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Abstract

We investigate the problem of translating between different styles of proof systems in higher-
order logic: analytic proofs which are well suited for automated theorem proving, and non-
analytic deductions which are well suited for the mathematician. Analytic proofs are represented
as expansion proofs, H, a form of the sequent calculus we define, non-analytic proofs are rep-
resented by natural deductions. A non-deterministic translation algorithm between expansion
proofs andH-deductions is presented and its correctness is proven. We also present an algorithm
for translation in the other direction and prove its correctness. A cut-elimination algorithm for
expansion proofs is given and its partial correctness is proven. Strong termination of this al-
gorithm remains a conjecture for the full higher-order system, but is proven for the first-order
fragment. We extend the translations to a non-analytic proof system which contains a primitive
notion of equality, while leaving the notion of expansion proof unaltered. This is possible, since
a non-extensional equality is definable in our system of type theory. Next we extend analytic
and non-analytic proof systems and the translations between them to include extensionality.
Finally, we show how the methods and notions used so far apply to the problem of translating
expansion proofs into natural deductions. Much care is taken to specify this translation in a
modular way (through tactics) which leaves a large number of choices and therefore a lot of
room for heuristics to produce elegant natural deductions. A practically very useful extension,
called symmetric simplification, produces natural deductions which make use of lemmas and
are often much more intuitive than the normal deductions which would be created by earlier
algorithms.
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Chapter 1

Introduction

1.1 Motivation and Applications

All the work in this thesis is motivated by the desire to integrate machine-oriented and human-
oriented forms of deduction. Higher-order logic was chosen, since most concepts and theorems
in mathematics can be expressed very naturally in type theory. It is my belief that this ease
of expression will eventually lead to powerful and user-friendly tools assisting the student of
mathematics and logic and, in the farther future, the mathematician in his research.

When one teaches logic it is all too obvious that to the student the form often obscures the
content. Computer-assisted logic instruction can help alleviate this problem, since “form” is
left to the computer and the student can concentrate on “content”. This is idealized, of course,
but experience suggests that students learn more with the aid of a computer to check their
deductions. The immediate feedback the student receives when he tries to apply an inference
illegally is invaluable.

Wouldn’t it be nice if we could give sophisticated help to a student who does not know how to
proceed, rather than just telling him if he did something illegal? Here the gap between machine-
oriented and human-oriented forms of deductions becomes painfully apparent. Theorem proving
is expensive — it costs time in which the student has to wait for advice. Moreover, the fact that a
given line in the proof is in fact a theorem is not of much help to the student. Unfortunately, the
most widely used theorem proving procedures use a representation far from a natural deduction,
which I assume the student is to produce. Also, first-order logic is undecidable, and the theorem
prover will thus not always be able to provide help. This problem is even greater in higher-order
logic, where theorem proving procedures are rare and weaker in practice.

We offer at least a partial solution, which was first proposed by Andrews [2] and developed
by Miller [23]. If we can find a suitable representation of the machine proof, we could use it as
a plan which would guide us through the deduction. The representation we use in this thesis
is a generalization of Miller’s expansion tree proofs. Miller solves the problem of translating
expansion proofs into a sequent calculus and into natural deductions, but he makes use of
certain derived rules of inference which cannot easily be eliminated. We extend his work in
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1.1. Motivation and Applications 2

several directions. Since our notion of expansion proof is more general, we need to generalize
his translation algorithm. This is done in Chapter 3. We also translate into a different logical
system which is more convenient for our purposes. In Chapter 6 we present a new translation
algorithm into a pure natural deduction system which does not make use of any derived rules of
inference. For the purposes of proof guidance to students, this is most useful, since many of the
derived rules may not be available to the student. Also, there is a certain beauty and simplicity
to unembellished natural deduction.

This, like all previously mentioned translation algorithms, will produce only normal deduc-
tions. However, many desirable and intuitive proofs are not normal. At the end of Chaper 6 we
present a significant improvement of the translation which introduces lemmas into the deduction
in certain situations instead of resorting to the Rule of Indirect Proof. In practical examples this
improvement turned out to be extremely valuable, producing much more intuitive deductions,
and thus giving much better help to the student.

It should also be noted that these translation procedures are highly non-deterministic, that
is, they leave a lot of choice between different possible inferences in a given partial deduction.
This is important, since it means that help can be given in many situations, since many natural
deductions will correspond to the same expansion proof.

So far, however, we have solved only half of the problem. How are we to get this machine-
oriented proof? In first-order logic we can run a theorem prover and then convert the result
into an expansion proof. This can be done for mating proofs (see Andrews et al. [3]) which
are very closely related to expansion proofs, and, with a little more work, for resolution proofs
(see Pfenning [26]). What do we do if the theorem prover is not powerful enough to prove the
theorem, as will often be the case in a higher-order logic? The teacher could give one or more
sample deductions which are then stored and compared against the situation in which the student
has asked for help. The hope would be that the student’s proof attempt will be sufficiently close
to the sample deduction so that we can still give advice. This does not seem a very promising
approach, since deductions vary not only in essentials, but also in many inessential details and
it would be hard to determine whether we can use a certain step profitably. We explore an
alternative solution, which is to convert the sample deduction into our abstract format, that
is, into an expansion proof. As noted above, we will then be able to give advice from this
expansion proof in many different situations. In Chapter 3 we give an algorithm which does this
translation from a cut-free deduction into an expansion proof. A similar algorithm was presented
by Miller [23], but produced highly redundant expansion proofs in many cases. We improved
his algorithm so that the translation between deductions and expansion proofs is the inverse of
the translation in the opposite direction. The extension of this algorithm to natural deductions
is straightforward and not presented in this thesis. The translation from deductions using cut
(or deductions which are not normal) requires a cut-elimination algorithm of some form, since
expansion proofs are inherently cut-free, that is, have the strong subformula property. We give
a cut-elimination algorithm for expansion proofs and show that it is partially correct. The proof
of total correctness, that is, termination on all inputs, is only proven for the first-order fragment
and remains a conjecture for the full higher-order system.

The ability to interpret a student’s deduction as an expansion proof has additional benefits.
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We can take a deduction, translate it into an expansion proof, then generate another deduction
in the hope that it will be a cleaned-up version of his original deduction with essentially the
same contents. In another application the translation may help the researcher in developing
heuristics for the automatic proof of theorems through expansion proofs, since the expansion
proof counterpart of a natural deduction can be easily viewed and analysed.

We also present two additional practically useful extensions. The deductive systems consid-
ered above are unsatisfactory in at least two ways. There is no primitive notion of equality, as
it is often used in first-order logic, and the system is non-extensional. We define a new system
with a primitive equality and show that all the translations mentioned above can be modified to
go to and from this new logical system. Thus expansion proofs can provide advice for students
writing proofs in a logical system with equality.

The second extension centers around the fact that in mathematics one usually assumes the
axiom of extensionality. However, expansion proofs are non-extensional. We define a notion of
extensional expansion proof and show that they are sound and complete with respect to a system
of type theory with extensionality. These proofs are again given explicitly through translations
which means all the applications listed above now apply to a logical system with extensionality.

1.2 Overview

In this thesis we will study two styles of inference systems for higher-order logic and the con-
nections between them.

One of the systems, we call it H, is very much like Gentzen’s sequent calculus [11], but we
go beyond that and consider natural deduction (Prawitz [28]). We call these non-analytic, since
the rule of cut or modus ponens (in the sequent calculus) and maximal formulas (in natural
deduction) is important in these systems, even though it may be eliminated from most of them.

Expansion proofs form the other style of logical calculus we investigate. They were introduced
by Miller [23] and generalize Herbrand expansions to higher-order logic. Expansion proofs we
call analytic, since they are inherently cut-free.

In Chapter 2 we define a language L and an inference system H. H is based on the sequent
calculus as refined by Tait [36], where negations of non-atomic formulas are considered to be
defined rather than primitive. We generalize this system to type theory. Moreover, later appli-
cations make it necessary to base deductions on multisets of formulas instead of sets of formulas.
The cut-elimination properties of H are different from Tait’s and Gentzen’s [11] systems and are
investigated in this chapter. We give a very general notion of proper reduction sequence. The
first-order fragment of H is important for educational applications discussed later, and the total
correctness proof of a non-deterministic cut-elimination algorithm for first-order H-deductions
is given. However, for the full higher-order system the algorithm is proved only partially correct
— the termination of the algorithm on all deductions remains a conjecture. It should be noted
that the termination of cut-elimination algorithms for classical higher-order sequent and natural
deduction systems is still an open problem of proof theory.
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In Chapter 3 we introduce expansion proofs, which were first defined by Miller [23] and
form a purely analytic inference system and are closely related to Herbrand expansions [16].
Our formulation is more general than Miller’s in several respects; most importantly we allow
arbitrary subnodes of the expansion tree to be mated, thereby mostly eliminating the need for
focusing as defined by Miller [22]. Moreover, we banish negation from all but atomic formulas.
Then we show the soundness and completeness of expansion proofs with respect to the system H
by giving explicit translation in both directions. These translations are at once more general than
Miller’s by allowing more choices and more refined because they have the important property
that they are inverses of each other. That is to say that an expansion proof, when translated into
one of many possible H-deductions and then mapped back into an expansion proof will yield
the original expansion proof or a simpler one. This practically important property is achieved
by an improvement of the author’s merging algorithm for expansion proofs presented in [26],
which itself was an improvement over Miller’s original algorithm in [23]. We then give a cut-
elimination algorithm based directly on expansion proofs, that is, we show how to construct an
expansion proof for A ⊃ C, given one for A ⊃ B and for B ⊃ C. It is shown partially correct,
that is, if it terminates it yields an expansion proof, but unfortunately the termination proof
again remains a conjecture. It is shown that in the first-order fragment every strong reduction
sequence terminates.

In Chapter 4 we extend the language L and deduction system H to include a primitive
notion of equality accompanied by a substitution rule and an axiom schema asserting reflexivity
of equality. Since a (non-extensional) equality is definable in our formulation of type theory,
every theorem in H= has an expansion proof after we instantiate the definition of equality.
This poses the question whether we can recover an H=-deduction of the original theorem (with
primitive equality) from the expansion proof for the instantiated theorem. We answer this
question affirmatively. Most of this chapter is devoted to developing and proving the correctness
of the algorithm which constructs an H=-deduction from an expansion proof for the instaniated
theorem. It is shown that cut-elimination does not hold in H=. We add a dual substitution rule
(which substitutes the left-hand side for the right-hand side instead of vice versa) to obtain a
system H∗. We show that cut-elimination holds in the first-order fragment of H∗ (it still does
not hold for the full system) and improve our earlier translation procedure to produce more
natural and elegant deductions in H∗. As an aside we also show how to restrict the search
for an expansion proof of a theorem containing equality. This is important since instantiating
the definition of equality introduces a higher-order quantifier for which there is a potentially
very large set of possible substitution terms. It is proven that if one allows only literals to
instantiate such higher-order quantifiers, the expansion proof system remains complete. This
is especially important if one is only interested in obtaining first-order proofs for first-order
theorems containing equality. The translation from H= deductions into expansion proofs is a
straightforward extension of the algorithm presented in Chapter 3 and is not given in this thesis.

In Chapter 5 we consider extensionality. If one adds an extensionality rule to H, the cut-
elimination theorem still holds in the resulting system He, as shown by Takahashi [37]. Since
an extensional equality is not definable in our type theory, we now need to define a new notion
of expansion proof. We define extensional expansion proofs which have an additional type of
node, called extensionality nodes. We give translations between cut-free He-deductions and
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extensional expansion proofs and prove them correct. This establishes soundness and complete-
ness of extensional expansion proofs. In the final section of this chapter we indicate how to
further improve the translation of extensional expansion proofs. As in the case of equality, one
can restrict the number of situations in which to apply extensionality when searching for an
extensional expansion proof. This observation is based on a theorem given at the end of this
chapter.

In Chapter 6 we consider a very pure systemN of natural deduction and show that expansion
proofs contain the necessary information to guide the building of a deduction in N . The main
organizational tool for specifying and implementing the translation from expansion proofs into
natural deductions is a generalization of tactics as introduced by Gordon et al. [14]. Our tactics
are more general, since they can make use of the information in the expansion proof and thus do
not have to perform any real search. The correctness and completeness of the given set of tactics
is proven. This proof makes heavy use of well-founded relations on expansion proofs defined
in Chapter 3. We then address the question how to find more elegant deductions than the
translations presented so far give us. We present an algorithm called symmetric simplification
and three tactics which make use of this algorithm to introduce applications of the Proof by Cases
into the deduction. Since the formulas which define the cases are not necessarily subformulas of
the theorem, the resulting deduction will not in general be normal. These three tactics seem to
be very useful in practice since they help to avoid unintuitive uses of the Rule of Indirect Proof.

1.3 Historical Perspective

1.3.1 Gentzen’s Hauptsatz

Ever since Gentzen’s fundamental paper [11] there existed a dichotomy in proof theory between
natural deduction and sequent-like proof systems. This dichotomy in proof theory reflects the di-
vision between classical and intuitionistic logic. All the proof-theoretical work done subsequently
shows that natural deduction is the “natural” system to express intuitionistic reasoning, while
less adequate for classical proofs. On the other hand sequent-like proof systems seem to be the
most appropriate vehicle for proof-theoretic investigations of classical logic.

We will look at some results and methods used in the investigation of the proof-theoretical
properties of classical and intuitionistic logic. It will become apparent that certain research
programs have never been completed. Most glaringly, no meaningful cut-elimination algorithm
for classical type theory has been proven correct. We will look at this problem from two differents
points of view: in a sequent-like calculus in the tradition of Gentzen and in a calculus of
expansion proofs in the spirit of Herbrand [16].

Gentzen [11] started by introducing his natural deduction systems NJ and NK for intuition-
istic and classical logic, respectively. He then asserts that for the proof of his Hauptsatz these
systems were inadequate for technical reasons, and proceeds to define the sequent calculus (sys-
tems LJ and LK). In hindsight it becomes clear that NJ was actually very well suited for a proof
of the Hauptsatz for intutionistic logic — it was his goal to give a uniform treatment to classical
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and intuitionistic logic which forced him to invent the sequent calculus.

Gentzen shows the equivalence of his calculi, in the sense that one can deduce the same
theorems. He does not give a strong correspondence (in the sense of Zucker [41]) between the
systems which would relate the meaning of his Hauptsatz for natural deductions and sequent
calculus proofs.

In subsequent work, we have to distinguish further proof-theoretic investigations from model-
theoretic extensions of the Hauptsatz. The former have “constructive” or “algorithmic” charac-
ter, while the latter are proved by semantic means which do not have meaningful computational
consequences.

1.3.2 Constructive Extensions of the Hauptsatz

Let us first follow the tracks of proof-theory. It strikes one immediately that most of this work
was done in an intuitionistic setting until very recently. These investigations focused on natural
deduction proofs. The concepts of normalization and strong normalization were introduced
and normalization theorems were proved for first-order natural deduction by Prawitz [28]. The
concept of strong normalization would have been entirely new to Gentzen, but the Normalization
Theorem may be viewed as the analogue of the Hauptsatz for the sequent calculus in natural
deduction.

The extension of the Normalization Theorem to second-order logic is inherently hard, because
normalization does directly imply consistency of second-order number theory (see Statman [35]).
An idea of Girard [13] finally brought the breakthrough and the Normalization Theorem was
proved for second-order (intuitionistic) logic by Martin-Löf [21]. At the same time, Prawitz [27]
proved the corresponding Strong Normalization Theorem. It was generally accepted that this
would easily generalize to full type intuitionistic type theory, and Martin-Löf [20] provided a
proof of Strong Normalization for full intuitionistic type theory. Since then these methods have
been extended to prove strong normalization for even more powerful intuitionistic type theories,
such as Martin-Löf’s [19] or Coquand and Huet’s Calculus of Constructions [9].

Another very natural and important question was answered in very much detail by
Zucker [41]: What is the relation between cut-elimination in sequent-style systems and nor-
malization in natural deduction. Zucker actually provides more: he defines a notion of strong
cut-elimination and shows that it corresponds to strong normalization. He stays entirely in the
bounds of intuitionistic logic. An attempt by the author to carry over his analysis to classical
logic failed. None of the known interpretations of classical in intuitionistic logic have the prop-
erty that cut-conversions correspond to reductions of natural deductions. Zucker pointed out
some of the difficulties in trying to extend the correspondence even in the intuitionistic case
with more liberal conversion rules. Part of the problem seems to be that we cannot allow a
very natural reduction rule which interchanges cuts and therefore cannot truly claim to have a
“strong” normalization result. Intuitively it seems reasonable that two deductions present the
same proof, if they only differ in the order in which two lemmas are applied. But then not
every sequence of mix reductions will terminate and we have to place some technical restriction
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on the application of conversion rules to save the normalization theorem. Therefore we follow
Gentzen’s example and do not consider a conversion which allows interchange of cuts.

Little work has been done in extending normalization or cut-elimination to higher-order
classical logics with proof-theoretic means. Statman [35], [34] and Prawitz [29] arrive at different
versions of what it means for a classical natural deduction proof to be normal. They prove
(strong) normalization for their respective notions of normality in a system of second order
classical natural deduction.

1.3.3 Non-Constructive Extensions of the Hauptsatz

A wholly different approach to the questions of normalizability and cut-free proofs may be
characterized as “non-constructive” or “model-theoretic”. Here, cut-elimination theorems are
proved via semantic methods. The disadvantage of these proofs is that they do not provide a
meaningful algorithm which transforms a proof with cuts or maximal formulae into a cut-free or
normal proof. Tait in [36] extended Gentzen’s work to second-order logic in this fashion. Later,
also by a semantic argument, Takahashi [38] proved what was known as Takeuti’s Conjecture [39]:
The cut-elimination theorem for simple type theory.

From here it was a small step to include extensionality. A cut-elimination theorem for
type theory with extensionality was announced by Takahashi in [37]. One proof can be found
in [40]. A completeness result for a system also including a description operator can be found
in Andrews [1].

1.4 Open Problems

The non-constructive results for classical logic are very valuable in their own right, but unsatis-
factory for an automated reasoning program, since no practical algorithm for eliminating a cut
from a given derivation follows.

In this thesis we propose an algorithm for eliminating cuts from a sequent-like proof system.
Unfortunately we were only able to show that it terminates when applied to first-order proofs.

One natural attempt would be to interpret the classical system in the intuitionistic one.
This was carried out for a minimal second-order natural deduction system by Statman [34].
However, for none of the known interpretations do cut-elimination steps commute with the
interpretation. In particular, there are cut-reductions in the sequent calculus such that the
deduction corresponding to the reduced form is incomparable (with respect to normalization)
to the deduction before the reduction. However, this is not to say that there could be no such
commuting interpretation.

A direct method of proof seems more promising, though of course in absence of a proof this
is only idle speculation. Clearly a simple syntactic argument as for the first-order case must
fail because of Gödel’s second incompleteness theorem. However, this paradox was avoided
by the methods used to obtain the normalization results for intuitionistic second order logic



1.4. Open Problems 8

(Martin-Löf [21], Prawitz [27]) and type theory (Girard [13], Martin-Löf [20]). One may try
to reinterpret Martin-Löf’s computability predicates or Prawitz’s regular sets in the framework
of Henkin models [15] for type theory. Girard [12] and later Martin-Löf [18] realized that
the computability predicate constructions could serve as models for intuitionistic type theory.
With this point of view in mind we would like to build a structure D = {Dα}α∈T . D itself
would not be a frame in the sense of Henkin [15] or Andrews [1], but is what could be called
a “universal deduction model”. Given any consistent set of sentences, we can take a kind of
“quotient” structure which is a submodel of a Boolean-valued model for type theory (in the
sense of Scott [31]; see [6] for an exposition of Boolean-valued models in set theory). From these
we could build frames with two truth values in the domain Do as shown in [6]. Such a deduction
model would differ from term models ordinarily constructed for completeness proofs or semantic
cut-elimination proofs in that deduction models are made up from sets of deductions, rather
than from terms of some extended language.

Another desirable constructive extension would be to include the axiom schemata of exten-
sionality and choice. A constructive proof of cut-elimination for type theory with extensionality
is still an open research question, though it has been proven by model-theoretic methods by
Takahashi [37].

Another major open question as far as mathematical reasoning in type theory is concerned
is the axiom schema of choice. Kreisel argued in [17] that no satisfactory notion of cut-freeness
could result in a cut-free system which includes the axiom of choice. In first-order logic it is
immediately clear what we mean by a cut-free proof and it is often described as a proof with the
subformula property. This notion must be modified for higher-order logics, since every formula is
a subformula of any quantified formula, since we have to allow instantiations. Takeuti noted that
the subformula property becomes meaningless, for example, when one is willing to use ∀A[A→A]
as an assumption. This uncertainty of what cut-elimination really means can be resolved. We
can give a kind of “operational” definition in the framework of an automated reasoning system.
We say a proof system is analytic if we only need to find formulas to instantiate the quantifiers,
i.e. we never need to look for lemmas when trying to prove a theorem (that we would want
to look for or make use of lemmas when actually proving a theorem is a different matter).
Corroborating our contention that this is the “right” notion of cut-freeness for type theory is
the fact that, when it is restricted to first order logic, we obtain the usual definition via the
subformula property.

This definition does not satisfy all of Kreisel’s criterion for a satisfactory notion of cut-
freeness and his theorem does not apply. Indeed, given the completeness of type theory with
extensionality and choice (see Henkin [15]) and also for extensionality and description proven
by Andrews [1], it seems quite possible that there is a cut-free formulation for type theory with
the axiom schemata of extensionality and choice or description.

Arithmetic is another vital element of mathematical reasoning and we certainly want to be
able to add Peano’s axioms or some axiom of infinity. Here the expressive power of type theory
helps: these principles may be formulated as single axioms and not axiom schemata and do not
affect the cut-elimination properties of the deductive system.



Chapter 2

The System H

2.1 The Language L

The complexity of some of the syntactic proofs forced us to go a somewhat unusual route in the
definition of language and derivation. We first define the language proper, with primitives ∼, ∧,
∨, ∀, ∃, λ. We then define notions of λ-conversion, negation conversions, and λ∼-normal form.

The derivations in H do not contain formulas in their lines, but rather equivalence classes
of formulas modulo λ∼-conversion. This is very similar to considering formulas identical when
they only differ in the names of their bound variables, as is often done. When giving definitions
or proofs by induction on the structure of equivalence classes of formulas, we use the unique (up
to αβ-conversion) representative of the equivalence class which is in λ∼-normal form.

This technical device is a tremendous help in formulating the logical system in a concise
way. Below we will usually talk about “formulas” when we really mean “equivalence classes of
formulas”. Whenever it is important to point out the distinction, we will do so.

A deduction thus conceived and ending in a class of formulas could be considered to derive
any formula in that class. Alternatively, we could make up new rules which allow λ∼-conversions
as inference rules, but they would clutter up the presentation and add nothing essential.

There are more economical definitions of the similar languages of type theory put forth by
Church [8] which are appropriate for a more axiomatic treatment. When considering sequent-
like deductions, and also for expansion proofs, it is convenient to have all the usual quantifiers
and connectives available from the start. Somehow the connectives given above seem to form
a very natural basis for classical logic — for intuitionistic type theory the fragment based on ∀
and ⊃ seems to be the most useful complete set of quantifiers and connectives. Compare, for
example, Martin-Löf [20], or Prawitz [28].

Definition 1 We inductively define T , the set of type symbols by

1. ι ∈ T . ι is the type of individuals. We could allow an arbitrary set of ground types.

9
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2. o ∈ T . o is the type of truth values.

3. αβ ∈ T if α ∈ T and β ∈ T . αβ stands for the type of functions from elements of type β
to elements of α.

We will attach type symbols as subscripts to variables, parameters, and constants in the
language and to meta-variables for arbitrary formulas. In the language L, variables will always
be bound variables. We use parameters for free variables, thereby distinguishing free and bound
variables syntactically.

Definition 2 A formula in the language L is defined inductively by

1. A variable xα is a formula of type α.

2. A parameter aα is a formula of type α.

3. A constant kα is a formula of type α.

4. [BαβCβ] is a formula of type α for any formulas Bαβ and Cβ.

5. [λxβAα] is a formula of type αβ for a variable xβ and formula Aα.

6. ∼Ao is a formula of type o for Ao a formula of type o.

7. Ao ∧Bo is a formula of type o for formulas Ao and Bo.

8. Ao ∨Bo is a formula of type o for formulas Ao and Bo.

9. ∀xαAo is a formula of type o for a variable xα and formula Ao.

10. ∃xαAo is a formula of type o for a variable xα and formula Ao.

We assume that any formula we mention is well-typed.

Definition 3 We introduce some common abbreviations. =
def

is our symbol for definition in the

logical system.

1. A⊃B =
def
∼A ∨B.

2. A ≡ B =
def

[A⊃B] ∧ [B ⊃ A].

In Chapter 4 we will also consider a different language where equality is primitive. Here let
us merely note that a (non-extensional) equality is definable in H.
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Definition 4 (Substitution) Substitution for a parameter or variable is defined as usual, taking
care to rename bound variables to avoid name clashes. We think of a substitution as a mapping
from formulas to formulas which is completely specified by the images of the parameters. Our
notation for the substitution θ which maps a1 to t1, a2 to t2, etc. will be

θ = [a1 7→ t1, a2 7→ t2, . . .]

We also apply the convention that a parameter not explicitly mentioned in the list of pairs
defining θ will be mapped to itself. We write θ + [a 7→ t] for the substitution which maps a
to t and behaves like θ on all other parameters. We write θA for the result of applying the
substitution θ to A.

We assume that all substitution are type-consistent, that is, the type of the parameter or
variable and the type of its substitution term are identical.

We also use an implicit notation when we substitute in a context where a variable appears
bound. For any binder Q (we will use it for ∀, ∃, and λ), and formula A (of correct type), we
write QxA(x) to indicate that x may (but need not) occur free in A. The result of substituting
t for all free occurrences of x in A is then written as A(t). If a formula depends on multiple
bound variables, they are separated by commas, as in ∀x∃yA(x, y).

Definition 5 (Lambda Conversion) We define β-reduction through substitution at the β-redex
[λx.A]B

[λx.A]B −→
β

[x 7→ B]A

In our shortened notation, this rule may also be formulated as

[λx.A(x)]B −→
β

A(B)

We say two formulas A and B are equal up to λ-conversion, if there is a sequence of β-
reductions, inverses of β-reductions, and renaming of bound variables in A which yields B. We
write A =

λ
B. We say that A is in λ-normal form if there is no B such that A −→

β
B.

We state that our typed calculus has the strong Church-Rosser property. For a proof, see
Barendregt [4], for example.

Lemma 6 Every formula A in L has a λ-normal form B such that A =
λ

B. Moreover, this

normal form is unique up to renaming of bound variables.

Definition 7 (Negation Conversion) We define ∼-conversion for formulas in λ-normal form.
These are the usual rules for converting a formula into negation normal form.
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1. ∼∼A −→
∼

A

2. ∼[A ∨B] −→
∼

[∼A ∧ ∼B]

3. ∼[A ∧B] −→
∼

[∼A ∨ ∼B]

4. ∼[∀xA] −→
∼

[∃x∼A]

5. ∼[∃xA] −→
∼

[∀x∼B]

We say two formulas A and B in λ-normal form are equal up to ∼-conversion if there is a
sequence of ∼-reductions, inverses of ∼-reductions of subformulas of A which yields a A′ such
that A′ =

λ
B. We say that A is in λ∼-normal form (or negation normal form) if A is in λ-normal

and ∼-normal form (that is no further ∼-reduction can be applied).

We write A =
λ∼

B for formulas which are equal up to λ and negation conversions.

The following extension of the strong Church-Rosser property to include negation conversions
is well known.

Lemma 8 Every formula A in L has a λ∼-normal form B such that A =
λ∼

B. Moreover, this

normal form is unique up to renaming of bound variables.

Definition 9 A is an atom, if its λ∼-normal form is not of the form ∼B, B ∧C, ∀xB, or ∃xB.
A wff A of type o is a literal, if A =

λ∼
B or A =

λ∼
∼B, for an atom B.

Remark 10 (Typographic Conventions) We will use

1. A, B, C, . . ., for arbitrary (equivalence classes of) formulas.

2. x, y, z for variables.

3. a, b, c for parameters.

4. U, V,W for multisets of (equivalence classes of) formulas.

5. D, E ,F , . . . for arbitrary deductions.
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2.2 Inference Rules in H

The systemH is similar to the sequent calculus of Gentzen [11] as modified by Tait [36]. Another
similar formulation can be found in Schütte [30]. However, we cannot consider lines in the de-
duction as sets of formulas. If one does this, an important and non-trivial inference rule, namely
contraction, is made implicit. However, the order of the formulas on the line is unimportant, so
assertions of lines in the deduction will be multi-sets of formulas.

Moreover, we will really have equivalence classes of formulas, rather than the formulas them-
selves, as members of the lines for reasons outlined at the beginning of this chapter.

Strictly speaking, we have to index inferences with the occurrences of a formula in the premiss
of the inference. Sometimes we will make this explicit, but most of the time it can be inferred
from the context. If several distinct occurrences of a given formula must be considered in the
same rule, we will use numerical superscripts to distinguish them.

The inference rules can be divided into structural rules, propositional rules, quantificational
rules, and later extensionality and choice rules. We will consider separately the rule of Cut.
Together with the rules, we also define the notion of active, passive, and contracted formula
occurrence for a given inference.

Definition 11 (SystemH) There is only one structural rule inH namely contraction (C). There
is one propositional rule for each propositional connective: initial deductions for negation, ∧-
introduction (∧I) and ∨-introduction (∨I). There is also exactly one rule for the quantifiers:
∃-introduction (∃I) and ∀-introduction (∀I).

In all rules, any formula C ∈ U is passive.

1. Initial deductions

I : A,∼A
U,A,∼A

for any formula A of type o and multiset U . A and ∼A are active, any formula in U is
passive. In order to distinguish an active A from a passive A, and also resolve ambiguities
in initial deductions like B,∼B, A,∼A, the occurrences of A and ∼A which are considered
active are provided explicitly. The arguments of an inference are always occurrences of
formulas, not just formulas. Usually, it will be clear from the context, which occurrences
are considered active.

2. Contraction

U,A1, A2

C : A1, A2

U,A12

Here any formula occurrence in U is passive and A12 is contracted. There is no active
formula occurrence in the conclusion of a contraction. Whenever it will be necessary
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to distinguish different occurrences of a given formula, we will attach superscripts to
the occurrences. We will adopt the convention of giving the name Aij to the result of
contracting of Ai and Aj.

3. Propositional rules

U,A, B ∨I : A, B
U,A ∨B

A ∨B is active.

U,A V, B ∧I : A, B
U, V,A ∧B

A ∧B is active.

4. Quantificational rules

U,A(B)
∃I : ∃xA

U,∃xA(x)

Here ∃xA(x) is active.

U,A(a)
∀I : ∀xA

U,∀xA(x)

where a is a parameter not free in U or ∀xA(x). ∀xA(x) is active.

5. Cut

U,A ∼A, V
Cut : A,∼A

U, V

Here any C ∈ U and C ∈ V are passive, but there is no active or contracted occurrence in
the conclusion. A and ∼A are called the cut formulas. Note that this is not Gentzen’s rule
of mix, since we distinguish occurrences and only one occurrence of A and one occurrence
of ∼A are eliminated by the cut.

Definition 12 The system H− is like H, but without the rule of cut.
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2.3 Basic Properties of Deductions in H

Definition 13 We introduce some notation.

1. We define Final(D) as the multiset in the final line of D.

2. We write D
U

for a deduction D with final line U .

3. We write
U ′

r
U

for several successive applications of the rule r, usually contraction.

4. The deductions ending in the premisses of the final inference of a deduction D are the
immediate subderivations of D. We write D′ CD when D′ is an immediate subderivation
of D. Note that a deduction ending in cut or ∧I, has two such immediate subderivations.
We define inductively that a subderivation of D is either an immediate subderivation of
D, or a subderivation of one of the immediate subderivations of D.

5. Given D = D
U,A

and E = E
∼A, V

, we write Cut(D, E , A,∼A) for the deduction

D
U,A

E
∼A, V

Cut
U, V

Lemma 14 (Weakening) Given a deduction D of U, then there is a deduction D of equal
length for U,A for any formula A.

Proof: We define a set of deductions D ⊕ A by adjoining A to every step in D. Each
deduction in D ⊕ A ends in U,A. The definition is inductive on the length of D.

1. D is initial. Then D⊕A is the singleton set containing the deduction U,A which is again
initial with A passive.

2. D ends a one-premiss inference r (∨I, ∀I, ∃I). Then for D′ C D and for any deduction

E ′ ∈ D′ ⊕A, E =

E ′
U ′, A

r
U,A

is a deduction in D ⊕A (one may need to rename parameters).

3. D ends in a two-premiss inference rule r (∧I, Cut) with left and right premiss D′ and D′′,

respectively. Then for any E ′ ∈ D′ ⊕ A, E =

E ′
U ′, A

D′′
U ′′

r
U,A

is in D ⊕ A. Also for any

E ′′ ∈ D′′ ⊕ A, E =

D′
U ′

E ′′
U ′′, A

r
U,A

is in D ⊕ A.
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Note that the new formula A is passive in all inferences of any deduction in D ⊕ A. We
shall extend the notation in the usual way to allow multisets of formulas to be adjoined to a
deduction, as in D⊕U . We shall also write D⊕A in place of a deduction when we mean some
deduction in the set D ⊕ A.

Definition 15 (Substitution into a deduction) If θ is a substitution, we can extend it from
formulas to deductions, by applying it to each line in the deduction. We may have to rename
some bound variables or names for parameters to avoid name clashes in the usual way. We write
θD for the result of applying θ to D. Sometimes we also write D(a) and then D(B) for the
result of substituting B for every free occurrence of a in D.
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2.4 Cut Conversions in H

Our cut reductions are based on similar algorithms of Gentzen [11] and Smullyan [33], but
formulated in the system H. Note that compared to Gentzen’s original formulation we have
abandoned the structural rule of interchange. This is a consequence of considering the lines of
the proof as multisets, rather than sequences of formulas.

We also do not need the otherwise customary rules of λ-conversion, since the “formulas” in
the deductions are really equivalence classes of formulas modulo λ∼-conversion. This is possible
because of the strong Church-Rosser property of the typed λ-calculus as well as the existence
of negation normal forms. In first-order logic, negation is often taken as defined for everything
but atomic formulas, but this approach is impossible here since a formula ∼xo may become
non-atomic after substituting for xo.

But we also depart from the usual presentation in a different respect. When one considers
cut rather than mix, one immediately is faced with the problem noted by Zucker [41], namely
that the natural set of conversion rules has non-terminating reduction sequences. This happens
already in the first-order case. Therefore one can only expect to prove a weak normalization
theorem stating that there is a sequence of reductions ending in a normal proof. We will follow
Zucker’s terminolgy and define proper sequences of reductions. We can then show in the first-
order fragment that every proper sequence of reductions will terminate. Still, this is much
weaker than the corresponding result for the →∀ fragment of intuitionistic natural deduction
which states that all reductions sequences will terminate in the same normal deduction.

In the first-order fragment of our type theory, the conversion rules below have exactly the
same description, and we can prove cut-elimination by a simple double induction.

In type theory this argument fails, since in case 4 in Definition 21 below, the complexity of
the cut formula after the reduction may actually increase.

As a matter of fact, the function which would give a bound on the size of a proof without
cuts, given one with cuts, cannot be provably recursive in type theory. A discussion of this can
be found in Statman [35]. In second-order logic, the termination of a different algorithm in a
different inference system (natural deduction) has been shown by Statman [34] and, again with
a different notion of “normal”, by Prawitz [29].

One natural attempt would be to interpret our Tait-style system in one of the systems used
by Statman or Prawitz. However, the known interpretations do not commute with reductions,
so that this method seems difficult to apply. Zucker noted this, by pointing out the limitations
of his interpretation of natural deductions in sequents for the intuitionstic logic. Also, for the
natural deduction systems we have strong normalization, here we can only expect normalization,
as some counterexamples show. Part of the problem also seems to be that natural deduction
is very much less “natural” for a classical logic, than for an intuitionistic system. As the
discrepancy between the notion of “normal” for Statman and Prawitz shows, it is not exactly
clear what this notion should be. We cannot answer this for the natural deduction system, since
our attempts at finding an interpretation which commutes with reductions has failed.

First we define a relation which we need to consider when defining which reductions apply
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when a cut formula is contracted.

Definition 16 We call a formula occurrence Ai in the premiss of an inference rule a predecessor
of an occurrence Aj in the conclusion if Ai is passive and i = j or Ai and some other Ak are
contracted to Aj. The ancestor relation is the reflexive and transitive closure of the predecessor
relation.

Definition 17 We define a relation �D on occurrences of identical formulas on the final line
in a deduction D. � is defined only when no occurrence for the formula is passive in a cut in
D.

1. All occurrences of A are passive in the last inference of D. Then Ai�D Aj iff for some
premiss D′ CD, Ai�D′

Aj. This means one of the two cases below must apply.

1.1. The last inference is ∧I. Then Ai�D Aj iff Ai and Aj come from the same premiss
D′ and Ai�D′

Aj.

1.2. The last inference is not ∧I. Note that it cannot be a cut, since we assumed that no
occurrence of A may be passive in a cut inference. Then Ai�D Aj iff Ai�D′

Aj for
D′ CD.

2. One occurrence of A is active. Then Ai�D Aj iff

2.1. Ai is active in the last inference, or

2.2. Ai�D′
Aj for some D′ CD.

3. One occurrence of A is contracted in the last inference. This is the critical case. Then
Ai�D Aj iff there are predecessors Ai′ of Ai and Aj′ of Aj such that Ai′ �D′

Aj′ .

Definition 18 We say a deduction D ending in U is contraction normal if �D is acyclic on
every set of identical formulas in U .

Informally, a deduction is contraction normal if occurrences of a formula which were intro-
duced earlier (higher up in the tree), are also contracted earlier. Care is taken to make the
definition as general as possible. For example, occurrences of formulas introduced in disjoint
branches of the proof tree are incomparable (with respect to�) and therefore we assume nothing
about the order in which they are contracted when we try to decide if a deduction is contraction
normal.

The property that a deduction is contraction normal is crucial, since we would like our
reduction rules to be local in nature. Jumping ahead a little bit: when one needs to propagate
a cut where one of the cut-formulas was contracted, we will get two new cuts. It is necessary to
ensure termination that the occurrence which was introduced later is also cut later.
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Example 19 The following deduction F is not contraction normal, since [∃xA(x)]123 �F

[∃xA(x)]123. That can be seen since in the immediate subderivation F ′, [∃xA(x)]1 �F ′

[∃xA(x)]23 �F ′
[∃xA(x)]1, which in turn is true because in the next subderivation F ′′,

[∃xA(x)]2�F ′′
[∃xA(x)]1 and [∃xA(x)]1�F ′′

[∃xA(x)]3.

D
A(t), A(s), A(r)

∃I
A(t), A(s), [∃xA(x)]3

∃I
[∃xA(x)]1, A(s), [∃xA(x)]3

∃I
[∃xA(x)]1, [∃xA(x)]2, [∃xA(x)]3

C2,3

[∃xA(x)]1, [∃xA(x)]23

C1,23

[∃xA(x)]123

This can easily be converted into a contraction normal deduction, which looks almost the
same, except for the superscripts of the contractions. The proof of Lemma 30 will give the general
algorithm for converting deductions into contraction normal form by reindexing contractions.

D
A(t), A(s), A(r)

∃I
A(t), A(s), [∃xA(x)]3

∃I
[∃xA(x)]1, A(s), [∃xA(x)]3

∃I
[∃xA(x)]1, [∃xA(x)]2, [∃xA(x)]3

C1,3

[∃xA(x)]2, [∃xA(x)]13

C2,13

[∃xA(x)]213

Lemma 20 (Contraction Normal Form) Given a deduction D, we can obtain a contraction-
normal deduction E by reindexing contractions.

Proof: by structural induction on D.

We give the proof assuming that there is only one set of formula occurrences for which �D

is cyclic. It can easily be generalized.

Assume we are given
D

U,A1, . . . , An, An+1, . . . , U such that A1�D A2�D · · · �D An�D A1.

We distinguish cases depending on the last inference in D.

1. All Ai are passive in the last inference in D.

2. One Ai is active in D. Then Ai�D Aj for all j 6= i. Hence i ≥ n + 1. By the induction
hypothesis we can reindex contractions in D′ to get E ′ such that E ′ is contraction normal.
Let E be E ′ followed by the last inference in D. Then E is contraction normal and is
obtained from D by reindexing contractions.
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3. One Ai is contracted. This is the critical case. By induction hypothesis we can reindex
contractions in D′ to obtain E ′ such that �E ′ is acyclic (on A). We now have to find two
occurrences Ak and Al such that contracting them will result in an E such that �E is
acyclic (on A).

Claim: For any choice of Ak and Al such that there is no m such that Ak�E ′ Am�E ′ Al,

�E is acyclic on A for E =

E ′
A0, A1, . . . , Ak, . . . , Al . . . , U

C l,k

A0, A1, . . . , Akl, . . . , Al−1, Al+1, . . . , U
.

Proof of claim: Note that away from Ak and Al, �E agrees with �E ′ . Thus there could
only be a cycle in �E if for some Am, Akl�E Am�E Akl. Because �E ′ does not have a
cycle, this can only happen if Ak�E ′ Am�E ′ Al or Al�E ′ Am�E ′ Ak. But the existence
of such an m was explicitly excluded in the assumption of the claim

It remains to show that we can always find such Ak and Al. But this is easy: take, for
instance, Ak minimal with respect to �E ′ and Al immediately above Ak.

Now we have completed all the necessary definitions to describe the cut reduction in H. We
divide them into three different classes, again following Zucker [41].

1. The cut formula is active in both premises. These reductions are called essential conver-
sions.

2. Cut formula is passive in a premise. We call these permutative reductions.

3. Cut formula is contracted in a premise. There is one conversion rules for contraction,
called contraction conversion.

Definition 21 (Essential Reductions). We write D ⇒ E if we can obtain E from D by one
of the rewrites given below. Note that some given deduction may rewrite to several distinct
deductions, even in the case of essential reductions.

1. One of the premises of the cut is initial. Then we eliminate the cut immediately:

U,A,∼A
D

A, V
Cut

U,A, V

⇒ D ⊕ U
U,A, V

For the remaining essential reductions we assume that both cut formulas are active in the
last inference.

2. The cut formula is a literal A. Then the previous case must apply, since a literal can only
be active in an initial deduction.
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3. The cut formula is A ∨B. There are two possible reductions.

D
U,A, B

∨I
U,A ∨B

E1
V1,∼A

E2
V2,∼B

∧I
V1, V2,∼A ∧ ∼B

Cut
U, V1, V2

⇒

D
U,A, B

E1
V1,∼A

Cut
U, V1, B

E2
V2,∼B

Cut
U, V1, V2

D
U,A, B

∨I
U,A ∨B

E1
V1,∼A

E2
V2,∼B

∧I
V1, V2,∼A ∧ ∼B

Cut
U, V1, V2

⇒ E1
V1,∼A

D
U,A, B

E2
V2,∼B

Cut
U, V2, A

Cut
U, V1, V2

4. The cut formula is ∀yA(y).

D(a)
U,A(a)

∀I
U,∀yA(y)

E
∼A(C), V

∃I
∃y∼A(y), V

Cut
U, V

⇒
D(C)

U,A(C)
E

∼A(C), V
Cut

U, V

Note that substituting C for the parameter a is a legal operation, transforming one de-
duction into another.

Definition 22 Now we consider commutative conversions. A commutative reduction is possible
if there is a premiss of the cut in which the cut formula is passive. We just write out the cases
where the cut formula is passive on the left. The other cases are completely symmetrical.

1. Last inference is initial. In this case the cut reduces to an initial deduction.

U,A,∼A,X
E

∼X, V
Cut

U,A,∼A, V

→
p U,A,∼A, V

2. Last inference is ∨I.

D
U,A, B, X

∨I
U,A ∨B,X

E
∼X, V

Cut
U,A ∨B, V

→
p

D
U,A, B, X

E
∼X, V

Cut
U,A, B, V

∨I
U,A ∨B, V

3. Last inference is ∧I. Assume the cut formula (occurrence) appears in the left premiss of
the ∧I.

D1

U1, A, X
D2

U2, B ∧I
U1, U2, A ∧B,X

E
∼X, V

Cut
U1, U2, A ∧B, V

→
p
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D1

U1, A, X
E

∼X, V
Cut

U1, A, V
D2

U2, B ∧I
U1, U2, A ∧B, V

If X appears in the right premiss of the ∧I, the symmetric reduction is allowed.

4. Last inference is ∃I.

D
U,A(C), X

∃I
U,∃yA(y), X

E
∼X, V

Cut
U,∃yA(y), V

→
p

D
U,A(C), X

E
∼X, V

Cut
U,A(C), V

∃I
U,∃yA(y), V

5. Last inference is ∀I.

D
U,A(a), X

∀I
U,∀yA(y), X

E
∼X, V

Cut
U, V,∀yA(y)

→
p

D
U,A(a), X

E
∼X, V

Cut
U,A(a), V

∀I
U,∀yA(y), V

If a is free in V , rename a to a new parameter b everywhere in E .

6. Last inference is contraction.

D
U,A, A,X

C
U,A, X

E
∼X, V

Cut
U,A, V

→
p

D
U,A, A,X

E
∼X, V

Cut
U,A, A, V

C
U,A, V

Definition 23 The last remaining conversion is contraction conversion. Here the cut formula
must be contracted in an antecedent. We assume that the deduction with the contracted formula
is contraction normal and A1 6�D A2.

1. The cut formula is contracted in a premiss.

D
U,A1, A2

C
U,A12

E
∼A, V

Cut
U, V

→
c

D
U,A1, A2

E
∼A, V

Cut2
U, V,A1

E
∼A, V

Cut1
U, V, V

C
U, V

Remark 24 The contraction conversion is what destroys the strong normalization property of
the system with →

p
∪⇒∪→

c
, even with the given restriction on contraction reduction.
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Example 25 Counterexample to show that→ =
def
→
p
∪⇒∪→

c
has infinite reduction sequences.

D
U,A1, A2

C
U,A12

E
∼A1,∼A2, V

C
∼A12, V

Cut
U, V

In this example, D and E are completely arbitrary. After one contraction conversion we
obtain

D
U,A1, A2

E
∼A1,∼A2, V

C
∼A12, V

Cut2,12

U,A1, V

E
∼A1,∼A2, V

C
∼A12, V

Cut1,12

U, V, V
C

U, V

Another contraction conversion yields

D
U,A1, A2

D
U,A1, A2

E
V,∼A1,∼A2

Cut2,1

U,A1,∼A2, V
Cut2,2

U,U, A1, A1, V
C

U,A11, V

E
∼A1,∼A2, V

C
∼A12, V

cut11,12

U, V, V
C

U, V

Let us replace a big piece of this deduction by a deduction variable, since it will not matter
what it is. It will then be easier to see how this can lead to an infinite sequence of reductions.
Let us also rename some side formulas.

F
U ′, A1, A1

C
U ′, A11

E
∼A1,∼A2, V

C
∼A12, V

Cut
U ′, V

One can see that this cut has exactly the form of our original cut. Hence there is an infinite
sequence of reductions, since no matter how the upper cuts in F are eliminated, one can apply
the analogous two reduction steps to the result.
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A proper sequence of reductions in the sense of Definition 31 will prohibit such infinite
sequence of reductions by ensuring that the uppermost of the two cuts after a contraction
conversion is permuted upwards until no duplication of the remaining occurrence of the cut
formula is possible. But this requires the use of contraction normal deductions — only for them
such a requirement can be enforced by restricting possible sequences of reductions alone.

We would also like the requirement to be as general as possible, so as to keep the number
of forbidden reduction sequences low. The definitions have been formulated carefully to achieve
this goal. For example, we do not require any relation between occurrences of the same formula
on disjoint branches of the proof tree.

The conversion rule which allows to interchange one cut with another was not considered by
Gentzen [11]. Since his algorithm always eliminates the topmost cuts first, this omission does
not present a problem. We follow Gentzen here in not considering cut-cut conversion a proper
reduction, even though it is a very natural operation. It would amount to changing the order
in which lemmas are applied. Unfortunately, as noted by Zucker [41], cut elimination does not
hold in any strong sense. One could perhaps still obtain a weak cut elimination result, in which
we declare successive interchanges of cuts improper. The absence of this natural conversion rule
shows that our normalization result is in some sense weaker than the corresponding result for
the →∀ fragment of intuitionistic natural deduction.

Definition 26 (Cut-cut conversion)

D
U,A, B

E1
∼A, V1

Cut
U, V1, B

E2
∼B, V2

Cut
U, V1, V2

→

D
U,A, B

E2
∼B, V2

Cut
U,A, V2

E1
∼A, V1

Cut
U, V1, V2

Remark 27 Another problem of the cut-cut conversion can be realized by considering the
contraction conversions. If cut-cut conversion was allowed, the restriction on the contraction
conversion would be meaningless, since one could simply interchange the two cuts on the right-
hand side. However the restriction is necessary for termination.

2.5 Cut Elimination in H

Definition 28 Let −→−→ be the reflexive and transitive closure of→
p
∪→

c
. This includes permu-

tative and contraction conversions, but excludes essential conversions.

Definition 29 Let D be a deduction with a formula occurrence A ∈ Final(D). We define
crD(A) the contraction rank of A in D by induction on D.

1. A is passive in D. If D is initial then crD(A) = 1. Otherwise let D′ be the immediate
subderivation of D such that A occurs in D′. Then crD(A) = crD

′
(A)
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2. A is active in D. Then crD(A) = 1.

3. A is contracted from A1 and A2. Then crD(A) = crD
′
(A1) + crD

′
(A2), where D′ CD.

4. D ∈ D′ ⊕ A for some D′. Then crD(A) = 1. This clause is necessary in the absence of a
rule of weakening (which could be a derived rule of inference).

5. D ends in cut and the previous case does not apply. Then crD(A) is undefined.

The contraction lemma is the key to understanding the restriction on reductions which gives
us a “weak” cut-elimination result. Since the proof of the existential statement is constructive,
an algorithm can be extracted from it.

Lemma 30 (Contraction Lemma) Given is

F =

D
U,A1, . . . , An−1, An

E
∼A, V

Cut
U,A1, . . . , An−1, V

such that

1. D is contraction normal.

2. Ai 6� An for 1 ≤ i ≤ n− 1

3. crD(Ai) is defined for 1 ≤ i ≤ n.

Then there exists a G such that F −→−→ G and crG(Ai) = crD(Ai) for 1 ≤ i ≤ n− 1.

Note that crF(Ai) itself is not defined, since F ends in cut.

Proof: By double induction on crD(An) and D.

1. D ends in a cut. Then F itself can serve as G. Since crD(Ai) is defined, but D ends in a
cut, D must be of the form D′ ⊕A1 ⊕ · · · ⊕An−1 ⊕An for some D′ and hence F is of the
form F ′ ⊕ A1 ⊕ · · · ⊕ An−1, and crF(Ai) = 1 = crD(Ai) for 1 ≤ i ≤ n− 1.

2. All Ai are passive. If D is initial the claim follows immediately, since F→
p
G and crD(Ai) =

1 = crG(Ai) for 1 ≤ i ≤ n − 1, since G is also initial. Otherwise let D′ C D contain An.
Then F→

p
F ′, where F ′ is Cut(D′, E , An) followed by the last inference in D. For those Ai

such that Ai ∈ Final(D′) the lemma follows by induction hypothesis on the length of D
applied to D′. For the Ai which do not occur in D′ (D must have ended in ∧I), it follows
directly that crG(Ai) = crD(Ai) for any G such that F ′ −→−→

p
G.
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3. Some Ai for 1 ≤ i ≤ n − 1 is active. If D is initial the lemma follows from the equation
crE⊕W (B) = 1 for B ∈ W applied to W = U, {Aj : j 6= i} and B ∈ {Aj : j 6= i}. If we had
not made the definition that the contraction rank of an adjoined formula occurrence is 1,
we would have had to use a rule of weakening in order to make sure that this base case
for initial D is always satisfied, since E may contain applications of cut.

4. An is active. Then n = 1 because Ai 6� An and the lemma is trivially satisfied.

5. Some Ai for 1 ≤ i ≤ n − 1 is contracted. Again the lemma follows directly from the
induction hypothesis on the construction of D.

6. An is contracted. This is the most interesting case. Here we need the induction hypothesis
on the contraction rank of An.

F =

D′
U,A1, . . . , An−1, An1, An2

Cn1,n2

U,A1, . . . , An−1, An
E

∼A, V
Cutn

U,A1, . . . , An−1, V

→
c

F ′ =

D′
U,A1, . . . , An−1, An1, An2

E
∼A, V

Cutn2

U,A1, . . . , An−1, An1, V
E

∼A, V
Cutn1

U,A1, . . . , An−1, V, V
C

U, V

where An1 6� An2.

Therefore we can apply the induction hypothesis to Cutn2 to find a deduction G ′ such that
Cutn2 −→−→ G ′ and crG

′
(Ai) = crD

′
(Ai) and crG

′
(An1) = crD

′
(An2).

Also,

F ′ −→−→

G ′
U,A1, . . . , An−1, An1, V

E
∼A, V

Cutn1

U,A1, . . . , An−1, V, V
C

U, V

and we can apply the inductive hypothesis on the contraction rank, since crD(An) >
crG

′
(An1).



2.5. Cut Elimination in H 27

Definition 31 Given is a contraction normal deduction D ending in a contraction of A1 and
A2 to A12 such that crD(A12) is defined. Let F be a deduction ending in a cut of A12 from D.
Then a reduction sequence F −→−→ G is called proper iff for every cut of an ancestor Ak of A12

in G, the contraction rank of Ak is strictly less that the contraction rank of A12

Lemma 30 shows that such proper reductions sequences always exist. Since the proof is
constructive, it specifies an algorithm for performing proper reduction sequences if the cut
formula is contracted in the premiss.

Definition 32 A reduction sequence F −→−→ G is proper iff every segment of it is proper.

Theorem 33 (Cut-elimination in the first-order fragment) In the first-order fragment of H,
every proper reduction sequence terminates.

Proof: The proof is by a double induction on the contraction rank and complexity of
the cut formula. If we let the complexity of a first-order formula be the number of connectives
and quantifiers, then after every essential reduction the complexity of all new cut formulas is
smaller than the complexity of the original cut formula. For every proper reduction sequence
the complexity of the cut formula is not changed, but the contraction rank of each of the new
cut formula occurrences is less than the contraction rank of the original cut. Hence, by a double
induction, every proper reduction sequence will terminate.

Conjecture 34 Every proper reduction sequence in H terminates.

See a discussion of this conjecture in the introduction.



Chapter 3

Expansion Proofs

3.1 Expansion Proofs

Analytic proofs in this thesis are presented as expansion trees. Expansion trees very concisely
and naturally represent the information contained in an analytic proof, as we hope to show.
They were first introduced by Miller [23] and are somewhat similar to Herbrand expansions [16].
Some redundancies can easily be eliminated for an actual implementation as done by Miller in
the context of higher order logic. The shallow formula of an expansion tree will correspond
to the theorem; the deep formula is akin to a Herbrand-expansion proving the theorem. Our
formulation of expansion trees differs from Miller’s in [22] in several respects. Firstly, we found
it convenient to allow n-ary conjunction and disjunction instead of treating them as binary
operations. Secondly, we allow arbitrary formulas at the leaves of expansion trees instead of
requiring them to be literals. And thirdly we allow the mating to be a relation on arbitrary
nodes in the expansion tree, rather than merely on the leaves. On the other hand we do not
allow negations to appear at arbitrary levels in the expansion tree.

Definition 35 We define expansion trees inductively. Simultaneously, we also define QD, the
deep formula of an expansion tree, and QS, the shallow formula of an expansion tree. We
furthermore place the restriction that no parameter in an expansion tree may be selected more
than once.

1. A formula Ao is an expansion tree. QD(A) = QS(A) = A. Formulas form the leaves of
expansion trees.

2. If Q1, . . . , Qn, n ≥ 0, are expansion trees, so is

Q =

∧

. . .

�
�
�
�

A
A

A
A

Q1 Qn

28
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Then QD = QD
1 ∧ · · · ∧QD

n , and QS = QS
1 ∧ · · · ∧QS

n.

3. If Q1, . . . , Qn, n ≥ 0, are expansion trees, so is

Q =

∨

. . .

�
�
�
�

A
A

A
A

Q1 Qn

Then QD = QD
1 ∨ · · · ∨QD

n , and QS = QS
1 ∨ · · · ∨QS

n.

4. If Q1, . . . , Qn are expansion trees such that QS
i = A(ti), for 1 ≤ i ≤ n, n ≥ 1, then

Q =

∃xA(x)

t1 . . . tn

�
�
�
�

A
A

A
A

Q1 Qn

is an expansion tree.

Then QD = QD
1 ∨ · · · ∨QD

n , and QS = ∃xA(x).

Q is called an expansion node; x is the expanded variable; t1, . . . , tn are the expansion
terms. Note that expansion terms are treated as if indexed, that is, two expansion terms
s and t may perhaps be the same formula, but nevertheless may be distinct expansion
terms, even in the same expansion node.

5. If Q0 is an expansion tree such that QS
0 = A(a) for a parameter a, so is

Q =

∀xA(x)

a

Q0

Then QD = QD
0 , and QS = ∀xA(x).

Q is called a selection node; a is the parameter selected for this occurrence of x.

When given a formula occurrence A and expansion tree Q we will write QA for the node with
shallow formula A corresponding to the given occurrence of A. The nature of the correspondence
will depend on the context. Similarly, Q|U , the restriction of Q to U , is the part of the expansion
tree Q corresponding to the multiset of formulas U . We similarly restrict matings and write
M|U for the restriction ofM to nodes in Q|U .
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We explicitly allow disjunction and conjunction nodes with no successors. They will turn out
to be useful in Chapter 6, since they behave like truth and falshood, respectively. In Chapters 2,
3, 4, and 5 we restrict ourselves to expansion proofs where all disjunction and conjunction nodes
except for the disjunction node at the root must have exactly two successors. However, lemmas
concerning expansion proofs are formulated that they either directly apply in the case of n-ary
disjunctions and conjunctions, are can easily be extended to apply in this case, also.

Since traditional proof systems do not contain Skolem-functions, we need a different mech-
anism to insure the soundness of our proofs. Following an idea of Bibel [7], which was picked
up by Miller [23], we introduce a relation <Q on occurrences of expansion terms. The condition
that <Q be acyclic replaces Skolemization in our analytic proof system. The correctness if this
definition will become clear in the proof of soundess of expansion proofs (see Algorithm 77) .
<Q is dual to ≺Q and it is shown in [23] that they are equivalent.

Definition 36 Let Q be an expansion tree. <0
Q is a relation on occurrences of expansion terms

such that t <0
Q s iff there is a parameter selected for a node below t in Q which is free in s. <Q,

the dependency relation, is the transitive closure of <0
Q.

Definition 37 Let Q be an expansion tree. ≺0
Q is a relation on selected parameters such that

a ≺0
Q b if there is an expansion term occurrence t such that a is free in t and b is selected below

t in Q. ≺Q, the imbedding relation, is the transitive closure of ≺0
Q.

Usually clauses are defined only for quantifier-free formulas. In the context of higher-order
logic it is convenient to allow arbitrary formulas in a clause. The structure of the formulas in
clauses is only analyzed to the extent that we check whether A =

λ∼
∼B. Remember that in

general equality is up to λ and ∼-conversion.

We made a similar decision, when we allowed arbitrary formulas A in the initial lines in an
H deduction. The system where only literals are allowed is also complete.

We define what we mean by a full clause in an expansion tree. Full clauses differ from the
ordinary concept of clause in two ways. First of all, the elements of a clause may represent
arbitrary formulas instead of merely literals. Secondly, we enter not only the leaves of the
expansion tree, but also intermediate nodes into the full clause. This generalizes the notion of
clause for higher-order logic given by Miller [23]. The reason for our definition is that it allows
arbitrary nodes in the an expansion tree to be mated (see Definition 41).

Definition 38 We write 〈e1, . . . , en〉 for a list with elements e1 through en. l1@ · · · @ln is the
result of appending the lists l1, . . . , ln.

Definition 39 Let Q be an expansion tree. A full clause in Q is a list of nodes defined induc-
tively by

1. Q is a leaf node. Then C = 〈A〉 is the only full clause in Q.
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2.

Q =

∨

. . .

�
�
�
�

A
A

A
A

Q1 Qn

Then for all clauses c1 in Q1, . . ., cn in Qn, the concatenation 〈Q〉@c1@ . . . @cn is a full clause
in Q.

3.

Q =

∧

. . .

�
�
�
�

A
A

A
A

Q1 Qn

Then for any full clause c in some Qi, the list 〈Q〉@c is a full clause in Q.

4.

Q =

∀xA(x)

a

Q0

Then for every full clause c in Q0, the list 〈Q〉@c is a full clause in Q.

5.

Q =

∃xA(x)

t1 . . . tn

�
�
�
�

A
A

A
A

Q1 Qn

Then for every full clause c in
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∨

. . .

�
�
�
�

A
A

A
A

Q1 Qn

the list 〈Q〉@c is a full clause in Q.

Definition 40 We define fc(Q) to be the set of full clauses of the expansion tree Q. fc(Q)\Q0

is the set of full clauses of Q where Q0 has been deleted from every clause in which it occurs.

Definition 41 A symmetric relation on nodes of an expansion tree Q is a matingM if∼lS =
λ∼

kS

for any unordered pair (l, k) ∈ M. Furthermore we require that for any pair (l, k) ∈ M, there
is at least one full clause in Q containing both l and k. If (l, k) ∈ M, l and k are said to be
M-mated.

Definition 42 Let M be a mating on Q. A node l in Q is said to occur in M if there is a k
such that (l, k) ∈M.

Definition 43 A mating M is said to span a full clause c if there are nodes l, k ∈ c such that
(l, k) ∈ M. A mating M is said to be clause-spanning on an expansion tree Q if every full
clause in Q is spanned byM.

Example 44 This example illustrates that in the setting of higher-order logic a node may be
mated to a node below it. Names for the nodes are written into the tree.

[∃AA] : Q0

∃BB

[∃BB] : Q1

∀C∼C

[∀C∼C] : Q2

There is only one full clause, namely 〈Q0, Q1, Q2〉, and it would be spanned by the pair
(Q0, Q2). One can easily see that the shallow formulas are complementary.

Definition 45 A pair (Q,M) is called an expansion proof for a formula A if
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1. QS = A.

2. No selected parameter is free in QS.

3. <Q is acyclic.

4. M, a mating on Q, is clause-spanning on Q.

We will establish soundness and completeness of expansion proofs. We will give translations
from expansion proof to deductions inH and vice versa. We rely on the soundness and complete-
ness of H, which is well-known in first-order logic (for example Smullyan [33], or Tait [36]). In
higher-order logic, this was known as “Takeuti’s Conjecture” (in a slightly different formulation
of the logical system) and was established by Takahashi [37]. A different proof was given by
Miller [23] which used an abstract consistency property which was introduced by Smullyan [33]
and generalized to higher-order logic by Andrews [1]. Another presentation may be found in
Takeuti [40].

Definition 46 We say an expansion proof Q is an expansion proof for a multiset U of formulas
if there is a ordering 〈A1, . . . , An〉 of the formulas occurrences in U such that

Q =

∨

. . .

�
�
�
�

A
A

A
A

Q1 Qn

and QS
1 = A1, . . . , Q

S
n = An.

3.2 Basic Operations on Expansion Proofs

The motivations for some of the operations presented in this section will become clear later, as
we discuss translations between expansion proofs and deductions in H. Thus the reader may
wish to skip this sections and refer back to its definitions as they are used in the next three
sections.

We begin by giving the definition of the operations on trees, and later apply that definition
to expansion trees and expansion proofs. We do not have much occasion to explicitly manipulate
the set of nodes and arcs which represent an expansion tree. If we need to, an arc will be an
ordered pair 〈l, k〉 of nodes l and k, and every node k, except for the root, will have a unique
predecessor l such that 〈l, k〉 ∈ Q,

Definition 47 The result of deletion below Qi in Q, del(Q, Qi), is the tree obtained by deleting
the whole subtree below Qi from Q.
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Definition 48 Let (Q,M) be an expansion proof with node Q0 such that Q0 is not the root
and does not occur inM. Let shallow(Q0, (Q,M)) be the result of replacing unique arc 〈l, Q0〉
in Q by the set of arcs {〈l, k〉 : 〈Q0, k〉 ∈ Q}. Note that shallow(Q0, (Q,M)) is not always an
expansion proof (see Lemma 53 for some sufficient conditions).

Definition 49 For trees Q and R, we define Q D R if Q is the result of a sequence of shallow-
ings and deletions in R.

Lemma 50 D is well-founded.

Proof: This is obvious, because the number of arcs decreases with each shallowing and
deletion and is finite.

Definition 51 Let (Q,M) be an expansion proof with node Q0. We say Q0 is accessible if
Q0 is not below any expansion or selection node, and no node above Q0 in Q is M-mated. A
formula A will be called accessible in U if A is not in the scope of any universal or existential
quantifier and not inside an atomic formula in U .

The notion of accessible will be very important later. When a node is accessible in an
expansion proof we could replace it by a tree with another shallow formula and still get an
expansion proof. If the node lies below an expansion node that is in general not possible, since
shallow and deep formulas of the expansion node will no longer match. Also, if the node itself
or one above isM-mated, the node and its mate will no longer have the same shallow formula,
thus invalidating the mating. The condition that the node itself is not mated is the definition
of single.

Definition 52 Let (Q,M) be an expansion proof with node Q0. We say Q0 is single if neither
Q0 nor any node above Q0 in Q occur inM.

Lemma 53 (Shallowing Lemma) Let (Q,M) be an expansion proof with single and accessible
node Q0 such that either

1. Q0 is an expansion node with only one expansion term t and t is admissible in Q.

2. Q0 is a selection, conjunction or disjunction node.

Then (R,N ) = shallow(Q0, (Q,M)) is again an expansion proof and (R,N ) D (Q,M).

Proof: by cases.

First note that in all cases conditions 4 and 5 in the definition of expansion tree (Definition 35)
will still be satisfied in R, since Q0 was assumed not to be below any selection or expansion
node in Q.
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1. Q0 is an expansion node with only one expansion term t and t is admissible in Q. Because
t is admissible, no parameter free in t is selected in Q. Therefore no parameter selected
in R will be free in R. N =M will be clause-spanning on R, because fc(R) = fc(Q)\Q0

and Q0 does not occur inM by assumption.

2. Q0 is a selection node. Because no parameter may be selected in more than one node,
no parameter in R will be selected in R. It follows just as in case 1 that N = M is
clause-spanning on R.

3. Q0 is a disjunction node. As in case 1, N = M is clause-spanning on R. All other
conditions are trivially satisfied.

4. Q0 is a conjunction node. Here the set of full clauses actually changes non-trivially.
However, any clause in R is an extension of a clause in Q since it will contain nodes
from each of the subtress of Q0 and not just one of them. By this observation and the
assumption that Q0 itself did not appear inM, N =M is clause-spanning on R.

Remark 54 In the case of a conjunction, Lemma 53 by itself is not very useful, because the
result of shallowing QA∧B in expansion proof (Q,M) for U,A ∧ B will be an expansion proof
for U,A, B. However, we will also show that, say A, is inessential and so we can obtain an
expansion proof for U,B from one for U,A ∧B by a shallowing followed by an erasure.

Definition 55 Let (Q,M) be an expansion proof with node Q0. Then erase(Q0, (Q,M)) is
the result deleting Q0 from Q. Note that this may create a new leaf if the last successor of a
disjunction, conjunction, expansion or selection node is erased.

Lemma 56 Let (Q,M) be an expansion proof with node Q0 such that Q0 is unnecessary (see
Definition 93) or inessential (see Definition 67) . Then erase(Q0, (Q,M)) is again an expansion
proof with erase(Q0, (Q,M)) D (Q,M).

Definition 57 Let (Q,M) be an expansion proof with node QA, such that QA appears inM,
QA is not a leaf of Q, and no node above QA isM-mated. Then let crleaf(QA, (Q,M)) be the
result of replacing QA by

∨

�
�
�
�

A
A

A
A

QA l

where l is a new leaf with shallow formula lS = A. Modify M by replacing occurrences of
QA by l.
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Lemma 58 If QA is accessible, not a leaf, and occurs inM then crleaf(QA, (Q,M)) is again
an expansion proof.

Proof: The only part not completely obvious is to check that N is clause-spanning on R if
(R,N ) = crleaf(QA, (Q,M)). The crux in this proof is that every full clause through R which
contains QA also contains l by definition of a full clause through an expansion tree. Given a full
clause c′ through R. Define the preimage c of c′ through Q to by erasing of l. By assumption,
M spans c. If the spanning pair is of the form (k,QA) then (k, l) will span c′. Otherwise the
same pair will still be in N therefore span c′.

Definition 59 We say (Q,M) C (R,N ) if (Q,M) is the result of creating leaves at nodes
which are not leaves, but appear in N .

Lemma 60 C is a well-ordering.

Proof: Trivial, since the number of non-leaves occurring in the mating decreases and is
finite.

Definition 61 Let (Q,M) be an expansion proof with expansion node Q0. Moreover, let
T = {t1, . . . , tn} be the set of expansion term occurrences of Q0 and {r1, . . . , rp}, {s1, . . . sn}
a disjoint partition of T . Define split(Q0, {r1, . . . , rp}, {s1, . . . sn}, (Q,M)) as the result of
replacing Q0 by Q′

0, where

Q′
0 =

∨

�
�

�
�

@
@

@
@

∃xA

r1 . . . rp

�
�
�
�

A
A

A
A

Qr1 Qrp

∃xA

s1 . . . sq

�
�
�
�

A
A

A
A

Qs1 Qsq

Lemma 62 Let (Q,M) be an expansion proof with single and accessible expansion node
Q0 with expansion term occurrences T . Then for any disjoint partition T ′, T ′′ of T ,
split(Q0, T

′, T ′′, (Q,M)) is again an expansion proof.

Definition 63 We say (Q,M) S (R,N ) if (Q,M) is the result of splitting expansion nodes
in (R,N ).
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Lemma 64 S is a well-ordering.

Proof: This is again easy to see, because the multiset-ordering on the multi-set of numbers
of expansion terms in R decreases while splitting.

Definition 65 Given expansion proofs (Q,M) and (R,N ). We define as the lexicographic
order obtained from S, C , and D in this order ( S, C , D).

Lemma 66 is a well-ordering.

Proof: One merely has to note that a shallowing or erasing in (Q,M) does not increase
the number of non-leaf nodes in M and also does not increase the number of expansion terms
in Q.

3.3 Translating Expansion Proofs into H

In this section we will present a non-deterministic algorithm for translating expansion proofs into
H. This is not a complete recipe for how to do this kind of translation in practice, since a lot of
choices still remain, but it establishes soundness of expansion proofs. We will remark on possible
heuristics and give a more practically useful translation algorithm into natural deductions in
Chapter 6. We will also begin to introduce the basic definitions necessary to formulate a cut-
elimination algorithm directly for expansion proofs.

Similar translations were given by Miller in [23], [22], and jointly with Felty in [24]. Here
the presentation of expansion proofs is different, so the previously given algorithms must be
modified. In particular, arbitrary nodes in the tree may be M-mated, which eliminates the
need for Miller’s focusing. To focus the deduction in this context would require checking at
each step in the translation process whether the current theorem is propositionally valid. If
it is propositionally valid, one would invoke a derived rule of inference which allows one to
assert all tautologies as initial deductions. One strong motivation for focusing is that a simple
theorem like ∀xPx ⊃ ∀xPx would otherwise require two quantificational inferences. Here the
nodes corresponding to the two occurrences of ∀xPx can be mated and the deduction will be the
natural one consisting of one inference. Also, conjunction and contraction are treated in a novel,
more general way, which increases the non-determinism of the algorithm, while still preserving
its termination properties. This is desirable, since one would like to recognize many different
deductions as incarnations of expansion proofs. The commitments to the order of inference rule
applications should be minimal, thereby allowing good guidance for the completion of a partial
proof in many situations. Closest to this presentation is the approach taken in the author’s own
paper on Analytic and Non-Analytic Proofs [26], but generalized to higher-order logic.

All the basic operations on expansion proofs are formulated in a very general way, and we
continue to make use of them in later chapters. The concentration here is on what is really
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essential to the connection between expansion proofs and deductions. The shortcomings of the
deductive system H will be remedied in Chapter 6 where we consider a natural deduction system
N very close to Gentzen’s [11] system LK when generalized to type theory. While much of the
formula structure is ignored in H since it operates on equivalence classes of formulas, N will
preserve all of the formula structure.

Definition 67 Let (Q,M) be an expansion proof for U,A. We say an occurrence A is inessential
ifM|U is clause-spanning on Q|U . We will also call QA inessential.

Definition 68 Let (Q,M) be an expansion proof for U and QA be accessible in Q. We write
U [[A]] for U to indicate the occurrence of A corresponding to QA. Then U [[B]] is the result of
replacing the indicated occurrence of A in U by B.

Definition 69 Whenever we consider an expansion tree Q with shallow formula U [[A]] we write
QA to be the subtree of Q corresponding to the occurrence of A in U . Note that this notation
implies that A is accessible.

Definition 70 We say a node Q0 is top-level in an expansion tree Q, if Q0 is immediately below
the root node of Q.

Definition 71 Let (Q,M) be an expansion proof for U,A ∧ B. U ′ ⊆ U is called sufficient for
A if (Q|U ′,A,M|U ′,A) is an expansion proof for U ′, A. Similarly, U ′′ ⊆ U is called sufficient for
B if (Q|U ′′,B,M|U ′′,B) is an expansion proof for U ′′, B.

Lemma 72 Let (Q,M) be an expansion proof for U,A ∧ B. Then U is sufficient for A and U
is sufficient for B.

Definition 73 Let (Q,M) be an expansion proof for U,A∧B. We say UA, UB separates A∧B
if UA ⊆ U is sufficient for A and UB ⊆ U is sufficient for B.

Definition 74 Let (Q,M) be an expansion proof for U [[∃xA]]. An expansion term t for x is
admissible if there is no (free) parameter in t which is selected in Q.

Lemma 75 Let (Q,M) be an expansion proof for ∃x1A1, . . . ,∃xnAn. Then there is an xi and
an expansion term t for ∃xiAi such that t is admissible.

Proof: First note that not all nodes Qi can be leaves. Let T 6= {} be the set of expansion
term occurrences for ∃x1A1, . . . ,∃xnAn in Q. Since <Q has no cycles there is some t minimal
in T . This means that for no s ∈ T , s <Q t. t is admissible. Because t is minimal, no free
parameter in t could be selected below any expansion term s ∈ T . But all selections in Q lie
below some expansion term s ∈ T , because Q is of the form
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∨

. . .

�
�
�
�

A
A

A
A

Q1 Qn

where each Qi has an expansion node at its root. Hence no free parameter of t is selected in
Q, and t is admissible.

Next we will combine the basic operations of shallowing, creating leaves, and splitting to
define (non-deterministic) functions which correspond to steps in a deduction in H. Since we
are first concerned with the translation from expansion proofs into H, the first set of operations
will be such that f((Q,M)) (Q,M) for every operation f . This will ensure the termination
of our translation procedure.

As we will see, most of these operations may be thought of as elimination rules.

Definition 76 Below we assume that (Q,M) is an expansion proof. The fact that the result of
these operations are again expansion proofs follows from the lemmas in Section 3.2, in particular
from Lemmas 53, 56, and 58.

1. double. Let QA be top-level, M-mated, and not a leaf of Q. Then we define (R,N ) =
double(QA, (Q,M)) = shallow(Q′

A, (Q′,M′)), where (Q′,M′) = crleaf(QA, (Q,M))).

2. ∨E. Let QA∨B be top-level and single. Then (R,N ) = ∨E(QA∨B, (Q,M)) =
shallow(QA∨B, (Q,M)).

3. ∀E. Let Q∀xA be accessible and single. Then (R,N ) = ∀E(Q∀xA, (Q,M)) =
shallow(Q∀xA, (Q,M)).

4. ∃E. Let Q∃xA be accessible, single, and assume that it has a unique expansion term t
and t is admissible. Then (R,N ) = ∃E(Q∃xA, (Q,M)) = shallow(Q∃xA, (Q,M)).

5. ∧E. Let QA∧B be top-level and single. Then for any UA sufficient for A, we define
(R,N ) = ∧E1(QA∧B, UA, (Q,M)) in stages.

First let (Q′,M′) = shallow(QA∧B, Q). Then we erase Q′
B and every tree in Q|U ′′ to get

(R′,N ′), the expansion proof for U ′, C1, . . . , Cn. In order to show that it is an expansion
proof, we have to show that Q′

B and every Q′
D for D ∈ U ′′ are inessential. That Q′

B

is inessential follows by considering the full clauses in (Q′′,M′′) = erase(Q′
B, (Q′,M′)):

each of them already occurs in fc(Q) and must therefore be closed by M (remember the
assumption that QA∧B does not occur in M). That Q|U ′′ is inessential follows directly
from the assumption that UA and UB separate A ∧B.

The algorithm amounts to obtaining (R,N ) for UA, A as (Q|UA,A,M|UA,A).

∧E2 is obtained completely analogously, using a UB which is sufficient for B.
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We now give a non-deterministic algorithm for translating an expansion proof for U into a
deduction in H of U . We will show that this non-deterministic algorithm terminates strongly,
that is, every possible computation terminates.

Algorithm 77 Given is a line L and an expansion proof (Q,M) for L. The goal is to construct
and H-deduction for L. One step in the algorithm fills in the final inference (or inferences in
Case 7) and creates a list of subgoals, each of which again consists of a line with associated
expansion proof, and to which the algorithm is applied recursively. When the list of subgoals is
empty, the line L can be an initial deduction. Thus more and more inferences are filled in until
there are no remaining subgoals.

The algorithm is non-deterministic in the sense that it could produce many different H-
deductions, depending on the choices mentioned below.

We make the global restriction that a formula A such that QA is a leaf of Q is never active
(see Definition 11) in an inference other than an initial deduction. Note that A may still be
contracted.

Also note that all our transformations on the expansion proof have the property that the
critical node is directly below the root node, and therefore will be accessible.

The definition is by cases, depending on the input L and (Q,M). The cases are not neces-
sarily exclusive, which is one source of non-determinism in the algorithm.

1. L = U,A such that QA appears inM and QA is not a leaf of Q. Then infer L by

U,A, A
C

U,A

and let (Q′,M′) = crleaf(Q,M). We can then obtain an expansion proof (R,N ) for
U,A, A by letting (R,N ) = shallow(Q′

A∨A, (Q′,M′)). Graphically,

Modify Q =

∨
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�
�

A
A

A
A

U QA

to get R =

∨
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�����

H
HHHHH

HH

U QA l

where l is a new leaf node with lS = A. ModifyM by replacing occurrences of QA by l.

2. L = U,A,∼A such that (QA, Q∼A) ∈ M. Then let L be an initial deduction with active
formula (occurrences) A and ∼A.

3. L = U,A ∨B. Infer L by

U,A, B
∨I

U,A ∨B
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and obtain (R,M) = shallow(QA∨B, (Q,M)). Graphically,

Modify Q =

∨
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A

A
A

A B

to get R =

∨
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H
H

U A B

4. L = U,∀xA(x). Infer L by

U,A(a)
∀I

U,∀xA(x)

where a is the parameter selected for this occurrence of A(a). Let (R,N ) =
shallow(Q∀xA(x), (Q,M)). Graphically,

Modify Q =

∨
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�
�
�

A
A

A
A

U ∀xA(x)

a

Q0

to get R =

∨
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�
�
�

A
A

A
A

U Q0

5. L = U,∃xA(x) and ∃xA(x) has n, n ≥ 2 successors in Q. Infer L by

U,∃xA(x),∃xA(x)
C

U,∃xA(x)

There are many transformations which still yield an expansion proof for U,∃xA, ∃xA. In
order to show that our algorithm terminates, we need to make some “progress”. For
any disjoint partition {r1, . . . , rp} ∪ {s1, . . . , sq} = {t1, . . . , tn} we first define (Q′,M′) =
split(Q∃xA, {r1, . . . , rp}, {s1, . . . sq}, (Q,M)). In order to get (R,N ) we merely elimi-
nate the new node Q′

∃xA∨∃xA by shallowing. Let (R,N ) = shallow(Q′
∃xA∨∃xA, (Q′,M′)).

Graphically,
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Modify Q =

∨
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to R =

∨
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6. L = U,∃xA(x), and ∃xA(x) has exactly one expansion term t, and t is admissible. Infer

L by
U,A(t)

∃I
U,∃xA(x)

and let (R,N ) = shallow(Q∃xA(x), (Q,M)). Graphically,

Modify Q =

∨
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U ∃xA(x)

t

Q0

to get R =

∨
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U Q0

7. L = U,A ∧ B. Let UA, UB separate A ∧ B. Furthermore, let UA ∩ UB = {C1, . . . , Cn},
U ′ = UA − {C1, . . . , Cn}, and U ′′ = UB − {C1, . . . , Cn}. Then L = U,A ∧ B =
U ′, U ′′, C1, . . . , Cn, A ∧B and we infer L by

U ′, C1, . . . , Cn, A U ′′, C1, . . . , Cn, B ∧I
U ′, U ′′, C1, . . . , Cn, C1, . . . , Cn, A ∧B

n× C
U ′, U ′′, C1, . . . , Cn, A ∧B

We obtain the the new expansion proofs (R′,N ′) and (R′′,N ′′) by (R′,N ′) =
∧E1(QA∧B, UA, (Q,M)) and (R′′,N ′′) = ∧E2(QA∧B, UB, (Q,M)).

Remark 78 In the previous algorithm, when we try to infer a conjunction and UA ∩ UB = {}
we can infer it directly without any contractions.

Remark 79 The expansion proofs corresponding to the intermediate deductions in case 7 are
not given. They are more “complicated” (with respect to ) than (Q,M) and are therefore not
of interest. Once may construct them, however, by using the methods for constructing expansion
proofs from H-deductions (see Algorithm 87).
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Theorem 80 (Soundness) If (Q,M) is an expansion proof for U , then there is an H deduction
for U .

Proof: In order to show that this algorithm always terminates, we use the relation on
pairs (Q,M) which we have shown to be well-founded.

1. Whenever the algorithm terminates, we have a complete deduction for U . What we need
to show here is that one of the cases always applies, until all remaining deductions are
initial. But this follows from lemmas 72 and 75. Lemma 72 shows that there always are
UA and UB separating A ∧ B in case 7. Thus we only have to show that if all formula
occurrences in a line start with existential quantifiers, one of them will be admissible. But
this is just the contents of lemma 75.

2. The algorithm always terminates. Note that for each case and for each new expansion
proof (R,N ), (R,N ) (Q,M). Since is well-founded, the algorithm must terminate.

3.4 Translating from H into Expansion Proofs

Generally there will be many H deductions corresponding to one expansion proof. One impor-
tant property of our translations should be that they are inverses in the sense that if we build
an H deduction from an expansion proof and then rebuild an expansion proof, they should be
the same. This will not be exactly true; the resulting expansion trees will be the same, but
the mating will only be a submating of the original mating. If we made sure that the original
mating was minimal, then this retranslation property applies. Miller’s MERGE and also the
author’s Merge [26] are significantly improved here in order for the translations to be inverses
of each other.

This is one of the many places were we make strong use of the fact that we formulated H
to operate on multisets rather than on sets of formulas. If one sees the relative complexity
of the MERGE algorithm, it becomes clear that contraction is an interesting rule and it is
therefore advantageous to make it explicit. Sets of formulas as used in many presentation of
cut-elimination algorithms for first-order logic will not work, since they hide too much of the
structure of the deduction in case two identical formulas are “accidentally” combined into one
element of the set. Clearly, this is also impractical for implementations, where lines should
probably be represented by lists.

We now define the “inverses” to the elimination operations of the previous section. In the
next section we will make this correspondence precise.

Definition 81 Given below is an expansion proof (Q,M) for U . We define some operations
which generally make the expansion tree more complex and give them suggestive names.
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1. ∃I. Let QA(t) be accessible such that no node above it is M-mated. Then let
∃I(QA(t),∃xA, (Q,M)) = (R,N ), where (R,N ) is obtained from (Q,M) by replacing
QA(t) by

∃xA(x)

t

QA(t)

and N =M.

If x is not free in A, we pick a new variable h to be t, h not selected in Q and not free in
U .

2. ∀I. Let QA(a) be accessible such that no node above it isM-mated and let a be a parameter
which is not free in Q or ∀xA(x). Then ∀I(QA(a),∀xA, (Q,M)) = (R,N ), where R is
obtained from Q by replacing QA(a) by

∀xA(x)

a

QA(a)

and N =M.

If x does not appear free in A, we pick a new parameter a not free in U or selected in Q.

Lemma 82 If (Q,M) is an expansion proof for U [[A(t)]], then (R,N ) =
∃I(QA(t),∃xA(x), (Q,M)) is an expansion proof for U [[∃xA(x)]].

Proof: The full clauses in R and Q are the same except for the addition of R∃xA(x). But
then every full clause is still spanned byM.

<R is acyclic. Let a be a parameter selected below ∃xA(x) in R. There may be expansion
terms si, t <0

R si, but there is no term s such that s <0
R t. If s <0

R t would hold, there had to be
a variable b selected in R, and b free in t. But then also b free in A(t) (otherwise t was selected
to be a new variable), and hence b free in QS which contradicts the assumption that (Q,M) is
an expansion proof for U [[A(t)]].

Lemma 83 If (Q,M) is an expansion proof for U [[A(a)]],
then (R,N ) = ∀I(QA(a),∀xA(x), (Q,M)) is an expansion proof for U [[∀xA(x)]].



3.4. Translating from H into Expansion Proofs 45

Proof: Since fc(R) and fc(Q) agree except for the addition of Q∀xA(x) to some full clauses,
every full clause in R will still be spanned byM.

Since a is not free in U,∀xA(x), a is a valid selection. Moreover, a could not have been
selected in Q, since a occurs free in A(a) or had been chosen not to be selected in Q. Thus a is
selected in R only once.

All other conditions on expansion proofs follow immediatly from the assumptions on (Q,M).

The significance of the following algorithm for merging expansion terms is in Lemma 85 and
Theorem 99.

The problem with a straightforward, recursive merging of two expansions trees is that, if
done in the wrong order, two initially distinct selected parameters could be identified later,
thereby making two initially distinct expansion terms identical. If we would like Lemma 85 to
hold, we have to make sure that this cannot happen. Earlier algorithms presented by Miller [23]
and the author [26] did not take this problem into account and therefore resulted in much bigger,
redundant expansion proofs.

We therefore introduce the auxiliary function m. m is a shallow merge: it stops on encountering
expansion nodes. We maintain a global state in two variables: mergelist is a list of pairs of
expansion term occurrence lists which still need to be examined and θ is a global substitution
renaming the parameters.

Algorithm 84 Given is an expansion proof (Q,M) and two subtrees Q1 and Q2 such that
QS

1 = QS
2 and both Q1 and Q2 are immediately below an accessible disjunction node or an

expansion node. To compute merge(Q1, Q2, (Q,M)) we first merge the expansion trees Q1 and
Q2 with the treemerge algorithm given below. Let (Q0, θ) = treemerge(Q1, Q2) and let

R =

∨

�
�
�
�

A
A

A
A

θU Q0

Each node R0 in R either existed in Q or was the result of applying m to nodes in Q or
intermediate expansion trees created during the merge algorithm. In any case, each node in
Q can be found somewhere in R, possibly after identification with other nodes. Replace each
node in Q in M by this corresponding node in R to obtain N . Return (R,N ) as the result of
merge(Q1, Q2, (Q,M)). The proof that (R,N ) will always be an expansion proof is in the proof
of Lemma 85.

To compute treemerge(Q1, Q2), where QS
1 = QS

2 :

1. Let mergelist = 〈〉 and θ the empty substitution.

2. Let R = m(QS
1 , QS

2 ). This has a side-effect on mergelist and θ (m is defined below).
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3. Try to select a pair (S, T ) ∈ mergelist and s ∈ S, t ∈ T such that θs = θt.

4. If there is no such pair, return (R, θ).

5. Otherwise, let E be the node where s and t are expansion terms and let Es and Et be the
expansion trees immediately below s and t. Replace E in R by m(Es, Et). Go to 3.

For the shallow merge m(P, Q) where P S = QS we consider several cases.

1. P = l and Q = m for leaves l and m. Then m(P, Q) = R, where R is a new leaf with
formula θl = θm.

2. P = l and Q is not a leaf. Then m(P, Q) = Q.

3. Q = l and P is not a leaf. Then m(P, Q) = P .

4.

P =

∧

. . .

�
�
�
�

A
A

A
A

P1 Pn

and Q =

∧

. . .

�
�
�
�

A
A

A
A

Q1 Qn

Then m(P, Q) =

∧

. . .

�
�

�
�

@
@

@
@

m(P1, Q1) m(Pn, Qn)

5.

P =

∨
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A
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A
A

P1 Pn

and Q =

∨

. . .
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A
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A
A

Q1 Qn

Then m(P, Q) =

∨
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@
@

m(P1, Q1) m(Pn, Qn)
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6.

P =

∀xA

a

P0

and Q =

∀xA

b

Q0

Then we first pick a new parameter name c and update θ := θ + [a 7→ c] + [b 7→ c]. Next
we return

m(P, Q) =

∀xA

c

m(P0, Q0)

7.

P =

∃xA

r1 . . . rp

�
�
�
�

A
A

A
A

Pr1 Prp

and Q =

∃xA

s1 . . . sq

�
�
�
�

A
A

A
A

Qs1 Qsq

Add the pair ({r1, . . . , rp}, {s1, . . . , sq}) to mergelist. Return

m(P, Q) =

∃xA

r1 . . . sq

�
�
�
�

A
A

A
A

Pr1 Qsq

Lemma 85 Given an expansion proof (Q,M) such that

Q =

∨

���
�����

H
HHHH

HHH

U Q1 Q2

and QS
1 = QS

2 . Then there is an expansion proof (R,N ) such that
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R =

∨

�
�
�
�

A
A

A
A

U ′ Q0

QS
0 = QS

1 = QS
2 and R|U ′ differs from Q|U only through the renaming of some parameters.

Proof: We let (R,N ) = merge(Q1, Q2, (Q,M)). It remains to show:

1. merge always terminates. This is easy to see, because the number of expansion terms in
an expansion tree is finite.

2. (R,N ) is an expansion proof.

2.1. No selected parameter is free in R. This is clear, since there are no free parameters
to be selected in Q, and no parameters become free.

2.2. <R is acyclic. We show this by induction on the number of applications of m. Hence
the dependency relation will be acyclic for all the intermediate expansion trees con-
structed during merge.

We define a sequence of relations <Q=<0, <1, . . . , <n=<R such that each <i, 1 ≤ i ≤
n is acyclic.

Note first that <0 is acyclic, since <Q is. m was not applied, we are done since
<R=<Q. Otherwise the only step affecting the dependency relation is Step 5. How
does it change the dependency relation when m(Es, Et) is called? Every term selected
below s previously, is now also selected below r = θs = θt and vice versa. For
the induction step, let us assume that <0, . . . , <i have already been defined and are
acyclic. Now we define, according to the note above that u <i+1 v iff u <i v or
u = r = θs = θt and s <i v or t <i v. If this were to introduce a cycle, then r <i+1 r
would have to hold. Because of the way we extended <i this can only happen if s <i t
or t <i s. We also know that θt = θs. If also t = s we are done, since then s <i t
implies s <i s, since s and t have the same free parameters. Otherwise let us use a
for the (not necessarily unique) parameter which is selected below s and free in t, and
b for the corresponding parameter in t. Since θs = θt, we know that θa = θb, which
means that a and b were identified in a previous call to m. But this is a contradiction,
since m is a shallow merge and had not been applied any node below s. Hence <i+1

must be acyclic, and therefore <R by induction.

2.3. N is clause-spanning on R. This is easy to see since any preimage of a full clause
from fc(R) in fc(Q) must be spanned. That spanning pair, possibly disguised by some
applications of m can still be found in N .
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Remark 86 As mentioned before, there are some important properties of merge which are not
covered by this lemma and are not necessary to show completeness, but we will need them later.

Algorithm 87 We assume we are given a deduction D. We will show how to construct an
expansion proof for D, given expansion proofs for the premises of the last inference in D.

The expansion proof for the premise will be called (Q,M) for one-premise inference rules and
(Q1,M1), (Q2,M2) in the case of ∧I. The expansion proof for the conclusion will be (R,N ).

The definition is by cases, one case for each possible inference in H.

1. D = U,A,∼A. Then N = {(∼A, A)} and

R =

∨

���
�����

HH
HHHHH

H

U A ∼A

Every formula of Q|U is a leaf directly below the root of R.

Note that all inference rules including initial deductions must be indexed, so we know
which (A,∼A) to enter into N , even if D = A,∼A, B,∼B.

2. D =
U,A, B

∨I
U,A ∨B

.

Here N =M and from

Q =

∨

�
�
�
�

A
A

A
A

U QA QB

we pass to R =

∨

�
�
�
�

A
A

A
A

U ∨

�
�
�
�

A
A

A
A

QA QB

3. D =
U,A V, B

∧I
U, V,A ∧B

.

Here N =M1 ∪M2 and
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from Q1 =

∨

�
�
�
�

A
A

A
A

U QA

and Q2 =

∨

�
�
�
�

A
A

A
A

V QB

we get R =

∨

�
�
�
�

A
A

A
A

U V ∧

�
�
�
�

A
A

A
A

QA QB

In the new tree R we may have to rename the parameters selected for some universally
quantified variables, to make sure that no free or selected parameter from one branch of
the H deduction is selected in the other branch.

4. D =
U,A(t)

∃I
U,∃xA(x)

.

Here we let (R,N ) = ∃I(QA(t),∃xA(x), (Q,M)). Graphically,

from Q =

∨

�
�
�
�

A
A

A
A

U QA(t)

we pass to R =

∨

�
�
�
�

A
A

A
A

U ∃xA

t

QA(t)

and N =M.

5. D =
U,A(a)

∀I
U,∀xA(x)

, a a parameter not free in U or ∀xA(x).

Here we let (R,N ) = ∀I(QA(a),∀xA(x), (Q,M)). Graphically,

from Q =

∨

�
�
�
�

A
A

A
A

U QA(a)

we pass to R =

∨

�
�
�
�

A
A

A
A

U ∀xA(x)

a

QA(a)
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and N =M.

6. D =
U,A1, A2

C
U,A12 .

We apply the recursive merge algorithm to obtain an expansion tree RA12 for the occurrence
of A12 in the conclusion. Let (R,N ) = merge(QA1 , QA2 , (Q,M)). Then we pass from

Q =

∨

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

U QA1 QA2

to R =

∨

�
�
�
�

A
A

A
A

U RA12

Note that here Q|U is not always identical to R|U changes because of renaming of selected
parameters and merging of identical expansion terms.

Theorem 88 (Completeness) For every cut-free deduction in H ending in U there exists an
expansion proof (Q,M) for U .

Proof: The proof follows from the correctness of Algorithm 87 which is easy to see, given
the crucial Lemmas 82, 83, and 85. The proof is then a straightforward induction on the
structure of the deduction in H.

3.5 Properties and Refinements of the Translations

The properties established below show that our notion of expansion proof is “right”. It contains
the essential information necessary for the proof of a theorem. That many different deductions
lead to the same expansion proof should not be surprising, since one can interchange inferences
in a deduction without altering the “idea” of the proof.

We cannot expect to recover any deduction D which induces (Q,M). In particular, those
with unnecessary passive formulas which are later contracted cannot be obtained by our algo-
rithm, if we would like to maintain strong termination.

Remark 89 If one actually carries out these transformations, redundancies will become obvi-
ous, even if unnecessary formulas are disregarded. This is not due to properties of the mating,
but rather of expansions. A simple example should illustrate this.

Example 90

∀x∃yPx[f [fy]]⊃ ∀a∃uPau ∧ ∀b∃vPb[fv]

Here we need two instances for x: the parameters selected for a and b. However, only one
instance is needed for each branch after the deduction has been split into two subdeductions
(one of ∀a∃uPau and one of ∀b∃vPb[fv]).
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Remark 91 One could have avoided the problem here if we had simplified the expansion proofs
for the immediate subderivations of the application of ∧I by erasing some unnecessary expansion
terms. This is not always possible, as can be seem by considering a slight elaboration of the
example above: ∼∀x∃yPx[f [fy]] ∧ ∼∀s∀tPst ∨ ∀a∃uPau ∧ ∀b∃vPb[fv].

Motivated by this example, we introduce a refinement to our Algorithm 77 which allows
expansion simplification after each step. It will be clear that if we keep our expansions minimal,
we only need to apply expansion simplification after Step 7.

Definition 92 Let Q be an expansion tree and let H be the set of all parameters which are free
in some expansion term in Q, but not free or selected in Q. We rename all those parameters
to one. Let θ = {[a 7→ h] : a ∈ H}, where h is some new parameter not selected or free in Q.
Then θQ is again an expansion tree, and for any clause-spanning mating M on Q, M is again
clause-spanning on θQ. We call θQ the result of identifying free parameters.

h plays the same role as 1 in Herbrand [16]. It is the seed of the Herbrand universe (in the
first-order case).

After identifying free parameters, previously distinct expansion terms could now be identical.

Definition 93 Let (Q,M) be an expansion proof, Q0 an expansion node in Q with expansion
term t. Furthermore, let Q′ be the result of erasing Qt from Q (note that Q0 becomes a leaf, if
t was the only expansion term of Q0). We say the occurrence t is unnecessary iff (Q′,M|Q′) is
an expansion proof.

Definition 94 We say (Q′,M′) is an expansion deletion of (Q,M) iff it is the result of erasing
some unnecessary expansion term occurrences.

Definition 95 We say (Q′,M′) is the result of expansion simplification of (Q,M) if it can be
obtained from (Q,M) by any number of free parameter identifications, deletion of unneces-
sary expansion term occurrences, or merging of identical expansion terms. We say (Q′,M′) is
expansion minimal if no expansion simplification is possible.

Remark 96 It may be too costly to keep expansion proofs expansion minimal. Note, however,
that the property of being expansion minimal is preserved by all steps in Algorithm 77 except
step 7.

Remark 97 One may be content with the following faster check: Given an expansion term t.
If no node below t occurs inM, then t is unnecessary.

If we knew that the mating was minimal, the check of the previous remark would actually
be sufficient.
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Lemma 98 Let (Q,M) be an expansion proof such that M is minimal, that is, no proper
subset of M spans every full clause in Q. Then a subtree Q0 immediately below an expansion
or disjunction node of Q is necessary iff some node in Q0 occurs inM.

Proof: If no node in Q0 occurs inM, Q0 is clearly unnecessary since every full clause in Q
will still be spanned by M. If some node Q1 in Q0 occurs in M, Q0 cannot be unnecessary. If
it were, we could erase every pair with a node from Q0 fromM and still have a clause-spanning
mating. This contradicts the minimality assumption onM.

Theorem 99 Let D be the result of translating an expansion proof (Q,M) into H with Al-
gorithm 77 and let (R,N ) be the expansion proof obtained from D with Algorithm 87. Then
R = Q and N ⊆ M. Moreover, if expansion simplifications are allowed between steps in
Algorithm 77, then (R,N ) is an expansion simplification of (Q,M).

Proof: The proof is by induction on the measure used to show termination of the algorithm
translating expansion proofs into H. Thus we have to check for each of the cases in Algorithm 77
that the result of applying one (or several) steps in Algorithm 87 to obtain L leads to the same
expansion proof and possibly a simpler mating than the one we started out with. Then the second
part of the theorem follows by the straightforward fact that expansion simplification which would
have to be applied between steps in the translation from H-deductions into expansion proofs
can be combined and applied summarily to the final deduction.

It can be immediately seen that the steps in Algorithm 77 and Algorithm 87 are inverses of
each other except in the case of an ∧I followed by some contractions (as they are produced in
Step 7 of Algorithm 77) and when the deduction is initial.

If the deduction is initial, the mating may be simplified, since the mating generated by
Algorithm 87 has exactly one element, while original mating may have been redundant. Thus
in this case R = Q and N ⊆M.

The remaing and critical case is contraction, and that is where earlier versions of the merge
algorithm proposed by Miller [23] and improved by the author [26] were inadequate.

When applying ∧E to the expansion proof, some selected parameters will appear in both
new expansion proofs for the two subdeductions. Before the merge, they have to be renamed,
since a parameter may only be selected once in an expansion proof. Let us assume we have
expansion proofs (Q,M) and (Q′,M′) which were duplicated during an ∧I. Can parameters
which were the same before the ∧I be identified by merge? Yes. The proof is by induction on
the imbedding relation ≺Q.

Let P be the set of selected parameters in Q which would need to be identified to obtain
the original expansion proof, P ′ be the corresponding parameters in Q′, and Q and Q′ are being
merged.

First note that a pair of renamed selected parameters a in Q and a′ in Q′ which are minimal
in P (and P ′) with respect to ≺Q (and ≺Q′ , respectively) will be identified because either they
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are not below any expansion terms, or they are below identical expansion terms. If the expansion
terms would differ, then they would differ by a parameter name, say c and c′. But then c ≺Q a,
which is a contradiction. Let us use min P to denote the minimal elements in a set P with
respect to ≺Q.

But this merging of the minimal selected parameters potentially adds new pairs to
mergelist, because expansion terms previously differing by one of those parameter names now
become identical. Hence now all parameters in min{P −min P} and min{P ′ −min P ′} will be
identified when the expansion terms above them are selected from the mergelist.

Since ≺Q and ≺Q′ are acyclic, this procedure will eventually identify all parameters in P
with the corresponding parameters in P ′.
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3.6 A Cut Elimination Algorithm for Expansion Proofs

In this section we investigate the following question: given expansion proofs for A ⊃ B and
B ⊃ C, how do we construct an expansion proof for A⊃ C?

One obvious algorithm would use the translations provided in the previous sections. We
could translate the expansion proofs for A ⊃ B and B ⊃ C into H deductions, then eliminate
the cut of those two deductions with the cut-elimination procedure given in Chapter 2, and
translate the resulting deduction back into an expansion proof.

This naive procedure is unsatisfactory for several reasons. First of all it is impractical in that
many steps in the translation are unnecessary. Secondly we will see that we can substantially
improve this algorithm (at least in practical terms) by doing the elimination directly on expan-
sion proofs. There are fewer rules to consider at each step in the algorithm, and moreover, we
do not have to split the deduction apart as one necessarily must to when using the reduction
which permutes a cut of a passive formula occurrence upwards past an ∧I. We will point out
another important advantage later, but roughly speaking we do not need to commit ourselves
to a particular, heuristically chosen translation, but can choose translation steps depending on
what is appropriate in order to eliminate the cut.

This algorithm will suppport our contention that expansion proofs embody essential proof
information for analytic proofs. Many different H deductions may correspond to it and we will
fully exploit this in the algorithm. In intuitionistic logic, natural deductions seem to fill that
role of a universal analytic proof system.

The improvements over the cut-elimination algorithm in H are such that the termination of
this new procedure still remains a conjecture. It does not follow from the Conjecture 34. Again,
we can only give a termination proof when restricting ourselves to first-order expansion trees.

The algorithm is open for further improvements. For example, one can make use of properties
of matings for the propositional calculus and eliminate the cut formula directly when it is purely
propositional, that is, does not contain any selection or expansion nodes.

Now let us assume we have two expansion proofs,

(Q,M) for U,A

and

(R,N ) for ∼A, V

We give an algorithm to construct an expansion proof

(S,O) for U, V.

Immediately we are faced with a problem. When investigating H-deductions it was simple
to introduce a new non-analytic inference rule Cut. Or rather, we had the reverse situation of
having to show (constructively) that the rule of Cut may be eliminated from every H deduction.
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Expansion proofs are inherently analytic. There is no easy way to represent a non-analytic
inference in them. Therefore we will have to find a new language in which to express non-
analytic proofs involving expansion trees. The critical step will of course be to represent the
problem outlined above: given two expansion proofs (Q,M) for U,A and (R,N ) for ∼A, V , we
would like to represent somehow a non-analytic expansion proof for U, V .

3.6.1 Expansion Developments

In analogy to H deductions, we will represent these non-analytic expansion proofs as trees whose
leaves are (usual) expansion proofs. Let us call these trees expansion developments. Initially we
will have the inference rules of ∀I, ∃I, and merge.

One should keep in mind that in the descriptions below expansion developments are often
written out completely and contain no variables for arbitrary subdevelopments as was the case
for H-deductions where D often stood for an arbitrary deduction with the correct final line.
This is possible since the initial expansion deductions (axioms or leaves) are expansion proofs.

We will use Q and R as meta-variables representing expansion developments. Every line in
an expansion development will have an assertion which intuitively corresponds to the formula
proven. In case we have an expansion proof, the assertion is merely its shallow formula.

Definition 100 (Expansion Developments) These are very similar in flavor to H deductions,
but we do not need the propositional rules. This results in a simplification of the elimination
procedure, since the splitting which needed to be done in the case of ∧I for expansion deductions
is no longer needed. The definition proceeds inductively.

1. Every expansion proof (Q,M) is an expansion development for QS, the shallow formula
of Q.

2. If Q is an expansion development with accessible formula (occurrence) A(t) then

Q
U [[A(t)]]

∃I : ∃xA(x)
U [[∃xA(x)]]

is an expansion development.

3. If Q is an expansion development with an accessible formula (occurrence) A(a), then

Q
U [[A(a)]]

∀I : ∀xA(x)
U [[∀xA(x)]]

is an expansion development.
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4. If Q is an expansion development with accessible formula (occurrence) A1 ∨ A2 then

Q
U [[A1 ∨ A2]]

mergeA1, A2

U [[A]]

is an expansion development.

5. If Q and R are expansion developments then

Q
U,A

R
∼A, V

elim
U, V

is an expansion development.

3.6.2 Conversions between Expansion Developments

The first set of reduction rules will look rather strange, because they have no analogue in H
deductions. These reduction rules are possible, because expansion proofs can “encode” every
cut-free proof directly.

After these definitions we make use of the results in the previous sections and view them in
a new light.

Definition 101 Initial expansion reductions. In the definition below, (Q,M) is an expansion
proof with QS = U . Note that in each conversion, the resulting expansion deduction is initial,
or, in other words, the right hand side of each reduction is an expansion proof. We write Q=⇒

i
R

if R is an initial expansion reduction of Q. The following are the reduction rules:

1. initial-∃I.
(Q,M)

∃I
U [[∃xA(x)]]

=⇒
i ∃I(QA(t),∃xA(x), (Q,M))

2. initial-∀I.
(Q,M)

∀I
U [[∀xA(x)]]

=⇒
i ∀I(QA(a),∀xA(x), (Q,M))

3. initial-merge.

(Q,M)
mergeA1, A2

U [[A]]
=⇒

i merge(QA1 , QA2 , (Q,M))
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Definition 102 (Permutative expansion reductions) These closely correspond to the permuta-
tive reductions of H-deductions. We write Q=⇒

p
R if R is the result of a permutative expansion

reduction of Q. The reduction rules are:

1. Last inference is initial. In this case the cut reduces to an initial deduction.

2. Last inference is ∃I.

Q
U [[A(C)]], X

∃I
U [[∃yA(y)]], X

R
∼X, V

elim
U [[∃yA(y)]], V

=⇒
p

Q
U [[A(C)]], X

R
∼X, V

elim
U [[A(C)]], V

∃I
U [[∃yA(y)]], V

3. Last inference is ∀I.

Q
U [[A(a)]], X

∀I
U [[∀yA(y)]], X

R
∼X, V

elim
U [[∀yA(y)]], V

=⇒
p

Q
U [[A(a)]], X

R
∼X, V

elim
U [[A(a)]], V

∀I
U [[∀yA(y)]], V

If a happens to be free in V , replace a by a new parameter b everywhere in R.

4. Last inference is a merge.

Q
U [[A1 ∨A2]], X

merge
U [[A]], X

R
∼X, V

elim
U [[A]], V

=⇒
p

Q
U [[A1 ∨A2]], X

R
∼X, V

elim
U [[A1 ∨A2]], V

merge
U [[A]], V

The essential reductions will have some restrictions pertaining to them. Still, as we will see
in a later lemma, whenever we have an application of elim to two expansion proofs, either a
permutative reduction, a merge reduction, or an essential reduction will apply.

Definition 103 (Essential expansion reductions) We write Q=⇒
e
R if one can obtain R from Q

by an essential expansion reduction as defined by the following cases.

1. One of the eliminated formulas, say A, corresponds to a leaf QA in its respective expansion
proof. Then we replace the elim immediately by applying chain (see Algorithm 112)
yielding an expansion proof (an initial expansion development). Thus

(Q,M)
U,A

(R,N )
∼A, V

elim
U, V

=⇒
e chain(QA, R∼A, (Q,M), (R,N ))
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2. One of the cut formulas is a single conjunction. Then there are several possible reductions.
For every choice of UA and UB sufficient for A and B respectively, we have two possible
reductions.

(Q,M)
U,A ∧B

(R,N )
∼A ∨ ∼B, V

elim
U, V

=⇒
e

Q2

UB, B

Q1

UA, A
(R,N )
∼A,∼B, V

elim
UA,∼B, V

elim
UB, UA, V

merge
U, V

where Q1 = ∧E1(QA∧B, UA, (Q,M)) and Q2 = ∧E2(QA∧B, UB, (Q,M)). Also, the reduc-
tion to the symmetric expansion development where B is eliminated first is allowed.

3. One of the cut formulas is a single existentially quantified formula with exactly one ex-
pansion term t. Let a be the parameter selected in the other eliminated formula.

(Q,M)
U,∃xA(x)

(R,N )
V,∀x∼A(x)

elim
U, V

=⇒
e

(Q′,M′)
U,A(t)

(R′,N ′)
∼A(t), V

elim
U, V

where (Q′,M′) = ∃E(Q∃xA(x), (Q,M)) and (R′,N ′) = [a 7→ t](∀E(R∀xA(x), (R,N ))).

Definition 104 (Merge reductions) We write Q=⇒
m
R if R is the result of a merge reduction

in Q. There are two possible situations in which merge reductions may be applied. These
restrictions are important, since they must be general enough to ensure that some reduction will
always apply and restrictive enough to ensure termination of reduction sequences.

The reduction

(Q,M)
U,A1, A2

merge
U,A12

(R,N )
∼A, V

elim
U, V

=⇒
m

(Q,M)
U,A1, A2

(R,N )
∼A, V

elim2

U, V,A1
(R,N )
∼A, V

elim1

U, V, V
merge

U, V

may be applied when either

1. QA12 is an expansion node and QA1 has exactly one expansion term t, and t is admissible.

or

2. QA12 is not a leaf, but M-mated and QA1 is not a leaf and not M-mated, and QA2 is a
leaf andM-mated.
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3.6.3 The Elimination Algorithm

Definition 105 Let Q and R be expansion developments. We define

1.
∗⇐⇒
i

for the symmetric, reflexive, and transitive closure of =⇒
i

.

2. =⇒ for the union of =⇒
p

, =⇒
m

, and =⇒
e

.

3. Q ∗⇐⇒R if there exists a sequence Q = Q0
∗⇐⇒
i
Q1 =⇒ Q2

∗⇐⇒
i
· · · Qn−2 =⇒ Qn−1

∗⇐⇒
i

Qn = R. We call such a sequence a strong reduction sequence.

Theorem 106 For every expansion developmentQ for U there exists an expansion proof (R,N )
for U .

Proof: Follows from the completeness theorem for expansion proofs and Lemma 108. Note,
however, that the completeness proof is not constructive, as long as the completeness proof for
H-deductions remains non-constructive.

Theorem 107 For any expansion development Q with an application of the elim rule, there
exist expansion developments Q′ and R such that Q ∗⇐⇒

i
Q′ =⇒ R.

Proof: The essential lemmas are given below. From Lemma 108 we know that any
elim with no other elim inferences above it is

∗
=⇒

i
-equivalent to one where both premisses are

expansion proofs. Once we have an application of elim to two initial expansion developments, we
have to show that permutative, essential, or merge reductions can be made applicable through
initial expansion conversions of the premisses. This is the content of Lemma 109.

Lemma 108 LetQ be an expansion development without an application of the elim rule. Then
there exists an expansion proof (initial expansion development) (R,N ) such that Q

∗
=⇒

i
(R,N ).

Proof: Follows directly from the definition of expansion developments and initial expansion
reductions, given the proofs of Theorems 80 and 88.

Lemma 109 Given an expansion development S = elim(A,∼A, (Q,M), (R,N )). Then either

1. there is an S ′ such that S =⇒ S ′,
or
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2. there is a Q such that Q=⇒
i

(Q,M) and an S ′ such that elim(A,∼A,Q, (R,N )) =⇒ S ′,
or

3. there is a R such that R=⇒
i

(R,N ) and an S ′ such that elim(A,∼A, (Q,M),R) =⇒ S ′.

Proof: One has to distinguish cases for A. If it is a disjunction or conjunction the
corresponding conversion is directly applicable. The only critical step is to show that one can
always convert the expansion proof for an existentially quantified formula such that there will be
an admissible expansion term. This is achieved through the algorithm seek (see Algorithm 117)
whose correctness is proven in Lemma 118.

Throughout the remainder of this section we assume that we are considering the expansion
development S = elim(A,∼A, (Q,M), (R,N )), where (Q,M) is an expansion proof for U,A
and (R,N ) is an expansion proof for V,∼A.

Lemma 110 If A is inessential, (Q,M) is an expansion proof for U, V .

Lemma 111 If A is a leaf of an expansion proof (Q,M) then either

1. A is inessential, or

2. A isM-mated to at least one other leaf in Q.

In the case analysis below we could therefore assume that A is essential. This is not necessary,
but checking whether A or ∼A are essential may significantly improve the performance of the
algorithm.

Algorithm 112 chain(QA, R∼A, (Q,M), (R,N ))

We assume that we have an expansion proof (Q,M) for U,A such that QA is a leaf of Q
and QA appears in M. Given an expansion proof (R,N ) for V,∼A, we would like to find an
expansion proof (S,O) for U, V .

We make the further assumption that QA isM-mated only to leaves of Q.

1. Let mated(QA) = {k : (QA, k) ∈M}.

2. Let S be the expansion tree for U, V obtained by joining Q|U with R|V and then replacing
every leaf k ∈ mated(QA) by a copy of R∼A. We call R′

k any new occurrence of a subtree
R′ in R∼A where it replaces k.

3. Let N ′ = {(R0, R1) : R0 ∈ R∼A and (R0, R1) ∈ N}.

4. For every k ∈ mated(QA), let N ′
k be the result of replacing every R′ ∈ R∼A in N ′ by R′

k.
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5. Let O =M|U ∪N|V ∪
⋃

k∈mated(QA)N ′
k.

6. Return (S,O).

Lemma 113 If the conditions for calling chain are satisfied, then

(S,O) = chain(QA, R∼A, (Q,M), (R,N ))

is an expansion proof for U, V .

Proof: All conditions except for the following two are immediate.

1. O is clause-spanning on S. Let c be a full clause in S, and let c|U and c|V be the restrictions
to U and V , respectively. If the preimage c′ on Q is spanned by a pair entirely c′|U , this
pair will still span c. Similarly for the preimage c′′ on R. If not, then c′ must be spanned
by a pair (QA, k). Let us define the path d on R to behave on V like c and on R∼A like c
on k. By assumption, d is spanned by a pair (l′, l′′). By Step 4 in the chain algorithm, a
(renamed) copy of this pair will be in O and close c.

2. <S is acyclic. Since no parameter selected in R should appear in an expansion term in
Q (rename it otherwise) and vice versa, no cycle can be introduced. One obtains <S by
joining <R and <Q and only adding pairs of the form s <S t for s in Q and t in R.

In order to defined seek precisely, we first define an extension <CQ of the dependency relation
<Q.

Definition 114 For two nodes Q0 and Q1 in an expansion tree Q we say Q0 C Q1 if Q0

is (strictly) above Q1. We extend this notion to occurrences of expansion terms t and s by
defining t C s if Qt C Qs, where Qt and Qs are the nodes below the arcs labeled with t and s
respectively. Similarly for selected parameters. We write Q0 EQ Q1 if Q0 CQ Q1 or Q0 = Q1.

Definition 115 Let <CQ be the transitive closure of <Q ∪ CQ. (CQ restricted to expansion
terms.)

Lemma 116 If <Q is acyclic, so is <CQ.

Proof: Note that CQ is acyclic. Thus, if we had a cycle, we must have one of the form

t1 <Q t2 CQ t3 <Q t4 CQ t5 <Q · · · CQ t1

But when t2 CQ t3, then every parameter selected below t3 is also selected below t2. Thus if
t3 <Q s, then also t2 <Q s. Hence we can collapse the cycle to one of the form
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t1 <Q t2 C t1

But then t1 <Q t2 CQ t1 <Q t2, so we must also have t2 <Q t2 which was excluded by
assumption. Hence <CQ does not contain a cycle.

If the elimination node Q∃xA(x) of an elim inference is existential, but none of the expansion
terms is admissible, we have to “break down” the rest of Q until one or more of the expansion
terms becomes admissible. It is a consequence of the Soundness Theorem 80 that this is always
possible.

Here we use initial conversions to expand an initial expansion deduction into one which ends
with an inference on the side-formula of the elim. The guiding light is the expansion proof
(Q,M), and the task is to remove some of the non-determinism from algorithm 77.

The basic idea of the algorithm is to pick some expansion term s which we can make acces-
sible, without first making other expansion terms of Q∃xA(x) accessible. Then we work our way
backwards, making the terms it depends on accessible, and expanding them.

The result of seek will be an expansion deduction Q′, such that s is accessible in every leaf
(Q′,M′) of Q′. It is important to note that Q′ ∗⇐⇒

i
Q.

Again, we will allow some non-determinism in seek, which may be used to the advantage of
an implementation which would use some heuristics to decide how to proceed.

Algorithm 117 seek(s, (Q,M))

We assume we are given an expansion proof (Q,M) and an expansion term occurrence s
in Q. We would like to apply a sequence of initial conversions to obtain Q′, such that s is
admissible in the initial expansion development of Q′, call it (Q′,M′).

We define the relation −−→
seek(s)

, from may be though of as describing a non-deterministic

algorithm for computing seek(s, (Q,M)). For simplicity let us assume that no non-leaves occur
in (Q,M). If they do occur one must apply merge expansion reductions (see Definition 104)
to make the selection nodes Qb0 in step 6 and the expansion nodes Qt0 in step 33.1 accessible
before applying ∀E and ∃E, respectively.

1. Let S = {t : t <CQ s}. Pick an arbitrary t0 such that t0 is minimal in S.

2. Let P = {a : a free in ti and a selected in Q}.

3. If P = {} then

3.1. if t0 is the sole expansion term of Qt0 , let (Q,M) −−→
seek(s)

∃E(Qt0 , (Q,M)).
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3.2. if t0 is not the sole expansion term of Qt0 then let (Q,M) −−→
seek(s)

split(Q∃xA(x), {t0}, T − {t0}, (Q,M)).

4. Let P ′ = {b : there is an a ∈ P such that b EQ a}

5. Pick a b0 minimal (with respect to EQ).

6. Then Q −−→
seek(s)

∀E(Qb0 , (Q,M)).

Lemma 118 For any expansion proof (Q,M) and any expansion term occurrence s in (Q,M),
seek(s, (Q,M)) is an expansion proof in which s is admissible.

Proof: One can easily see that the algorithm must terminate (use ). Also, in case 6,
Qb0 is accessible. Moreover, in case 33.1 it is always true that Qt0 is admissible and accessible.
Hence by lemma 53, if Q −−→

seek(s)
R, then R is an expansion developement.

Theorem 119 For every first-order expansion development Q there exists a first-order expan-
sion proof (R,N ) such thatQ ∗⇐⇒(R,N ). Moreover, every strong reduction sequence terminates

in an elim-free expansion development.

Proof: From the general Theorem 107 it follows that permutative, merge, or essential
reductions will always be applicable.

What remains to be shown is termination. The argument is somewhat similar to the ter-
mination argument for H-deductions, except that we do not need to consider the contraction
rank. The termination order is by a triple induction. If Q=⇒

p
R, then (Q,M) (R,N ) for

the expansion proofs (Q,M) and (R,N ) of the premisses of the elim rule before and after the
reduction. Thus, either the merge will be eliminated, or one reaches the point where a merge
or essential conversion is applicable. If Q=⇒

m
R then QA1 QA12 and QA2 QA12 where (Q,M)

and A are as in Definition 104. The conditions on the merge reduction imply that QA1 does
not increase in complexity (with respect to ) when eliminating elim2. Finally, if Q=⇒

e
R then

the complexity (number of connectives and quantifiers) of the cut formula is decreased. This is
where the argument breaks down for general, higher-order expansion developments.

Conjecture 120 Every strong reduction sequence starting from an arbitrary expansion devel-
opment terminates in an elim-free expansion development.



Chapter 4

Adding Equality

In this chapter we will extend the language L to L= which contains a primitive symbol for
equality. The inference system H will also be extended to a system H= which contains a rule
of substitution and the axiom schema asserting reflexivity of equality. We then extend Algo-
rithm 77 to translate expansion proofs where equality is treated as defined into H= deductions
where equality is primitive. This translation requires a precomputation stage during which we
transform the given expansion proof into a more suitable one satisfying certain requirements for
the translation proper.

Since a non-extensional equality is definable in our type theory, what is the purpose of this
exercise? The reasons are two-fold.

Firstly, we wish to support our claim that expansion proofs are in a sense a universal structure
for representing proofs in classical logic. Since there are only two connectives and two quantifiers
in expansion proofs, we should be able to show how other definable notions may be represented
in expansion proofs. The answer is simple: through their definition. But the problem of the
disparity between the logical systems poses a new problem: how do we make the connection
between primitive notions of a deductive system and the defined notions of expansion proofs? For
simple definable connectives like implication, the answer is also simple. We will discuss negation
and implication in some detail in Chapter 6. For a complex and inherently polymorphic notion
like equality, the answer will be less straightforward.

Secondly, treating equality as defined results in an escalation of the order of the formulas. In
first-order systems, equality cannot be defined. Much effort has been devoted to treating equality
in a first-order setting in automated theorem proving. For a survey see Fages and Huet [10] or
Siekmann [32]. We will not attempt here to extend such work to theorem proving in higher-order
logic. Rather, we provide a translation algorithm from expansion proofs where equality is treated
as a defined notion to deductions where equality is considered primitive. When this algorithm
is applied to first-order theorems involving equality, we will obtain first-order deductions.

The translation from cut-free H=-deductions into expansion proofs is a straightforward ex-
tension of Algorithm 87 and we will not present it here.

The full system H= does not have the cut-elimination property (see Theorem 136). How-
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ever, if we add one more rule of inference (the dual to the substitution rule which replaces
the left-hand side for the right-hand side instead of vice versa) then the first-order fragment
will have the cut-elimination property. We give an improved translation procedure into this
modified system H∗ which will always produce normal deductions. This also requires proving
that the quantifiers coming from instantiating an equality in the original theorem need only be
instantiated with literals when one searches for an expansion proof. Since there are potientially
very many instances of these higher-order quantifiers, this is a practically very significant result.

4.1 A system H= with equality

In order to obtain a system similar in spirit to H, but with a the notion of equality primitive in
it, we add, for each type α a new symbol

.
= and the following formulas of type o

Aα
.
= Bα.

Note that we do not regard “
.
=” itself as a proper formula, which simplifies the exposition

below. Since we do not assume extensionality, this means that the equality predicate for a
given type α, itself in type oαα, is not the interpretation of

.
=oαα (since it does not have an

interpretation), but of [λxλy.x
.
= y]. This avoids the complication arising from the fact that, if

“
.
=oαα” were an interpreted symbol, we could not prove it to be equal to [λxλy.x

.
= y]. This is

analogous to the decision we made when making ∧,∨, etc., not constants of the given type.

Definition 121 The language L= is obtained from L by adding one clause to Definition 2

11. Aα
.
= Bα for arbitrary formulas Aα and Bα.

We also add the inference rule of substitution and some new initial deductions.

Definition 122 H= is obtained by adding the following rules of inference to H (see Defini-
tion 11)

6. Equality Axioms

R
.
= : A

.
= A

U,A
.
= A

7. Substitution Inference

U,PA
S

.
= : A

.
= B,PA,PB

U,∼[A
.
= B],PB

Here P is an arbitrary term (of correct type). A way of expressing the rule of substitution
would be to say that we obtain PB from PA by substituting zero or more occurrences of A
in PA by B. Avoiding clashes of variables names is taken care of through the λ-conversion
rules. Let us call this system H=.
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We do not copy ∼A
.
= B to the premiss of the inference for the same reason that we did not

copy the ∃xA in the rule of ∃I. We need to isolate several “uses” of the same formula (the equality
in one case, the existentially quantified formula in the other) into single uses and contraction.
This is necessary because of the complexity of contraction when applied to expansion proofs (see
the merge algorithm 84). This is not just a property of expansion proofs, when one considers
the complexities introduced into cut-elimination algorithms by the possibility of contraction.

4.2 Some Properties of Defined Equality

We will treat definitions in expansion trees by enlarging our notion of equivalence class of
formulas. Two formulas are now equivalent if they are equal up to λ∼-conversion or instantiation
of definitions.

Thus when we write A
.
= B in the context of expansion trees, this is the same as writing out

the instantiated form ∀q[qA⊃ qB].

Lemma 123 Given an expansion proof (Q,M) of U . Then we can find an expansion proof
(R,N ) of U such that

1. All non-leaf nodes in Q are single, i. e., are notM-mated.

2. All leaf nodes in Q are literals.

Proof: First we show that we can find a (Q′,M′) such that all non-leaf nodes in (Q′,M′)
are single. We show how to eliminate nodes which are above no other M-mated non-leaf node
in Q. The proof is by induction on the complexity of the expansion tree below an M-mated
node Q0

1. Q0 is a leaf. This is the basis of the induction in which the assertion holds trivially.

2. Q0 is a conjunction node with shallow formula A ∧ B. Then each of its mates is a dis-
junction node Qi with shallow formula ∼A ∨ ∼B or a leaf l. We replace any such leaf l
by Qi = ∨

�
�
�
�

A
A

A
A

l∼A l∼B

, where l∼A and l∼B are new leaves with formulas ∼A and ∼B,

respectively. The result is still an expansion proof with the same deep and shallow formu-
las. Now we replace every pair (Q0, Q

i) ∈M by two new pairs (QA, Qi
∼A) and (QB, Qi

∼B)
to obtainM′.

It is easy to check thatM′ is spans every full clause on the new expansion tree Q′. Also the
complexity of the expansion tree below the two newM-mated nodes QA and QB is strictly
smaller that the complexity of the expansion tree below Q0 (they are proper subtrees).
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The same holds for any disjunction node Qi which was M-mated to Q0. As for leaves,
which wereM-mated: they are replaced by new leaves inM′ thus neither increasing nor
decreasing the complexity.

3. Q0 is a disjunction node with shallow formula A ∨ B. This case is symmetric to the
previous one.

4. Q0 is an expansion node with shallow formula ∃xA(x). First we replace each of its mates
which are leaves by Qi = ∀x∼A(x)

ai

l∼A(ai)

, where all the ai are new and distinct from each other.

Again we obtain an expansion proof with the same shallow formula. We may now assume
that all nodes mated to Q0 are selection nodes. For any pair (Q0, Q

i) ∈M, 1 ≤ i ≤ n we
now add a new expansion term ai, where ai is the parameter selected for Qi.

To get M′ we replace every pair (Q0, Q
i) ∈ M by (Qai , Q∼A(ai)), where Qai is the node

below Q0 corresponding to one of the new expansion term ai.

It is easy to check the (Q′,M′) satisfies the conditions of an expansion proof and has the
same shallow formula as (Q,M). As in the previous case, every newM-mated node either
came from and remains a leaf or has a strict subtree of previouslyM-mated nodes below
it.

5. Q0 is a selection node. This is symmetric to the case of an expansion node.

In order to see that we can always achieve that the shallow formulas of leaves are literals,
we can continue the algorithm outlined above even if allM-mated nodes are leaves. The proof
of termination then relies on the complexity of the leaf formulas, rather than on the complexity
of the expansion proof.

Definition 124 Given an expansion proof (Q,M) with leaf Q0 such that its shallow formula
QS

0 is not a literal. Then let deepen(Q0, (Q,M)) be the operation defined in the proof of
Lemma 123 which transforms Q0 into an interior node of the tree, its kind depending on the
main connective of QS

0 .

For further development in this section we will need to extend the imbedding relation ≺Q,
which was defined on the selected parameters of an expansion tree Q (see Definition 37.) This
extension is analogous to the extension of the dependency relation <Q defined on expansion term
occurrences (see Definition 36) as was necessary for the definition of seek (see Definitions 114
and 115).

Definition 125 For two nodes Q0 and Q1 in an expansion tree Q we say Q0 ≺ Q1 if Q0 is
(strictly) below Q1. We extend this notion to selected parameters a and b by defining a ≺ b if
Qa ≺Qb, where Qa and Qb are the nodes below the arcs labeled with a and b respectively.
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Definition 126 Let ≺≺Q be the transitive closure of ≺Q ∪ ≺Q.

Lemma 127 If ≺Q is acyclic, so is ≺≺Q.

Proof: We omit the proof. It is dual to the the proof given for Lemma 116.

A common operation on expansion trees we will need in the rest of this chapter is an inverse
to merge. For simplicity of the description we will show how to duplicate an expansion term in
a given expansion node. In order to create more than two instances of the given term, one can
iterate the construction.

Of course there are many trivial inverses of merge. As we will see below, we have additional
constraints which require a non-trivial algorithm to achieve the duplication.

The next lemma will be required in the proof of Theorem 132. Intuitively it says that if an
expansion term t contains an occurrence of a parameter a which is selected in another conjunct,
then we can modify the expansion proof in such a way that t no longer contains a. Moreover,
this can be done without increasing the depth of the expansion proof.

If there is a conjunction immediately below the disjunctive root such that t occurs in one
conjunct, and a is selected in another, then the lemma is trivial. We simply find two sets U t

and Ua sufficient for the conjunct with t and a, respectively. Then applying ∧E followed by ∧I
(see case 3 of Algorithm 87) yields an expansion proof with the desired property.

Definition 128 Given an expansion proof (Q,M) with an expansion node Q∃yB and two ex-
pansion terms s and t of Q∃yB. We sayM is strongly clause-spanning with respect to s and t if
the following two conditions hold. Given a full clause p,

1. the clause obtained by erasing all nodes l which are below s in Q is spannedM, and

2. the clause obtained by erasing all nodes l which are below t in Q is spanned byM.

This condition is much stronger than clause-spanning.

Lemma 129 Given an expansion proof (Q,M) with an expansion node Q∃yB and an expansion
term s of Q∃yB. Then there is an expansion proof (Q′,M′) with equal depth and two copies, s1

and s2, of s suchM′ is strongly clause-spanning with respect to s1 and s2.

Proof: To obtain Q′ we duplicate some expansion terms in Q. The construction we will
use in the proof of Lemma 130 is similar, but somewhat more complicate. Here we let

dupa = {a} ∪ {b : b ≺≺Q a}
dupt = {t} ∪ {s : there is a parameter b ∈ dupa such that b is free in s}

maxdupt = {s ∈ dupt : there is no r ∈ dupt such that r CQ s}
θ′ = {[b 7→ b′] : b ∈ dupa}
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We then duplicate every term t ∈ maxdupt, applying θ′ to one copy. Note that t must be in
maxdupt (otherwise ≺Q would be cyclic). This achieves an expansion tree Q′.

Next we have to construct the mating M′. Informally we try to mate the new copies of
nodes in Q′ “parallel” to the mates of the old copies. Let dupl be the set of nodes in Q which
were duplicated, that is,

dupl = {l : l ∈ Q and there is a t ∈ maxdupt such that l ≺Q t}

Then we defineM′ by cases. Let (l, k) ∈M be given. Then

1. If both l ∈ dupl and k ∈ dupl, add the two pairs (l, k) and (l′, k′) toM′.

2. If l ∈ dupl, but k 6∈ dupl we add (l, k) and (l′, k) toM′. Note that this is possible, since
k cannot contain any parameter b ∈ dupa. If it did, k would have to be in dupl.

3. l 6∈ dupl and k 6∈ dupl. Then add (l, k) toM′.

Clearly,M is mating, that is, mated nodes have complementary shallow formulas, and mated
nodes share at least one clause.

It remains to show that (Q′,M′) is an expansion proof. This means we have to verify that
M′ is clause-spanning on Q′ and that <Q′ is acyclic.

We name the nodes in Q′ identically to the nodes in Q, except for the nodes l ∈ dupl. The
node which was identically copied we continue to call l, the copy to which we applied θ′ we call
θ′l. θ′dupl is the set of all such nodes.

1. M′ is clause-spanning on Q′. Actually, we would like to show more, namely that M′ is
strongly clause-spanning with respect to t1 and t2. The two cases are symmetric, so it is
enough to show thatM′ closes any path after erasing all nodes below t2.

Let p′ be a full clause on Q′. We erase all nodes below t2 and define the preimage p of p′

to contain l if p′ contains θ′l. By assumption,M was clause-spanning on Q, and therefore
p is spanned by a pair (l, k).

1.1. l ∈ dupl and k ∈ dupl. By definition, (l, k) and (l′, k′) are both inM′. Hence (l′, k′)
spans p′.

1.2. l ∈ dupl, but k 6∈ dupl. Then (l, k) and (l′, k) are inM′ and p′ is spanned by (l′, k).

1.3. l 6∈ dupl and k 6∈ dupl. Then (l, k) ∈M′ spans p′.

This exhausts all possible cases. HenceM′ is strongly clause-spanning on Q′ with respect
ot t1 and t2.
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2. <Q′ is acyclic.

This part of the proof follows a common pattern. We assume that there is a cycle in <Q′

and show that there must have been a cycle in <Q, which is a contradiction.

We name the expansion terms in Q′ identically to the expansion terms in Q, except for
t ∈ dupl. The node which was identically copied we continue to call t, the copy to which
we applied θ′ we call θ′t. θ′dupt is the set of all such nodes. We let ui be the preimage of
u′i on Q, that is u′i if u′i 6∈ θ′dupt and ui if u′i is of the form θ′ui. Note that some expansion
terms may have the same preimage.

Assume there is a cycle u′1 <0
Q′ u′2 <0

Q′ · · · <0
Q′ u′n = u′1.

We claim that u1 <0
Q u2 <0

Q · · · <0
Q un = u1.

The proof is by cases on the left-hand and right-hand side of a related pair u′ <0
Q′ v′. We

show that for the preimages u and v, u <0
Q v.

2.1. u′ ∈ θ′dupt, v′ ∈ θ′dupt. By definition, there is a parameter b selected below u′, free
in v′. But then b must be some b′ (since θ′ is applied below u′) and hence b is free in
v. Of course b is also selected below u, so u <0

Q v.

2.2. u′ ∈ θ′dupt, v′ 6∈ θ′dupt. This is not possible, since a parameter selected below u′

must be some b′, that is, of the form θ′b for b ∈ dupa.

2.3. u′ 6∈ θ′dupt. A parameter c selected below u′ 6∈ θ′dupt is also selected below u, unless
c is selected below some t ∈ exempt. In either case, u <0

Q v, because the preimage of
c is selected below u and free in v.

Lemma 130 Given an expansion proof (Q,M) with a selection node Q∀xA with selected pa-
rameter a. Let Q∃yB be an expansion node such that there is no full clause on Q containing both
Q∀xA and Q∃yB. Let dupa be {a} ∪ {b : b ≺Q a but b not selected below Q∃yB}. Then there is
an expansion proof with equal depth and just one copy of Q∃yB such that no expansion term
below Q∃yB contains a parameter b ∈ dupa.

Proof: First we describe how to obtain the expansion tree, call it Q′. Intuitively, we would
like to make two copies of expansion terms containing the parameter a, rename a to a′ in one
copy rename all occurrences of a in Q∃yB from a to a′. As described this is an unsound procedure,
because duplicating an expansion term also duplicates all parameters which are selected below
it. Since no parameter may be selected more than once, which would require renaming of those
parameters. This of course again may require duplication of expansion term etc.

Here is where the imbedding relation comes to the rescue. If we let

dupa = {a} ∪ {b : b ≺≺Q a}

then dupa is precisely the set of parameters of which we will have two copies in Q′.
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Now we have to determine which expansion terms need to be duplicated. First note that
we do not want to duplicate any expansion term for Q∃yB or below Q∃yB. Moreover we do not
want to duplicate Q∃yB itself. If we were to duplicate an expansion term above Q∃yB, we would
also duplicate Q∃yB. Therefore we let

above = {t : t is an expansion term, there exists a b ∈ dupa such that b
is free in t, and t is above Q∃yB}

If above is empty, we exclude all expansion terms below Q∃yB from duplication. Otherwise,
there must be a unique topmost term in above. In this case we exclude that term and all
expansion terms below it from duplication. If above is non-empty, let tmax be the topmost
t ∈ above. Note that in this case, tmax is not above Q∀xA, because b ∈ dupa is free in tmax. If it
were also above a, then a ≺Q b, but also b ≺Q a (since b ∈ dupa), and hence ≺Q would have a
cycle.

exempt =

{
{t : t ≺Q Q∃yB} if above = {}
{t : t ≺Q tmax} if above 6= {}

Then the expansion terms we will have to duplicate are the ones which contain free occur-
rences of parameters in dupa, but are not exempt.

dupt = {t : there is a parameter b ∈ dupa such that b is free in t} − exempt

Of course duplicating the topmost expansion terms in dupt will automatically create copies
of expansion terms below it. Hence

maxdupt = {t ∈ dupt : there is no s ∈ dupt such that s CQ t}

Thus maxdupt contains only the expansion terms in dupt which have no other terms in dupt

above them. We will need to rename some selected parameters. Let

θ′ = {[b 7→ b′] : b ∈ dupa}

Now we are finally prepared to describe Q′. For every expansion term t ∈ maxdupt we add
an identical expansion term t to its expansion node. Then we apply θ′ to one copy of t and Qt,
the expansion tree below it. Moreover we apply θ′ to every expansion term t ∈ exempt and the
tree below every t ∈ exempt.

We show that Q′ is an expansion tree.

1. Q∀xA was not copied. Assume it were. Then there must have been an expansion term t
above Q∀xA such that some b ∈ dupa free in t. But then a ≺≺Q b, but also by definition of
dupa, b ≺≺Q a, so ≺≺Q would have a cycle. By Lemma 127 and the assumption that Q is
an expansion proof, this is a contradiction.
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2. Q∃yB was not copied. This follows from the construction of exempt.

3. No parameter is selected twice. This held for Q and now still holds since θ′ was applied to
all new copies of selection nodes. It remains to show that any duplicated selection node
is in the domain of θ′. But this follows from the construction of dupa and dupt. If there
is a parameter b selected below one of the expansion terms in maxdupt, then b ≺≺Q a, and
therefore b ∈ dupa. But dupa is the domain of θ′.

Next we have to construct the mating M′. Informally we try to mate the new copies of
nodes in Q′ “parallel” to the mates of the old copies. Let dupl be the set of nodes in Q which
were duplicated, that is,

dupl = {l : l ∈ Q and there is a t ∈ maxdupt such that l ≺Q t}

exemptl = {l : l ∈ Q and there is a t ∈ exempt such that l ≺Q t}

For each l ∈ dupl we have two nodes in Q′. Let the occurrence which resulted from applying
θ′ be l′, the other one l.

The definition ofM′ is by cases. Let (l, k) ∈M be given. Then

1. If both l ∈ dupl and k ∈ dupl, add the two pairs (l, k) and (l′, k′) toM′.

2. If l ∈ dupl, but k 6∈ dupl we distinguish two subcases

2.1. k ∈ exemptl. Add (l′, k) toM′. Note that is is possible, since we applied θ′ to such
a k.

2.2. Otherwise, add (l, k) and (l′, k) to M′. Note that this is possible, since k cannot
contain any parameter b ∈ dupa. If it did, k would be either in dupl or in exemptl.

3. λ 6∈ dupl and k 6∈ dupl. Then add (l, k) toM′. Since no l ∈ exemptl has a path in com-
mon with Q∀xA and therefore cannot be mated to some k below Q∀xA (see Definition 41),
l and k will still be complementary.

Clearly,M is mating, that is, mated nodes have complementary shallow formulas, and mated
nodes share at least one clause.

It remains to show that (Q′,M′) is an expansion proof. This means we have to verify that
M′ is clause-spanning on Q′ and that <Q′ is acyclic.

We name the nodes in Q′ identically to the nodes in Q, except for the nodes l ∈ dupl. The
node which was identically copied we continue to call l, the copy to which we applied θ′ we call
θ′l. θ′dupl is the set of all such nodes.
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1. M′ is clause-spanning on Q′.

Let p′ be a full clause on Q′. We define the preimage p of p′ on Q by cases:

1.1. p′ contains nodes in exemptl. Informally, we force p to behave on Q as p′ on θ′dupl.
Given l ∈ p′. If l ∈ exemptl we let l ∈ p. If l ∈ θ′dupl, we let l ∈ p. If l 6∈ dupl we
let l ∈ p. Note that the nodes l ∈ dupl have no preimage on p, but it will turn out
that even the fewer nodes in p will guarantee that p′ is closed.

1.2. p′ contains nodes below Q∀xA. Informally, we force p to behave on Q as p′ on dupl.
Given l ∈ p′. If l ≺Q′ Q∀xA we let l ∈ p. If l ∈ dupl, we let l ∈ p. If l 6∈ θ′dupl we let
l ∈ p. Note that the nodes l ∈ θ′dupl have no preimage on p.

1.3. p′ contains nodes neither in exemptl nor below Q∀xA. In this case we arbitrarily pick
p to behave on Q as p′ on dupl. Given l ∈ p′, let l ∈ p.

By assumption,M was clause-spanning on Q, and therefore p is spanned by a pair (l, k).
We now distinguish cases.

1.1. l ∈ dupl and k ∈ dupl. By definition, (l, k) and (l′, k′) are both in M′. Depending
on where l and k came from in p′, one of these pairs spans p′.

1.2. l ∈ dupl, but k 6∈ dupl. If k ∈ exemptl, then (l′, k) ∈M′. If k 6∈ exemptl then (l, k)
and (l′, k) are inM′ and p′ is spanned, since l must be the preimage of either l or l′.

1.3. l 6∈ dupl and k 6∈ dupl. Then (l, k) ∈ M′ and also l ∈ p′ and k ∈ p′. Again, M′

spans p′.

This exhausts all possible cases. ThereforeM′ spans an arbitrary clause p′. HenceM′ is
clause-spanning on Q′.

2. <Q′ is acyclic.

This part of the proof is identical to the the part of the proof of Lemma 129 showing that
<Q′ is acyclic. We do not repeat it here.

Definition 131 We say that a term Poα is literalic if it is of the form [λz.A] for a literal A.

The following theorem is of interest not just in the translation of proofs, but also in the
search for a proof. It tells us that we only need to consider literalic expansion terms for nodes
which have a shallow formula equivalent to ∼[A

.
= B].

Theorem 132 Given an expansion proof (Q,M) for U . Then there is an expansion proof
(R,N ) for U in which all expansion terms for nodes with a shallow formula of the form ∃Q[Qf∧
∼Qg] are literalic.
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Proof: We will show how to eliminate one non-literalic expansion term. It then follows by
induction on the number of such terms that all of them can be eliminated.

The proof is by an induction on the complexity of the tree below the expansion node
Q∃Q[Qf∧∼Qg]. Call this node Q0, and let P be an expansion term of Q0 such that P is not
literalic.

First note that if the λ∼-normal form of P does not begin with a λ-binder, we are done,
since we can replace P by [λz.Pz] and obtain a node with the same shallow and deep formulas,
but a literalic expansion term. Note that this is not an application of extensionality.

We will omit the details of dealing with leaf nodes which are not literals. In general, one can
apply deepen (see Definition 124) to such nodes. In order to make sure that the complexity of
the relevant part of the tree before and after each step does not increase one merely has to check
that the new subtrees can be made into leaves again. This transforms leaves into new leaves,
while the complexity of the shallow formula of the leaf is decreased. This is analogous to the
proof of Lemma 123. However, we cannot do this process once initially, since the substitution
into expansion trees in case 3 may transform a leaf nodes with a literal shallow formula into
one with a more complex shallow formula. The same can be said for non-leaf nodes which are
M-mated. The algorithm given in the proof of Lemma 123 shows how these non-leaf nodes
may be eliminated. It will only be necessary to eliminate a non-leaf node from the mating, if it
disappears from the expansion tree.

Of all the non-literalic expansion terms P in question, we pick one maximal with respect to
<CQ to be reduced. This will be important in case 3 in order to ensure that no other non-literalic
expansion terms in question are duplicated.

For our main induction, we have to distinguish cases, depending on the form of P.

1. P = [λz.A(z) ∧ B(z)]. Then we replace the expansion term P of Q0 by two, namely
P1 = [λz.A(z)] and P2 = [λz.B(z)]. Omitting additional expansion terms of Q0, the
transformation on the expansion proof then is from

Q∃Q[Qf∧∼Qg]

[λz.A(z) ∧B(z)]
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Q∼A(g) Q∼B(g)

to
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Q′
∃Q[Qf∧∼Qg]

[λz.A(z)] [λz.B(z)]
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QA(f) Q∼A(g)
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A

QB(f) Q∼B(g)

Let Q′ be the result of replacing Q∃Q[Qf∧∼Qg] by Q′
∃Q[Qf∧∼Qg] in Q. Furthermore let

M′ =M. If one of the intermediate non-leaf nodes below Q0 was inM we apply single

as indicated in a remark above.

We now have to show that (Q′,M′) is again an expansion proof. Most conditions are
immediate, except for the following two.

1.1. M′ is clause-spanning on Q′.

Let p′ be a full clause on Q′. We define the preimage p of p′ on Q. Every node in p′

outside Q′
∃Q[Qf∧∼Qg] is also in p. If p′ does not contain nodes from inside Q′

∃Q[Qf∧∼Qg]

we are done, since then p′ = p and both are spanned. If p′ contains nodes from QA(f),
let p contain the same nodes from QA(f) in Q. If p′ contains nodes from QB(f) (but
not QA(f)), let p contain nodes from QB(f) in Q. If neither of these two cases applies
then p′ must contain nodes from Q∼A(g) and Q∼B(g). Let p contain these nodes. It
can easily be checked that p, if extended by two intermediate nodes, is a full clause on
Q. We have assumed that these intermediate nodes do not occur in M. Therefore,
p is spanned by a pair inM which also appears inM′. Since p′ was arbitrary,M′ is
clause-spanning on Q′.

1.2. <Q′ is acyclic.

The proof is by contradiction. We assume that there is a cycle t′1 <0
Q′ t′2 <0

Q′ · · · <0
Q′

t′n = t′1. We will construct a cycle in <Q, which contradicts the assumption that
(Q,M) is an expansion proof.

Let ti stand for the expansion term (occurrence) in Q corresponding to t′i in Q′.

If none of the t′i are P1 or P2, we are done. Without loss of generality assume that
t′2 = P1. But then also P <0

Q t3, since a parameter selected below P1 in Q′ must be
selected below P in Q. Also, t1 <0

Q P, since a parameter free in P1 is also free in P.
Therefore, by induction, we can construct a cycle in <Q by replacing t′i by ti and P1

and P2 by P. But this is a contradiction.

2. P = [λz.A ∨B]. This case is symmetric to the case of a conjunction.
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3. P = [λz.∃xA].

This is the critical and most difficult case. For the sake of simplicity we assume that the
expansion node Q∃xA(f,x) below Q∃Q[Qf∧∼Qg] has only two expansion terms, call them s
and t.

Under these assumptions, the expansion tree at Q0 has the following form:

Q∃Q[Qf∧∼Qg]

[λz.∃xA(z, x)]

∧
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@

Q∃xA(f,x)

s t
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�

A
A

A
A

QA(f,s) QA(f,t)

Q∀x∼A(g,x)

a

Q∼A(g,a)

Recall that P was chosen maximal (with respect to <CQ) among non-literalic substitution
terms for nodes with a shallow formula of the form ∼[A

.
= B]. Since a is selected below

Q∃Q[Qf∧∼Qg] this means that a is not free in any other non-literalic expansion term for
a negative equality node. Moreover, no other non-literalic expansion term lies below an
expansion term in which a is free.

Our goal is to replace Q∃Q[Qf∧∼Qg] by Q′
∃Q[Qf∧∼Qg], where we construct two new nodes

from Q∼A(g,a) in Q. Let Q∼A(g,s) = [a ← s]Q∼A(g,a) and Q∼A(g,t) = [a ← t]Q∼A(g,a). Then
we would like to construct Q′

∃Q[Qf∧∼Qg] as

Q′
∃Q[Qf∧∼Qg]

[λz.A(z, s)] [λz.A(z, t)]
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QA(f,s) Q∼A(g,s)
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A

QA(f,t) Q∼A(g,t)

In order to facilitate the description of the transformation and correctness proof, we will
construct (Q,M)′ in several steps.
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3.1. Achieve that neither a nor any selected parameter b ≺≺Q a is free in an expansion
term below Q∃xA(f,x). By Lemma 130 such an expanion proof, call it (Q′,M′) exists
and is no deeper than (Q,M).

3.2. Duplicate expansion term P = [λz.∃xA(z, x)] in (Q′,M′) such that in the new ex-
pansion proof (Q′′,M′′), the mating M′′ is strongly clause-spanning with respect to
the two copies P1 and P2 of P. This is possible by Lemma 129 without increasing
the depth of the expansion tree below P. The replacement for Q∃Q[Qf∧∼Qg] now looks
like (we have relabeled identical nodes with superscripts)

Q′′
∃Q[Qf∧∼Qg]

P1 = [λz.∃xA(z, x)] [λz.∃xA(z, x)] = P2
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Q1
∀x∼A(g,x)
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∧
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Q2
∃xA(f,x)

s t
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A
A

A
A

Q2
A(f,s) Q2

A(f,t)

Q2
∀x∼A(g,x)

a

Q∼A(g,a)

3.3. Erase Q1
A(f,t) and Q2

A(f,s).

This cannot be done immediately, since those subtrees are not unnecessary (in the
sense of Definition 93). But it turns out that we can change the matingM′′ to render
them unnecessary.

It is merely necessary to note that, because of step 33.1, the trees Q1
A(f,t) and Q2

A(f,t)

do not contain parameters b such that b ≺≺Q a, nor do they contain a. Define a
substitution

θ = {[c1 7→ c2] : c1 selected below Q1
A(f,t)} ∪ {[c2 7→ c1] : c2 selected below Q2

A(f,s)}

We now erase Q1
A(f,t) and Q2

A(f,s) and globally apply θ to Q′′. This results in an
expansion tree, call it Q′′′

We define M′′′ by cases. Let (l, k) ∈ M′′ be given. Let us be content with merely
defining the critcal case. If l1 ∈ Q1

A(f,t) and k1 ∈ Q1
A(f,s). By definition of Q′′′ it

follows that θk1 = θl2 and that we can therefore mate k1 with l2 in M′′′. This and
the symmetric case are the only new pairs in M′′′, after all pairs involving nodes in
Q1

A(f,t) and Q2
A(f,s) have been erased.

It remains to show that (Q′′′,M′′′) is an expansion proof.
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3.3.1. M′′′ is clause-spanning onQ′′′. This follows easily by the usual method of defining
a preimage of a clause p by cases, and then check thatM′′′ was constructed large
enough.

3.3.2. <Q′′′ is acyclic. This follows because the selected parameters which we identified
by θ were incomparable with respect to ≺Q′′ .

The expansion tree Q′′′ now has the form

Q′′
∃Q[Qf∧∼Qg]

P1 = [λz.∃xA(z, x)] [λz.∃xA(z, x)] = P2
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Q2
∃xA(f,x)

t

Q2
A(f,t)

Q2
∀x∼A(g,x)

a

Q∼A(g,a)

3.4. Eliminate the intermediate expansion and selection nodes.

This step finally achieves the expansion proof we were aiming for. Let Ps =
[λz.A(z, s)] and Pt = [λz.A(z, t)]. We obtain Q∼A(g,s) as Q∼A(g,s) = [a′ ← s]Q∼A(g,a)

and Q∼A(g,t) = [a ← t]Q∼A(g,a). We apply shallowing at Q1
∃xA(f,x), Q1

∀x∼A(g,x),

Q2
∃xA(f,x), and Q2

∀x∼A(g,x). Furthermore we apply θ = {[a′ ← s], [a ← t]} globally.
Of course, shallowing is not generally a sound operation at an inaccessible node, but
here replacing P1 and P2 by Ps and Pt leaves the shallow and deep formulas of the
tree internally consistent.

The structure of the full clauses not change, except that a few nodes have been erased
through shallowing. Therefore M′′′ remains clause-spanning. If one of erased nodes
appeared in M′′′ one has to apply deepening to the mated nodes. Note that these
mated nodes are outside Q∃Q[Qf∧∼Qg] and therefore do not increase the depth of the
tree below an equality expansion term.

The critical property we must check here is that <Q′′′′ is acyclic. But this follows
analogously to the previous arguments of that kind. We assume that there is a cycle
in <Q′′′′ and show that then there must have been a cycle already present in <Q′′′ .
One has to be careful in defining the preimage of a cycle: Ps, for example, may
map to s or P1, depending on whether the parameter free in Ps is free in s or P1.
However, once the problem is observed the details are straightforward. The cycle in
<Q′′′ would not have to be any longer than the assumed cycle in <Q′′′′ .
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Even though we made two (modified) copies of Q∼A(g,a), no new non-literalic negative
equality nodes have been created, since P was maximal with respect to <CQ.

4. P = [λz.∀xA]. This case is symmetric to the case of an existential quantifier.

Theorem 133 We can always transform a proof in H with inferences of the form

U,Pf ∧ ∼Pg
∃I

U,∃Q[Qf ∧ ∼Qg]

into one where all substitution terms P for such inferences are literalic.

Proof: Given anH deduction, we can translate it into an expansion proof. By Theorem 132
we can eliminate non-literalic expansion terms for expansion nodes with appropriate assertions.
We can then translate this new expansion proof back into an H deduction. Since expansion
terms become instantiation terms, all instantiation terms for formulas of the required form will
be literalic.

Remark 134 One has to be careful in interpreting this theorem. Even though P may be
literalic, Pf may not be a literal! This is possible in higher-order logic since P may be of the
form [λz.zt1 . . . tn], which is literalic. The following example shows that this lemma cannot be
extended.

Example 135 [p
.
= [p ∧ q]] ⊃ [p ⊃ q]. We interpret this formula in L (not L=) and give an

H-deduction for it.

p,∼p

∼p,∼q, q
∨I

∼p ∨ ∼q, q
∧I

p ∧ ∼[p ∧ ∼q],∼p, q
∃I : [λzz]

∃Q[Qp ∧ ∼Q[p ∧ q]],∼p, q
∨I

∃Q[Qp ∧ ∼Q[p ∧ q]], p⊃ q
∨I

[p
.
= [p ∧ q]]⊃ [p⊃ q]

It can be seen that, if the instantiation term for Q is constrained to be literalic, it must be
either [λzz] or [λz.∼z] in order to be able to prove the theorem. In both cases Q[p∧∼q] would
not be a literal.

Theorem 136 Cut-elimination does not hold in H=.
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Proof: Consider [p ∧ q]
.
= [p ∨ q]⊃ [p⊃ q]. Duplication will get us nowhere, since we have

to make use of p⊃ q. After two steps we have

D
∼[[p ∧ q]

.
= [p ∨ q]],∼p, q

∨I
∼[[p ∧ q]

.
= [p ∨ q]], [p⊃ q]

∨I
[p ∧ q]

.
= [p ∨ q]⊃ [p⊃ q]

There is no way in which the S
.
= rule can be applied such that PB and PA are in different

equivalence classes (notation from Definition 122), since P could not depend on its argument
(p ∨ q does not appear in the line except in the equality). Hence we must use cut to force p ∨ q
to appear. This completes the proof.

It turns out that p ∨ q by itself is a good candidate for the cut formula in the above coun-
terexample, and would also have been suggested by the algorithm in the proof of Theorem 141.
The final deduction we would obtain, and which is quite natural:

∼p, p, q
∨I

∼p, p ∨ q

∼p,∼q, q
∨I

∼[p ∧ q], q
S

.
=∼[p ∨ q],∼[[p ∧ q]

.
= [p ∨ q]], q

Cut
∼[[p ∧ q]

.
= [p ∨ q]],∼p, q

∨I
∼[[p ∧ q]

.
= [p ∨ q]], [p⊃ q]

∨I
[p ∧ q]

.
= [p ∨ q]⊃ [p⊃ q]

4.3 Translating Expansion Proofs into H=

Here an expansion proof is an expansion proof of the original assertion, where all the definitions
of equality have been expanded according to

A
.
= B =

def
∀q[qA⊃ qB]

Since equality is primitive in H= the translation algorithm from expansion proofs into H-
deductions must be modified. An equality in the statement of the theorem to be proven cannot
simply be instantiated in H=, but must be used according to the substitution rule and the
reflexivity axiom available. It turns out that this will require an elaborate modification of the
expansion tree before the translation process begins, which in itself is rather straightforward.

If one examines the expansion proof in which equality was instantiated, two questions arise:
how do we eliminate references to the selected parameter which comes from instantiating a
positive occurrence of equality, and how do we interpret the expansion terms of an existential
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quantifier which comes from instantiating a negatively occurring equality? These expansion
terms and selected parameters cannot have a direct analogue in the H-deduction, since the
expansion node does not correspond to an existentially quantified formula, and the selection
node does not correspond to a univerally quantified formula. Instead, they correspond to a
negatively and positively occurring equality, respectively.

These questions are answered in Lemma 139 and in the proof of Theorem 141. Lemma 139
intuitively states that the expansion proof can be modified such that all selection nodes which
correspond to a positively occurring equality will be instances of the reflexivity axioms when
translated into an H=-deduction. The proof of Theorem 141 shows that an expansion term P of
an expansion node corresponding to a negatively occurring equality, say ∼[A

.
= B] means that

we will substitute A for B in PB when translating into an H=-deduction.

We will have frequent occasion to use the expansion proof for A
.
= A, not only by itself

but as subtrees of larger expansion proofs. We call such an expansion tree an initial equality
tree. An additional condition on the mating ensures that the parameter selected for the hidden
universal quantifier is not used elsewhere.

Definition 137 An initial equality tree in (Q,M) is a subtree of an expansion proof (Q,M) of
the form

∀q[∼qA ∨ qA]

ql

∨

�
�
�
�

A
A

A
A

l′∼qlA l′qlA

such that (l′∼qlA
, l′

qlA
) ∈M, but ql does not occur in any expansion term in Q. Since ql also

does not occur free in Q, this means than neither l′∼qlA
, nor l′

qlA
occur elsewhere inM.

Theorem 138 Let eqsel((Q,M)) be the set of parameters selected at selection nodes with
shallow formula of the form ∀q[qA⊃ qB], where q not free in A or B. Then for any expansion
proof (Q,M) for U there exists an expansion proof (R,N ) for U such that no parameter in
eqsel((R,N )) is free in any expansion term occurring in R.

Proof: The proof will be entirely constructive, thus giving an algorithm for construction
(R,N ) given (Q,M).

The proof is easier to understand if we often write the uninstantiated form of equality. Note,
however, that this does not affect the expansion tree itself due to the convention that formulas
which can be obtained from each other by instantiating definitions are equivalent.
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We show how to eliminate occurrences of the parameter selected for one expansion node with
shallow formula ∀q[qA⊃qB] (note: q not free in A or B). By induction on the number of such
selection nodes it follows that all occurrences of such parameters may be eliminated.

Pick such node Q0 with shallow formula ∀q[qA⊃qB]. Q0 could be a leaf, or a selection node.
If it is a leaf, we are done, because there is no selected parameter for this positive occurrence of
equality. If Q0 is a selection node, its two immediate subtrees must be leaves, since their shallow
formulas are literals. For simplicity, let us assume the selected parameter for q is also called q.

There are two cases to consider.

If the deep formula of such a node is ∼qA ∨ qB and Q∼qA was M-mated to QqB, we leave
this pair in the mating, but try to eliminate any other mated pairs in M containing Q∼qA or
QqB. Note that this case implies that A is equal to B, i. e., they are in the same formula
equivalence class.

If the deep formula of such a node is ∼qA∨qB, where Q∼qA and QqB are notM-mated, we
try to eliminate the selection node Q0 and replace it by a leaf with the same shallow formula.
This means that the selected parameter q disappears from the expansion proof.

To eliminate q, let us first note that q cannot be free in Q because of the restrictions on
expansion proofs (see Definition 45).

Because of the asymmetry in the definition of equality, there are two ways of eliminating q
from expansion terms. See Remark 140 for some heuristics on how to decide which one to use
in real proof transformation situations.

We are now trying to construct an expansion proof (Q′,M′) in which q does not appear in
any expansion term. To construct Q′ we can either apply the substitution

q← [λx.A
.
= x]

or the substitution

q← [λx.∼x
.
= B]

We will only prove that the first alternative is correct — the proof for the second alterna-
tive is symmetric. A heuristic for making the choice between the substitutions is discussed in
Remark 140.

As a notational convention, we write N ′ for the node in Q′ corresponding to N in Q.

M′ is obtained from M by replacing some of the mated pairs. Note that M′ will have
exactly as many elements asM did.

In the deep formula of Q every literal with lS = qA becomes l′ with l′S = [λx.A
.
= x]A =

[A
.
= A].

Let L be the set of leaves M-mated to QnA. Certainly, for l ∈ L, lS = qA. Therefore
l′S = [A

.
= A] = [∀q.∼qA∨ qA]. We select a new parameter ql for this new node and replace it

by an initial equality tree.



4.3. Translating Expansion Proofs into H= 84

∀q[∼qA ∨ qA]

ql

∨
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�

A
A

A
A

l′∼qlA l′qlA

In M′ we replace every pair (l, Q∼qA) ∈ M by (l′∼qlA
, l′

qlA
). Call the set of all new literals

Lnew and call l the ancestor of l′∼qlA
and l′

qlA
.

Every literal with lS = ∼qB becomes l′ with l′S = ∼[λx.A
.
= x]B = ∼[A

.
= B].

Let K be the set of leavesM-mated to QB. For every k ∈ K we replace the pair (k,QqB) ∈
M by (k′, Q0′) to obtainM′. Recall that Q0 was the original selection node with shallow formula
A

.
= B and can therefore be mated to k′ with shallow formula ∼[A

.
= B].

Now that we have described how to obtain (Q′,M′) we have to prove that it is an expansion
proof for U .

First note that QS = Q′S, because the q was not free in QS.

Thus it remains to show thatM′ spans every full clause on Q′ and that <Q′ is acyclic.

1. M′ spans every full clause on Q′.

Let p′ be a full clause through Q′. Let p be the preimage of p′ on Q defined as follows.

If p′ contains Q0′, p contains Q∼qA, QqB, and Q0. If p′ contains some new lnew ∈ Lnew, p
contains the corresponding ancestor l.

By assumption we know that p was spanned by a pair (l, k). There are four cases to
consider.

1.1. If both l and k are distinct from Q∼qA and QqB, then (l′, k′) ∈M′ and p′ is spanned
byM′.

1.2. If p is spanned by the pair (Q∼qA, QqB), p′ will still be spanned by the corresponding
pair (Q′

∼qA, Q′
qB).

1.3. If p is spanned by a pair (l, Q∼qA), l distinct from QqB, then (l, Q∼qA) was replaced
by a pair (l′∼qlA

, l′
qlA

). Both of these literals have to be on p′ and therefore p′ is
spanned byM.

1.4. If p is spanned by a pair (k,QqB), k distinct from Q∼qA, then (k,QqB) was replaced
by (k′, Q0′). By the construction of p, both k′ and Q0′ have to be on p′, and hence p′

is spanned byM.



4.3. Translating Expansion Proofs into H= 85

2. <Q′ is acyclic.

Recall that t <0
Q′ s if there is a parameter selected for a node below t which is free in s,

and that <Q′ is the transitive closure of <0
Q′ .

The proof is by contradiction. We assume that there is a cycle t′1 <0
Q′ t′2 <0

Q′ · · · <0
Q′ t′n = t′1.

We will construct a cycle in <Q, which contradicts the assumption that (Q,M) is an
expansion proof.

Let ti stand for the expansion term (occurrence) in Q corresponding to t′i in Q′.

If q is not free in any ti we are done, because then t1 <0
Q t2 <0

Q · · · <0
Q tn = t1 which is a

contradiction.

Otherwise, we pick a term with an occurrence of q. Without loss of generality, let it be
t2(q). If we can show that t1 <Q t2 it follows by induction on the number of ti with q free,
that t1 <Q t2 <Q · · · <Q tn = t1 which would be a contradiction.

t′2 is of the form t2([λx.x
.
= A]). Since t′1 <0

Q′ t′2, there must be parameter free in t′2 which
is selected below t′1.

If this parameter occurs free in t′2 outside A, we are done, since then it also appears free
in t2.

Then t′2 is of the form t2([λx.A(c)
.
= x]) for some parameter c which is selected below t1.

A(c) is also free below the selection node Q0 with selected parameter q (its deep formula
being ∼qA ∨ qB). Now we have to consider two cases:

2.1. c is selected above Q0. This means that q is selected below t1, since c was assumed
to be selected below t1. Hence by definition t1 <0

Q t2(q).

2.2. c is free in some expansion term s(c) above Q0. Then, by definition, s(c) <0
Q t2(q),

since q is free in t2 and q is selected below s(c). But c is free in s(c) and selected
below t1 and therefore also t1 <0

Q s(c). Since <Q is the transitive closure of <0
Q,

t1 <Q t2(q). But this is the contradiction we were looking for.

In order to complete the overall induction we have to show that while eliminating occurrences
of q in expansion terms, we do not introduce occurrences of other equalities whose selected
parameter occurs in expansion terms. But that is easy to see, since there the only new expansion
term were obtained by substituting for q in existing ones, and the new substitution term does
not contain any new selected parameters.

Lemma 139 Let (Q,M) be an expansion proof for U such that no parameter in eqsel((Q,M))
occurs in an expansion term in Q. Then there exists an expansion proof (R,N ) for U such that
all subtrees with shallow formula ∀q[qA ⊃ qB] either have the form of an initial equality tree,
or are leaves of R.
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Proof: Since q can not occur free in Q (since it is selected), qA and qA can not be mated
to any other node except to each other. If they are mated to each other, the subtree will be an
initial equality tree. If they are not mated at all, the subtree can be replace with a leaf with the
correct shallow formula without invalidating the expansion proof.

Remark 140 In the algorithm which proved Theorem 138 we had a choice between a positive
and a negative substitution for a selected parameter q. This choice will affect the H= deduction
constructed from the expansion proof, and therefore must be made with care. A good heuristic
may be to choose the “most positive” replacement of of q. If q appears positively, replace it by
the positive term, if it appears negatively, replace it by the negative term. Of course, sometimes
q will occur positively and negatively, in which case counting positive and negative occurrences
may extend the heuristic. Another heuristic would try to minimize the number of occurrences
of formulas of the form A

.
= A in the final expansion proof. Uses of axioms of the form A

.
= A

in an H= deduction often look clumsy and it may therefore be a good strategy to avoid them
as much as possible.

Theorem 141 Let U be a multiset of equivalence classes of formulas in the language L=, and
let (Q,M) be an expansion proof for U . Then there exists a deduction in H= of U .

Proof: The proof is entirely constructive and thus gives a translation procedure from
expansion proofs into H= deductions.

The invariant of other translation procedures presented earlier (see, for example, Algo-
rithm 77) was that the multiset of shallow formulas immediately below the root of the expansion
proof was equal to the multiset of formulas in the assertion of the H-deduction.

This no longer holds, since the language of H-deductions is an extension of the language for
expansion proofs. Rather, we say that the multiset of shallow formulas immediately below the
root of the expansion proof and the assertion of the H= deduction are equal up to instantiation
of equality symbols.

Given a H=-deduction for U= and an expansion proof for U , we denote the L= formula in
U= corresponding to the L formula A in U by A=.

Now we describe the translation algorithm.

By virtue of Theorem 138 we may assume that no expansion term in (Q,M) contains a
parameter selected for a node with shallow formula ∀q[qA⊃ qB].

Be Lemma 139 we may also assume that all subtrees with shallow formula A
.
= B either

have the form of initial equality trees, or are leaves of Q.

All of the steps given in Algorithm 77 remain the same, if applicable. It remains to discuss
three additional situations:

1. L = U,A
.
= A such that QA

.
=A has the form of an initial equality tree (see 137). In this

case we may apply rule R
.
= and L is initial.
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2. L = U,A
.
= B such that the previous case does not apply. Note that in this case, QA

.
=B

must be a leaf of Q. Here we do not add any new transformations.

3. L = U,∼[A
.
= B] such that Q∼[A

.
=B] = Q∃P[PA∧∼PB] is an expansion node with 2 or more

expansion terms. Then we apply split just as in case 5 of Algorithm 77. L is then inferred
by

U,∼[A
.
= B],∼[A

.
= B]

C
U,∼[A

.
= B]

where each of the two new subnodes with shallow formula ∼[A
.
= B] has fewer expansion

terms.

4. L = U,∼[A
.
= B] such that Q∃P[PA∧∼PB] has exactly one expansion term P, and P is

admissible. From looking at Example 135 and Theorem 136 it is clear that we will have
to introduce a cut sometimes.

Let us follow Algorithm 77 to create an H-deduction. If we commit ourselves to using
case 6 (∃I), followed by case 7 (∧I), we obtain the following H-deduction (for some UPA

sufficient for PA and some U∼PB sufficient for ∼PB):

UPA,PA U∼PB,∼PB
∧I

UPA, U∼PB,PA ∧ ∼PB
C

U,PA ∧ ∼PB
∃I : P

U,∃Q[QA ∧ ∼QB]

Thus Algorithm 77 will give us two new expansion proofs for UPA,PA and U∼PB,∼PB.
Call them (QPA,MPA) and (Q∼PB,M∼PB), respectively.

In the system H=, where
.
= is primitive, we use Cut and S

.
= instead of of ∃I and ∧I, but

we achieve the same subdeductions. Infer L by

UPA,PA
S

.
=

UPA,∼[A
.
= B],PB ∼PB, U∼PB

Cut
UPA,∼[A

.
= B], U∼PB

C
U,∼[A

.
= B]

The algorithm above can be significantly improved in order to avoid the use of cut in many
cases. The inherent asymmetry in the substitution prevents the system from being cut-free,
even in the first-order restriction. However, if we introduce a new rule which substitutes the
right-hand side of the equality for the left-hand side instead of vice versa, the resulting system
H∗ is cut-free in the first-order case. That this extension is really necessary will become clear
in Example 148.
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Definition 142 Let H∗ be like H= augmented with the following dual to the substitution rule

U,PB
S∗ .

= : A
.
= B,PA,PB

U,∼[A
.
= B],PA

The following theorem shows an important subcase in which we do not have to introduce a
cut into the H∗ deduction.

Lemma 143 Given an expansion proof (Q,M) for U,∼[A
.
= B] such that Q∃P[PA∧∼PB] has

exactly one expansion term P, Q∼PB is a leaf of Q, and QPA is either a leaf or an initial equality
tree in (Q,M). Then there is an H=-deduction where this occurrence of ∼[A

.
= B] is inferred

without the use of cut.

Proof: The idea of the proof is that either the expansion term P is unnecessary or Q∼PB is
M-mated to at least one other node in Q. In the second case we delay the attempt to apply the
substitution rule until one of the nodes mated to it appears as an element of the assertion in the
deduction. Let us assume that Q[PA∧∼PB] is not mated, otherwise apply deepening to achieve
that it is not mated. Not all the following cases are exclusive, that is, sometimes more than one
transformation may be applied in order to obtain a cut-free application of substitution.

1. Q∼PB is not M-mated. Every full clause through Q∼PB is spanned by M. But then
every full clause through QPA will also be spanned by M without involving a node in
QPA, simply choose the pair which spanned the parallel clause through Q∼PB. Hence no
subtree of Q∃P[PA∧∼PB] is mated, and therefore P is unnecessary. This means that it will
never be used as an equality for substitution, as can be seen by checking the proof of
Theorem 141.

2. Q∼PB has at least onM-mate. Note that P is maximal with respect to <Q, that is, there
is no parameter selected below P which is free in any other substitution term. If QPA is a
leaf, this follows immediately, if QPA is an initial equality tree it follows because the only
parameter selected below P is not free in any other expansion term in Q by definition of
initial equality tree. Since P is maximal, there will never be a point where all top-level
nodes in (Q,M) are existential with P the only minimal expansion term. Hence we can
proceed with Algorithm 141 until we have reached a point where we have an expansion
proof (Q′,M′) for a line either of the form U ′,∼[A

.
= B] such that P is unnecessary, or

U,∼[A
.
= B],PB. In the first case we are done, in the second case we can apply S

.
=

immediately. This follows from Algorithm 77 by the observation that PB is sufficient (in
the sense of Definition 71) for P. Thus one may infer (in H!)

U ′,PA ∼PB,PB
∧I

U ′,PA ∧ ∼PB,PB
∃I : P

U,∃Q[QA ∧ ∼QB],PB
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Thus Algorithm 77 yields a new expansion proof (Q′′,M′′) for U ′,PA. Hence we can use
substitution directly in H= and infer

U ′,PA
S

.
=

U ′,∼[A
.
= B],PB

and let (Q′′,M′′) be the new expansion proof for U ′,PA.

Lemma 144 Given an expansion proof (Q,M) for U,∼[A
.
= B] such that Q∃P[PA∧∼PB] has

exactly one expansion term P, QPA is a leaf of Q, and Q∼PB is either a leaf or an initial equality
tree in (Q,M). Then there is an H=-deduction where this occurrence of ∼[A

.
= B] is inferred

without the use of cut.

Proof: The proof is dual to the proof of Lemma 143. We will just indicate the crucial step
where we need the rule S∗ .

=. If QPA has at least one mate, one may infer in H (eventually)

U ′,∼PB PA,∼PA
∧I

U ′,PA ∧ ∼PB,∼PA
∃I : P

U,∃Q[QA ∧ ∼QB],∼PA

Therefore we get in H∗:

U ′,∼PB
S∗ .

=
U ′,∼[A

.
= B],∼PA

Remark 145 It follows that in the first-order fragment, the system H∗ is cut-free, using The-
orem 132 and Lemmas 143 and 144.

Theorem 146 Given an expansion proof (Q,M) with a node Q∼[A
.
=B]. If Q∼[A

.
=B] has exactly

one expansion term P, and P = [λx.A
.
= x] or P = [λx.∼[x

.
= B]] then one may eliminate the

expansion term P from (Q,M).

Proof: This is somewhat different from the usual methods for eliminating expansion terms.
Usually one shows that the term is unnecessary and then erases it and the tree below it from Q.
Here we note that either PA or PB has exactly the same shallow formula as Q∼[A

.
=B]. Again

we assume that Q[PA∧∼PB] has noM-mates. Let us only treat the case the P = [λx.A
.
= x], the

other case is symmetric. Then QPA can be transformed into an initial equality tree in Q. (see
the proof of Theorem 138). In particular we can achieve that QPA does not occur in M. Now
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we obtain Q′ by replacing Q∼[A
.
=B] by Q∼PB. Note that they have the same shallow formula,

namely ∼[A = B] which is equivalent to ∃Q[QA ∧ ∼QB]. M′ is obtained by deleting the pair
from the initial equality tree QPA and substituting Q∼PB for Q∼[A

.
=B] elsewhere. Every full

clause through Q∼PB remains spanned. It is also easy to see that <Q′ is acyclic, since no new
pairs are added to <0

Q.

In the following examples we will replace a selection, expansion, or leaf node with its shallow
formula to increase the legibility of the expansion tree. Thus, for example, we write ∃Q[Qa ∧
∼Qb] instead of Q∃Q[Qa∧∼Qb].

Example 147 a
.
= b⊃ [Pa⊃ Pb].

This is almost the simplest possible example. The obvious expansion proof for this theorem
is

∨

�
�

�
�

@
@

@
@

∃Q[Qa ∧ ∼Qb]

P

∧

�
�
�
�

A
A

A
A

Pa ∼Pb

∨

�
�
�
�

A
A

A
A

∼Pa Pb

If we apply the improved algorithm for translating this into H=, we do not have any non-
deterministic choices. The resulting deduction is a natural one. Note that we make use of our
convention that formulas with a definition (here ⊃) are equivalent to their “instantiated” form.
Therefore we do not need any explicit rules to convert implications into disjunctions or vice
versa.

∼Pa, Pa
S

.
=∼a

.
= b,∼Pa, Pb

∨I
∼a

.
= b, Pa⊃ Pb

∨I
a

.
= b⊃ [Pa⊃ Pb]

Note that we did not have any choice, since according to the proof of Lemma 143 we have
to wait before applying S

.
=, even though the substitution term P is admissible in the line with

assertion ∼a
.
= b, Pa⊃ Pb.
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Example 148 a
.
= b⊃ b

.
= a.

This example is interesting for two reasons. First of all we will have to apply Theorem 138
to eliminate the parameter selected for b

.
= a from the expansion term for a

.
= b. Secondly, we

will recover an intuitionistically valid proof when performing this step.

The expansion proof we assume has the simplest expansion term for a
.
= b, since it con-

tains only a negation. After eliminating parameters selected for equality the complexity of the
expansion term is much greater: it contains an existential quantifier and an implication.

The original expansion proof is

∨

�
����

�
�

�

H
HHHHH

H
H

∃P[Pa ∧ ∼Pb]

[λx.∼qx]

∧

�
�
�
�

A
A

A
A

∼qa qb

∀Q[Qb⊃Qa]

q

∨

�
�
�
�

A
A

A
A

∼qb qa

Now, following the proof of Theorem 138, we have a choice. Let us assume that we substitute
q← [λx.b

.
= x]. Then the expansion proof becomes



4.3. Translating Expansion Proofs into H= 92

∨

�
�

�
�

@
@

@
@

∃P[Pa ∧ ∼Pb]

[λx.∼[b
.
= x]]

∧

�
�
�
�

A
A

A
A

∼b
.
= a b

.
= b

q′

∨

�
�
�
�

A
A

A
A

∼q′b q′b

b
.
= a

The H= deduction we obtain with the improved algorithm again turns out to be a natural
one.

b
.
= b

S∗ .
=∼[a

.
= b], b

.
= a
∨I

a
.
= b⊃ b

.
= a

Notice that here the use of S∗ .
= is essential. If it were not available, we would have had to

use cut and we would have been left with the following deduction

b
.
= a,∼[b

.
= a]

S
.
=

b
.
= a,∼[a

.
= b],∼[b

.
= b] b

.
= b

Cut
∼[a

.
= b], b

.
= a
∨I

a
.
= b⊃ b

.
= a

However, in this particular example we could have chosen the other substitution term for
q, namely q ← [λx.∼[x = a]]. This would have given us a different expansion proof and
consequently a different H∗ deduction. For this different expansion proof it would not have
been necessary to use S∗ .

=, but it cannot always be avoided. The deduction would then have
been:
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a
.
= a

S
.
=∼[a

.
= b], b

.
= a
∨I

a
.
= b⊃ b

.
= a

Remark 149 This translation also can recover constructive contents in classical proofs. For
example, the initial expansion proof of the symmetry of equality (see Example 148) is not intu-
itionistically valid (when translated into an H-deduction). However, the transformed expansion
proof given in the example yields an intuitionistically valid proof of the symmetry of equality.

Example 150 a
.
= b ∧ b

.
= c⊃ a

.
= c.

In this example we will make use of Theorem 146 to simplify the expansion proof. This will
allow us to obtain a nice H= deduction.

The original expansion tree is

∨

�
����

���

HHHH
HHHH

∨

�
�

�
�

@
@

@
@

∃P[Pa ∧ ∼Pb]

[λx.qx]

∧

�
�
�
�

A
A

A
A

qa ∼qb

∃P[Pb ∧ ∼Pc]

[λx.qx]

∧

�
�
�
�

A
A

A
A

qb ∼qc

∀Q[Qa⊃Qc]

q

∨

�
�
�
�

A
A

A
A

∼qa qc

Again, we have two choices for the substituent for q. Let us use q← [λx.a
.
= x]. Then the

expansion tree becomes
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∨

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

∨

�
�

�
�

@
@

@
@

∃P[Pa ∧ ∼Pb]

[λx.a
.
= x]

∧

�
�
�
�

A
A

A
A

a
.
= a ∼[a

.
= b]

∃P[Pb ∧ ∼Pc]

[λx.a
.
= x]

∧

�
�
�
�

A
A

A
A

a
.
= b ∼[a

.
= c]

a
.
= c

where the tree at node a
.
= a is an initial equality tree in Q.

Now we note that the conditions of Theorem 146 are satisfied for the node Q∃P[Pa∧∼Pb].
Applying that theorem means to replace that node by the leaf with the same formula which is
below it. This results in the following simplified expansion tree

∨

�
����

���

HHHH
HHHH

∨

�
�

�
�

@
@

@
@

∼[a
.
= b] ∃P[Pb ∧ ∼Pc]

[λx.a
.
= x]

∧

�
�
�
�

A
A

A
A

a
.
= b ∼[a

.
= c]

a
.
= c

The resulting H=-deduction is
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∼a
.
= b, a

.
= b

S
.
=∼[a

.
= b],∼[b

.
= c], a

.
= c

∨I
∼[a

.
= b] ∨ ∼[b

.
= c], a

.
= c
∨I

a
.
= b ∧ b

.
= c⊃ a

.
= c



Chapter 5

Adding Extensionality

The extension of expansion proofs to be complete for an extensional higher-order logic is fun-
damentally different from the extension in the previous chapter to deal with equality. Equality
is definable and therefore we did not need to extend our notion of expansion proof. Rather we
showed how to translate an expansion tree where equality was treated as defined into a deductive
system where equality was primitive.

The situation with extensionality is fundamentally different, since the set of theorems
changes. Moreover, since extensionality is a theorem schema (parameterized over types) it
is not possible to consider the problem as one where we try to show A ⊃ B, where A is a new
axiom and B is to be proven assuming A. We therefore need to extend our notion of expan-
sion proof to directly include extensionality. Ideally, we would have a new kind of node, call it
extensionality node, which somehow serves to represent an application of extensionality.

It turns out that this desired generalization of expansion trees can be done very cleanly. We
will first present a cut-free deductive system similar to the one introduced by Takahashi [37]
which was also used by Takeuti [40]. Both present proofs that the system described below is
cut-free. However, the proofs are non-constructive and neither offers a concrete cut-elimination
algorithm.

5.1 The System He

One has to be careful when defining He, if one wants the resulting system to be cut-free. We
also would like to consider extensionality separately from equality, since equality is definable
and not a primitive in H or in expansion trees. Takahashi has a similar system; it differs in that
he uses sequents instead of multisets of formulas in a Tait-style inference system.

Formulated as axioms, the extensionality axiom schemas fall into two categories, one for
functional types, and one for propositional types. Function types are of the form ια1 . . . αn for
a base-type ι, propositional types are of the form oα1 . . . αn, where o is the type of propositions.
Propositional types includes propositions, sets, and n-ary relations; functional types include

96
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everything else. Remember that
.
= is not primitive, but merely an abbreviation. We thus have

the following axiom schemata (for n ≥ 0):

Eoα1...αn : ∀x1
α1

. . . ∀xn
αn

[[px1 . . . xn] ≡ [qx1 . . . xn]]⊃ p
.
= q

Eια1...αn : ∀x1
α1

. . . ∀xn
αn

[[px1 . . . xn]
.
= [qx1 . . . xn]]⊃ p

.
= q

The cut-elimination theorem no longer holds when the axioms are restricted to the cases
n = 1 and n = 0, though the logical system with cut remains complete.

We would like to have a unified notation for functional and propositional types. Here, and
in the remainder of this chapter, let f and g stand for arbitrary formulas in L of the correct
type, which is determined by the context.

Definition 151 Let fγ and gγ be given. Then we define E(f, g) by cases.

1. γ is a functional type of the form ια1 . . . αn. Then

E(f, g) =
def
∀x1

α1
. . . ∀xn

αn
[[fx1 . . . xn]

.
= [gx1 . . . xn]]

where none of the xi
αi

is free in f or g.

2. γ is a propositional type of the form oα1 . . . αn. Then

E(f, g) =
def
∀x1

α1
. . . ∀xn

αn
[[fx1 . . . xn] ≡ [gx1 . . . xn]]

where none of the xi
αi

is free in f or g.

Then the extensionality axiom reads

Eγ : E(f, g)⊃ fγ
.
= gγ

Instead of using an axiom schema, we will follow Takahashi and introduce an extensionality
rule. In order for the system to remain cut-free, one has to allow “simultaneous” application of
extensionality in the arguments of a property. Note, however, that P may not be literalic (see
Definition 131).

Extensionality Rule

U,E(f 1, g1) ∧ . . . ∧ E(fn, gn)
Ext

U,∼Pf 1 . . . fn,Pg1 . . . gn

We will call the system which contains all rules of H plus the extensionality rule He.
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5.2 Extensional Expansion Proofs

We first define extensional expansion trees by adding another case to the definition of expansion
tree (see 35). Then we amend the definition of a full clause to take extensionality nodes into
account. Finally we define notion of extensional expansion proof by combining these two.

Definition 152 An extensional expansion tree is an expansion tree with an additional type of
node, an extensionality node. We thus change cases 1 through 5 of Definition 35 by replacing
“expansion tree” by “extensional expansion tree” and add the following case:

6. If Q0 is an extensional expansion tree with shallow formula Pf1 . . . fn and Q1, . . . Qn is
are extensional expansion trees with shallow formulas E(f1, g1), . . . , E(fn, gn), respectively,
then

Q

Ext . . .

����
����

HHHH
HHHH

Q0 Q1 Qn

is an extensional expansion proof with QS = Pg1 . . . gn and QD = Pf1 . . . fn ∧ E(f1, g1) ∧
· · · ∧ E(fn, gn).

In order to increase the legibility we will as usual write the shallow formula of an extension-
ality node instead of the name of the node itself.

Definition 153 A full clause in an extensional expansion tree is defined as in Definition 39
with the following additional case.

6.

Q =

Pg1 . . . gn

Ext . . .

���
�����

HH
HHHHH

H

Q0 Q1 Qn

Then for any full clause c in some Qi, the list 〈Q〉@c is a full clause in Q.
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5.3 Translating Extensional Expansion Proofs into He

In this section we will establish soundness of extensional expansion proofs relative to He. Algo-
rithm 77 remains basically intact, except that we have to add a case for extensionality nodes in
Q.

Algorithm 154 Under the assumption that QPg1...gn is single (that is notM-mated), we have
the following new case

8. L = U,Pg1 . . . gn such that QPg1...gn is an extensionality node in Q. Then we infer L by

U1,Pf1 . . . fn

E(f1, g1) ∧ · · · ∧ E(fn, gn), U2

Ext
∼Pf1 . . . fn,Pg1 . . . gn, U

2

Cut
U1, U2,Pg1 . . . gn

C
U,Pg1 . . . gn

Here U1 and U2 are multisets of formulas which are sufficient for Pf1 . . . fn and Pg1 . . . gn,
respectively. Since QPg1...gn is single, these sufficient sets exist, perhaps not uniquely.
This can be seen by applying Lemma 72 after observing that (Q∗,M) is an expansion
proof for U,Pf1 . . . fn ∧ [E(f1, g1)∧ · · · ∧E(fn, gn)]. Here Q∗ is the result of replacing the
extensionality node QPg1...gn by a conjunction node with the same successors. QPg1...gn is
accessible and single, so this is a legal operation. Moreover, by definition, it has the same
full clauses, if QPg1...gn is removed. But since QPg1...gn was not M-mated, every path is
still closed.

This argument also shows how to obtain new expansion proofs (Q′,M′) for U1,Pf1 . . . fn

and (Q′′,M′′) for U2, E(f1, g1) ∧ · · · ∧ E(fn, gn).
Namely, (Q′,M′) = ∧E1(Q

∗
Pf1...fn∧[E(f1,g1)∧···∧E(fn,gn)], U

1, (Q∗,M)) and

(Q′′,M′′) = ∧E2(Q
∗
Pf1...fn∧[E(f1,g1)∧···∧E(fn,gn)], U

2, (Q∗,M)). It is easy to check that these
have the correct shallow formulas.

Theorem 155 If (Q,M) is an extensional expansion proof for U , then there is an He deduction
for U .

Proof: By Algorithm 154. Since (Q′,M′) (Q,M) and (Q′′,M′′) (Q,M) in case 8 of
the algorithm, termination will be assured by the well-founded ordering .
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5.4 Translating from He into Extensional Expansion

Proofs

Let us give the algorithm for translating cut-free deductions in H into extensional expansion
proofs. Cuts can be eliminated from He deductions. A proof of the cut-elimination theorem
can be found in Takeuti [40] and was anounced earlier by Takahashi [37]. However, the proofs
are non-constructive. A constructive proof of cut-elimination in the intuitionistic type theory
was given by a student of Gandy’s in his thesis [42]. It may be interesting to determine if that
result carries over to classical logic.

Algorithm 156 This algorithm follows the pattern of Algorithm 87 except that we have to
add another case, where D ends in an extensionality inference.

7. D =
U,E(f1, g1) ∧ · · · ∧ E(fn, gn)

Ext
U,∼Pf1 . . . fn,Pg1 . . . gn

.

Here we construct a new expansion tree R from Q. Given

Q =

∨

�
�

�
�

@
@

@
@

Q|U QE(f1,g1)∧···∧E(fn,gn)

then R =

∨

���
�����

HHHH
HHHH

Q|U QPg1...gn

Ext . . .

�
�

�
�

@
@

@
@

lPf1...fn E(f1, g1)E(fn, gn)

l∼Pf1...fn

Here lPf1...fn and l∼Pf1...fn are leaves of R. N =M∪ {(lPf1...fn , l∼Pf1...fn)}.

Theorem 157 If D is an He deduction for U , then there is a extensional expansion proof
(Q,M) for U .

Proof: By Algorithm 156.
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5.5 Translation Improvements

Even though Algorithm 154 establishes the soundness of extensional expansion proofs, it is
unsatisfactory for practical purposes. The main drawback of the given translation is that it
introduces a cut, where it is often inelegant. Unlike the system H=, He is cut-free and we can
therefore always avoid the use of cut.

A simple refinement is similar to the refinement of Algorithm 141 which translates expansion
proofs to H=-deductions. The basic underlying idea is the same: if Pf1 . . . fn is a leaf of Q,
then either it is unnecessary, or we can defer applying the extensionality inference until one of
its mates is part of U . Then we can apply extensionality without the detour of a cut.

Algorithm 158 Assume that every extensionality successor of an extensionality node in an
extensional expansion proof (Q,M) for U is a leaf of Q. Then there is a cut-free He-deduction
of U .

We replace Case 8 in Algorithm 154 with the following case

8. L = U,∼Pf1 . . . fn,Pg1 . . . gn such that QPg1...gn is an extensionality node in Q with ex-
tensionality successor Q∼Pf1...fn . Then we infer L by

D =
U,E(f1, g1) ∧ · · · ∧ E(fn, gn)

Ext
U,∼Pf1 . . . fn,Pg1 . . . gn

We do not give a complete proof here, but simply indicate how a correctness proof could
proceed.

The critical step in proving correctness of this refined algorithm is to show that at least one
of the cases will always be applicable. First we transform Q to an expansion tree such that no
l depends on any of its mates.

Then we distinguish cases.

1. QPf1...fn is not M-mated. Since every full clause through Q is spanned by M, every full
clause through QPf1...fn is spanned by some pair (l, k). This same pair will then also span
every full clause through QE(fi,gi) for 1 ≤ i ≤ n. Therefore we can erase the whole tree
below QPg1...gn and convert it into a leaf with the same shallow formula. This modified
expansion tree remains an expansion proof with the same shallow formula. Hence we will
never need to apply extensionality to the given occurrence Pg1 . . . gn.

2. QPf1...fn isM-mated. Let k be a minimal (with respect to <Q extended to literals) mate of
QPf1...fn . By assumption either QPg1...gn will be unnecessary, other inferences are possible,
or the line has the form U ′,∼Pf1 . . . fn,Pg1 . . . gn.
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Clearly, this method cannot be extended to the case where the extensionality successor is not
a leaf. If the extensionality successor is not a leaf, one cannot defer applying the extensionality
rule since its complement may not even appear in the expansion proof.

The only avenue open here is to somehow transform the deduction into one where all ex-
tensionality successors are leaves. It is not clear whether this is of practical value for providing
a translation algorithm from extensional expansion proofs to He deductions, since the use of
cut in such cases actually seems quite natural. However, this transformation would provide a
completeness proof for a search procedure where one only creates an extensionality node from
a leaf, where the extensionality successor is a leaf already present and shares a path with the
extensionality node.

As a first step we establish that it is sufficient if we restrict ourselves to literalic P.

Definition 159 We call an extensionality node literalic if its shallow formula is of the form
Pg1 . . . gn, the extensionality successor is of the form Pf1 . . . fn, and P is literalic.

Theorem 160 Given an extensional expansion proof (Q,M) for U . Then there is an exten-
sional expansion proof (Q′,M′) for U such that all extensionality nodes are literalic.

Proof: We will show how to eliminate any given non-literalic extensionality node in favor
of several literalic ones. This will be done without creating new ones in the rest of Q, so the
theorem follows by induction on the number of non-literalic extensionality nodes. However, the
order in which we eliminate the non-literalic extensionality nodes is important. At each stage
we eliminate some extensionality node which is minimal with respect to ≺≺.

The proof that any given non-literalic extensionality node can be eliminated is by induction
on the depth of the expansion proof below the extensionality node. It follows a pattern similar
to the proof of Theorem 132, but is somewhat simpler. First note that we may assume that P
is of the form [λx1 . . . λxn.Ao(x1, . . . , xn)]. This is true since there is always a wff A such that
Pg1 . . . gn = [λx1 . . . λxn.Ao(x1, . . . , xn)]g1 . . . gn.

1. P = [λx1 . . . λxn.A(x1, . . . , xn) ∧B(x1, . . . , xn)]. Then QPg1...gn has the form

QA(g1,...,gn)∧B(g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QA(f1,...,fn)∧B(f1,...,fn) E

where E stands for the tree

∧

. . .

�
�

�
�

@
@

@
@

QE(f1,g1) QE(fn,gn)
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Here we change the extensionality node into a conjunction node, introducing two new
extensionality nodes, but with a simpler form of P.

∧

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

QA(g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QA(f1,...,fn) E

QB(g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QB(f1,...,fn) E

The new tree Q′ has the same shallow formula, namely A(g1, . . . , gn)∧B(g1, . . . , gn). Since
we are copying E we will have to rename selected parameters and double some expansion
terms. Since QPg1...gn was chosen ≺≺Q-minimal, no other non-literalic expansion terms will
be doubled (as in the proof of Theorem 132).

M′ is likeM, except for the possible duplication of some pairs. It is easy to see thatM′

is clause-spanning.

2. P = [λx1 . . . λxn.A(x1, . . . , xn) ∨B(x1, . . . , xn)]. Then QPg1...gn has the form

QA(g1,...,gn)∨B(g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QA(f1,...,fn)∨B(f1,...,fn) E

Here we change the extensionality node into a disjunction node, introducing two new
extensionality nodes, but simpler than P.

∨

����
����

HHHH
HHHH

QA(g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QA(f1,...,fn) E

QB(g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QB(f1,...,fn) E

As in the previous case, the shallow formula stays the same. Also, we will again have to
duplicate because of renaming of the parameters selected in the two copies of E.

The new matingM′ is obtained as in the proof of Theorem 132. It is clause-spanning.
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3. P = [λx1 . . . λxn.∀yA(y, x1, . . . , xn)]. Then QPg1...gn has the form

Q∀yA(y,g1,...,gn)

Ext

�
�

�
�

@
@

@
@

Q∀yA(y,f1,...,fn)

a

QA(a,f1,...,fn)

E

Again, we push down the application of extensionality.

Q∀yA(y,g1,...,gn)

a

QA(a,g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QA(a,f1,...,fn) E

Here we have to make sure that a is not free in any expansion term in E. This can be
achieved by duplication (see Lemma 129).

4. P = [λx1 . . . λxn.∃yA(y, x1, . . . , xn)]. Then QPg1...gn has the form (we assume without loss
of generality that Q∃yA(y,f1,...,fn) has at most two expansion nodes.

Q∃yA(y,g1,...,gn)

Ext

�
�

�
�

@
@

@
@

Q∀yA(y,f1,...,fn)

s t

�
�

�
�

@
@

@
@

QA(s,f1,...,fn) QA(t,f1,...,fn)

E

Again, we push down the application of extensionality.
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Q∃yA(y,g1,...,gn)

s t

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

QA(s,g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QA(s,f1,...,fn) E

QA(t,g1,...,gn)

Ext

�
�

�
�

@
@

@
@

QA(t,f1,...,fn) E

M′ is obtained like in the case of a disjunction node and is therefore clause-spanning.
Again, duplication of E requires renaming of some parameters, but without duplication
of other non-literalic extensionality nodes, since QPg1...gn was chosen ≺≺Q-minimal.



Chapter 6

Applications

The logical system H was well suited to demonstrate the role of expansion proofs with respect
to deductions. However, some useful applications of the algorithms and transformations are not
directly covered by the material presented in Chapters 3 and 4. These extensions are centered
around the observation that sequent-style systems like H are still not very well suited for the
human reader — natural deductions seem to fill this role best. The asymmetry between (possibly
many) assumptions and the single desired conclusion seem to be crucial and cannot be achieved
in the classical sequent calculus, where one may sometimes have to use several “conclusions”.

In this chapter we show how to apply the translation paradigms presented in previous chap-
ters to obtain natural deductions and also present significant extensions which are motivated by
the goal of achieving intuitive natural deductions. Part of this will be to use formulas directly
in natural deductions instead of equivalence classes of formulas we used in H.

First we define a system of natural deduction and show how expansion proofs may be trans-
formed into natural deductions by means of proof transformation tactics. Proof transformation
tactics are in the spirit of rule-based computation systems and provide a modular and succinct
way of describing the rules and heuristics governing the translations. The natural deduction
systems presented by Miller in [23] and [22] used many derived rules of inference which makes
them less useful in a pedagogical setting where one is interested in teaching natural deductions.
It should not be a precondition for the translation that derived rules like RuleP (which allows
one to assert any tautologous formula as an axiom) are available. However, we do not preclude
the use of derived rules of inference. On the contrary, the rule-based presentation is ideal for
adding derived rules of inference and tactics which suggest them in situations where they are
useful.

Next we show how to further refine the initial translation by providing tactics which do not
produce normal deductions, but make judicious use of cut to obtain more intuitive deductions
in many cases. The heart of these lemma introducing tactics is a procedure called symmetric
simplification which determines formulas which may serve as useful lemmas and also produces
expansion proofs for the subdeductions which must be carried out when the suggested lemma is
used. Symmetric simplification is by no means a complete method for finding lemmas — only
certain types of lemmas can be found. However, these lemmas turned out to be very useful and
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intuitive in many examples.

These two extensions show clearly that expansion proofs are extremely useful as an abstract
representation of the contents of a proof and can serve as high-level plans in constructing natural
deductions. As an application, logic students can be given very sophisticated help when they
are trying to prove a theorem within a system of natural deduction on the computer. In this
setting a student works on what Miller [23] calls proof outlines, that is, deductions in which gaps
remain to be filled. The student then enters the rule of inference he wishes to apply and where,
and the rule will be applied if legal. When the student asks for advice, the tactics are tested
for applicability and the applicable ones are suggested. An implementation of expansion proofs
and proof transformation tactics is currently under way in the TPS project at Carnegie-Mellon
University (see, for example, Andrews [3]). The translation from H-deductions into expansion
proofs presented in Section 3.4 can be extended to natural deductions in a straightforward way.
This extended translation algorithm can be used to interpret student’s deduction as expansion
proofs, and perhaps show them how they could have produced the same deduction more ele-
gantly. Another use allows the teacher to give a sample deduction for an exercise and have it
converted automatically to an expansion proof. This expansion proof could then be used to
give help for a large variety of partial deductions which differ from the teacher’s in many ways,
such as inessential instantiation terms, or a different order of steps. It could even detect cases
when the student attempts to use parameters which are not yet free in the deduction and give
an appropriate warning. This particular error seems to be one of the biggest initial stumbling
blocks for students who are learning to prove theorems in the predicate calcnulus.

6.1 A System N of Natural Deduction

Our system of natural deduction which we describe below is basically Gentzen’s system NK
[11] or the system which may be found in Prawitz [28]. A detailed, goal-oriented presentation
of the intuitionistic fragment may be found in Zucker [41]. In our presentation we use the
rule of indirect proof rather than the double-negation rule, thus combining what would be two
deduction steps in NK into one.

Because of the complications which are introduced in higher-order logic due to the fact that
expansion proofs are based on equivalence classes of formulas, we will divide the presentation
into two parts. The first part deals with the translation from first-order expansion proofs into
first-order natural deductions. The second part deals with the higher-order constructs.

The translation into the first-order fragment has many applications in its own right, since
most logic courses do not cover higher-order logic. Thus the reader who is only interested in the
first-order fragment of the logical system need not be burdened with the complications which
arise when higher-order quantifiers are introduced.

In our context, we think of natural deduction as a process rather than the completed deduc-
tion. In this goal-oriented presentation, we are trying to solve a collection of goals at each stage
in the deductive process. A line is a formula in the tree representing the deduction. A goal is
defined by a planned line (the theorem) and a multi-set of support lines which may be used to
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prove the goal. Support lines usually are assumptions or consequences thereof.

Remark 161 For practical purposes it is extremely important to keep the set of support lines
small in order to avoid the combinatorial explosion which results when one keeps accumulating
support lines monotonically. Often the decision whether to retain or drop support lines can be
made even without the aid of an expansion proof. For example, once one has inferred both A
and B from a conjunctive support line A ∧ B, one no longer needs A ∧ B as a support line.
Sometimes expansion proof information is vital, as is the case when one instantiates a universal
quantifier in a support line. One may need the universal statement more than once and thus
cannot delete it from the support, unless one can check (as can be done through the expansion
proof) that no more instantiations are needed.

The formula language underlying the natural deduction system now contains implication,
negation, and falsehood as primitive. In order to distinguish them from the symbols in L, we will
write them as →, ¬, and ⊥ respectively. We use a different symbol for negation to remind the
reader that dealing with formulas rather than equivalence classes of formulas. The language of
types has not changed. We will only present the definition of the first-order fragment using type
symbols — those could be easily elimiated from the definition if desired. The straightforward
extension to a full higher-order language is given in Definition 245. No confusion should arise
when we use the identical symbols ∧, ∨, ∀, and ∃ in LN and L, since intuitively they have the
same meaning and it will be clear from the context which language the formula belongs to.

Remember that o is the type of propositions, ι is the type of individuals, and αβ is the type
of functions from elements of type β to elements of type α.

Definition 162 A formula in the language LN 1 is defined inductively by

1. A variable xα is a formula of type α.

2. A parameter aα is a formula of type α.

3. A constant kα is a formula of type α.

4. [BαβCβ] is a formula of type α for any formulas Bαβ and Cβ.

5. ⊥ is a formula of type o.

6. ¬Ao for Ao a formula of type o.

7. Ao ∧Bo for formulas Ao and Bo.

8. Ao ∨Bo for formulas Ao and Bo.

9. Ao→Bo for formulas Ao and Bo.

10. ∀xιAo for a variable xι and formula Ao.
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11. ∃xιAo for a variable xι and formula Ao.

Note that the quantifiers are restricted to range over individuals. The removal of this restric-
tion and the addition of λ-abstraction are the only changes needed in order to extend natural
deductions to the higher-order language to LN .

We now present the inference rules of the system N of natural deduction. Cancelled assump-
tions are written as [[A]]. An assumption is cancelled in the inference with the same superscript.
An inference may cancel 0 or more assumptions with the same formula, so the inference remains
correct of the assumption does not occur in the deduction. Later in this chapter we will mostly
omit these superscripts, since it should be obvious where the assumptions are cancelled.

Definition 163 (System N )

1. Minimal Propositional Rules.

A B ∧I
A ∧B

A ∧B ∧EL
A

A ∧B ∧ER
B

A ∨IL
A ∨B

B ∨IR
A ∨B A ∨B

[[A]]1

...

C

[[B]]1

...

C
∨E1

C

[[A]]1

...

B
→I1

A→B

A A→B →E
B

[[A]]1

...

⊥
¬I1¬A

A ¬A ¬E
⊥

2. Intuitionistic Absurdity Rule

⊥ ⊥I
A
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3. Classical Proof by Contradiction

[[¬A]]1

...

⊥
⊥C

1

A

4. Quantification Rules.

A(a)
∀I

∀xA(x)

where a is a parameter not free in ∀xA(x) or
any uncancelled assumption.

A(t)
∃I

∃xA(x)

∀xA(x)
∀E

A(t)

∃xA(x)

[[A(a)]]1

...

C
∃E1

C

where a is a parameter not free in ∃xA(x),
C, or any uncancelled assumption.

6.2 Tactics for Constructing Natural Deductions

6.2.1 Proof Transformation Tactics

Tactics as they were introduced in Gordon et al. [14] embody control knowledge in the search
for a proof. They can be thought of as functions which map a goal to a list of subgoals and
a validation which shows how to construct a solution for the goal, given the solutions to the
subgoals. A tactic may also fail. The basic tactics are most commonly described in rule format:
a set of conditions which must be met for the tactic to be applicable and a transformation
which maps the goal into the subgoals. More complicated tactics are then built up from basic
tactics by combining them through the use of tacticals. Examples of tacticals are OR, COMPOSE,
ITERATE, or TRY. T OR S first tries to apply T . If that fails it tries to apply S. T COMPOSE S tries
to apply T and then S to every subgoal which is created by T . ITERATE S applies S repeatedly
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to the created subgoals, until it fails. TRY T tries to apply T . If there are sugoals remaining
TRY T will fail, otherwise succeed (with the empty list of subgoals). The practicality of tactics as
a language for expressing search-control knowledge in theorem proving has been demonstrated
for example by Prl [5] and also by Mulmuley [25].

In the setting of natural deductions, a goal consists of a planned line and a collection of
support lines. The validations are short pieces of deductions connecting the subgoals to the
original goal. We can view the validation as a function from a list of deductions to a deduction.
Its arguments are the completed subdeductions, its result is the deduction for the original
problem.

A transformation tactic is similar, except that we make explicit use of a plan to achieve a
goal. Thus the data we manipulate are pairs consisting of a goal and a plan.

In our setting a proof transformation tactic operates on pairs, each pair consisting of a goal
and an expansion proof. The goal is a planned line B and a collection of support lines A1, . . . , An,
the expansion proof has shallow formula ∼A1∨ . . .∨∼An∨B. Here is the natural translation
of formulas in LN into L.

We will not give a very formal description of how the basic tactics are combined to one tactic
which constructs the complete natural deduction given an expansion proof for the theorem. We
will describe the interactions between the different basic tactics informally.

The language LN contains a new primitive constant, ⊥. It cannot be interpreted directly in
L. However, our general formulation of expansion trees will allow us to model ⊥ as the empty
disjunction, and ¬⊥ as the empty conjunction.

Thus we extend L to L′ by adding T and F as new constants.

Definition 164 (Language L′) We extend the language L to language L′ by adding the fol-
lowing clauses to Definition 2

11. F is a formula of type o.

12. T is a formula of type o.

We also extend the definition of negation conversion to include rules concerning T and F.

Definition 165 (Negation Conversion in L′) We extend the∼-conversion rules by the equations

6. ∼F −→
∼

T.

7. ∼T −→
∼

F.

Note that in the extended λ∼-normal form, T and F will not appear in the scope of any negations.
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The general definition of expansion tree did not preclude empty conjunctions or disjunctions.
We now allow these also in expansion proofs with deep and shallow formulas in L′ and interpret
the empty disjunction as F and the empty conjunction as T.

As before, we restrict the expansion tree, but this time so that all disjunction or conjunction
nodes (except for the top-level disjunction node) are either binary or nullary.

Definition 166 (Empty Conjunction and Disjunction)

1. If Q is a disjunction node with no successors, then QS = QD = F. Let us call this expansion
tree QF.

2. If Q is a conjunction node with no successors, then QS = QD = T. Let us call this
expansion tree QT.

Remark 167 Full clauses were defined in such a way that empty disjunctions and conjunctions
are handled correctly (see Definition 39). In particular, one can check that the empty mating
{} spans every full clause in a conjunction node with no successors, which means that (QT, {})
is an expansion proof for T. Also, if Q is the disjunction node with no successors, then 〈Q〉 is
the only full clause in Q.

Definition 168 is the natural translation from formulas in LN into L′. Inductively,

1. ⊥ = F.

2. ¬A = ∼A.

3. A ∧B = A ∧B.

4. A ∨B = A ∨B.

5. A→B = A⊃B = ∼A ∨B.

6. ∃xA(x) = ∃xA(x).

7. ∀xA(x) = ∀xA(x).

The writing and reading of overlined formulas tends to get tiresome, so we have mostly
omitted overlines. The subscripts for expansion trees which represent their shallow formulas
should of course be overlined. This extends to multisets of support lines, when they need to
appear explicitly to denote parts of expansion trees. Wherever confusion is possible, we will
make explicit use of the natural translation as defined above.

We have five classes of tactics:

1. bookkeeping tactics which do not apply inference rules,
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2. minimal planned line tactics which suggest introduction rules,

3. minimal support line tactics which suggest elimination rules,

4. non-minimal tactics which suggest indirect proof or absurdity rule,

5. lemma tactics which introduce formulas which are not necessarily subformulas of the
planned line or the support line and do not lead to normal deductions.

The main connective of the planned line or support line suggests a possible inference. These
suggested inferences are not always possible. Sometimes they have to be deferred until they
become applicable, other times only an application of indirect proof or the absurdity rule will
allow the deduction to progress.

The benefit of using expansion proofs as plans becomes striking here. We will have to decide
whether a certain rule may be applied profitably at a given step in the deduction. The expansion
proof allows this decision. In general the decisions involve solving an NP-complete problem, but
in practice they are feasible and actually quite fast. Without the guidance of expansion proofs,
one would have to invoke a general-purpose theorem prover to decide whether certain steps are
applicable. This is possible and probably feasible in the propositional calculus, but in first-order
logic it is of course undecidable. Still one may argue that even in the first-order case invoking a
theorem prover may not be so bad. However, most theorem provers are meant to prove theorems,
rather than to show that something is not a theorem. It is exactly those quick failures which
make expansion proofs so valuable. For example, consider a planned line A∨B. We could infer
it from A by ∨IL if we knew that A by itself would already follow from the support lines, and
from B if B by itself would follow from the support lines. However, such decisions have to be
made often and we cannot wait for the time-out of a theorem prover if neither of the disjuncts
follows directly. The expansion proof information is vital, because it fails quickly if neither a
proof of A nor a proof of B is possible (relative to the expansion proof).

Moreover, the algorithm for converting deductions into expansion proofs given in Section 3.4
shows that it is sufficient to give a deduction of a theorem — no automated theorem prover is
necessary to obtain the expansion proofs. This makes the view of expansion proofs as a concise
representation of the contents of a proof very attractive. They abstract the inessential details,
like the order of many rule applications, but they preserve the essential, namely the instantia-
tion terms and the mating. Especially in higher-order logic where little is known about good
procedures for finding instantiation terms, this information is indispensable in proof guidance.

Let us give the name minimal tactics to any tactic bookkeeping, planned line or support
line tactic. Minimal tactics will produce deductions in minimal logic with the strict subformula
property. The strict subformula property requires that each formula in the deduction is an
instance of a subformula of the theorem we are trying to prove, or ⊥. The addition of tactics
suggesting indirect proof produces deductions satisfying only the weak subformula property.
The weak subformula property states that each formula in the deduction is either an instance
of a subformula, or a negation of such an instance. When we generalize L1 to the higher-
order language L these concepts become less meaningful, because higher-order quantifiers allow
instantiations with formulas. We will still be able to see the distinction between deductions



6.2. Tactics for Constructing Natural Deductions 114

which are normal and those which are not. Normal natural deductions roughly correspond to
cut-free H-deductions (see Zucker [41] for an explanation of the connections between “normal”
and “cut-free” for intuitionistic natural deductions and sequent calculi, respectively). If we
translate into normal deductions, we do not have to “invent” formulas which do not already
appear in the expansion proof.

We will give very suggestive names to the tactics by relating them to the rules which they
apply. The reader should be keep in mind that tactics unlike inference rules have conditions
associated with them which may refer to the expansion proof and ensure that the new subgoals
can be solved.

The tactics are organized so that most of them apply only to planned lines or to support
lines with one particular main connective. Additional applicability conditions ensure that the
resulting subgoals can be solved. There are two types of impasses that one can encounter. The
temporary impasse occurs when a particular planned or support line can not be broken down,
because the applicability condition of the rule is not satisfied, but other tactics can be applied
to other lines so that eventually the tactic becomes applicable. A critical impasse occurs if none
of the bookkeeping, planned line or support line tactics apply to any planned or support line.
It is often hard to decide if a given impasse is temporary or critical, and we just continue to
apply the tactics until the impasse is resolved or no further minimal tactics can be applied.
When a critical impasse is encountered only the absurdity rule or indirect proof can be applied.
We also distinguish between planned line impasses, when application of a tactic suggesting an
introduction rule is impossible, and support line impasses, when application of a tactic suggesting
an elimination rule is impossible. Let us give two examples to illustrate those types of impasses.

Example 169 A ∨B→B ∨ A. After one step in the deduction process we reach

[[A ∨B]]
...

B ∨ A
→I

A ∨B→B ∨ A

Here we have a temporary planned line impasse, since ∨I has to be deferred until we have
distinguished cases, that is, used ∨E on the support line. After the use of ∨E, the impasse is
resolved in both subgoals.

[[A]]
∨IR

B ∨ A

[[B]]
∨IL

B ∨ A [[A ∨B]]
∨E

B ∨ A
→I

A ∨B→B ∨ A

Example 170 A ∨ ¬A. Here neither disjunct can be inferred directly, so again we have a
planned line impasse. Moreover, the impasse is critcal, since no other minimal tactic applies
(there are no assumptions). We have to use the rule of indirect proof.
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Looking ahead a bit, let us give the deduction which is obtained without the use of tactics
which violate the weak subformula property.

[[¬[A ∨ ¬A]]]

[[A]]
∨IL

A ∨ ¬A [[¬[A ∨ ¬A]]]
¬E

⊥
¬I

¬A
∨IR

A ∨ ¬A
¬E

⊥
⊥C

A ∨ ¬A

The alternative, more symmetric deduction given below is harder to find. However, it can be
found using the tactic presented in Section 6.5. Note that this deduction is not normal, since an
application of ¬I is followed by a ¬E. Normalizing this deduction leads to the one given above.

[[A]]
∨IL

A ∨ ¬A [[¬[A ∨ ¬A]]]
¬E

⊥
¬I

¬A

[[¬A]]
∨IR

A ∨ ¬A [[¬[A ∨ ¬A]]]
¬E

⊥
¬I

¬¬A
¬E

⊥
⊥C

A ∨ ¬A

Remark 171 Because expansion proofs are based on formula equivalence classes a problem
which has an almost trivial expansion proof sometimes can be quite complex. There we need to
use transformations which only change the expansion proof trivially, but make progress in the
natural deduction. The next examples illustrates this.

Example 172 ¬¬A→ A.

[[¬¬A]] [[¬A]]
¬E

⊥
⊥C

A
→I

¬¬A→ A

In the following subsections we will present a complete set of tactics which produces normal
deductions. The presentation is devised to be highly modular. This was motivated by the desire
to have one, well-defined “action”, that is, transformation for a tactic. This is generally in the
spirit of rule-based systems, and should aid implementation.
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6.2.2 Bookkeeping Tactics

The most important here is called Closing a Gap. It notices if a planned line is identical to a
support line and declares a subgoal as achieved. In practice, this may be most useful if composed
with other tactics, so that the trivial subgoals are not even created. This is the only basic tactic
which achieves a goal, that is, returns an empty list of subgoals.

Tactic 173 (Closing a Gap) If a planned line and a support line are identical we can close the
gap – the subgoal is achieved.

Example 174 A→ A.

...

A→ A
=⇒

[[A]]
...

A
→I

A→ A

=⇒
[[A]]

→I
A→ A

Remark 175 In order to facilitate a fast check for identical planned and support lines, one may
add the restriction to the tactic, that Q∼A (corresponding to the support line) and QA (corre-
spending to the planned line) beM-mated. This restriction will not affect the completeness of
the algorithm. One could say, that if the expansion proof “did not notice” of “did not use the
fact” that those two formulas are complementary, perhaps the natural deduction does not need
to either.

Tactic 176 (Inessential Support Line) If the expansion tree Q∼A corresponding to a support
line A is inessential, it may be dropped from the support (and the expansion proof).

Remark 177 A sufficient condition: QA is inessential in (Q,M) if no node in QA isM-mated.

Remark 178 A refinement: QA is inessential in (Q,M) if there is a submating M′ of M
clause-spanning on Q such that no node in QA isM′-mated.

Remark 179 A further refinement: QA is inessential in (Q,M) if there is an extension M of
M such that there is a submating M′ of M clause-spanning on Q such that no node in QA is
M′-mated.

Remark 180 All of these can be computed efficiently in practice, though theoretically it is an
NP-complete problem to determine if a subtree is essential.

Tactic 181 (Erasing Unnecessary Expansion Terms) If the planned line is of the form ∃xA(x)
and Q∃xA(x) has more than one expansion term, erase any unnecessary expansion terms (see
Definition 93).
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Remark 182 This tactic may be relatively expensive to check, so it is best to apply it only
directly after an application of the ∨ Elimination tactic (see Tactic 202), because an application
of ∨E to the support lines is what may render an expansion term unnecessary. Other elimination
rules applied to the support lines will not affect whether an expansion term is unnecessary or
not.

Tactic 183 (Mated Support Line) If a support line A corresponds to Q∼A, where Q∼A is not a
leaf, but is M-mated, create a new support line with the same formula A. The new expansion
tree is obtained as (R,N ) = double(QA, (Q,M)) (see Definition 76.1.) Even though we are
creating more planned lines, we have (R,N ) C (Q,M) and therefore (R,N ) ′ (Q,M) (see
Definitions 59 and 240).

Tactic 184 (Mating Simplification) Given a planned line A and node QA corresponding to A.
If QA is not a leaf, but M-mated, check if M restricted to pairs not containing QA is still
clause-spanning on Q. If yes, restrictM.

The next tactic is necessary to take care of the problems which arise due to the fact that
expansion proofs are allowed to mate formulas which are equal only up to λ∼-conversion.

Tactic 185 (Deepening the Expansion Proof) Assume there is a support line A and a planned
line B such that A =

λ∼
B, and QA and QB are M-mated. In such a case one must deepen the

expansion proof, that is write out one more level of the formula as a node, making new leaves
below. Formally, let (R,N ) = deepen(QA, (Q,M)) (see Definition 124).

6.2.3 Minimal Planned Lines Tactics

Throughout this section we will assume that the node QC which corresponds to the planned
line C is neither a leaf of Q, norM-mated.

Tactic 186 (∧ Introduction)

S
...

A ∧B

→

SA
...

A

SB
...

B
∧I

A ∧B

where SA sufficient for A and SB sufficient for B. Both are sub(multi)sets of S. The expansion
proofs for the two new sugoals are ∧E1(QA∧B,SA, (Q,M)) and ∧E2(QA∧B,SB, (Q,M)) (see
Definition 76.5).
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Remark 187 Candidates for SA and SB can be determined in a way similar to determining
whether a subtree of Q is essential.

Tactic 188 (∨ Introduction Left)

S
...

A ∨B

→

S
...

A
∨IL

A ∨B

provided B is inessential. It is probably also worthwile to check that all of A∨B is not also
inessential, in which case the absurdity rule may be more useful.

The new expansion proof (R,N ) is obtained by a shallowing at QA∨B followed by erasing
QB. By Definition 67, the result is an expansion proof for the new subgoal.

Tactic 189 (∨ Introduction Right)

S
...

A ∨B

→

S
...

B
∨IR

A ∨B

provided A is inessential. Again, one probably want to make sure that all of A ∨ B is not
also inessential. The new expansion proof is obtained analogously to the previous tactic.

Remark 190 This leaves a rather large number of cases, where neither A nor B is inessential.
However, the impasse may be temporary, which suggests deferring even the check whether A or
B is inessential until no further support line tactics can be applied (see Example 169). Other
times, the impasse will be critical and we will have to apply indirect proof eventually (see
Example 170).

Tactic 191 (→ Introduction)

S
...

A→B

→

S, [[A]]
...

B
→I

A→B

The expansion proof (R,N ) for the new subgoal is simply ∨E(Q∼A∨B, (Q,M)) =
shallow(Q∼A∨B, (Q,M)). See Definition 76.2.
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Tactic 192 (¬ Introduction)

S
...

¬A

→

S, [[A]]
...

⊥
¬I

¬A

The new expansion proof (R,N ) is obtained by adjoining QF as a new leaf to the top-
level disjunction node in Q and leaving M unchanged. From the definition of a full clause
(Definition 39) it is clear that every full clause in R will be spanned byM. See also Remark 167.

Remark 193 ¬ Introduction does not by itself make any progress: the expansion proofs for
both goals are identical, except for the inessential QF. As can be seen in the proof of Theo-
rem 243, termination of the tactics is nevertheless assured, since after a ¬I some other minimal
support line tactic will apply.

Tactic 194 (∀ Introduction)

S
...

∀xA(x)

→

S
...

A(a)
∀I

∀xA(x)

The choice for a is the selected parameter in the expansion proof and therefore legal (as in
the case of ∀I in H-deductions, see Definition 76.3). (R,N ) is obtained by ∀E(Q∀xA(x),M).

Tactic 195 (∃ Introduction)

S
...

∃xA(x)

→

S
...

A(t)
∃I

∃xA(x)

provided t is the unique expansion term of Q∃xA(x) and t is admissible. The new expan-
sion proof is obtained by (R,N ) = ∃E(Q∃xA(x),(Q,M)) = shallow(Q∃xA(x), (Q,M)) (see Defini-
tion 76.6).

Remark 196 As in the case of ∨I, this leaves a rather large number of cases with different
solutions. There may be a unique expansion term, but it is not admissible. Or there could be
multiple expansion terms. In either case, the impasse may be temporary or critical. The two
examples below should help to understand these impasses and how a temporary impasse could
be resolved. See also Example 250 for a case where a multiple expansion term impasse is critical.
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Example 197 Pa∨Pb→∃xPx. Here a temporary, multiple expansion term impasse will arise.

Assume the expansion proof

∨

�
�

�
�

�
�

�
�

H
H

H
H

H
H

H
H

∧

�
�

�
�

@
@

@
@

∼Pa ∼Pb

∃xPx

a b

�
�

�
�

@
@

@
@

Pa Pb

The impasse occurs in the situation

[[Pa ∨ Pb]]
...

∃xPx
→I

Pa ∨ Pb→∃xPx

because there are two expansion term for Q∃xPx. However, the ∨ Elimination tactic is
applicable, after which we have two sugoals:

[[Pa]]
...

∃xPx

[[Pb]]
...

∃xPx [[Pa ∨ Pb]]
∨E

∃xPx
→I

Pa ∨ Pb→∃xPx

The expansion proof for the leftmost subgoal is:

∨

����
����

HHHH
HHHH

∼Pa ∃xPx

a b

�
�

�
�

@
@

@
@

Pa Pb

Here the expansion term b is unnecessary (see Definition 93) and can be deleted. After the
deletion, the conditions for a the ∃ Introduction tactic are satisfied.
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The corresponding natural deduction:

[[Pa]]
∃I

∃xPx

[[Pb]]
∃I

∃xPx Pa ∨ Pb
∨E

∃xPx
→I

Pa ∨ Pb→∃xPx

Example 198 ∃xPxx→∃x∃yPxy. Here the temporary impasse arises because the expansion
term for x contains a free parameter which must first be selected. The selection is by an
application of the ∃E rule, which would have been suggested by the Simple ∃ Elimination tactic
(see Tactic 220).

The expansion proof:

∨

����
����

HHHH
HHHH

∀x∼Pxx

a

∼Paa

∃xPxy

a

∃yPxy

a

Paa

The corresponding natural deduction:

[[Paa]]
∃I

∃yPay
∃I

∃x∃yPxy [[∃xPxx]]
∃E

∃x∃yPxy
→I

∃xPxx→∃x∃yPxy

The analysis of introduction rules which may be applied to a planned line leaves open the
following cases:

1. The planned line is A ∨B and both A and B are essential.

2. The planned line is ∃xA(x) and there is more than one expansion term.

3. The planned line is ∃xA(x) and there is a unique expansion term, but it is not admissible.

4. The planned line C isM-mated, but not a leaf.
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6.2.4 Minimal Tactics for Support Lines

Again we assume that the node Q∼A corresponding to the support line A in question is neither
a leaf of Q, norM-mated. Because of the Mated Support Line tactic (Tactic 183) this is not as
restrictive an assumption as it is for the planned line, which we cannot simply double.

Tactic 199 (Simple ∧ Elimination Left)

S, A ∧B
...

C

→
S,

A ∧B ∧EL
A

...

C

This tactic applies if QB is inessential (and Q∼[A∧B] is essential). The expansion proof
transformation is merely an erasing of QB after a shallowing. Formally, or (R,N ) =
erase(QB,∨E(Q∼[A∧B])).

Tactic 200 (Simple ∧ Elimination Right) Analogous to Simple ∧ Elimination Left .

Tactic 201 (Duplicating Conjunctive Support Line)

This tactic prepares simple ∧ elimination, in case neither A nor B in a support line A ∧ B
are inessential.

S, A ∧B
...

C

→
S, A ∧B, A ∧B

...

C

We let (R,N ) = csplit(Q∼[A∧B], (Q,M)) (see Definition 236). Now Simple ∧ Elimination
Left and Simple ∧ Elimination Right apply to the left and right copy of A ∧B, respectively.

Tactic 202 (∨ Elimination)

S, A ∨B
...

C

→

SA, [[A]]
...

C

SB, [[B]]
...

C A ∨B
∨E

C

where SA and and SB are sufficient for the corresponding subgoals and both are
sub(multi)sets of S.

The two new expansion proofs are (R′,N ′) = ∧E1(Q∼[A∨B],SA, (Q,M)) and (R′′,N ′′) =
∧E2(Q∼[A∨B],SB, (Q,M)).
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Remark 203 The ∨E rule often has the effect of resolving temporary impasses. In particular,
if the planned line C is a disjunction which was deferred because each disjunct was essential, or
if C was existentially quantified and deferred because there was more than one expansion term.
In each of these cases it would be worthwile to reevaluate if the impasse has been resolved, that
is if some disjunct has become inessential or some expansion term unnecessary.

Tactic 204 (Simple ∀ Elimination)

S, ∀xA(x)
...

C

→
S,

∀xA(x)
∀E

A(t)
...

C

where t is the only expansion term for Q∼[∀xA(x)] and t is admissible. (R,N ) =
∃E(Q∼[∀xA(x)], (Q,M)).

Tactic 205 (Duplication Universal Support Line)

If a support line ∀xA(x) corresponds to Q∼[∀xA(x)] with more than one expansion term, double
the support line.

S, ∀xA(x)
...

C

→
S, ∀xA(x), ∀xA(x)

...

C

Let T be the set of expansion term of Q∼[∀xA(x)]. For any partition T0, T1 of T we can obtain
a new expansion proof (R,N ) = split(Q∼[∀xA(x)], T0, T1, (Q,M)).

Remark 206 The most common applications of the previous tactic let T0 be t for some admis-
sible expansion term in T , and T1 = T − T0. As one can see from the argument in the proof of
Theorem 243, the tactics remain complete with this additional restriction.

Tactic 207 (∃ Elimination)

S, ∃xA(x)
...

C

→

S, [[A(a)]]
...

C ∃xA(x)
∃E

C

where a is the parameter selected for Q∼[∃xA(x)]. (R,N ) = ∀EQ∼[∃xA(x)], (Q,M).
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Remark 208 If the planned line C is existentially quantified and was defered because its unique
expansion term was not admissible, reevaluate whether it is admissible now.

Tactic 209 (→ Elimination)

S, A→B
...

C

→ SB,

SA
...

A A→B
→E

B
...

C

provided there are subsets SA and SB of S such that SB, B are sufficient for C and SA is suffi-
cient for A. The two new expansion proofs are obtained by (R′,N ′) = ∧E1(Q∼[A⊃B],SA, (Q,M))
and (R′′,N ′′) = ∧E2(Q∼[A⊃B],S∼B, (Q,M)).

Remark 210 This is the first minimal support line tactic which can lead to an impasse, namely
when there is no SA which is sufficient for A. This does not contradict Lemma 72, because here
SA cannot contain C, the planned line.

Example 211 A→ [[¬B→¬A]→B].

An expansion proof is

∨

�
�

�
�

@
@

@
@

∼A ∨

�
�

�
�

@
@

@
@

∧

�
�

�
�

@
@

@
@

∼B A

B

The construction of the natural deduction is straightforward until we reach

A, ¬B→¬A
...

B
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At this point the tactic is not applicable, since of the two possible subgoals

A,¬A
...

B

A
...

¬B

only the first could be achieved.

However, we can wait until after the rule of indirect proof has been applied:

A, ¬B→¬A, [[¬B]]
...

⊥
⊥C

B

in which case we are left with two trivial subgoals:

A,

[[¬B]]
...

¬B ¬B→¬A
→E¬A

...

⊥

Negation Elimination, like ⊥C , plays a special role in the search for a deduction. ¬E elim-
inates a negation, and makes progress in that sense. However, the negation may have been
created by a use of ⊥C , which could introduce a non-terminating sequence of deductions. Thus
care must be taken when attempting to use ¬E, and we will only apply it if the current planned
line is ⊥ and if one of the minimal planned line tactics applies immediately to the new planned
line. Thus conceptually there are six ¬-elimination tactics, one for each possible main connective
or quantifier and one atoms.

Tactic 212 (¬ Atom Elimination) If a support line is of the form ¬A for an atom A, and the
planned line is ⊥, and A is another support line, infer ⊥ from A and ¬A by ¬E. The remaining
subgoal is to infer the new planned line A from the support line A, which can be solved directly
with tactic Closing a Gap (Tactic 173).

Remark 213 This tactic may be restricted to cases where Q∼A and QA are M-mated. This
saves time, since no formulas need to be compared. The completeness of the tactics is not
affected.
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Tactic 214 (¬¬ Elimination) If a support line is of the form ¬¬A, and the planned line is ⊥,
apply ¬E.

S, ¬¬A
...

⊥
→

S
...

¬A ¬¬A
¬E

⊥

The expansion proof only changes trivially, since QF is erased. ¬E will be followed by an
application of the ¬ Introduction tactic.

Tactic 215 (¬∧ Elimination) If a support line is of the form ¬[A∧B], and the planned line is
⊥, apply ¬E.

S, ¬[A ∧B]
...

⊥
→

S
...

A ∧B ¬[A ∧B]
¬E

⊥

The expansion proof only changes trivially. ¬E will be followed by an application of the ∧
Introduction tactic.

Tactic 216 (¬→ Elimination) If a support line is of the form ¬[A→B], and the planned line
is ⊥, apply ¬E.

S, ¬[A→B]
...

⊥
→

S
...

A→B ¬[A→B]
¬E

⊥

The expansion proof only changes trivially. ¬E enables an application of the→ Introduction
tactic.

Tactic 217 (¬∀ Elimination) If a support line is of the form ¬∀xA(x), and the planned line is
⊥, apply ¬E.

S, ¬∀xA(x)
...

⊥
→

S
...

∀xA(x) ¬∀xA(x)
¬E

⊥

The expansion proof only changes trivially. ¬E enables an application of the ∀ Introduction
tactic.
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Tactic 218 (Simple ¬∨ Elimination) If a support line is of the form ¬[A∨B], and the planned
line is ⊥, and either A or B is inessential (but not both simultaneously, in which case the
Inessential Support Line tactic applies), apply ¬E.

S, ¬[A ∨B]
...

⊥
→

S
...

A ∨B ¬[A ∨B]
¬E

⊥

The expansion proof only changes trivially. ¬E will be followed by an application of one the
Simple ∨ Introduction tactics.

Tactic 219 (Duplicating ¬∨ Elimination) If a support line is of the form ¬[A ∨ B], and the
planned line is ⊥, and neither A nor B are inessential, apply ¬E.

S, ¬[A ∨B]
...

⊥
→

S, ¬[A ∨B]
...

A ∨B ¬[A ∨B]
¬E

⊥

For the first time a ¬ Elimination tactic must change the expansion proof in a non-trivial
way. Since ¬[A∨B] still appears in the support, the expansion proof must simplify. To obtain R
from Q we replace QA by a new expansion tree R0

A∨B with successors QA and lB, and we replace
QB by a new expansion tree R1

A∨B with successors lA and QB. This operation is analogous to
the split operation, except that it occurs on disjunction rather than expansion nodes. The
mating M is still clause-spanning on R, since every full clause through R is an extension of a
full clause in fc(Q)\QA∨B by lA, lB, and a few more interior nodes. But we assumed that QA∨B

was notM-mated, soM spans every full clause in R. In short (R,N ) = csplit(QA∨B, (Q,M))
(see Definition 236).

See Lemma 239 to see that this is “progress”.

Tactic 220 (Simple ¬∃ Elimination) If a support line is of the form ¬∃xA(x), the planned line
is ⊥, and there is exactly one expansion term t for Q∃xA(x), and t is admissible, then apply ¬E.

S, ¬∃xA(x)
...

⊥
→

S
...

∃xA(x) ¬∃xA(x)
¬E

⊥

The expansion proof only changes trivially. ¬E enables the ∃ Introduction tactic.
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Tactic 221 (Duplicating ¬∃ Elimination) If a support line is of the form ¬∃xA(x), the planned
line is⊥, and there is more than one expansion term for Q∃xA(x), one of which, say t, is admissible,
then apply ¬E.

S, ¬∃xA(x)
...

⊥
→

S, ¬∃xA(x)
...

∃xA(x) ¬∃xA(x)
¬E

⊥

This case is similar to the Duplicating ¬∨ Elimination tactic. We let (R,N ) =
split(Q∃xA(x), {t}, T −{t}, (Q,M)), where T is the set of expansion terms for Q∃xA(x). Rt

∃xA(x),

the node with the expansion term t, corresponds to the new planned line, R
T−{t}
∃xA(x) corresponds

to the support line ¬∃xA(x).

The condition that t was admissible means that the ∃ Introduction tactic applies to the new
planned line.

Example 222 A ∨ ¬A.

As noted before, we are forced to start with an indirect proof:

[[¬[A ∨ ¬A]]]
...

⊥
⊥C

A ∨ ¬A

Applying the ¬∨ Elimination tactic:

[[¬[A ∨ ¬A]]]
...

A ∨ ¬A [[¬[A ∨ ¬A]]]
¬E

⊥
⊥C

A ∨ ¬A

We have made progress compared to the original goal, since we have one additional support
line, but more importantly, A, the left disjunct, has become inessential. This can be seen by
examining the expansion proof (the superscript is only to disambiguate):
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with the mating {(Q1
A, Q2

∼A)}.
After the ∨IR and ¬I we arrive at

[[¬[A ∨ ¬A]]], [[A]]
...

⊥
¬I

¬A
∨IR

A ∨ ¬A [[¬[A ∨ ¬A]]]
¬E

⊥
⊥C

A ∨ ¬A

with associated expansion proof

∨
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@

∨
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�

A
A

A
A

Q1
A Q1

∼A

Q2
∼A

and mating {(Q1
A, Q2

∼A)}.
We can again apply the ¬E, but this time we do not need to copy the support line ¬[A∨¬A].

The tactic that applies is Simple ¬∨ Elimination, since Q1
∼A is inessential (which can be seen

easily since it is notM-mated).
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[[A]]
...

A ∨ ¬A [[¬[A ∨ ¬A]]]
¬E

⊥
¬I

¬A
∨IR

A ∨ ¬A [[¬[A ∨ ¬A]]]
¬E

⊥
⊥C

A ∨ ¬A

Remark 223 The resulting deductions are often inelegant, because using ¬E on the negated
assumption after an indirect proof amounts to saying that the contradiction we are trying to
derive will be between the original planned line and its negation.

6.2.5 Non-Minimal Tactics

These tactics are not minimal, that is, the resulting deduction will be in the intuitionistic or
classical logic, but not in its minimal fragment.

Tactic 224 (Inessential Planned Line) If QA corresponding to a planned line A is inessential,
and A is different from ⊥, infer it by ⊥I .

S
...

A

→

S
...

⊥
⊥I

A

Example 225 This is not always desirable. For example A→ [¬A→ [B→B]].

[[A]], [[¬A]]
...

B→B
→I

¬A→ [B→B]
→I

A→ [¬A→ [B→B]]

could be completed to either of
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[[A]] [[¬A]]
¬E

⊥
⊥I

B→B
→I

¬A→ [B→B]
→I

A→ [¬A→ [B→B]]

[[B]]
→I

B→B
→I

¬A→ [B→B]
→I

A→ [¬A→ [B→B]]

The last remaining rule which is not yet suggested by any other tactic is also the most
troublesome. The problem is that a use of ⊥C by itself does not make any progress and infinite
sequences of subgoals can arise if one is not careful. An example are alternations of ⊥C and ¬E.

All of the tactics below preserve the weak subformula property: the deductions produced are
normal. We have already pointed out that this is not always desirable, and given some examples
(see Examples 170, 172, and 211). Therefore some of the tactics below have to be taken with
a grain of salt. They only provide a complete translation procedure, but the tactics one really
would want to use in practice are introduced in Section 6.5.

Luckily, the problems associated with the use of ⊥C can be handled by using ¬E with care.
This was the main reason for presenting so many ¬E tactics: we had to avoid infinite non-
progressing deductions by placing restrictions on the use of ¬E. Perhaps the same goal can be
achieved by placing restrictions on applications of ⊥C alone, but it would seem unlikely.

Thus progress in the deduction is ensured by the fact that some ¬E tactic will apply after
⊥C has been applied, in effect (in perhaps a few more steps) simplifying the expansion proof
(with respect to the ′ ordering).

Remark 226 Because of the way we formulated the other tactics, indirect proof will not be
applied if the planned line is ⊥.

We distinguish different tactics for different types of impasses, even though the deduction
transformation for all inferences below is of the form

S
...

C

→

S, [[¬C]]
...

⊥
⊥C

C

Tactic 227 (Mated Planned Line) If the planned line C corresponds to QC , which is a mated
non-leaf, and no support line tactic applies, apply ⊥C .

Remark 228 In this case we can follow the indirect proof by the Mated Support Line tactic
(see Tactic 183). ⊥C only changes the expansion proof by adjoining QF, so (R,N ) ′ (Q,M)
(since QF is inessential).
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Tactic 229 (Classical Disjunction) If the planned line is A∨B and neither A nor B is inessential,
and no support line tactic applies, infer A ∨B by ⊥C .

Example 230 We illustrate how the deduction progresses if the ⊥C is immediately followed by
an application of the Duplicating ¬∨ tactic. Because of the symmetry of the problem, there are
actually two choices: the new planned line could be A or B. The deduction is transformed as
follows:

S
...

A ∨B

→

S, [[¬[A ∨B]]]
...

B
∨IR

A ∨B ¬[A ∨B]
¬E

⊥
⊥C

A ∨B

The copy of Q1
B which corresponds to the copy of B still in the planned line is no longer

mated, nor is any of its subnodes. The node Q2
B corresponding to the new planned line B

actually looks exactly like QB before the transformation steps, and Q1
B is an unmated leaf lB.

Graphically,

∨

�
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�
�

@
@

@
@

S ∨

�
�
�
�

A
A

A
A

QA QB

→

∨

�
�

�
�

@
@

@
@

S ∨

�
�
�
�

A
A

A
A

QA lB

QB

The case where A is the new planned line is dual.

Remark 231 The decision whether A or B should be the new planned line depends on the
structure of A and B. A short look-ahead can decide if a planned line tactic would directly
apply to A or B in the new situation. If yes, that disjunct should be preferred.

Tactic 232 (Multiple Expansion Terms) If the planned line is ∃xA(x) with two or more ex-
pansion terms, one of which is admissible, and no support line tactic applies, infer ∃xA(x) by
⊥C .

Example 233 If we were to apply the Duplicating ¬∃ Elimination tactic immediately after the
⊥C , we would get the following deduction transformation.
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S
...

∃xA(x)

→

S,[[¬[∃xA(x)]]]
...

A(t)
∃I

∃xA(x) [[¬[∃xA(x)]]]
¬E

⊥
⊥C∃xA(x)

The expansion proof transformation is simply a split: (R,N ) = split(Q∃xA(x), {t}, T −
{t}, (Q,M)), where T is the set of expansion terms of Q∃xA(x) and t is an admissible term in T .

Tactic 234 (Inadmissible Expansion Terms) If the planned line is ∃xA(x) with at least one
expansion term, such that all of them are inadmissible, infer ∃xA(x) by ⊥C .

Example 235 Illustrating the last type of impasse: ¬∀x¬P [fx]→∃xPx.

We get the subgoal

¬∀x¬P [fx]
...

∃xPx

with expansion proof

∨

�
�

�
�

@
@

@
@

∀x∼P [fx]

a

∼P [fa]

∃xPx

[fa]

P [fa]

The sole expansion term for Q∃xPx is not admissible, since a has not yet been selected. We
cannot use a ¬ Elimination tactic since we are not trying to prove ⊥, and are forced to an
indirect proof.

[[¬∃xPx]],¬∀x¬P [fx]
...

⊥
⊥C∃xPx
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Now the tactic can be applied and we obtain:

¬∀x¬P [fx]

[[¬∃xPx]]
...

∀x¬P [fx]
¬E

⊥
⊥C∃xPx

Again we have a situation where ¬ elimination cannot be applied. But this is not an impasse,
since we can work on the planned line.

The rest is routine, yielding

¬∀x¬P [fx]

[[¬∃xPx]]

[[P [fa]]]
∃I

∃xPx
¬E

⊥
¬I

¬P [fa]
∀I

∀x¬P [fx]
¬E

⊥
⊥C∃xPx

6.3 Correctness and Completeness of the Tactics

In order to prove correctness and completeness of the tactics, we need a slight refinement of the
relation which was defined earlier.

Definition 236 Let (Q,M) be an expansion proof with disjunction node QA∨B with immediate
subtree QA and QB. Moreover, assume that neither QA or QB is inessential. We obtain R by
replacing QA∨B by two new expansion trees with the same shallow formula. In the first one we
replace QB by a new leaf lB with the same shallow formula. In the second copy we replace QA

by a new leaf lA with the same shallow formula. Then define csplit(QA∨B, (Q,M)) = (R,M).
We say that (R,M) is the result of splitting the disjunction node QA∨B in (Q,M). Graphically,
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Lemma 237 Given an expansion proof (Q,M) with single and accessible node QA∨B. Then
csplit(QA∨B, (Q,M)) is an expansion proof.

Proof: Every full clause c in R has a preimage in Q which one can obtain by erasing all
occurrences of the new nodes lA, lB, and a few intermediate nodes. This preimage is spanned
byM and hence c is spanned.

Definition 238 Let (Q,M) O (R,N ) if (Q,M) is the result of splitting expansion nodes in
(R,N ), and each split node is such that neither disjunct is inessential.

Lemma 239 O is a well-ordering.

Proof: The number of disjunction nodes such that both disjuncts are essential decreases.
There can only be a finite number of such nodes, and hence O is a well-ordering.

Definition 240 We define E such that (Q,M) E (R,N ) whenever (Q,M) is the result of
some shallowings and deletions in (R,N ) such that they do not create new disjunctions where
both disjuncts are essential. The ′ is defined as the lexicographic order obtained from S, O,

C , and E in this order ( S, O, C , E).

Lemma 241 ′ is a well-ordering.

Proof: See the proof of Lemma 66. We only have to add a check that applying csplit

does not increase the expansion proof with respect ot S, which is clear since no new expansion
nodes are created, nor are any existing ones changed. The restriction which distinguishes E

from D ensures that O is not increased through shallowings or deletions.

Theorem 242 Given a goal with planned line B, support lines A1, . . . , An and expansion proof
(Q,M) with shallow formula ∼A1 ∨ . . . ∨ An ∨ B. Then for any tactic given above and every
resulting subgoal with planned line B′, support lines A′

1, . . . , A
′
m, and plan (R,N ), (R,N ) is an

expansion proof with shallow formula ∼A1 ∨ . . . ∨ An ∨B.

Proof: The correctness of the tactics follows easily from the work done in Sections 3.2
and 3.3, in particular Lemmas 53, 56, 58, and 62.

Theorem 243 Given a goal with planned line B, support lines S and expansion proof (Q,M).
Then at least one of the tactics will apply.
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Proof: This follows the same pattern as the proof for Theorem 80. One can just enumerate
all possibilities for planned and support lines, and it becomes obvious that the only critical part
of the proof is to show that there is no support line impasse when all support lines are of the
form ∀xA(x) or ¬∃xA(x) and the planned line is ⊥ (if the planned line is not ⊥, one could
always apply one of the indirect proof tactics). This follows immediately from Lemma 75, since
it says that at least one of the expansion terms for the top-level nodes of Q has to be admissible,
and for the corresponding support line either the ∀ Elimination tactic (possibly preceded by
a Duplicating Universal Support Line), Simple ¬∃ Elimination, or Duplicating ¬∃ Elimination
will apply.

Theorem 244 The given tactics create no infinite sequences of subgoals.

Proof: This is by far the most difficult to prove. We have to make use of of ′ which is
the relevant well-ordering, and also take into account sequences of applications which eliminate
successive negations.

Let us use the name negation tactics for ¬ Introduction (Tactic 192) and ¬¬ Elimation
(Tactic 214). Also, the tactics suggesting indirect proof will be called indirect proof tactics.

First note that the expansion proof for the subgoal created by an application of a negation
or indirect proof tactic is identical to the expansion proof before the tactic was applied.

The following tactics, which we shall call critical tactics, also have this property: ¬∧ Elim-
ination (Tactic 215), ¬→ Elimination (Tactic 216), ¬∀ Elimination (Tactic 217), Simple ¬∨
Elimination (Tactic 218), Simple ¬∃ Elimination (Tactic 220). All other tactics create subgoals
with simpler (with respect to ′) associated expansion proofs. Let us call those tactics expansion
simplifying tactics.

We say a tactic is enabled when its applicability condition is satisfied, disabled otherwise.
Every critical tactic directly enables an expansion simplifying tactic. For example, applying the
¬→ Elimination tactic always enables the → Introduction tactic.

Moreover, applying a critical tactic disables any further critical tactics or indirect proof
tactics. This is because the tactics which eliminate a negation in a support line apply only
when the planned line is ⊥. This is also the reason why we distinguished between Simple and
Duplicating tactics in some cases: we have to make sure that no indirect proof tactic is enabled
by applying a critical tactic. Note that the duplicating tactics are not critical, since they are
expansion simplifying tactics.

Applying an indirect proof tactic will either directly enable an expansion simplifying tactic
or a critical tactic and of course disable any indirect proof tactics.

The remaining cases are the negation tactics, which can indeed be applied alternatingly.
However, the number of consecutive applications of the negations tactics is bounded by the
number of outermost double negations occurring in the support lines and the planned line and
infinite sequences of negation tactics applications cannot occur.
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6.4 Extension to Higher-Order Logic

When we extend the first-order treatment above, we have to add the rule of extensionality. The
reason is that in using equivalence classes of formulas in expansion proofs, we use a limited
amount of extensionality when equivalent, but not equal, formulas appear in the arguments to
predicates or higher-order functions.

Definition 245 (Language LN ) We replace the clauses 10 and 11 in Definition 162 by allowing
the quantifier to range over variables of arbitrary type, and add λ-abstraction as a new construct.

10. ∀xαAo for a variable xα and formula Ao.

11. ∃xαAo for a variable xα and formula Ao.

12. [λxβAα] is a formula of type αβ for a variable xβ and formula Aα.

In order to avoid explicit uses of λ-conversion rules, we require substitution to return the
result in λ-normal form, and also that the original theorem be in λ-normal form. A less attractive
alternative would be to explicitly introduce a rule of λ-conversion into the natural deduction
calculus.

Definition 246 (Natural Deduction with Extensionality N e) N e is obtained from N by adding
the following rule of extensionality (see Definition 151 for the definition of E)

Pf 1 . . . fn E(f 1, g1) . . . E(fn, gn)
Ext

Pg1 . . . gn

The methods given in Chapter 5 carry over directly to the case of natural deductions and
we will not repeat them here. If one decides to continue to use expansion trees rather than
extensional expansion trees, extensionality will only be necessary in a case where the Closing a
Gap tactic (Tactic 173) fails, because the two atomic formulas A and B are such that A =

λ∼
B,

but A 6= B. In this case we only need the following extensionality tactic.

Tactic 247 (Atomic Extensionality) If an atomic planned line B and atomic support line A
are such that A = B, but A and B are different as LN formulas, infer B by extensionality.

Pf 1 . . . fn E(f 1, g1) . . . E(fn, gn)
Ext

Pg1 . . . gn

where Pf 1 . . . fn −→
λ

A and Pg1 . . . gn −→
λ

B and f i distinct from gi for 1 ≤ i ≤ n.
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Remark 248 One should also check to make sure that the subdeductions are not redundant,
that is the E(f i, gi) are pairwise syntactically distinct.

Example 249 A = ¬¬A. Expanding the definition, we get the following expansion proof with
shallow formula equivalent to ∀P[PA⊃PA]

∀P[PA⊃PA]

P

∨

�
�

�
�

@
@

@
@

∼PA PA

In the natural deduction we have to make use of the extensionality rule, since it is simply
not a theorem in N without extensionality. Here we could have made the following deduction:

[[PA]]

...

[A→¬¬A] ∧ [¬¬A→ A]
E

P[¬¬A]
→I

PA→P[¬¬A]
∀I

∀P[PA⊃P[¬¬A]]

Theorems 242, 243, and 244 remain true for N e if the Atomic Extensionality tactic is added.
This is easy to see since none of our proofs made use of the fact that the underlying language
was first-order. We took care to express the termination ordering purely in terms of expansion
proofs rather than complexity of formulas. In only remains to add that an application of the
atomic extensionality tactic reduces the number of positions inside atoms at which two mated
atoms are equal merely up to ∼-conversion, but not directly equal. Therefore the number of
applications of the atomic extensionality tactic must also be finite.

6.5 Symmetric Simplification

After the rule of indirect proof has been applied, we have ⊥ as a planned line. This does not
give us any formula structure to work on and it is desirable to apply some elimination rule to
establish one or more new subgoals with some more complicated formula as planned line.

Often the resulting deductions do not seem very natural, and do not resemble an informal
argument one would be inclined to give (see Examples 170 and 250).
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One source of this problem is that fact that the contradictory formulas which one uses in
informal arguments are not necessarily weak subformulas, and therefore cannot be found by the
tactics in Section 6.2.

Three closely related ways of making such proofs more intuitive are explored.

1. Try to find simpler formulas B and ¬B as planned lines, effecting the following proof
transformation:

S
...

A

→

SB, [[¬A]]
...

B

S¬B, [[¬A]]
...

¬B
¬E

⊥
⊥C

A

2. Assuming an additional derived rule of inference (the rule of excluded middle) and using
it to avoid indirect proof. Here the proof transformation is

S
...

A

→

SB,[[B]]
...

A

S¬B,[[¬B]]
...

A B ∨ ¬B
∨E

A

3. Item 2 is improved by allowing any two formulas B and C such that B =
λ∼

C.

S
...

A

→

SB,[[B]]
...

A

SC ,[[C]]
...

A

...

B ∨ C
∨E

A

From the point of view of expansion proofs those three solutions are indistinguishable, since
expansion proofs for the new subgoals can be identical in all cases.

The problem to be solved here is entirely different from all the problems we have dealt with
so far, since we need to construct formulas. These formulas will in general not be subformulas
of the planned line or any of the support lines, but nevertheless, they will be constructed from
the formulas available in the deduction.

We will first simply present some more examples of desirable deductions. All of these can
be obtained by using the Symmetric Simplification procedure described in Algorithm 261.
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Example 250 (Math Logic Baffler) ∃x∀y[Px→ Py]

The expansion proof again

∃x∀y[Px⊃ Py]

a b
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H
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∀y[Pa⊃ Py]

b

∨
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�
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@
@

@
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∼Pa Pb

∀y[Pb⊃ Py]

c

∨

�
�

�
�

@
@

@
@

∼Pb Pc

Without any special improvements we get

[[¬∃x∀y[Px→ Py]]]

[[Pb]] [[¬Pb]]
¬E

⊥
⊥I

Pc
→I

Pb→ Pc
∀I

∀y[Pb→ Py]
∃I

∃x∀y[Px→ Py] [[¬∃x∀y[Px→ Py]]]
¬E

⊥
⊥C

Pb
→I

Pa→ Pb
∀I

∀y[Pa→ Py]
∃I

∃x∀y[Px→ Py]
¬E

⊥
⊥C∃x∀y[Px→ Py]

What we would like in the proof by cases: either ∃x∼Px or ∼∃x∼Px. This would yield
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[[Pb]] [[¬Pb]]
¬E

⊥
⊥I

Pc
→I

Pb→ Pc
∀I

∀y[Pb→ Py]
∃I

∃x∀y[Px→ Py] [[∃x¬Px]]
∃E

∃x∀y[Px→ Py]

[[¬Pb]]
∃I

∃x¬Px [[¬∃x¬Px]]
¬E

⊥
⊥C

Pb
→I

Pa→ Pb
∀I

∀y[Pa→ Py]
∃I

∃x∀y[Px→ Py] ∃x¬Px ∨ ¬∃x¬Px
∨E

∃x∀y[Px→ Py]

Once we have found an appropriate lemma in the expansion proof, all we have really done is
find an equivalence class of formulas in LN . We have to select a representative of this equivalence
class. If the representatives are closely related, one (in general) obtains a simpler lemma (as
in the example above), but perhaps more complicated subdeductions. If the representatives
diverge further, the lemma will be harder to prove, but the subdeductions become simpler.

It seems to us that a more difficult proof for the lemma is a small price to pay for an
improvement in the main deduction. The lemmas are often of a general nature, and may even
be among a fixed set of lemmas one is allowed to use.

To illustrate this point, we go back to preceding example and present yet another deduction,
perhaps even better.

Example 251

[[Pb]] [[¬Pb]]
¬E

⊥
⊥I

Pc
→I

Pb→ Pc
∀I

∀y[Pb→ Py]
∃I

∃x∀y[Px→ Py] [[∃x¬Px]]
∃E

∃x∀y[Px→ Py]

[[∀xPx]]
∀I

Pb
→I

Pa→ Pb
∀I

∀y[Pa→ Py]
∃I

∃x∀y[Px→ Py]

...

∃x¬Px ∨ ∀xPx
∨E

∃x∀y[Px→ Py]

In the remainder of this section we deal with the problem of finding equivalence classes of
formulas appropriate as disjunctive lemmas. We have already indicated how this also allows us
to find simple contradictory formulas for indirect proofs.

This algorithm is most useful when all support lines are negations of disjunctions (such that
neither disjunct is inessential) or negations of existentially quantified formulas. In the second
case it is usually best to apply it to a support line whose corresponding expansion node has
more than one expansion term, at least one of which is admissible.
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These cases can be recognized as the ones where the Simple ¬∨ Elimination and Simple ¬∃
Elimination tactics (Tactics 218 and 220) do not apply, and one has to double the support line
in question.

The basic observation is that the planned line (before the indirect proof, when we are looking
for a disjunctive lemma), or the negated assumption (after the indirect proof, when we are
looking for two contradictory formulas) by themselves are sufficient as a disjuncts for the lemma.

We then build an expansion proof under the assumption that the whole formula will be a
disjunct in the lemma. We then try to simplify this formula, or rather the new expansion proof.
If simplification succeeds, the simplified formula is suggested as a lemma. If no simplification is
possible, we interpret it as failure and make no use of the lemma. If symmetric simplification
is called only in the two cases outlined above, simplification is always possible, though perhaps
only to a minor degree.

First let us describe more concretely which problem is solved by the symmetric simplification
algorithm.

Given an expansion proof (Q,M) for U,C∧∼C, A,B such that U,A and U,B sep-
arate C ∧∼C. This means that M |U,C,A is clause-spanning on U,C, A, and M |U,∼C,B

is clause-spanning on U,∼C, B (see Definition 73).
Find a formula D and expansion proof (R,N ) for U,D∧∼D, A,B such that U,A

and U,B separate D ∧ ∼D.

Of course, using C for D and (Q,M) for (R,N ) will satisfy this specification, so the algo-
rithm we provide will be a heuristic improvement of this trivial one. What is being improved?
We can only state informally that the natural deductions corresponding to the “symmetrically
simplified” expansion proof are more intuitive.

In the first-order case we could require that D’s complexity (number of quantifiers and
connectives) is less than C’s, but in the general higher-order case this is not desirable, since the
instantiation phase (see below) may actually increase the formula’s complexity.

We would also like (R,N ) to be minimal, but it is undecidable if (R,N ) is a minimal solution,
since we do not require a relation between RA and QA or RB and QB. We do not require such
a connection so that some substitution can still be carried out by our algorithm.

From now on in this section we relate a node in QC to the corresponding node in Q∼C by
putting a prime on one or the other node name.

The algorithm iterates three phases. The substitution phase shallows the expansion proof at
some accessible node Q∃xE(x) in QC∧∼C and shallows and substitutes for the parameter selected
at Q′

∀x∼E(x). The deletion phase deletes corresponding subtrees from QC and Q∼C . The mating
phase changes the mating so as to allow possibly more substitutions and deletions during the
next iteration of the three phases. If the mating phase cannot make useful changes, the algorithm
terminates.
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Algorithm 252 (Single Instantiation) Let Q∃xE(x) be a single and accessible node in QC or Q′
C

with exactly one expansion term t and t is admissible. Assume moreover that Q′
∀xE(x) is also

single, that is, notM-mated.

Then apply shallow(Q∃xE(x), (Q,M)) to obtain an intermediate expansion tree. Q′
∀x∼E(x),

now will have an incorrect shallow formula, since it is not the negation of E(t). In order
to achieve that, we first apply shallow(Q∀x∼E(x)) which results in the shallow ∼E(a) for the
selected parameter a. Now we apply θ = [a 7→ t] to the entire expansion proof and obtain ∼E(t)
as shallow formula. Let us call the result R, and let snginst(Q∃xE(x), (Q,M)) = (R,M).

Lemma 253 Given an expansion proof (Q,M) for U,C[[∃xE(x)]]∧∼C[[∃xE(x)]], A,B such that
U,A and U,B separate C ∧∼C. If the conditions for applying Single Instantiation are satisfied,
then (R,M) = snginst(Q∃xE(x), (Q,M)) is an expansion proof for U,C[[E(t)]]∧∼C[[E(t)]], A,B
and U,A and U,B separate C[[E(t)]] ∧ ∼C[[E(t)]].

Proof: Since the mating has not changed, it will still be separating, and it is clause-spanning
since the deleted nodes did not occur in it. The shallowing is legal, since t was admissible (see
Lemma 53).

Definition 254 We call a node QA a disjunct in Q if it is directly below a disjunction node in
Q. Similarly, we call QA a conjunct in Q if it is directly below a conjunction node in Q.

Algorithm 255 (Single Deletion) Let E be a subformula of the shallow formula of C or ∼C,
such that QEi for each, possibly instantiated, copy Ei of E in Q is a disjunct, and none of the
Ei or any of its subtrees isM-mated.

Then erase all QEi and Q′
∼Ej , where Q′

∼Ej are all the possibly instantiated nodes coming
from ∼E in Q∼C . Let us call this expansion tree R. N is obtained fromM simply by restricting
it to elements in R. Then (R,N ) = sngdel(E, (Q,M)).

Note that the ∼Ej could be mated, or even be expansion or selection nodes with complicated
expansion trees below them. This is why the algorithm is so useful.

Lemma 256 When the conditions for calling Single Deletion are satisfied, then (R,N ) =
sngdel(E, (Q,M)) is an expansion proof for U,D ∧ ∼D, A,B such that U,A and U,B are
separating D ∧ ∼D and D is obtained from C by erasing E.

Proof: The shallow formula of R is of the correct form since all copies of E and ∼E
are erased from Q. If QE is not accessible one has to check that if it lies below an expansion
node, the shallow formula of all of its successor is the instantiation of the shallow formula of the
expansion node. But this is true since we erased even instantiated copies of E.

The main work here is to check that the mating is still clause-spanning, since we erased some
possibly mated nodes of the form Q′

∼Ej . Note that since all QEi ’s were disjuncts in Q, all Q∼Ej

are conjuncts in Q.
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Assume without loss of generality that QE was a disjunct in QC . Now let c be a full clause
in R. It either contains nodes in RC or R∼C , but not both. There is a preimage c′ in Q, which
may just be a partial clause.

If c it contains nodes in RC , then any extension of c′ in Q by nodes in some QEi will be
spanned by a pair (l, k) ∈M. SinceM does not mate any of the QEi or nodes below, this same
pair (l, k) belongs to N , and c is spanned by N .

If c contains nodes in Q∼C then the preimage c′ already occurs in Q, since only conjuncts
have been deleted. The pair (l, k) which spanned c′ will still span c in R and belong to N .

After some subtrees and subformulas have been erased, it often helps to see if the mating can
be manipulated so that more of C and ∼C can be erased during the next iteration of the overall
algorithm. This is done by systematically enumerating the full clauses and marking those pairs
in M which are the only possible pair closing a path. One has to be careful to exclude those
pairs which would destroy the separation property we require.

Definition 257 Given a symmetric simplification problem U,C ∧ ∼C, A,B with expansion
proof (Q,M) such that U,A and U,B separate C∧∼C. We call a pair of nodes (l, k) separation
preserving if either both l and k are in Q|U,C,A, or both are in Q|U,∼C,B.

Algorithm 258 (Single Mating Change)

1. Let nec := {}. nec contains the pairs in M which have been determined to be strictly
necessary.

2. For each full clause c in fc(Q) do

2.1. If c is closed by more than one pair inM, nothing.

2.2. If c is closed by exactly one pair p and this pair contains a node in QC or Q∼C , check if
there is another separation preserving pair (l, k) on c such that lS =

λ∼
∼kS and neither

l nor k are nodes in QC and Q∼C . If yes, do nothing. Else let nec := nec ∪ {p}. p
can not be deleted from the mating.

2.3. Otherwise do nothing.

3. Reduce M to M′ by deleting an arbitrary pair which has an element in QC or Q∼C , but
has not been marked as necessary, that is, does not belong to nec. If no such pair exists,
returnM = sngmat(Q,M).

4. Enumerate the full clauses once again, adding pairs to N whenever a clause is encountered
which is not spanned byM′ or the N built up so far. These spanning pairs are guaranteed
to exist because of the condition in Step 2.

5. Return N = sngmat(M)
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Lemma 259 Given a symmetric simplification problem as stated above. Then N =
sngmat(M) is still a separating and clause-spanning mating on Q.

Proof: Let c be a full clause in Q. If it was closed by exactly one pair, that pair either did
not contain a node in QC or Q∼C , or it was marked as necessary, or there is another separation-
preserving pair of nodes in c. In the first two cases, the pair will remain in N . In the second
pair one of those separation preserving, complementary pairs will be added in Step 4.

If c was closed by more than one pair, at most one of the pairs could have been deleted in
Step 3 and it will still be spanned by N .

Remark 260 Since potentially many pairs are added in Step 4 this may not seem like much of
an improvement. However, the number of pairs inM with elements in QC or Q∼C will decrease,
or remain the same, if no pair is expendable.

It remains to put the pieces together into one algorithm:

Algorithm 261 (Symmetric Simplification) Given a symmetric simplification problem U,C ∧
∼C, A,B with expansion proof (Q,M) such that U,A and U,B separate C ∧ ∼C. Do:

1. Traverse the expansion trees QC and Q∼C simultaneously stopping at mated interior nodes,
and expansion nodes. Apply Single Instantiation if possible. If Single Instantiation was
possible, traverse the new expansion proof at that point, also.

2. Traverse the result of Step 1 from the bottom up, applying Single Deletion wherever
possible.

3. Apply Single Mating Change once. If there is no change in the mating, no further sim-
plifications will be possible. Return. Otherwise repeatedly apply Single Mating Change
until no longer any improvement is made. Then go to Step 1.

Theorem 262 The Symmetric Simplification Algorithm is correct and will always terminate.

Proof: The correctness follows easily from Lemmas 253, 256, and 259, since these steps are
merely iterated. By correctness we mean that any application of the symmetric simplification
algorithm will result in a valid expansion proof.

It is also easy to see that the iterations at each step terminate: Single Instantiation will
make the expansion proof shallower, Single Deletion is merely an erasing of subtrees, and Single
Mating Change decreases the number of pairs in the mating with elements in QC or Q∼C until
no more of these pairs can be deleted. But then Symmetric Simplification also stops this inner
iteration.

Since the three operations do not interact in the sense that one simplification will complicate
another measure, the whole algorithm must eventually terminate.
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Remark 263 Mated interior nodes, that is, nodes which are not leaves, seem to inhibit this
algorithm. Therefore it may be a good idea to do some deepening (see Definition 124) before or
during the algorithm.

When and how is it useful to apply symmetric simplification? We present two tactics which
seem to cover most of our examples.

Tactic 264 (∃ Lemma Tactic) If the planned line is of the form ∃xA(x) and the set of expansion
terms at Q∃xA(x) is {t0, t1, . . . , tn} for some n ≥ 1 and t0 is admissible, then construct the
following symmetric simplification problem (R,N ). Let R =

∨
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����

H
HHHHH

HH

S ∧

�
�
�
�

A
A

A
A

∃xA(x)

t0

QA(t)

∀x∼A(x)

a

Q∼A(a)

∨

�
�
�
�

A
A

A
A

∃xA(x)

t1 . . . t2

�
�
�
�

A
A

A
A

Q1 Qn

∃xA(x)

a

QA(a)

The mating N behaves on S, QA(t) and Q1, . . . , Qn like M before. N also mates every leaf
in Q∼A(a) with the correspoding complementary leaves in QA(a). Clearly N is clause-spanning
on R. It also separates ∃xA(x) and ∀x∼A(x).

Now apply symmetric simplification to (R,N ) to obtain (R′,N ′). Note that t0 will be
instantiated since it was chosen to be admissible. This leads to a new expansion proof of the
following structure

∨
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�����

HHHH
HHHH

S ∧
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�

A
A

A
A

R′
C R′

∼C

∨

�
�
�
�

A
A

A
A

R1
∃xA(x) R2

∃xA(x)

and N ′ still separates C ∧∼C. Now we use ∧E1 and ∧E2 on expansion proofs to obtain the
following two subproofs
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∨
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SC R′
C R1

∃xA(x)

∨
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�

@
@

@
@

S∼C R′
∼C R2

∃xA(x)

which are expansion proofs for subgoals remaining in

SD, [[D]]
...

∃xA(x)

SE, [[E]]
...

∃xA(x)

...

D ∨ E
∨E

∃xA(x)

where D and E are chosen such that D = C and E = ∼C. Also, there is another but trivial
expansion proof for the subgoal of proving D ∨ E, if it is not a derived rule of inference.

Tactic 265 (∨ Lemma Tactic Left) If the planned line is of the form A ∨ B such that neither
A not B is unnecessary, then construct the following symmetric simplification problem (R,N ).
Let R =

∨
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QA Q1
∼A
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�
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A
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A
A

Q1
A QB

where the mating N mates corresponding nodes in Q1
∼A and Q1

A and is otherwise likeM.

Now apply symmetric simplification to obtain (R′,N ′), where R′ =

∨
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A QB
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Since we still have separation of C ∧∼C, we can again get two subgoals by useing ∧E1 and
∧E2 for some sufficent subsets of S and get the following piece of deduction

SD, [[D]]
...

A ∨B

SE, [[E]]
...

A ∨B

...

D ∨ E
∨E

A ∨B

where D and E are chosen such that D = C and E = ∼C. Also, there is another but trivial
expansion proof for the subgoal of proving D ∨ E, if it is not a derived rule of inference.

Tactic 266 (∨ Lemma Tactic Right) Symmetric to the previous tactic, except that the sym-
metric simplification starts with B ∨ ∼B as initial lemma, rather than A ∨ ∼A.
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T Set of type symbols, 9

ι Type of individuals, 9

o Type of propositions, 9

L Language, 10

x, y, . . . Variables, 10

a, b, c, . . . Parameters, 10

λ Lambda binder, 10

∼ Negation, 10

∧ Conjunction, 10

∨ Disjunction, 10

∀ Universal Quantifier, 10

∃ Existential Quantifier, 10

=
def

Defined as, 10

⊃ Implication (defined), 10

≡ Equivalence (defined), 10

θ Substitution, 10

[a1 7→ t1, a2 7→ t2, . . .] Substitution, 10

θ ⊕ [a 7→ t] θ modified at a, 10

θA Application of θ to A, 10

−→
β

Beta reduction, 11
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=
λ

Equal up to λ-conversion, 11

−→
∼

Negation reduction, 11

=
λ∼

Equal up to λ∼-conversion, 11

A, B, C, . . . Arbitrary formulas, 12

U, V,W, . . . Multisets of formulas, 12

D, E ,F , . . . Arbitrary Deductions, 12

H Deductive system, 12

C Contraction, 13

∧I And Introduction Rule, 13

∨I Or Introduction Rule, 13

∀I Forall Introduction Rule, 13

∃I Exists Introduction Rule, 13

Cut Rule of Cut, 13

I Initial deductions, 13

H− System H without cut, 14

Final(D) Multiset in final line of D, 14

D
U

Deduction of U , 14

U ′

r
U

Several applications of r, 14

C Immediate subderivation, 15

Cut(D, E , A,∼A) Cut of D and E , eliminating A, 15

D ⊕ A Adjoining A to D, 15

D ⊕ U Adoining U to D, 15

�D Of lower rank in D, 17

D ⇒ E D goes to E by an essential reduction, 19
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D→
p
E D goes to E by a commutative reduction, 20

D→
c
E D goes to E by a contraction reduction, 21

−→−→ Reduces by commutative or contraction reductions, 23

crD(A) Contraction rank of A in D, 23

QD Deep formula of Q, 27

QS Shallow formula of Q, 27

QA Node in Q with shallow formula A, 28

Q|U Restriction of Q to U , 28

M|U Restriction ofM to Q|U , 28

t <0
Q s t depends directly on s, 29

t <Q s t depends on s, 29

a ≺0
Q b a is directly imbedded in b, 29

a ≺Q b a is imbedded in b, 29

〈e1, . . . , en〉 List of e1 through en, 29

fc(Q) Full clauses in Q, 31

fc(Q)\Q0 Full clauses without Q0, 31

shallow(Q0, (Q,M)) Shallow (Q,M) at Q0, 32

Q D R Q from R by shallowings and deletions, 32

erase(Q0, (Q,M)) Erasing Q0 form (Q,M), 34

crleaf(QA, (Q,M)) Creating new leaf at QA in (Q,M), 34

(Q,M) C (R,N ) (Q,M) from (R,N ) by creation of leaves, 35

split Splitting an expansion proof, 35

(Q,M) S (R,N ) (Q,M) from (R,N ) by splitting expansion nodes, 35

(Q,M) (R,N ) (Q,M) is simpler than (R,N ), 35

U [[A]] A accessible in U , 36

QA Node in Q with shallow formula A, 36
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double(QA, (Q,M)) Double QA in (Q,M), 38

∨E(QA∨B, (Q,M)) Or elimination in expansion proofs, 38

∀E(Q∀xA, (Q,M)) Forall elimination in expansion proofs, 38

∃E(Q∃xA, (Q,M)) Exists elimination in expansion proofs, 38

∧E1(QA∧B, UA, (Q,M)) And elimination in expansion proofs, 38

∧E2(QA∧B, UB, (Q,M)) And elimination in expansion proofs, 38

∃I(QA(t),∃xA(x), (Q,M)) Exists introduction in expansion proofs, 42

∀I(QA(a),∀xA(x), (Q,M)) Forall introduction in expansion proofs, 42

merge(Q1, Q2, (Q,M)) Merging Q1 and Q2 in (Q,M), 43

m(P, Q) Shallow merge of P and Q, 43

Q,R, . . . Expansion developments, 54

Q=⇒
i
R Initial expansion reduction, 55

Q=⇒
p
R Permutative expansion reductions, 56

Q=⇒
e
R Essential Expansion Reduction, 56

Q=⇒
m
R Merge expansion reduction, 57

Q ∗⇐⇒R Q reduces to R, 57

Q ∗⇐⇒
i
R convertible by initial conversions, 57

Q =⇒ R convertible by =⇒
p

, =⇒
m

, or =⇒
e

, 57

Q0 C Q1 Q0 above Q1, 60

t <C s t above or dependent on s, 60

L= Language L with primitve equality, 64

.
= Primitive Equality, 64

H= System H with primitive equality, 64

R
.
= Reflexivity Axiom, 64
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S
.
= Rule of Substitution, 64

deepen(Q0, (Q,M)) Deepen (Q,M) at Q, 66

≺ Below, 66

≺≺ Imbedded or below, 66

H∗ H= with reverse substitution rule, 85

He System H with extensionality, 94

LN 1 Language, 105

⊥ Absurdity, 105

¬ Negation, 105

∧ Conjunction, 105

∨ Disjunction, 105

→ Implication, 105

∀ Universal Quantifier, 105

∃ Existential Quantifier, 105

∧I And Introduction Rule in N , 106

∧EL And Elimination Left in N , 106

∧ER And Eliminiation Right in N , 106

∨IL Or Introduction Left in N , 106

∨IR Or Introduction Right in N , 106

∨E Or Elimination in N , 106

→I Arrow Introduction in N , 106

→E Arrow Elimination in N , 106

¬I Negation Introduction in N , 106

¬E Negation Elimination in N , 106

⊥I Intuitionistic Absurdity Rule, 106

⊥C Classical Proof by Contradiction, 106
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∀I Forall Introduction in N , 106

∀E Forall Elimination in N , 106

∃I Exists Introduction in N , 106

∃E Exists Elimination in N , 106

L′ Language, 108

F Falsehood in L′, 108

T Truth in L′, 108

Q O R Q from R by splitting a disjunction, 131

(Q,M) ′ (R,N ) (Q,M) is simpler than (R,N ), 131

λ Lambda binder, 133

Ext Extensionality Rule in N e, 133
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