
Theory and Practice of Logic Programming
http://journals.cambridge.org/TLP

Additional services for Theory and Practice of Logic
Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Programming with Higher-Order Logic, by Dale Miller and
Gopalan Nadathur, Cambridge University Press, 2012,
Hardcover, ISBN-10:052187940X, xiv + 306 pp.

Frank Pfenning

Theory and Practice of Logic Programming / Volume 14 / Issue 02 / March 2014, pp 265 - 267
DOI: 10.1017/S1471068414000027, Published online: 04 March 2014

Link to this article: http://journals.cambridge.org/abstract_S1471068414000027

How to cite this article:
Frank Pfenning (2014). Theory and Practice of Logic Programming, 14, pp 265-267 doi:10.1017/
S1471068414000027

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/TLP, IP address: 128.2.210.170 on 06 Mar 2014



TLP 14 (2): 265–267, 2014. C© Cambridge University Press 2014

doi:10.1017/S1471068414000027

265

Book review

Programming with Higher-Order Logic, by Dale Miller and Gopalan Nadathur,

Cambridge University Press, 2012, Hardcover, ISBN-10:052187940X, xiv + 306 pp.

Some of the most beautiful discoveries in programming languages are their tight

connections to logic and proof theory. These connections take two basic forms.

In functional programming, we interpret complete proofs as programs, where

computation arises from proof reduction according to a fixed strategy. In logic

programming, we interpret logical theories as programs, where computation arises

from proof construction according to a fixed strategy. This book is concerned with

the second form when the underlying logic is higher-order logic. It covers syntax,

semantics, and pragmatics of higher-order logic programming in a systematic and

easy-to-read manner that will be of great value as introduction and reference for

students and researchers in programming languages.

The progression of the chapters is logical, incrementally introducing more ad-

vanced concepts as generalizations of simpler ones. Chapter 1 introduces typed first-

order terms, unification, and gives first examples of data representation. Chapter 2

presents logic programming with Horn clauses, already employing a proof-theoretic

perspective which pays dividends in later chapters. It also provides a first glimpse

of λProlog, which is used throughout the book for example programs. In books

developing concepts of programming languages, there is a natural tension between

abstract ideas and concrete realizations and examples. The authors resolve this by

using just two notations: customary logical formulas and inference rules on one

hand, and the closely matching λProlog language on the other. While not a manual

in the traditional sense, the book can easily be read as an introduction to λProlog

and its underlying theory. This extends the scope and also the appeal of the book:

writing, executing, and testing programs in a mature implementation is an excellent

way for students and researchers to plumb their understanding and gain deeper

insights into the pragmatics of programming with logic.

Chapter 3 marks the first significant departure from the traditional semantic view

of logic programming. Rather than Herbrand semantics, which tracks atoms that

are true in a Tarskian sense, it embraces a notion truth based on constructive

proof. This richer notion allows for hypothetical reasoning as well as schematic

reasoning and quantifier alternations. Computationally, it permits properly scoped

dynamic extensions of programs and the available set of constants. The full impact

of these generalizations is developed in Chapters 5–11. Interposed is Chapter 4 that

introduces the typed λ-calculus which is also needed for the subsequent chapters.

Chapters 5–8 develop basic higher-order logic programming techniques. Since this

is a book precisely on this topic, this is the core of the presented material. The reader



266 Book review

benefits most with some prior exposure to functional programming and (traditional,

first-order) logic programming, since the ideas here can be seen as a synthesis of

the techniques in these paradigms. Chapter 5 is mostly about programming with

predicate variables, for example, composing relations or mapping predicates over

data structures. This resembles functional programming idioms but affords some

additional expressive power. Chapter 6 introduces λProlog’s module layer, which

can actually be given an interpretation in terms of implication and quantification.

This contribution of λProlog to the theory of logic programming seems to have

been largely overlooked – a consolidated presentation in this book is therefore an

especially valuable resource.

Chapter 7 is all about computing over data with binding structure, sometimes

called abstract binding trees or higher-order abstract syntax. This is one of the

unique application areas of higher-order logic programming where programs can

be significantly more elegant than the first-order programs for the same tasks. This

elegance pays off especially for reasoning about the programs’ correctness, which

is treated informally in this book but has been subsequently been formalized in

other systems. The examples in this chapter are already compelling, with larger ones

following in later chapters. Chapter 8 on unification discusses not only traditional

higher-order unification but also higher-order pattern unification. Unlike higher-

order unification, pattern unification is decidable and has most general unifiers. It

therefore forms a much more practical basis for higher-order logic programming

with its pervasive use of unification for parameter passing and data construction.

Unfortunately, pattern unification is given somewhat short shrift, even though

experience with λProlog and closely related logic programming languages, such

as Elf, and proof assistants, such as Isabelle, has demonstrated the significance of

this subset.

Chapters 9–11 are extended examples on implementing proof systems (Chapter 9),

a functional programming language (Chapter 10), and a process calculus (Chapter

11). These are all applications where λProlog is used as a metalanguage for the

mechanization of another logic or, more generally, deductive systems. This is where

λProlog shines and the main raison-d’être for the language. Other uses of higher-

order features can be accomplished in first-order languages, such as Prolog, by

exploiting a form of reflection on syntax, but at the great cost of being extra-logical

and therefore difficult to reason about. The presence of variable binding in an object

language necessitates corresponding scoping mechanisms in the metalanguage, which

is precisely what λ-abstraction and associated algorithms provide (capture-avoiding

substitution, β-reduction, β0-reduction, η-expansion, and pattern unification). The

book ends with a brief appendix on the Teyjus implementation of λProlog and an

extensive bibliography.

Upon reaching the end of the last chapter, one cannot help but feel some

regret that the book does not go further. Much has happened since the initial

development of higher-order logic programming. Andreoli discovered the general

theory of focusing as a broad basis for logic programming. Proof objects have gained

a more prominent status through higher-order logic programming in dependent

type theory. Two-level meta-reasoning systems, such as Twelf and Abella, have



Book review 267

been designed and implemented to exploit the representation techniques underlying

λProlog and related systems. Even more expressive languages based on focusing,

linear logic, and type theory, such as Lolli, Forum, Linear LF, or Concurrent LF,

have been developed and implemented. Upon reflection, however, one feels a sense

of consistency and closure in the line of research starting from the proof theory of

higher-order logic and ending in λProlog and its implementation in Teyjus. Going

significantly further would require an entirely new approach to logic (e.g., linear logic

and focusing), or address a whole new set of questions beyond programming (e.g.,

formalized metareasoning). The only remaining regret is that the book is so intent

on programming that it discusses the theory of higher-order logic programming

hardly at all and mostly in the bibliographic notes. Still, as a practical guide and

higher-order counterpart to books such as The Art of Prolog (Leon Sterling and

Ehud Shapiro) or The Craft of Prolog (Richard O’Keefe) it serves an important

purpose for students and researchers alike.

Frank Pfenning

Carnegie Mellon University, Pittsburgh, PA 15213, USA

e-mail: fp@cs.cmu.edu


