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1 Introduction

Higher-order abstract syntaz is a central representation technique in many logi-
cal frameworks, that is, meta-languages designed for the formalization of deduc-
tive systems. The basic idea is to represent variables of the object language by
variables in the meta-language. Consequently, object language constructs which
bind variables must be represented by meta-language constructs which bind the
corresponding variables.

This deceptively simple idea, which goes back to Church [1] and Martin-
Lof’s system of arities [18], has far-reaching consequences for the methodology
of logical frameworks. On one hand, encodings of logical systems using this idea
are often extremely concise and elegant, since common concepts and operations
such as variable binding, variable renaming, capture-avoiding substitution, or
parametric and hypothetical judgments are directly supported by the framework
and do not need to be encoded separately in each application. On the other hand,
higher-order representations are no longer inductive in the usual sense, which
means that standard techniques for reasoning by induction do not apply.

Various attempts have been made to preserve the advantages of higher-order
abstract syntax in a setting with strong induction principles [5, 4], but none of
these is entirely satisfactory from a practical or theoretical point of view.

In this paper we take a first step towards reconciling higher-order abstract
syntax with induction by proposing a system of primitive recursive functionals
that permits iteration over subjects of functional type. In order to avoid the
well-known paradoxes which arise in this setting (see Section 3), we decompose
the primitive recursive function space A = B into a modal operator and a
parametric function space (0A) — B. The inspiration comes from linear logic
which arises from a similar decomposition of the intuitionistic function space
A D B into a modal operator and a linear function space (14) — B.

The resulting system allows, for example, iteration over the structure of
expressions from the untyped A-calculus when represented using higher-order
abstract syntax. It is general enough to permit iteration over objects of any
simple type, constructed over any simply typed signature and thereby encom-
passes Godel’s system T' [9]. Moreover, it is conservative over the simply-typed
A-calculus which means that the compositional adequacy of encodings in higher-
order abstract syntax is preserved. We view our calculus as an important first



step towards a system which allows the methodology of logical frameworks such
as LF [10] to be incorporated into systems such as Coq [20] or ALF [12].

The remainder of this paper is organized as follows: Section 2 reviews the
idea of higher order abstract syntax and introduces the simply typed A-calculus
(A7) which we extend to a modal A-calculus in Section 3. Section 4 then presents
the concept of iteration. In Section 5 we sketch the proof of our central result,
namely that our extension is conservative over A~. Finally, Section 6 assesses the
results, compares some related work, and outlines future work. A full version of
this paper with complete technical developments and detailed proofs is accessible
as http://www.cs.cmu.edu/ " carsten/CMU-CS-96-172.ps.gz [6].

2 Higher-Order Abstract Syntax

Higher-order abstract syntax exploits the full expressive power of a typed A-
calculus for the representation of an object language, where \-abstraction pro-
vides the mechanism to represent binding. In this paper, we restrict ourselves to
a simply typed meta-language, although we recognize that an extension allow-
ing dependent types and polymorphism is important future work (see Section 6).
Our formulation of the simply-typed meta-language is standard.

Pure types: B ::=a | By — B>
Objects: M u=x|c| x:A. M| M M,

Context: W u=-|¥,z:B
Signature: X i:=-| X a:type|X,c: B

We use a for type constants, ¢ for object constants and z for variables. We also
fix a signature X' for our typing and evaluation judgments so we do not have to
carry it around.

Definition1 Typing judgment. ¥ - M : B is defined by:

¥(zx)=B Y(c)=B
—— StpVar —— StpConst
Ukzx:B Utkce:B
prfL‘:Bl'_M:B2 UM, : By — By U+ Ms: By
StpLam StpApp
UbkMAe:B1.M : By — Bo U+ M Ms: B

As running examples throughout the paper we use the representation of nat-
ural numbers and untyped A-expressions.

FEzxzample 1 Natural numbers.

nat : type
M=z 7Z :nat
™M +17=s8™n" S :mnat — nat



Untyped M-expressions illustrate the idea of higher-order abstract syntax:
object language variables are represented by meta-language variables.

FEzxample 2 Untyped \-expressions.

Expressions: e ::= z | lam z.e | e;Qey

exp : type
Mlam z.e7=lam (Az:exp."e™)  lam : (exp — exp) — exp
Te1@es ' =app ey ey’ app : exp — (exp — exp)
Tzl=z
Not every well-typed object of the meta-language directly represents an ex-
pression of the object language. For example, we can see that "e” will never
contain a (-redex. Moreover, the argument to lam which has type exp — exp
will always be a A-abstraction. Thus the image of the translation in this repre-
sentation methodology is always a S-normal and 7-long form. Following [10], we
call these forms canonical as defined by the following two judgments.

Definition 2 Atomic and canonical forms.

1. ¥+ V | B (V is atomic of type B in ¥)
2. WV q B (V is canonical of type B in ¥)

are defined by:

¥(z)=B Y(c)=B UV ] By — B U Vo1 B
—  AtVar ——  AtConst AtApp
vzl B Uikcl|lB UV Val B

UEVia Ur:Bi VA B

——— CanAt CanLam

WI—Vﬂa !pl_)\l‘BlVﬂ‘Bl—>32

Canonical forms play the role of “observable values” in a functional language:
they are in one-to-one correspondence with the expressions we are trying to rep-
resent. For Example 2 (untyped M-expressions) this is expressed by the following
property, which is proved by simple inductions.

FEzample 8 Compositional adequacy for untyped \-expressions.

1. Let e be an expression with free variables among 1, ..., z,.
Then 1 : exp,...,x, :exp F "e 1| exp.

2. Let z1 : exp,..., T, : exp - M 1 exp.
Then M = "e™ for an expression e with free variables among 1, . . ., .

3. M-Tis a bijection between expressions and canonical forms where "[e/ /x]e™ =
[Fe'/x] e

Since every object in A~ has a unique [(n-equivalent canonical form, the
meaning of every well-typed object is unambiguously given by its canonical form.
Our operational semantics (see Definitions 4 and 7) computes this canonical
form and therefore the meaning of every well-typed object. That this property is
preserved under an extension of the language by primitive recursion for higher-
order abstract syntax may be considered the main technical result of this paper.



3 Modal A-Calculus

The constructors for objects of type exp from Example 2 are lam : (exp —
exp) — exp and app : exp — (exp — exp). These cannot be the constructors
of an inductive type exp, since we have a negative occurrence of exp in the ar-
gument type of lam. This is not just a formal observation, but has practical
consequences: we cannot formulate a consistent induction principle for expres-
sions in this representation. Furthermore, if we increase the computational power
of the meta-language by adding case or an iterator, then not every well-typed
object of type exp has a canonical form. For example,

- lam (AE:exp. case E of app E1 Ey = app Ez F; | lam E' = lam E’) : exp

but the given object does not represent any untyped A-expression, nor could it
be converted to one. The difficulty with a case or iteration construct is that
there are many new functions of type exp — exp which cannot be converted to
a function in A™. This becomes a problem when such functions are arguments
to constructors, since then the extension is no longer conservative even over
expressions of base type (as illustrated in the example above).

Thus we must cleanly separate the parametric function space exp — exp
whose elements are convertible to the form Az : exp. E where E is built only
from the constructors app, lam, and the variable x, from the primitive recur-
sive function space exp = exp which is intended to encompass functions defined
through case distinction and iteration. This separation can be achieved by us-
ing a modal operator: exp — exp will continue to contain only the parametric
functions, while exp = exp = (Oexp) — exp contains the primitive recursive
functions.

Intuitively, we interpret OB as the type of closed objects of type B. We
can iterate or distinguish cases over closed objects, since all constructors are
statically known and can be provided for. This is not the case if an object may
contain some unknown free variables. The system is non-trivial since we may
also abstract over objects of type OA, but fortunately it is well understood
and corresponds (via an extension of the Curry-Howard isomorphism) to the
intuitionistic variant of Sy [3].

In Section 4 we introduce schemas for defining functions by iteration and
case distinction which require the subject to be of type OB. We can recover
the ordinary scheme of primitive recursion for type nat if we also add pairs to
the language. Pairs (with type A; x As) are also necessary for the simultaneous
definition of mutually recursive functions. Just as the modal type OA, pairs
are lazy and values of these types are not observable—ultimately we are only
interested in canonical forms of pure type.

The formulation of the modal A-calculus below is copied from [3] and goes
back to [22]. The language of types includes the pure types from the simply-typed
A-calculus in Section 2.



I'z)y=A Alz)=A Y(c)=B
——— TpVarReg —— TpVarMod —— TpConst
ATFz: A A;THx: A A;T'Fe: B

AT : A M: A,

AT Av: AL M - Ay — Ao

TpLam

A;FFM12A2—>A1 A;F"MQZAQ

TpApp
A;F"MlMg:Al
A;F"MliAl A;F"MQZAQ
TpPair
A;F"(Ml,M2>ZA1><A2
A;F"M:Aleg A;F"M:Aleg
TpFst TpSnd
A;T'Hofst M : Ay A;T'Fsnd M : As
A;-FM:A A;T'E M, :0OA; Ayx: AT My 2 As
TpBox TplLet
A;T'-box M : OA A; ' let box x = My in My : Ao

Fig. 1. Typing judgment A;I'F M : A

Types: An=al|A — A |OA| A x Ay
Objects: M u==c|z | x:A. M| My M,

| box M | let box = My in My | (My, M) | fst M | snd M
Contexts: I" = |[,z: A

For the sake of brevity we usually suppress the fixed signature 3. However,
it is important that signatures Y and contexts denoted by ¥ will continue to
contain only pure types, while contexts I" and A may contain arbitrary types.
We also continue to use B to range over pure types, while A ranges over arbitrary
types. The typing judgment A; I' = M : A uses two contexts: A, whose variables
range over closed objects, and I', whose variables range over arbitrary objects.

Definition 3 Typing judgment. A; ' M : A is defined in Figure 1.
As examples, we show some basic laws of the (intuitionistic) modal logic Sy.
FEzxample 4 Laws of Sy.

funlift D(Al — AQ) — DAl — DAQ
= )\f D(Al — AQ) )\J?ZDAl.
let box f = f in let box ' = x in box (f’ =)
unbox : OA— A
=) z:0A.let box 2’ =z in 2’

boxbox : OA — 0OOA
= \z:0A.let box 2’ = z in box (box z’)



YEM—V:a Vex:Bi-Maxz{yV:Bs

———— EcAtomic EcArrow
UVEMAV:a UEMApA:B1.V: B — By
U(z)=A Y(c)=B
—  EvVar —  EvConst
Uhbrx—zxz:A YFc—c:B

W, ArE M Ay
Uk Al M < Mx:A1. M : A1 — As

EvLam

W'_Ml(—>)\$:A2.M{:A2—>A1 !pFMl%‘/liBQ%Bl
W'_MQ(—>‘/2:A2 !pl_‘/ll,BQ—>31
U F [Va/a|(M]) = Vi A kM Va: By
EvApp EvAtomic
!pFMlMQ%VZAl !pFMlMQ%‘/l‘/QZBl
-;WFMliAl ';W'_MQZAQ
EvPair

[V <M1,M2> — <M1,M2>2A1 XA2
WFM%(Ml,M2>ZA1XA2 !pl_Ml%ViAl

EvFst
Ukfst M —-V:A;

WFM%(Ml,M2>ZA1XA2 W'_MQ(—>V:A2
EvSnd

Ubtsnd M —V:A,
s-FM:A

EvBox
¥ box M — box M :0A

Uk M —box My :0A Wk [M/z](Ms) = V: A
EvlLet

Utkletbox = M;in My —V : Ay

Fig. 2. Evaluation judgments W - M -V :Aand ¥+ MV : B

The rules for evaluation must be constructed in such a way that full canonical
forms are computed for objects of pure type, that is, we must evaluate under
certain A-abstractions. Objects of type OA or A; x Ay on the other hand are
not observable and may be computed lazily. We therefore use two mutually
recursive judgments for evaluation and conversion to canonical form, written
UVEM<—V:Aand ¥+ M {4 V: B, respectively. The latter is restricted
to pure types, since only objects of pure type possess canonical forms. Since we
evaluate under some A-abstractions, free variables of pure type declared in ¥

may occur in M and V during evaluation.

Definition4 Evaluation judgment. ¥ - M <V : Aand % - M {fV : B

are defined in Figure 2.



4 Iteration

The modal operator O introduced in Section 3 allows us to restrict iteration and
case distinction to subjects of type OB, where B is a pure type. The techni-
cal realization of this idea in its full generality is rather complex. We therefore
begin by describing the behavior of functions defined by iteration informally,
incrementally developing their formal definition within our system. In the infor-
mal presentation we elide the box constructor, but we should convince ourselves
that the subject of the iteration or case is indeed assumed to be closed.

Example 5 Addition. The usual type of addition is nat — nat — nat. This is
no longer a valid type for addition, since it must iterate over either its first
or second argument and would therefore not be parametric in that argument.
Among the possible types for addition, we will be interested particularly in
Onat — nat — nat and Onat — Onat — Onat.

pluszn =n
plus (s m) n = s (plus m n)

Note that this definition cannot be assigned type nat — nat — nat or Onat —
nat — Onat.

In our system we view iteration as replacing constructors of a canonical term
by functions of appropriate type, which is also the idea behind catamorphisms [8].
In the case of natural numbers, we replace z : nat by a term M, : A and
s : nat — nat by a function My : A — A. Thus iteration over natural numbers
replaces type nat by A. We use the notation a — A for a type replacement
and ¢ — M for a term replacement. Iteration in its simplest form is written as
“it (a— A) M (£2)” where M is the subject of the iteration, and {2 is a list
containing term replacements for all constructors of type a. The formal typing
rules for replacements are given later in this section; first some examples.

Example 6 Addition via iteration. Addition from Example 5 can be formulated
in a number of ways with an explicit iteration operator. The simplest one:

plus’ : Onat — nat — nat
= Am:0Onat. An:nat. it (nat — nat) m (z — n| s+ s)

Later examples require addition with a result guaranteed to be closed. Its defi-
nition is only slightly more complicated.

plus : Onat — Onat — Onat
= Am:0Onat. An:Onat. it (nat — Onat) m
(z—mn
| s — (Ar:Onat. let box ' = r in box (s 1))

If the data type is higher-order, iteration over closed objects must traverse
terms with free variables. We model this in the informal presentation by intro-
ducing new parameters (written as vz : B. M) using Odersky’s notation [19]. This
makes a dynamic extension of the function definition necessary to encompass the
new parameters (written as “where f(z) = M”).



Ezxample 7 Counting variable occurrences. Below is a function which counts the
number of occurrences of bound variables in an untyped A-expression in the
representation of Example 2. It can be assigned type Oexp — UOnat.

cntvar (app e; ez) = plus (cntvar ey ) (cntvar eg)
cntvar (lam e) = vz :exp. cntvar (e ) where cntvar « = (s z)

It may look like the recursive call in the example above is not well-typed since
(e ) is not closed as required, but contains a free parameter x. Making sense
of this apparent contradiction is the principal difficulty in designing an iter-
ation construct for higher-order abstract syntax. As before, we model itera-
tion via replacements. Here, exp — Onat and so lam — M; and app — M-
where M; : (Onat — Onat) — Onat and My : Onat — (Onat — Onat). The
types of replacement terms M; and M arise from the types of the constructors
lam : (exp — exp) — exp and app : exp — (exp — exp) by applying the type
replacement exp — Onat. We write

cntvar : Oexp — Onat
= A\z:0Oexp. it (exp — Onat) z
(app + plus
| lam — Af:Onat — Onat. f (box (s z)))

Informally, the result of cntvar (lam (Az:exp.z)) can be determined as follows:

cntvar (lam (Az:exp. z))

= vz’ exp. cntvar ((Az:exp. z) z') where cntvar 2’ = (s z)
= vz':exp. cntvar ' where cntvar @’ = (s z)

= va':exp. (s z) where cntvar 2’ = (s z)

~(s2)

For the formal operational semantics, see Example 10.

A number of functions can be defined elegantly in this representation. Among
them are the conversion from type exp to a representation using de Bruijn indices
and one-step parallel reduction. The latter requires mutual iteration and pairs
(see [6]).

The following example illustrates two concepts: mutually inductive types and
iteration over the form of a (parametric!) function.

Ezxample 8 Substitution in normal forms. Substitution is already directly defin-
able by application, but one may also ask if there is a structural definition in
the style of [16]. Normal forms of the untyped A-calculus are represented by the
type nf with an auxiliary definition for atomic forms of type at.

Normal forms: N ::= P | lam z.N
Atomic forms: P ::=1z | PQN



In this example the represention function .7 acts on normal forms, atomic
forms are represented by ™. ™.

nf : type
at :type
TP7=atnf™P™ atnf : at — nf
Mlam 2. N7=1m (Az:at."N") lm : (at — nf) — nf
TPANT"=apT™PT"N ap :at — nf— at
TxM=z

Substitution of atomic objects for variables is defined by two mutually recur-
sive functions, one with type subnf : O(at — nf) — at — nf and subat :
O(at — at) — at — at.

subnf (Az:at.lm (Ay:at. N 2 y)) Q = lm (Ay:at. subnf (Az:at. (N z y)) @
where subat (A\z:at.y) Q = y)
subnf (Az:at. atnf (P z)) Q = atnf (subat (Az:at. P x) Q)
subat (Az:at.ap (P z) (N z)) @ = ap (subat (Az:at. P z) Q)
(subnf (Az:at. N z) Q)
subat (A\z:at.z) Q =Q

The last case arises since the parameter x must be considered as a new con-
structor in the body of the abstraction. The functions above are realized in our
calculus by a simultaneous replacement of objects of type nf and at. In other
words, the type replacement must account for all mutually recursive types, and
the term replacement for all constructors of those types.

subnf : O(at — nf) — at — nf
= AN:0O(at — nf). AQ:at. it (nf — nf | at — at) N
(Im +— AF:at — nf.1lm (Ay:at. (F'y))
| atnf — AP:at. atnf P
| ap — AP:at. AN :nf.ap P N)
Q

Via n-contraction we can see that substitution amounts to a structural identity
function.

We begin now with the formal discussion and description of the full language.
Due to the possibility of mutual recursion among types, the type replacements
must be lists (see Example 8).

Type replacement: w ::=- | (w | a — A)

Which types must be replaced by an iteration depends on which types are
mutually recursive according to the constructors in the signature X' and possibly
the type of the iteration subject itself. If we iterate over a function, the parameter
of a function must be treated like a constructor for its type, since it can appear
in that role in the body of a function.



Thus, we define the notion of type subordination which summarizes all depen-
dencies between atomic types by separately considering its static part </y; which
derives from the dependencies induced by the constructor types from Y and its
dynamic part <lg which accounts for dependencies induced from the argument
types of B. The transitive closure «x,p of static and dynamic type subordina-
tion relation defines cleanly all dependencies between types which govern the
formation of the subject of iteration. We denote the target type of a pure type B
by 7(B). All type constants which are mutually dependent with 7(B), written
Z(X; B), form the domain of the type replacement w:

Z(X;B) :={a|7(B) 45,5 a and a 45,5 7(B)}

In Example 8 of normal and atomic forms we have Z(X;at — nf) = {at, nf}.
Note that type subordination is built into calculi where inductive types are
defined explicitly (such as the Calculus of Inductive Constructions [20]); here it
must be recovered from the signature since we impose no ordering constraints
except that a type must be declared before it is used. Our choice to recover the
type subordination relation from the signature allows us to perform iteration
over any functional type, without fixing the possibilities in advance.

Let us now address the question of how the type of an iteration is formed: If
the subject of iteration has type B, the iterator object has type (w)(B), where
(w)(B) is defined inductively by replacing each type constant according to w,
leaving types outside the domain fixed.

A similar replacement is applied at the level of terms: the result of an it-
eration is an object which resembles the (canonical) subject of the iteration in
structure, but object constants are replaced by other objects carrying the in-
tended computational meaning of the different cases. Even though the subject
of iteration is closed at the beginning of the replacement process, we need to
deal with embedded A-abstractions due to higher-order abstract syntax. But
since such functions are parametric we can simply replace variables = of type B
by new variables 2’ of type (w)(B).

Term replacement: 2 ::=-| (2 |c— M) | (2 |z — )

Initially the domain of a term replacement is a signature containing all con-
structors whose target type is in Z(X; B). We refer to this signature as S;; (X B).
The form of iteration follows now quite naturally: We extend the notion of ob-
jects by

M :=...|it (w) M (£2)
and define the following typing rules for iteration and term replacements.

Definition 5 Typing judgment for iteration. (extending Definition 3)
A;T'-M:0OB AT 02 (w) (S5t (X5 B))

1

Tplt, dom(w) = Z(X; B)

A; T Eit (w) M (92) : (w)(B)

AT E 2 (w)(D) AT =M {w)(B)
TrBase Trind
3 AT (2| e M) : (w)(Z,c: B)




Ezample 9. In Example 7 we defined cntvar =Az:0exp. it (w) x (2) where

w = exp — Unat
£2 = app — plus, lam — Af:0Onat — Onat. f (box (s z))
Sit(X; exp) = app : exp — (exp — exp),lam : (exp — exp) — exp

Under the assumption that plus : Onat — (Onat — Onat) it is easy to see that

(1) ;2 : Oexp b Af:Onat — Onat. f (box (s z)) : (Onat — Onat) — Onat
by TpLam, etc.

(2) sz : Oexp - 2 (w)(S;4 (X exp)) by TrBase, Ass., (1)
(3) sz : Oexp - x : Oexp by TpVarReg
(4) ;2 : Oexp F it (w) x (£2) : Onat by Tplt from (3) (2)
(5) ;- I cntvar : Oexp — Onat by TpLam from (4)

Applying a term replacement must be restricted to canonical forms in order
to preserve types. Fortunately, our type system guarantees that the subject of
an iteration can be converted to canonical form. Applying a replacement then
transforms a canonical form V of type B into a well-typed object (w; £2)(V) of
type (w)(B). We call this operation elimination. It is defined along the structure
of V.

Definition 6 Elimination.

2)(e) = {iw ftliirwme (ElConst)

< 2)(@) = 2() (EIVar)

(w; 2)(Az:B.V) = Mut (w)(B). (w; 2 | & u) (V) (ElLam)
(w; Q) (Vi Vo) = (w; 2)(V1) (w; 2)(Va) (EIApp)

The term resulting from elimination might, of course, contain redices and
must itself be evaluated to obtain a final value. Thus we obtain the following
evaluation rule for iteration.

Definition 7 Evaluation judgment. (extending Definition 4)

UFM—box M :0B -FMAV':B UF{w2)(V)=V:{(w(B)
Uit (wy M (2) =<V :{(w)(B)

Evit

Ezample 10. In Example 7, the evaluation of cntvar (box (lam (Az:exp.x)))
yields box (s z) because



1) -
2) -
3) -
4) (w; 2)(lam (Az:exp. ))

= (Af:Onat — Onat. f (box (s z))) (Az’:Onat.z’) by elimination
(5) - F (w; 2)(lam (Az:exp.x)) < box (s z) : Onat by EvApp, etc.

(6) - it (w) (box (lam (Az:exp.x))) (2) < box (s z) : Onat
by Evlt from (2) (3) (5)

(7) - F cntvar (box (lam (Az:exp. z))) < box (s z) : Onat
by EvApp from (1) (2) (6)

F cntvar < cntvar : Dexp — Onat by EvLam
F box (lam (Az:exp.z)) < box (lam (Az:exp.x)): Oexp by EvBox
Flam (Az:exp.z) { lam (Az:exp. z) : exp by EcAtomic, etc.

(
(
(
(

The reader is invited to convince himself that this operational semantics yields
the expected results also on the other examples of this section.

Our calculus also contains a case construct whose subject may be of type
OB for arbitrary pure B. It allows us to distinguish cases based on the inten-
sional structure of the subject. For example, we can test if a given (parametric!)
function is the identity or not. The typing rules and operational semantics for
case are similar, but simpler than those for iteration. We therefore elide it here
and refer the interested reader to [6].

5 Meta-Theory

The goal of this subsection is to show that the modal A-calculus obeys the type
preservation property and that it is a conservative extension of the simply typed
A-calculus defined in Section 2. We prove this by Tait’s method, often called
an argument by logical relations. After defining the logical relations we then
prove the canonical form theorem for the modal A-calculus which guarantees
that every well-typed object eventually evaluates to a canonical form. The type
preservation and the conservative extension property follow directly from this
theorem.

We now begin the meta-theoretical discussion with the definition of the logi-
cal relation. Due to the lazy character of the modal A-calculus, the interpretation
of a type A is twofold: On the one side we would like it to contain all canonical
forms of type A, on the other all objects evaluating to a canonical form. This
is why we introduce two mutual dependent logical relations: In a context ¥,
[A] represents the set of objects evaluating to a value being itself an element
of |A]. For the definition of the logical relation we require the notion of context
extension: ¥’ > ¥ holds if every declaration in ¥ also occurs in ¥'.

Definition 8 Logical relation.

UEMe[A] iff ;¢9FM:Aand¥P+FM >V :Aand P FV € |A]
UFVelAl iff



Case: A=aandPFV {a
Case: A= A; — Ay and either
Case: V = Az : A;. M and for all ¥/ > ¥: ¥ V' € |A;| implies
V' E [V /z](M) € [As]

or
Case: WV | Ay — Ay and for all ¥/ > ¥: ¥ V' 4 A; implies
U RV V! €Ay
Case: A= A1 X A2 and V = <M1,M2> and ¥ - M, € [[Al]] and
UM, e [[AQ]]

Case: A=0A"and V =box M and - - M € [4']

Since the operational semantics introduced in Section 4 depends on typing
information, we must make sure that only well-typed objects are contained in
the logical relation. To do so we require that every object M € [A] has type
A. As a side effect of this definition the type preservation property is a direct
consequence of the canonical form theorem. The proof of the canonical form
theorem is split into two parts. In the first part we prove that every element
in [A] evaluates to a canonical form, in the second part we show that every
well-typed object of type A is contained in the logical relation [A].

A direct proof of the first property will fail, hence we must generalize its
formulation which we can now prove by mutual induction.

Lemma9 Logical relations and canonical forms.

1. IfU+Me[B] then W+ M4V :B

2. IfUFV | BthenWHFV €|B|

The goal of the second part is to show that every well-typed object is in the
logical relation, that is, we want to prove that if ;@ + M : A then ¥ - M € [A].

It turns out that we cannot prove this property directly by induction over the
structure of the typing derivation, either. The reason is that the context ¥ might
grow during the derivation and it may also not remain pure. From the definition
of the typing relation it also follows quite directly that A need not remain
empty. Hence we generalize this property by considering a typing derivation
A;T'F M : A and a substitution (6; o) which maps the variables defined in A; I"
into objects satisfying the logical relation to show that ¥ I [6; o] (M) € [A]. The
objects in § — which are only substituting modal variables — might not yet be
evaluated due to the lazy character of unobservable objects. On the other hand
it is safe to assume that objects in ¢ — which substitute for variables in I" — are
already evaluated since function application follows a call-by-value discipline. To
make this more precise we define a logical relation for contexts ¥ I 0; o € [A; I']
iff - € [A] and ¥ I ¢ € |I'| which are defined as follows:



Definition 10 Logical relation for contexts.
Foe[A]iff A=- implies § = -
and A= A" z: Aimplies 0 =60, M/x and - - M € [A] and F ¢’ € [A']

Ukoe|l'iff ' =- implies p = -
and I'=1",z: Aimplies p = ¢/, V/z and ¥+ V € |Al and ¥ I ¢ € [T
We can now formulate and prove
Lemma 11 Typing and logical relations.
IfA;TEM:Aand Wk 0;0€ [A;T] then W F [0;0](M) € [A]

The proof of this lemma is rather difficult. Due to the restrictions in length
we are not presenting any details here, but refer the interested reader to [6]. Now,
an easy inductive argument using Lemma 9 shows that the identity substitution
(+,idy), which maps all variables defined in ¥ to themselves, indeed lies within
the logical relation [-; ¥]. The soundness of typing is hence an immediate corollary
of Lemma 11.

Theorem 12 Soundness of typing.
If ;WM : Athen W M € [A].

This theorem together with Lemma 9 guarantees that terms of pure type eval-
uate to a canonical form V.

Theorem 13 Canonical form theorem.
If s<WFM:BthenWtEMANV:B for someV.

Type preservation now follows easily: We need to show that the evaluation
result of a well-typed object possesses the same type A. From Lemma 11 we
obtain that M lies within the logical relation [A], which guarantees that M
evaluates to a term V, also in the logical relation. Further, a simple induction
over the structure of an evaluation shows the values are unique and have the
right type.

Theorem 14 Type preservation.

If 5 OVF-M:AandW+-M—V:Athen ¥V :A.

On the basis of the canonical form theorem, we can now prove the main
result of the paper: Our calculus is a conservative extension of the simply typed
A-calculus A7 from Section 2. Let M be an object of pure type B, with free
variables from a pure context ¥. M itself need not be pure but rather some term
in the modal A-calculus including iteration and case. We have seen that M has
a canonical form V| and an immediate inductive argument shows that V' must
be a term in the simply typed A-calculus.

Theorem 15 Conservative extension.

If s<WFEM:BthenWHFMAV:BandVFV 1 B.



6 Conclusion and Future Work

We have presented a calculus for primitive recursive functionals over higher-order
abstract syntax which guarantees that the adequacy of encodings remains intact.
The requisite conservative extension theorem is technically deep and requires a
careful system design and analysis of the properties of a modal operator O and
its interaction with function definition by iteration and cases. To our knowledge,
this is the first system in which it is possible to safely program functionally with
higher-order abstract syntax representations. It thus complements and refines the
logic programming approach to programming with such representations [17, 21].

Our work was inspired by Miller’s system [15], which was presented in the
context of ML. Due to the presence of unrestricted recursion and the absence of
a modal operator, Miller’s system is computationally adequate, but has a much
weaker meta-theory which would not be sufficient for direct use in a logical
framework. The system of Meijer and Hutton [14] and its refinement by Fe-
garas and Sheard [8] are also related in that they extend primitive recursion to
encompass functional objects. However, they treat functional objects extension-
ally, while our primitives are designed so we can analyze the internal structure
of A-abstractions directly. Fegaras and Sheard also note the problem with ad-
equacy and design more stringent type-checking rules in Section 3.4 of [8] to
circumvent this problem. In contrast to our system, their proposal does not ap-
pear to have a logical interpretation. Furthermore, they neither claim nor prove
type preservation or an appropriate analogue of conservative extension—critical
properties which are not obvious in the presence of their internal type tags and
Place constructor.

Our system is satisfactory from the theoretical point of view and could be the
basis for a practical implementation. Such an implementation would allow the
definition of functions of arbitrary types, while data constructors are constrained
to have pure type. Many natural functions over higher-order representations turn
out to be directly definable (e.g., one-step parallel reduction or conversion to de
Bruijn indices), others require explicit counters to guarantee termination (e.g.,
multi-step reduction or full evaluation). On the other hand, it appears that
some natural algorithms (e.g., a structural equality check which traverses two
expressions simultaneously) are not implementable, even though the underlying
function is certainly definable (e.g., via a translation to de Bruijn indices). For
larger applications, writing programs by iteration becomes tedious and error-
prone and a pattern-matching calculus such as employed in ALF [2] or proposed
by Jouannaud and Okada [11] seems more practical. Our informal notation in
the examples provides some hints what concrete syntax one might envision for
an implementation along these lines.

The present paper is a first step towards a system with dependent types
in which proofs of meta-logical properties of higher-order encodings can be ex-
pressed directly by dependently typed, total functions. The meta-theory of such
a system appears to be highly complex, since the modal operators necessitate
a let bor construct which, prima facie, requires commutative conversions. Mar-



tin Hofmann® has proposed a semantical explanation for our iteration operator
which has led him to discover an equational formulation of the laws for itera-
tion. This may be the critical insight required for a dependently typed version of
our calculus. A similar formulation of these laws is used in [7] for the treatment
of recursion. We also plan to reexamine applications in the realm of functional
programming [15, 8] and related work on reasoning about higher-order abstract
syntax with explicit induction [5, 4] or definitional reflection [13].
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fruition, largely due to the complex nature of the technical development. During
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