
different. In the bottom half of Table 6, we observe that the
only features that result in moderate improvement are the
surface patterns. As expected, feature group 5 shows zero
improvement, because for these questions, the feature values
other than the Baseline Retrieval Score are always zeroes.
What is interesting about these questions is that named en-
tities are of limited use in ranking the passages. It seems
that the Baseline Retrieval Score and surface patterns are
already capturing most of the information provided by these

Table 6: Performance results on the sets of Deep

and Shallow Structure Questions.

Deep Structure Questions
MAP % over p-value

baseline

Baseline 0.1978
Feature Group 1 0.2319 17.24 0.0790

2 0.2176 10.01 0.2167
3 0.2067 4.50 0.3605
4 0.2366 19.62 0.0152
5 0.2159 9.15 0.1269
6 0.2694 36.20 0.0723
7 0.2717 37.36 0.0573
8 0.2788 40.95 0.0194

Shallow Structure Questions
MAP % over p-value

baseline

Baseline 0.1845
Feature Group 1 0.1835 -0.60 0.5039

2 0.2014 9.10 0.0951
3 0.1902 3.03 0.2761
4 0.1864 0.98 0.4619
5 0.1846 0.00 1.0000
6 0.1831 -0.81 0.5097
7 0.1858 0.65 0.4691
8 0.1869 1.25 0.4531

features. Much of the small variations in performance across
feature groups 4-7 are attributable to random sampling of
the passage-pairs during the training process.

Looking at the features that are assigned the highest weight
by the learning algorithm, we see that there is a distinct shift
towards strongly favoring semantic role features for the Deep

Structure Questions. Table 7 shows the top 15 (in absolute
value) feature weights learned with the full feature set (8) on
the Deep Structure Questions, averaged across all five cross
validation folds. The top two of these top 15 features encode
long-distance linguistic and semantic relationships between
keywords that are not implied by the surface representation.
Ten of the top 15 make use of some semantic role informa-
tion. It is interesting to note that the most basic surface
pattern features, “Field-keyword-enclosure(sentence)”and
“Keyword-ordering(sentence)”, are not a part of the top 15
most useful features, all of which make use of some named
entity and/or semantic role information. This fact suggests
that semantic role features are indeed powerful for ranking
passages with respect to Deep Structure Questions.

7. COMPARISON TO STATE-OF-THE-ART
APPROACHES

Cui, et. al. [6], suggest a passage ranking method that
rewards passages having a dependency tree structure simi-
lar to the structure in the question. This similarity score is
based on an application of IBM Model 1, which gives the
likelihood that the dependency path between two keywords
in the answer candidate sentence represents the same syn-
tactic relationship as that which holds between the keyword
pair in the question. Cui’s method linearly combines this
dependency score with a lexical match score from a baseline
retrieval method.

Table 7: Top 15 (in absolute value) mean feature
weights across folds, trained on the full feature set
and the Deep Structure Questions.

Feature Name Weight

Paths(5) 264.45
Paths(4) 211.60

Ans 183.01
Ta(arg1) 174.95

FEnc(sentence, date) 99.87
Baseline Retrieval Score 98.42

KEnc(date) 91.33
KPrec(arg2) 81.71

Ta(arg0) 69.97
KEnc(org) 65.65

KPrec(arg0) 55.12

Att(argm-mnr) -54.89
FEnc(sentence, argm-mnr) -54.89

Paths(3) -66.46
Taa(arg1, arg2) -96.68

We conducted a set of experiments on our dataset us-
ing the Cui model8, selecting a mixing weight between the
dependency path match score and the lexical score to max-
imize Mean Average Precision. These experiments showed
that our Indri baseline consistently performed as well or bet-
ter than the Cui model.

The primary finding is that the Cui dependency path
match score correlates strongly with the Indri score, with
an average per-question Pearson correlation coefficient of
0.7083. See the top row of Figure 7 for a depiction of the cor-
relation between the path match score and the Indri score.
Terracing is visible where one score is constant while the
other is capturing variation.

The dependency path match score does not appear to offer
new information beyond what Indri provides. We hypothe-
size that it is capturing primarily local syntactic dependen-
cies between phrase heads and their modifiers and between
the component words of named entities. Long-distance de-
pendencies are explicitly avoided by Cui, et. al., due to
poor parser accuracy [6]. Our baseline Indri queries model
local keyword dependencies by enforcing co-occurrence of
keywords and named entities of the expected answer type
within a small text window.

Moschitti, et. al. [15], proposes a special-purpose tree ker-
nel for the PropBank-style predicate-argument structures
used in the type system in this paper. It is shown that
the Shallow Semantic Tree Kernel (SSTK) can be used to
classify whether an answer candidate is correct given its se-
mantic context and that of the question.

The SSTK maps a predicate-argument structure into a
feature space consisting of all possible combinations of tar-
get verbs and argument slots. Each slot can contain at most
one keyword, corresponding to the syntactic head of the la-
beled phrase. SSTK models the question and answer sen-
tences in separate feature spaces, but under our approach, a
feature value is jointly derived from a question and an asso-
ciated answer sentence. Additionally, in contrast to the ap-
proach described in this paper, SSTK does not support key-

8Experiments were performed using the original code, which
is available from: http://www.cuihang.com/software.html

Figure 7: Correlation between Indri score and the Cui Path Match Score (top) and the Moschitti Shallow
Semantic Tree Kernel (bottom) for three randomly-selected questions.

word ordering or named entities, long-distance relationships
between keywords, or constraints that mix feature types.

SSTK can not be applied directly to our annotation graphs
because they are not trees. To compare it to our work, we
adapted the kernel function as a feature extractor for use
with the Committee Perceptron algorithm. The feature ex-
tractor generates all possible combinations of slots from the
question and compares them against the answer sentence.
Binary feature values are set to one if and only if the answer
sentence contains a predicate-argument structure containing
the slots filled by the appropriate question keywords.

We repeated the cross-validation experiments using the
feature set prescribed by the SSTK, with the addition of
the baseline Indri score. We found that the resulting rank-
ing was not statistically significantly better or worse than
our Indri baseline. Indeed, with most of the weight accu-
mulating to the Indri score feature, Indri was carrying most
of the ranking. The examples in the lower half of Figure 7
show evidence of this, with the Committee Perceptron pre-
dictions for some questions correlating near perfectly with
Indri and others showing complete confusion. The average
per-question Pearson correlation coefficient between the In-
dri and SSTK scores is 0.6390.

We were not able to reproduce the answer classification
results in [15] for several reasons. In the paper, answers are
classified for correctness and are ranked by pushing incor-
rect answers down in an ad hoc fashion. Here, in contrast,
we have set up the learning problem as one of pairwise-
preference classification, which gives us a complete ranking.
The evaluation in the paper focused on description (also
known as definition) questions, and our system is optimized
for factoid questions.

The SSTK method assumes that a predicate-argument
structure has at most one keyword in an argument slot, the
syntactic head of the labeled phrase. We speculate that, for
the task presented in this paper, the assumption that only
the phrasal headwords are important is a bad one. Con-
sider question 1427, What was the first spaceship on the

moon? Here, the modifier first encodes an important con-

straint that, if ignored, could result in incorrect answers
being retrieved.

With both the Cui, et. al., and Moschitti, et. al., methods
statistically indistinguishable from our bag-of-words with
named entities Indri baseline, we can be confident that our
approach demonstrates the power of long-distance linguistic
and semantic relationships for passage ranking.

8. RELATED WORK
Rank-learning techniques have been successfully applied

to the task of document ranking using features such as term
count statistics and baseline retrieval model scores [7, 12].
Recent work applies rank-learning to the task of passage
ranking for QA, augmenting these traditional feature types
with linguistically-motivated features [23]. Their feature set
was based largely on term overlap between the question and
answer passage within different syntactic categories, such as
verb and subject. A second set of features measured these
same overlaps after expansion through WordNet synsets [8].

The Shen and Lapata [20] approach to applying seman-
tics to the task of QA is notable in that it is based on
FrameNet [9], rather than PropBank [14], which has a much
richer roleset and an inheritance hierarchy for frames. They
use a graphical approach to determine the distribution over
semantic roles that keywords can take in a question or re-
trieved sentence. A sentence is assumed to have at most one
predicate, chosen heuristically. The similarity function used
for ranking answer-bearing sentences requires that the pred-
icates match exactly or participate in the same inheritance
chain. The degree of match is determined by the divergence
between the role distributions of the arguments of the pred-
icates in the question and answer-bearing sentence.

Both the Verberne, et. al., and Shen, et. al., fail to model
the case of multiple predicates in a sentence or question.
Furthermore, the Shen, et. al., model does not allow for
variation of the predicate verb except along the FrameNet
inheritance hierarchy. The method proposed in this paper
differs from previous work in that linguistic and seman-
tic constraints between keyword pairs are modeled directly.
Keywords labeled with semantic roles can be associated with

specific target verbs in the event that there are more than
one in the sentence. In addition, our approach models the
case of multiple arguments attached to an unknown target.

Single-pass passage retrieval methods have also been pro-
posed for QA, which involve pre-annotating the collection
and indexing linguistic and semantic features to enable query-
time constraint-checking. Bilotti, et. al., use structured
queries to retrieve text satisfying PropBank-style semantic
constraints [3]. Their method is shown to be effective in cer-
tain cases, yet poor at combining evidence from bag-of-words
and structured features and not robust to ranking partial
matches. Pizzato and Mollá apply the vector-space model
to a feature space consisting of surface words and their se-
mantic role labels, as well as pairwise semantic relationships
between keywords [16]. This model performs better at par-
tial matching, but does not capture long-distance linguistic
and semantic relationships between keywords.

9. CONTRIBUTIONS
For Question Answering (QA) systems to ever hope to

compete with the dominant web search information access
paradigm, they must improve both speed and accuracy. Poor
quality embedded passage retrieval is one of the primary
causes of wrong answers and high latency as perceived by
users. This work aims to address the issue of passage re-
trieval quality, proposing a novel passage ranking framework
for QA that unifies traditional keyword-only ranking fea-
tures with deeper linguistic and semantic features in a rank
learning framework. Experimental results show that this
generalized linguistic and semantic text similarity approach
significantly outperforms a high-quality bag-of-words and
named entity passage retrieval baseline on common classes
of factoid questions, achieving better than a 20% increase in
Mean Average Precision (MAP).

For questions analyzable by ASSERT, the improvement in
MAP offered by the proposed method can reach 40%. Cur-
rently, fewer than half of the questions in the test collection
can be analyzed by ASSERT. Despite the small sample size,
the 40% improvement in MAP is statistically significant.
For the questions that do not have ASSERT analyses, aver-
age precision is not significantly penalized, so there is little
risk in deploying the proposed passage retrieval method. As
coverage is improved for semantic role labeling tools such
as ASSERT, a greater percentage of user’s questions will be
analyzable, which will result in even greater improvements
in passage retrieval quality for a QA system employing the
proposed method. The future potential for the proposed ap-
proach notwithstanding, even the 20% improvement in MAP
available using today’s NLP tools could make a substantial
impact on the QA research community by enabling faster
and more accurate Answer Generation that could result in
lower end-to-end system latency and better accuracy that
users would notice.

10. ACKNOWLEDGEMENTS
This material is based in part upon work supported by

the Defense Advanced Research Projects Agency (DARPA)
under Contract Number W0853736. Any opinions, findings
and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily re-
flect the views of the Defense Advanced Research Projects
Agency (DARPA).

11. REFERENCES
[1] D. Bikel, R. Schwartz, and R. Weischedel. An algorithm

that learns what’s in a name. Machine Learning,
34(1–3):211–231, 1999.

[2] M. W. Bilotti. Linguistic and Semantic Passage Retrieval
Strategies for Question Answering. PhD thesis, Carnegie
Mellon University, 2009.

[3] M. W. Bilotti, P. Ogilvie, J. Callan, and E. Nyberg.
Structured retrieval for question answering. In Proc.
SIGIR, 2007.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In Proc. ICML, 2005.

[5] M. Collins. Ranking algorithms for named-entity extraction:
boosting and the voted perceptron. In Proc. ACL, 2001.

[6] H. Cui, R. Sun, K. Li, M.-Y. Kan, and T.-S. Chua.
Question answering passage retrieval using dependency
relations. In Proc. SIGIR, 2005.

[7] J. L. Elsas, V. R. Carvalho, and J. G. Carbonell. Fast
learning of document ranking functions with the committee
perceptron. In Proc. WSDM, 2008.

[8] C. Fellbaum. WordNet, an Electronic Lexical Database.
MIT Press, Cambridge, MA, 1998.

[9] C. Fillmore, C. Johnson, and M. Petruck. Background to
framenet. International Journal of Lexicography,
16:235–250, 2003.

[10] X. Geng, T. Liu, T. Qin, and H. Li. Feature selection for
ranking. In Proc. SIGIR, 2007.

[11] D. Graff. The AQUAINT Corpus of English News Text.
Linguistic Data Consortium, 2002. Cat. No. LDC2002T31.

[12] T. Joachims. Optimizing search engines using clickthrough
data. In Proc. KDD, 2002.

[13] M. Kaisser and J. B. Lowe. Creating a research collection of
question answer sentence pairs with amazon’s mechanical
turk. In Proc. LREC, 2008.

[14] P. Kingsbury, M. Palmer, and M. Marcus. Adding semantic
annotation to the penn treebank. In Proc. HLT, 2002.

[15] A. Moschitti, S. Quarteroni, R. Basili, and S. Manandhar.
Exploiting syntactic and shallow semantic kernels for
question/answer classification. In Proc. ACL, 2007.

[16] L. A. Pizzato and D. Mollá. Indexing on semantic roles for
question answering. In Proc. IR4QA Workshop at
COLING, 2008.

[17] S. Pradhan, W. Ward, K. Hacioglu, J. Martin, and
D. Jurafsky. Shallow semantic parsing using support vector
machines. In Proc. HLT, 2004.

[18] J. Reynar and A. Ratnaparkhi. A maximum entropy
approach to identifying sentence boundaries. In Proc.
ANLP, 1997.

[19] D. Sculley. Large scale learning to rank. In NIPS 2009
Workshop on Advances in Ranking, 2009.

[20] D. Shen and M. Lapata. Using semantic roles to improve
question answering. In Proc. EMNLP, 2007.

[21] M. D. Smucker, J. Allan, and B. Carterette. A comparison
of statistical significance tests for information retrieval
evaluation. In Proc. CIKM, 2007.

[22] S. Tellex, B. Katz, J. Lin, A. Fernandes, and G. Marton.
Quantitative evaluation of passage retrieval algorithms for
question answering. In Proc. SIGIR, 2003.

[23] S. Verberne, H. van Halteren, D. Theijssen, S. Raaijmakers,
and L. Boves. Learning to rank qa data. In Proc. LR4IR
Workshop at SIGIR, 2009.

