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Abstract. We present an algorithm for verifying that some specified
arguments of an inductively defined relation in a dependently typed A-
calculus are uniquely determined by some other arguments. We prove it
correct and also show how to exploit this uniqueness information in cov-
erage checking, which allows us to verify that a definition of a function or
relation covers all possible cases. In combination, the two algorithms sig-
nificantly extend the power of the meta-reasoning facilities of the Twelf
implementation of LF.

1 Introduction

In most logics and type theories, unique existence is not a primitive notion, but
defined via existence and equality. For example, we might define 3lz.A(x) to
stand for Jz.A(x) AVy.A(y) D x = y. Such definitions are usually made in both
first-order and higher-order logic, and in both the intuitionistic and the classical
case. Expanding unique existence assertions in this manner comes at a price: not
only do we duplicate the formula A, but we also introduce two quantifiers and
an explicit equality. It is therefore natural to ask if we could derive some benefit
for theorem proving by taking unique existence as a primitive.

In this paper we consider an instance of this problem, namely verifying and
exploiting uniqueness in a logical framework. We show how to establish unique-
ness of certain arguments to type families in the logical framework LF [7] as
implemented in the Twelf system [15]. We further show how to exploit this
uniqueness information to verify meta-theoretic properties of signatures, thereby
checking proofs of meta-theorems presented as relations in LF. In particular, we
can automatically verify the unique existence of specified output arguments in a
relation with respect to some given input arguments. Our algorithm will always
terminate, but, since the problem is in general undecidable, will sometimes fail
to establish uniqueness even though it holds.

Our algorithm extends prior work on coverage checking [24] and mode check-
ing [18], which in combination with termination checking [16], can verify meta-
theoretic proofs such as cut elimination [12], the Church-Rosser theorem [19],
logical translations [13], or the soundness of Foundational Typed Assembly Lan-
guage [3,4]. The specific motivation for this work came mostly from the latter,
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in which a significant portion of the development was devoted to tedious but
straightforward reasoning about equality. Our algorithms can automate much of
that.

We believe that our techniques can be adapted to other systems of construc-
tive type theory to recognize properties of relations. In that direction, the re-
search can be seen as an extension of the work by McBride [11] and Coquand [2],
who present procedures for deciding whether a definition by pattern matching of
a dependently typed function consists of cases that are exhaustive and mutually
exclusive. Here, we permit not only inputs containing abstractions, but also re-
lational specifications, which are pervasive and unavoidable in constructive type
theories. Like the prior work on functions, but unlike prior work on coverage
checking [19, 24], we can also verify uniqueness and unique existence.

The remainder of the paper is organized as follows. In Section 2 we briefly
introduce the notation of the LF type theory used throughout. In Section 3 we
describe our algorithm for verifying uniqueness of specified arguments to rela-
tions, and we prove its correctness in Section 4. In Section 5 we briefly review
coverage checking, one of the central algorithms in verifying the correctness of
meta-theoretic proofs. In Section 6 we show how to exploit uniqueness informa-
tion to increase the power of coverage checking. We conclude in Section 7 with
some further remarks about related and future work.

2 The LF Type Theory

We use a standard formulation of the LF type theory [7]; we summarize here
only the basic notations. We use «a for type families, ¢ for object-level constants,
and x for (object-level) variables. We say term to refer to an expression from
any of the three levels of kinds, types, and objects.

Kinds K :=type | [Ix:A.K
Types A,Bu=aM;...M, | Hxz:A.B
Objects M,N :=c|z | Az:AM|MN

Signatures Yu=-|XY,aK | X, cA
Contexts I,Au=-|I,x:A
Substitutions 6,0 ==-|0,M/x

Contexts and substitutions may declare a variable at most once; signatures
may declare families and constants at most once. We do not distinguish terms
from any of the three levels that differ only in the names of their bound variables.
Our notion of definitional equality is Bn-conversion, and we tacitly exploit the
property that every kind, type, and object has a unique long Sn-normal form [1,
8] which we call canonical. The relatively simple nature of this definitional equal-
ity avoids some thorny issues regarding intensional and extensional equality in
constructive type theories [10,9] that would complicate our analysis. We omit
type-level A-abstractions from the syntax since they do not occur in canonical



forms. The principal judgments we use are:

I'kFx A:type Type A is valid
'ty M: A Object M has type A
I'kFx0:A Substitution # matches context A

Since all judgments are standard we only show the last one for typing substi-
tutions which is perhaps less widely known. We write M[f] and A[f] for the
application of a substitution.

Ir'+6:A I'+M: Alf)
Irk+... 'H(0,M/z): (A x:A)

So a substitution I' F 6 : A maps a term defined over a context A to a term
over a context I'. We write 61 o 05 for composition of substitutions, so that
M([01][02] = M6, o 0], and write idp for the identity substitution I' Fidp : I'.

As a running example we use natural numbers defined in terms of zero (z)
and successor (s), together with relations for inequality (le) and addition (plus).*
The corresponding signature is given in Figure 1. Note that free variables in a
declaration are implicitly universally quantified in that declaration; the Twelf
implementation will reconstruct these quantifiers and the types of the free vari-
ables [15].

nat : type.

z : nat.

s : nat — nat.

le : nat — nat — type.

le_refl : le X X.

les : leXY —leX (s Y).

plus : nat — nat — nat — type.

plus.z : plus z X X.

plusss : plus X1 X2 Y — plus (s X1) X2 (s Y).

Fig. 1. Natural numbers with ordering and addition

3 Uniqueness Mode Checking

Logical frameworks that support higher-order abstract syntax, such as LF or
hereditary Harrop formulas, are based on a simply typed or dependently typed

! This running example does not illustrate the higher-order nature of our analysis, but
unfortunately space constraints do not permit us to include larger and more realistic
examples. However, we have executed the uniqueness checker against higher-order
examples drawn from [3,4].



A-calculus. Function spaces in such a calculus are purposely impoverished in
order to support the use of meta-language functions to represent object language
abstractions and hypothetical proofs: too many such functions would invalidate
the judgments-as-types or judgments-as-propositions methodology. In particular,
these frameworks prohibit function definitions by cases or by primitive recursion.
Adding such functions appears to require modal types or an explicit stratification
of the type theory [5, 23,20, 21]; related approaches are still a subject of current
research (see, for example, [25,22]).

The traditional and practically tested approach is to represent more complex
functions as either type families or relations, depending on whether the frame-
work is a type theory or a logic.? In many cases relational representations of
functions are sufficient, but there are also many instances where meta-reasoning
requires us to know that relations do indeed represent (possibly partial) func-
tions. We can encode this property by defining explicit equality relations. For
example, if we need to know that the relation plus is actually a function of its
first two arguments, we can define

eq : nat — nat — type.
refl : eq X X.

We then have to prove: “If plus X1 Xo Y and plus X1 Xo Y’/ theneqY Y’

There are two difficulties with this approach: the first is simply that equality
predicates need to be threaded through many judgments, and various rather
trivial and tedious properties need to be proved about them. The second is that
this methodology interferes with dependent typing because the equality between
Y and Y’ in the example above cannot be exploited by type-checking, since eq
is just a user-declared relation.

As uses of the meta-reasoning capabilities of the logical framework become
increasingly complex [3, 4], intrinsic support for recognizing and exploiting rela-
tions that are indeed functions is becoming more and more important. There are
two distinct, interconnected problems to be solved. The first is to verify that par-
ticular relations are partial functions. The second is to exploit this information
to verify that the same or other relations are total.

In this section we address the former: how can we automatically verify that
particular relations are partial functions of some of their inputs. This is a stricter
version of mode checking familiar from logic programming. There, we designate
some arguments to a relation as inputs and others as outputs. The property
we verify with mode checking is that if the inputs are given as ground terms,
and proof search succeeds, then the outputs will also be ground terms [18].
The sharpened version requires in addition that if proof search succeeds, then
some designated outputs are uniquely determined. We refer to this process as
uniqueness mode checking.

2 Even though we are working in the LF type theory, we will use the terms type family,
relation, and predicate interchangeably, expressing the intended meaning of the type
families under consideration.



In our applications we actually need to exploit a slightly stronger property:
if the designated input arguments to a relation are given as ground terms, then
designated output arguments must be ground and uniquely determined, indepen-
dent of the proof search strategy. In other words, our analysis must be based on
a non-deterministically complete proof search strategy, rather than depth-first
logic program execution (which is incomplete).

We use terminology from logic programming in the description of our algo-
rithm below.

For the sake of simplicity we restrict the relations for which we verify unique-
ness to consist of Horn clauses, which means the relations we analyze are induc-
tively defined. However, the domains of quantification in the clauses are still
arbitrary LF terms, which may be dependently typed and of arbitrary order.

In our syntax for the Horn fragment, we refer to a constant declaration that
is to be analyzed as a clause. We group dependently occurring arguments into
a quantifier prefix I1I" and the non-dependent arguments into a conjunction of
subgoals G. We call the atomic type @ the head of a clause c: I[IT. G — Q. We
sometimes refer to a term with free variables that are subject to unification as a
pattern. All constructors for type families a appearing at the head of an atomic
goal in a program must also be part of the program and satisfy the Horn clause
restrictions.

Atomic Goals Q :=a M, ... M,
Goals G:=Q|GINGy | T
Clauses Du=c:III.G—Q
Programs Pu=D1,...,D,

In the implementation, we do not make this restriction and instead analyze
arbitrary LF signatures, enriched with world declarations [19]. A description
and correctness proof of this extension is the subject of current research and
beyond the scope of this paper.

Mode declarations. In order to verify mode properties of relations, we specify
each argument of a relation to be either an input (+), an output (-), a unique
output (-1), or unmoded (*). Intuitively, the declarations are tied to a non-
deterministic proof search semantics and express:

If all input (+) arguments to a predicate are ground when it is invoked,
and search succeeds, then all output arguments are ground (-). Moreover,
in all successful proofs, corresponding unique outputs (-1) must not only
be ground, but equal. Unmoded arguments remain unconstrained.

Mode information for a type family « is reflected in the functions ins(a), outs(a),
and uouts(a), returning the sets of indices for the input arguments, output ar-
guments, and unique output arguments respectively.

In our example, the following declarations would be correct:

%mode le +X -Y.
%mode plus +X1 +X2 -1Y.



The first one expresses that if a goal of the form le M Y for a ground term
M succeeds, then Y must also be ground. The second one expresses that every
successful search for a proof of plus M7 My Y with ground M; and M, yields
the same term N for Y. In other words, plus represents a partial function from
its first two arguments to its third argument. The second declaration yields
ins(plus) = {1, 2}, outs(plus) = { }, and uouts(plus) = {3}.

Our algorithm for uniqueness mode checking verifies two properties: disjoint-
ness of input arguments and uniqueness of output arguments.

Disjointness of inputs. For a given relation with some uniqueness modes on
its output arguments, we verify that no two clause heads unify on their input
arguments. This entails that any goal with ground input arguments unifies with
no more than one clause head. As an example, consider the relation plus from
Figure 1 with mode plus +X1 +X2 -1Y. Uniqueness mode checking verifies that
plus z X _ and plus (s X;) X5 _ do not have a unifier. This is easy because z
and s in the first argument clash. We use the algorithm in [6] which will always
terminate, but may sometimes generate constraints that cannot be solved. In
that case, uniqueness mode checking will fail.

Strictness. Because we can make the assumption that input arguments are
ground, what is most relevant to our analysis is not full unification, but higher-
order dependently typed matching. Schiirmann [19] has shown that each variable
in a higher-order matching problem that has at least one strict occurrence has
a unique, ground solution. An occurrence of a variable is strict if it is applied
to distinct bound variables and it is not in an argument to another unification
variable (see [14] for a more formal definition).

Strictness is central in our analysis to conclude that if matching a pattern
against a ground term succeeds, variables with at least one strict occurrence
in the pattern are guaranteed to be ground. In our specific situation, we actu-
ally employ unification of two types a My...M, = aN;...N, where certain
subproblems (for example, M; = N; for i € ins(a)) are known to be matching
problems.

Checking uniqueness of outputs. Uniqueness of outputs is verified by an abstract
non-deterministic logic programming interpreter with left-to-right subgoal selec-
tion3. The domain used is the space of abstract substitutions with elements
unknown (u), ground (g), and unique (q) for each variable & where u carries no
information and q the most information. Note that in order for a variable to be
unique (q) it must also be ground. Variables of unknown status (u) may become
known as ground (g) or unique (q) during analysis in the following situations:

— An unknown variable that occurs in a strict position in an input argument
of the clause head becomes known to be unique.

3 Left-to-right subgoal selection is convenient for this abstract interpretation, but not
critical for its soundness.



U QT > @ all strict variables in inputs of Q are q in ¥’
UFQ >V all strict variables in outputs of Q are at least g in ¥’
U Q!> all strict variables in unique outputs of Q are q in ¥’

v Qtt if all variables in inputs of @) are q

UEQT if all variables in inputs of Q are at least g
vEQt if all variables in unique outputs of ) are q
Qo if all variables in outputs of ) are at least g

Fig. 2. Judgments on abstract substitutions

— An unknown variable becomes known to be ground if it occurs in a strict
position in the output of a subgoal all of whose inputs are known to be
ground or unique.

— An unknown or ground variable becomes known to be unique if it occurs
in a strict position in a unique output of a subgoal all of whose inputs are
known to be unique.

We next describe in detail the uniqueness mode checking for the Horn clause
fragment of LF. The checker relies on two sets of judgments on abstract substitu-
tions, which provide reliable, though approximate, information about the actual
substitution at any point during search for a proof of a goal. The corresponding
non-deterministic search strategy is explained in Section 4.

Abstract objects px=u|glq
Abstract substitutions ¥ = - | ¥, u/x

The first set of judgments have the form ¥ - Q™ > ¥’ where ¥ is an abstract
substitution with known information, @ is an atomic predicate a M; ... M,, m
indicates which arguments to a are analyzed, and ¥’ is the result of the analysis
of . Both ¥ and ¥’ will be defined on the free variables in (). Moreover, ¥’ will
always contain the same or more information than V.

The second set of judgments ¥ F Q™ hold if @ satisfies a property specified
by m given the information in ¥. Again, if I+ @ : type, then ¥ will be defined
on the variables in I'. The various forms of these judgments are given in Figure 2.

The judgments on abstract substitutions are employed by the uniqueness
mode checker, which is itself based on two judgments: - ¢ : [II.G — P for
checking clauses in the program, and ¥ + G > ¥’ for analyzing goals G, where
¥’ may contain more information than ¥ and both ¥ and ¥’ are defined on the
free variables of G.

The mode checker is defined by the inference rules of Figure 3. We view these
rules as an algorithm for mode checking by assuming ¥ and G to be given, and
constructing ¥’ such that ¥ = G > @', searching for derivations of the premises
from first to last. We write W(I") for the abstract context corresponding to the
(concrete) context I, where each variable is marked as unknown (u).

Definition 1 (Mode correct programs). Given a program P, we write P(a)
for the set of clauses in P with a as head. We say P is mode-correct if



U() P >

U EG> W U Q!
Uy - P Tk Q™ > U QT
Uy - Pt Q> Y- Q™ >
Fe:III'G — P Yo Q> Wy Yo -Q >
WO}_G1>Q/1
'171}—G2>W2

Yok G1 NGy > Uy U =T >
Fig. 3. Uniqueness mode checking

1. For every type family a in P, if a is declared to have unique outputs, then
for any two distinct ¢y : IIT. Gy — Q1 and co : [1T5. Gy — Q2 in P(a), Q1
and Q3 are not unifiable on their inputs.

2. For every constant ¢ declared in P, we have - c: IIT.G — P

Part (2) of the definition requires each predicate to have a mode declaration,
but we may default this to consider all arguments unmoded (*) if none is given.
As an example, consider once again the plus predicate from Figure 1 with

mode plus +X1 +X2 -1Y. We have to check clauses plus_z and plus_s. We present
the derivations in linear style, eliding arguments to predicates that are ignored
in any particular judgments.

u/XF(plusz X )™ >q/X

q/X+T>q/X

q/X F (plus - _ )~
a/X F (plus - - X)7*

Fplusz: ITX:nat. T — plusz X X

u/X1,u/Xo,u/Y F (plus (s X1) X2 )™ > q/X1,q/X2,u/Y
a/X1,9/X2,u/Y F (plus X1 Xo )™!
q/X1,9/X2,u/Y F (plus - - )™ > q/X1,q9/X2,u/Y
a/X1,a/X2,u/Y F (plus - _Y)™' >q/X1,q/X2,q/Y
q/X1,9/X2,u/Y Fplus X1 Xo Y >q/X1,q9/X2,q9/Y
a/X1,9/X2,9/Y F (plus - - )~
a/X1,9/X2,9/Y F (plus - _ (s Y))™!

F plus_s : I X;:nat. IT Xo:nat. IIY :nat. plus X1 X2 Y — plus (s X1) X2 (s Y).

4 Correctness of Uniqueness Mode Checking

We next define a non-deterministic operational semantics for the Horn fragment
and show that uniqueness mode checking approximates it. The judgment has



the form 6 = G > ¢, where 0 and 0’ are substitutions for the free variables
in goal G. We think of 8 and goal G as given and construct a derivation and
substitution ¢’.

The semantics is given by the system of Figure 4. In the first rule, o and 6,
represent substitutions that unify P and Q[fg]. The fact that these substitutions
may not be computable, or that they may not be most general, does not concern
us here, since uniqueness mode checking guarantees that any unifier must ground
all variables in I' that have a strict occurrence in the input arguments of P,
provided the input arguments of Q[fy] are ground.

nrGg—-prepP P[a]:Q[Oo][Ql} O"ZG>02
90':Q>90091092

90):G1>91 91':GQ>62
90':G1AGQ>92 90':T>90

Fig. 4. Operational semantics

Definition 2 (Approximation). We define when an abstract substitution ap-
proximates a set of substitutions as follows: Given an abstract substitution ¥ : I
and a set O of substitutions I'! 0, : I', we say ¥ approzimates © (¥ < O) if
for every x in the domain of ¥

1. if (x) =g then for all 0; € O, 0;(x) is ground, and
2. if U(x) = q then for some ground term M and all 0; € O, 6;(z) = M.

Lemma 1 (Soundness of uniqueness mode checking). Let P be a mode-
correct program, G a goal, ¥ : I' an abstract substitution such that ¥+ G > ¥,
and © a set of substitutions. If W < O then W' <{p |0 =G> p,0 €O}.

Proof. We let D be the set of all derivations of 6 = G > p for all § € ©. We
show by induction on pairs (d, d’) of derivations in D, where d derives 6 = G > p
and d’ derives §' = G > p/, that if ¥ < {0,0"} then &' < {p, p'}. Since d, d’ are
arbitrary the lemma follows for the whole set.

The only nontrivial case is that of an atomic goal ) where the mode checking
derivation for @) has the form

Uy F Q1! (input variables of ) must be mapped to q)
Yol Q™ > (output variables of @) are mapped to g)

U Q>0 (unique output variables of @ are mapped to q)
"2 F Q > Uy



The two derivations d and d’ have the form

IIrG—PeP IrG — pep
Plo] = Q[0o][61] P'[o"] = Q[0][67]
o= G> 6, o' =G >0,

o = Q> 0p00100; 0 Q> 0,00, 00

Write 4y for 0 0 01 0 0 and 0., for 6} o 0] o 65.

It is easy to see, for each input variable x of @, that 6, (x) = 0/ ,(z) =
Oo(x) = (), so the approximation relation is satisfied for the input variables
of Q.

For the output variables, there are two subcases: either there is uniqueness
information for the type family of @), so that only one clause head can match @,
or there is no uniqueness information.

For the first subcase P = P’ and G = G’. We use the mode correctness of
the program to obtain the subgoal mode check ¥ - G > W), where ¥} enforces
the mode annotations for the input and output variables of P. ¥] < {c,¢’ }, so
by induction ¥} < {62,6% }. Then 6,,: and 6/, satisfy the mode annotations for
the output variables of @), as required.

For the second subcase the reasoning is similar, but there are no output
uniqueness requirements and more than one clause head can match Q. O

Lemma 2 (Completeness of non-deterministic search). Given A F Q :
type. If QQ contains only ground terms in its input positions, and there is a
substitution 0 and term M such that -+ M : Q[0], then ida = Q > 0’ and there
s a substitution 0" such that 0 = 6’ 0 6”.

Proof. The proof is standard, using induction on the structure of M, exploiting
the non-deterministic nature of the operational semantics to guess the right
clauses and unifying substitutions. ]

5 Coverage

Coverage checking is the problem of deciding whether any closed term of a
given type is an instance of at least one of a given set of patterns. Our work
on exploiting uniqueness information in coverage checking is motivated by its
application to proof assistants and proof checkers, where it can be used to check
that all possible cases in the definition of a function or relation are covered. The
coverage problem and an approximation algorithm for coverage checking in LF
are described in [24], extending prior work by Coquand [2] and McBride [11].

More precisely, a coverage problem is given by a coverage goal and a set
of patterns. In our setting it is sufficient to consider coverage goals that are
types with free variables A+ A : type; it is straightforward to translate general
coverage goals to this form.

10



Definition 3 (Immediate Coverage). We say a coverage goal A+ A : type
is immediately covered by a collection of patterns A; = A; : type if there is an i
and a substitution A& o; : A; such that A+ A = A;[o;] : type.

Coverage requires immediate coverage of every ground instance of a goal.

Definition 4 (Coverage). We say A - A : type is covered by a collection of
patterns A; F A; : type if every ground instance - + Alr] : type for - b 7 : A s
immediately covered by the collection A; - A; : type.

As an example, consider again the plus predicate from Figure 1. We have
already shown that the output of plus, if it exists, is unique. In order to show
that plus is a total function of its first two arguments, we need to show that
it always terminates (which is easy—see [18,16]), and that the inputs cover
all cases. For the latter requirement, we transform the signature into coverage
patterns by eliding the outputs:

X:nat F plus z X _
Xi:nat, Xo:nat + plus (s X1) Xo _.

The coverage goal:
Y;:nat, Yg:nat Fplus Yy Yo _.

In this example, the goal is covered by the two patterns since every ground
instance of the goal plus M; M, _ will be an instance of one of the two patterns.
However, the goal is not immediately covered because Y; clashes with z in the
first pattern and s in the second.

When a goal A F A : type is not immediately covered by any pattern, the
algorithm makes use of an operation called splitting, which produces a set of
new coverage goals by partially instantiating free variables in A. Each of the
resulting goals is covered if and only if the original goal is covered. Intuitively,
splitting works by selecting a variable u in A, and instantiating it to all possible
top-level structures based on its type.

In the example, the clashes of Y; with z and s suggest splitting of Y7, which
yields two new coverage goals

Y:nat F plus z Y _.
Yi:nat, Yo:nat F plus (s Yy) Yy _.

These are immediately covered by the first and second pattern, respectively, but
in general many splitting operations may be necessary.

The process of repeated splitting of variables in goals that are not yet covered
immediately will eventually terminate according to the algorithm in [24], namely
when the failed attempts to immediately cover a goal no longer suggest any
promising candidates for splitting. Unfortunately, this algorithm is by necessity
incomplete, since coverage is in general an undecidable property. Sometimes,
this is due to a variable z:B in a coverage goal which has no ground instances,
in which case the goal is vacuously covered. Sometimes, however, the coverage

11



preserv : plus X1 X3 Y — plus X2 X3 Y — le X3 Xo — le Y Y — type.
preserv_refl : preserv S; So le_refl le_refl.
preserv.s : preserv S; So L L' — preserv S; (pluss S2) (less L) (les L').

Fig. 5. Addition preserves ordering

checker reaches a situation where several terms must be equal in order to obtain
immediate coverage. It is in these situations that uniqueness information can
help, as we explain in the next section.

6 Uniqueness in Coverage

We begin with an example that demonstrates failure of coverage due to the
absence of uniqueness information.

Given type families for natural numbers, addition, and ordering, a proof that
addition of equals preserves ordering can be encoded as the relation preserv in
Figure 5. Note that, as before, free variables are implicitly quantified on each
clause. Moreover, arguments to type families whose quantifiers were omitted
earlier (as, for example, IT X:nat in the clause le_refl : leX X) are also omitted,
and determined by type reconstruction as in the Twelf implementation [15].

In order to verify that preserv constitutes a meta-theoretic proof, we need to
verify that for all inputs S; : plus X7 X3Y, Sy :plus Xo X3Y’,and L : le X7 X5
there exists an output L’ : le Y Y’ which witnesses that x1 + x3 < x5 + x3 if
1 < To.

The initial coverage goal has the form

Xi:nat, Xo:nat, Xg:nat, Y:nat, Y :nat,
Si:plus X; X3 Y, So:plus Xo X3 Y/, L:le X; X9 F preserv S; Sp L _.

This fails, and after one step of splitting on the variable L we obtain two cases,
the second of which is seen to be covered by the preserv_s clause after one further
splitting step, while the first has the form

Xi:nat, X3:nat, Y:nat, Y':nat, Si:plus X; X3 Y, So:plus X; X3 Y.
F preserv S; Sy le_refl _.

The clause preserv_refl does not immediately cover this case, because the types of
the two variable S; and Sy in this clause are the same, namely plus X; X3 Y. This
is because the use of reflexivity for inequality in the third and fourth arguments
of the clause requires X; = X3 and Y = Y’. Our extended coverage checker
will allow us to show automatically that this case is covered by exploiting the
uniqueness information for plus.

We first define the situations in which uniqueness information may potentially
be helpful, depending on the outcome of a unification problem. We then show
how to exploit the result of unification to specialize a coverage goal.

12



Definition 5 (Specializing a coverage goal). Given a mode-correct program
P containing a type family a with unique outputs, and a coverage goal A+ A :
type, uniqueness specialization for a may be applicable if

1. A contains distinct assumptions x1 :a My ... M, and x5 : a Ny ...N,, and
2. for alli € ins(a), M; = N;, and
3. for some k € uouts(a), My # Nj.

To specialize the goal, attempt simultaneous higher-order unification of My with
Ny for all k € wouts(a). If a most general pattern unifier (mgu) for this problem
exists, write it as A"+ o : A, and generate a new specialized goal A"+ Alo] :

type.

There are three possible outcomes of the given higher-order unification prob-
lem, with the algorithm in [6]: (1) it may yield an mgu, in which case the special-
ized coverage goal is equivalent to the original one but has fewer variables, (2)
it may fail, in which case the original goal is vacuously covered (that is, it has
no ground instances), or (3) the algorithm may report remaining constraints,
in which case this specialization is not applicable. Assertions (1) and (2) are
corollaries of the next two lemmas.

Lemma 3. If uniqueness information for a type family a is potentially applicable
to a coverage goal g = A+ A : type, but no unifier exists, then there are no
ground instances of g (and thus g is vacuously covered by any set of patterns).

Proof. Assume we had a substitution - - 6 : A (so that A[f] is ground). Using
the notation from Definition 5, we have M; = N; for all i € ins(a) and therefore
M;[0] = N;[0]. By Lemma 2, we have - = (a M;y...M,)[0] > 6; and - |
(@ Ny...Ny)[0] > 63. Since the empty abstract substitution approximates the
empty substitution, we know by Lemma 1 that for all k& € uouts(a), My[0] =
Ni[0]. But this is impossible since for at least one k € uouts(a), M) and N
were non-unifiable. O

Lemma 4. Let g = A F A : type be a coverage goal, and P a mode-correct
program with uniqueness information for a potentially applicable to g. If an mgu
A'F o A exists and leads to coverage goal A" Alo] : type, then every ground
instance Al0] of A is equal to a ground instance of Alo].

Proof. As in the proof of the preceding lemma, assume - F 6 : A (so that A[f] is
ground). Again we have M; = N; for all ¢ € ins(a) and therefore M;[0] = N;[6)].
By Lemma 2, we have - = (a My ... M,)[0] > 01 and - |= (a N1...N,)[0] > 62
for some 6; and 63. From Lemma 1 we now know that for all k¥ € uouts(a),
My, [0] = Ni[0]. But, by assumption, ¢ is a most general simultaneous unifier of
My, = Ny, for all k € uouts(a). Hence 8 = o o8’ for some 6" and A[f] = A[ood'] =
(Alo])[6']. 0

We return to the coverage checking problem for the type family of Figure 5.
As observed above, without uniqueness information for plus it cannot be seen
that all cases are covered. The failed coverage goal is
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Xi:nat, X3:nat, Y:nat, Y':nat, Si:plus X; X3 Y, So:plus X; X3 Y.
F preserv S; So le_refl _.

Exploiting uniqueness information for plus, we have the unification problem Y =
Y, with mgu Y/Y”, yielding the new goal

Xi:nat, Xg:nat, Y:nat, Sy:plus X; X3 Y, So:plus X1 X3 Y.
F preserv S; So le_refl _.

Since S and Sy have the same type, the new goal is immediately covered by the
clause preserv_refl, completing the check of the original coverage goal.

7 Conclusion

We have described an algorithm for verifying uniqueness of specified output ar-
guments of a relation, given specified input arguments. We have also shown how
to exploit this information in coverage checking, which, together with termina-
tion checking, can guarantee the existence of output arguments when given some
inputs. We can therefore also verify unique existence, by separately verifying ex-
istence and uniqueness. While our algorithms can easily be seen to terminate,
they are by necessity incomplete, since both uniqueness and coverage with re-
spect to ground terms are undecidable in our setting of LF.

The uniqueness mode checker of Section 3 has been fully implemented as
described. In fact, it allows arbitrary signatures, rather than just Horn clauses
at the top level, although our critical correctness proof for Lemma 1 has not yet
been extended to the more general case. We expect to employ a combination of
the ideas from [18] and [19] to extend the current proof. In practice, we have
found the behavior of the uniqueness checker to be predictable and the error
messages upon failure to be generally helpful.

We are considering three further extensions to the uniqueness mode checker,
each of which is relatively straightforward from the theoretical side. The first
is to generalize left-to-right subgoal selection to be instead non-deterministic.
This would allow verification of uniqueness for more signatures that were not
intended to be executed with Twelf’s operational semantics. The second would
be to check that proof terms (and not just output arguments) will be ground or
ground and unique. That would enable additional goal specialization in coverage
checking. The third is to integrate the idea of factoring [17] in which overlapping
clauses are permitted as long as they can be seen to be (always!) disjoint on the
result of some subgoal.

In terms of implementation, we have not yet extended the coverage checker
implementation in Twelf to take advantage of uniqueness information. Since
specialization always reduces the complexity of the coverage goal when appli-
cable, we propose an eager strategy, comparing inputs of type families having
some unique outputs whenever possible. Since terms in the context tend to be
rather small, we do not expect this to have any significant impact on overall
performance.
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Finally, we would like to redo the theory of foundational proof-carrying
code [3,4] taking advantage of uniqueness modes to obtain a concrete measure
of the improvements in proof size in a large-scale example. We expect that most
uses of explicit equality predicates and the associated proofs of functionality
can be eliminated in favor of uniqueness mode checking and extended coverage
checking. As a small proof of concept, we have successfully uniqueness-checked
four type families in the theory, amounting to about 150 lines of Twelf code
in which the use of functional arguments is pervasive. Combined with coverage
checking, these checks might eliminate perhaps 250 lines of proof.
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