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1 Introduction

Integrating software components to form a reliable system is a long-standing
fundamental problem in computer science. The problem manifests itself in
numerous guises:

(1) How can we dynamically add services to an operating system without
compromising its integrity?

(2) How can we exploit existing software components when building a new
application?

(3) How can we support the safe exchange of programs in an untrusted en-
vironment?

(4) How can we replace components in a running system without disrupting
its operation?

These are all questions of modularity. We wish to treat software components
as “black boxes” that can be safely integrated into a larger system without
fear that their use will compromise, maliciously or otherwise, the integrity of
the composite system. Put in other terms, we wish to ensure that the behavior
of a system remains predictable even after the addition of new components.

Three main techniques have been proposed to solve the problem of safe com-
ponent integration:

(1) Run-time checking. Untrusted components are monitored at execution
time to ensure that their interactions with other components are strictly
limited. Typical techniques include isolation in separate hardware address
spaces and software fault isolation [1]. These methods impose serious
performance penalties in the interest of safety. Moreover, there is often a
large semantic gap between the low-level properties that are guaranteed
by checking (e.g., address space isolation) and the high-level properties
that are required (e.g., black box abstraction).

(2) Source-language enforcement. All components are required to be
written in a designated language that is known, or assumed, to ensure
“black box” abstraction. These techniques suffer from the requirement
that all components be written in a designated, safe language, a restric-
tion that is the more onerous for lack of widely-used safe languages. More-
over, one must assume not only that the language is properly defined, but
also that its implementation is correct, which, in practice, is never the
case.

(3) Personal authority. No attempt is made to enforce safety, rather the
component is underwritten by a person or company willing to underwrite
its safety. Digital signature schemes may be used to authenticate the
underwritten code. In practice few, if any, entities are willing to make
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assurances for the correctness of their code.

What has been missing until now is a careful analysis of what is meant by safe
code exchange, rather than yet another proposal for how one might achieve a
vaguely-defined notion of safe integration. Our contention is that safe compo-
nent integration is fundamentally a matter of proof. To integrate a component
into a larger system, the code recipient wishes to know that the component is
suitably well-behaved — that is, compliant with a specified safety policy. In
other words, it must be apparent that the component satisfies a safety speci-
fication that governs its run-time behavior. Checking compliance with such a
safety specification is a form of program verification in which we seek to prove
that the program complies with the given safety policy.

When viewed as a matter of verification, the question arises as to who (the code
producer or the code recipient) should be responsible for checking compliance
with the safety policy. The problem with familiar methods is that they impose
the burden on the recipient. The code producer insists that the recipient em-
ploy run-time checks, or comply with the producer’s linguistic restrictions, or
simply trust the producer to do the right thing. But, we argue, this is exactly
the wrong way around. To maximize flexibility we wish to exploit components
from many different sources; it is unreasonable to expect that a code recipient
be willing to comply with the strictures of each of many disparate methods.
Rather, we argue, it is the responsibility of the code producer to demonstrate
safety. It is (presumably) in the producer’s interest for the recipient to use its
code. Moreover, it is the producer’s responsibility (current practices notwith-
standing) to underwrite the safety of its product. In our framework we shift
the burden of proof from the recipient to the producer.

Having imposed the burden of proof on the producer, how is the consumer
to know that the required obligations have been fulfilled? One method is to
rely on trust — the producer signs the binary, affirming the safety of the
component. This suffers from the obvious weakness that the recipient must
trust not only the producer’s integrity, but also must trust the tools that
the producer used to verify the safety of the component. Even with the best
intentions, it is unlikely that the methods are foolproof. Consequently, few
producers are likely to make such a warrant, and few consumers are likely to
rely on the code they receive. A much better method is one that we propose
here: require the producer to provide a formal representation of the proof that
the code is compliant with the safety policy. After all, if the producer did carry
out such a proof, it can easily supply the proof to the consumer. Moreover,
the recipient can use its own tools to check the validity of the proof to ensure
that it really is a genuine proof that the given code complies with the safety
specification. Importantly, it is much easier to check a proof than it is to find
a proof. Therefore the code recipient need only trust its own proof checker,
which is, if the method is to be effective, much simpler than the tools required
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to find the proof in the first place.

The message of this paper is that this approach can, in fact, be made to work
in practice. We are exploring two related techniques for implementing our
approach to safe component exchange: proof-carrying code and typed object
code. In both cases mobile code is annotated with a formal warrant of its
safety, which can be easily checked by the code recipient. To produce such a
warrant, we are exploring the construction of certifying compilers that produce
suitably-annotated object code. Such a compiler could be used by a code
producer to generate certified object code. Two points should be kept in mind
when reading this paper:

(1) The tools and techniques of logic, type theory, and semantics are indis-
pensable.

(2) These methods have been implemented and are available today.

2 Safety Infrastructures

The first component in a system for safe mobile code is the safety infrastruc-
ture. The safety infrastructure is the piece of the system that actually ensures
the safety of mobile code before execution. It forms the trusted computing
base of the system, meaning that all consumers of mobile code install it and
depend on it, and therefore it must work properly. Any defect in the trusted
computing base opens a possible security hole in the system.

A fundamental concern in the design of the trusted computing base is that it
be small and simple. Large and/or complicated code bases are very likely to
contain bugs, and those bugs are likely to result in exploitable security holes.
For us to have confidence in our safety infrastructure, its trusted components
must be small and simple enough that they are likely to be correct.

The design of the safety infrastructure consists of three parts. First, one must
define a safety policy. Second, one specifies what will be acceptable as evidence
of compliance with the safety policy. Suppliers of mobile code will then be
required also to supply evidence of compliance in an acceptable form. Third,
one must build software that is capable of automatically checking whether
purported evidence of safety is actually valid.

2.1 Safety Policies

The first task in the design of the safety infrastructure is to decide what
properties mobile code must satisfy to be considered safe. In this paper we
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will consider a relatively simple safety policy, consisting of memory safety,
control-flow safety, and type safety.

(1) Memory safety is the property that a program never dereferences an
invalid pointer, never performs an unaligned memory access, and never
reads or writes any memory locations to which it has not been granted
access. This property ensures the integrity of all data not available to
the program, and also ensures that the program does not crash due to
memory accesses.

(2) Control-flow safety is the property that a program never jumps to an
address not containing valid code, and never jumps to any code to which
it has not been granted access. This property ensures that the program
does not jump to any code to which it is not allowed (e.g., low-level
system calls), and also ensures that the program does not crash due to
jumps.

(3) Type safety is the property that every operation the program performs
is performed on values of the appropriate type. Strictly speaking, this
property subsumes memory and control-flow safety (since memory ac-
cesses and jumps are program operations), but it also makes additional
guarantees. For example, it ensures that all (allowable) system calls are
made using appropriate values, thereby ruling out attacks such as buffer
overruns on other code in the system. The additional guarantees provided
by type safety are often very expensive to obtain using dynamic means,
but the static means we discuss in this paper can provide them at no
additional cost.

Stronger safety policies are also possible, including guarantees of the integrity
of data stored on the stack [2], limits on resource consumption [3,4], and
policies specified by allowable traces of program operations [5]. However, for
policies such as these, the evidence of compliance (which we discuss in the next
section) can be more complicated, thereby requiring greater expense both to
produce and to verify that evidence, and possibly reducing confidence in the
system’s correctness. Thus the choice of safety policy in a practical system
involves important trade-offs.

It is also worth observing that stronger policies are not always better if they
rule out too many programs. For example, a policy that rejects all programs
provides great safety (and is cheap to implement), but is entirely useless for
a safety infrastructure. Therefore, it is important to design safety policies to
allow as many programs as possible, while still providing sufficient safety.
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2.2 Evidence of Compliance

The safety policy establishes what properties mobile programs must satisfy in
order to be permitted to execute on a host. However, it is impossible in general
for a code consumer to determine whether an arbitrary program complies with
that policy. Therefore, we require that suppliers of mobile code assist the con-
sumer by providing evidence that their code complies with the safety policy.
This evidence, which we may think of as a certificate of safety, is packaged
together with the mobile program and the two together are referred to as cer-
tified code. Upon obtaining certified code, the code consumer (automatically)
verifies the validity of the evidence before executing the program code.

The second task in the design of the safety infrastructure is to decide what
form the evidence of compliance must take. This decision is made in the light
of several considerations:

(1) Since evidence of safety must be transferred over the network along with
the program code they certify, we wish the evidence to be as small as
possible in order to minimize communication overhead.

(2) Since evidence must be checked before running any program code, we
desire verification of evidence to be as fast as possible. Clearly, smaller
evidence can lead to faster checking, but we can also speed evidence
verification by careful design of the form of evidence.

(3) As discussed above, the evidence verifier is an essential part of the trusted
computing base; it must work properly or there will be a potential secu-
rity hole in the system. For us to have confidence that the verifier works
properly, it must be simple, which means that the structure of the evi-
dence it checks must also be simple. Thus, not only is simplicity desirable
from an aesthetic point of view, but it is also essential for the system to
work.

(4) Finally, to have complete confidence that our system provides the desired
safety, we must prove with mathematical rigor that programs carrying
acceptable evidence of safety really do comply with the safety policy. This
proof is at the heart of the safety guarantees that the system provides.
For such proofs to be feasible, the structure of the evidence must be built
on mathematical foundations.

In light of these considerations, we now discuss two different forms that ev-
idence of compliance may take: explicit proofs, which are employed in the
Proof-Carrying Code infrastructure [6], and type annotations, which are em-
ployed in the Typed Assembly Language infrastructure [7,2].
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Explicit Proofs

The most direct way to provide evidence of safety is to provide an explicit
formal proof that the program in question complies with the safety policy.
This is the strategy employed by Proof-Carrying Code (PCC). It requires a
formal language in which safety proofs can be expressed. Any such language
should be designed according to the following criteria.

Effective Decidability: It should be efficiently decidable if a given object
represents a valid safety proof.

Compactness: Proofs should have small encodings.
Generality: The representation language should permit proofs of different

safety properties. Ideally, it should be open-ended so that new safety policies
can be developed without a change in the trusted computing base.

Simplicity: The proof representation language should be as simple as possi-
ble, since we must trust its mathematical properties and the implementation
of the proof checker.

Our approach has been to use the LF logical framework [8] to satisfy these
requirements. A logical framework is a general meta-language for the represen-
tation of logical inferences rules and deductions. Various logics or theories can
be specified in LF at a very high level of abstraction, simply by stating valid
axioms and rules of inference. This provides generality, since we can separate
the theories required for reasoning about safety properties such as arithmetic
modulo 232 or memory update and access from the underlying mechanism of
checking proofs. It is also simple, since it is based on a pure, dependently
typed λ-calculus whose properties have been deeply investigated [9,10].

Proofs in a logic designed for reasoning about safety properties are represented
as terms in LF. Checking that a proof is valid is reduced to checking that its
representation in the logical framework is well-typed. This can be carried out
effectively even for very large proof objects. Experiments in certifying com-
pilation [11] and decision procedures [12] yield proofs whose representation is
more than 1 MB, yet can still be checked. On the other hand, proofs in LF
are not compact without additional techniques for redundancy elimination.
Following some general techniques [13], Necula [14] has developed optimized
representations for a fragment of LF called LFi which is sufficient for its use in
PCC applications. The experimental results obtained so far have validated the
practicality of this proof compression technique [11] for the safety policies dis-
cussed here. Current research [15] is aimed at extending and improving these
methods to obtain further compression without compromising the simplicity
of the trusted computing base.
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Type Annotations

A second way to provide evidence of safety is using type annotations. In this
approach a typing discipline is imposed on mobile programs, and the archi-
tects of the system prove a theorem stating that any program satisfying that
type discipline will necessarily satisfy the safety policy as well [7]. However,
determining whether a program satisfies a type discipline involves finding a
consistent type scheme for the values in the program, and such a type scheme
cannot be inferred in general. Therefore, in this approach programs are re-
quired to include enough type annotations for the type checker to reconstruct
a consistent type scheme. Such type annotations constitute the evidence of
safety, provided they are taken in conjunction with a theorem stating that
well-typed programs comply with the safety policy.

A principal advantage of the type annotation approach over the explicit proof
approach is that the soundness of the type system can be established once and
for all. In contrast, validity of explicit proofs does not establish the soundness
of the system of proof rules, and in practice the proof rules are freely cus-
tomized to account for the safety requirements of each application. The main
drawback of type annotations is that any program that violates a type sys-
tem’s invariants will not be typeable under that type system, and therefore
cannot be accepted by the safety infrastructure, even if it is actually safe.
With explicit proofs, such invariants are not built in, so it is possible to work
around cases in which they do not hold.

The idea of using types to guarantee safety is by no means new. Many modern
high-level languages (e.g., ML, Modula-3, Java) rely on a type system to ensure
that all legal programs are safe. Such languages have even been used for safety
infrastructures; for example, the SPIN operating system [16] required that
operating system extensions be written in Modula-3, thereby ensuring their
safety. The drawback to using a high-level language to ensure safety is that
programs are checked for safety before compilation, rather than after, thereby
requiring that the entire compiler be included in the trusted computing base.
As discussed above, the confidence that one can have in the safety architecture
is inversely related to the size of its trusted computing base.

The Typed Assembly Language (TAL) infrastructure resolves this problem
by employing a type safe low-level language. In TAL, a type discipline is
imposed on executable code, and therefore the program code being checked
for safety is the exact code that will be executed. There is no need to trust a
compiler, because if the compiler is faulty and generates unsafe executables,
those executables will be rejected by the type checker.

The principal exercise in developing a type system for executable code is to
isolate low-level abstractions satisfying two conditions:
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• The abstractions should be independently type checkable; that is, to what-
ever extent type checking of the abstractions depends on surrounding code
and data, it should only depend on the types of that code and data, and
not on additional information not reflected in the types.
• The atomic operations on the abstractions should be single machine instruc-

tions.

As an example consider function calls. High-level languages usually provide a
built-in notion of functions. Functions can certainly be type checked indepen-
dently, but they are not dealt with by a single machine instruction. Rather,
function calls are processed using separate call and return instructions and
the intervening code is by no means atomic: the return address is stored in
accessible storage and can be modified or even disregarded. To satisfy the sec-
ond condition, TAL’s corresponding abstraction is the code block, and code
blocks are invoked using a simple jump instruction. Functions are then com-
posed from code blocks by writing code blocks with an explicit extra input
containing the return address. (This decomposition corresponds to the well-
known practice in high-level language of programming in continuation-passing
style [17].) The first condition is satisfied by requiring code blocks to specify
the types of their inputs, just as functions in high-level languages specify the
types of their arguments and results. Without such specifications, it would be
impossible to check the safety of a jump without inspecting the body of the
jump’s target.

For example, consider the TAL code below for computing factorial. This code
does not exhibit many of the complexities of the TAL type system, but it
serves to give the flavor of TAL programs. (More exhaustive examples appear
in Morrisett, et al. [7,2].)

fact:

code{r1:int,r2:{r1:int}}.
mov r3,1 % set up accumulator for loop
jmp loop

loop:

code{r1:int,r2:{r1:int},r3:int}.
bz r1,done % check if done, branch if zero
mul r3,r3,r1

sub r1,r1,1

jmp loop

done:

code{r1:int,r2:{r1:int},r3:int}.
mov r1,r3 % move accumulator to result register
jmp r2 % return to caller

In this code, the type for a code block is written {r1:τ1, . . . , rn:τn}, indicating
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that the code may be called when registers r1, . . . , rn contain values having
type τ1, . . . , τn. The fact code block is given type {r1:int , r2:{r1:int}},
indicating that when fact is called, it must be given in r1 an integer (the
argument), and in r2 a code block (the return address) that when called must
be given an integer (the return value) in r1. When called, fact sets up an
accumulator register (with type int) in r3 and jumps to loop. Then loop

computes the factorial and, when finished, branches to done, which moves the
accumulator to the return address register (r1) and returns to the caller. In
the final return to the caller, the extra registers r2 and r3 are forgotten to
match the precondition on r2, which only mentions r1.

As an alternative to typed assembly language, one can also strike a compro-
mise between high- and low-level languages by exploiting typed intermediate
languages for safety [18]. Using typed intermediate languages enlarges the
trusted computing base, since some part of the compiler must be trusted, but
it loosens the second condition on type systems for executable code. This pro-
vides a spectrum of possible designs, the closer an intermediate language is
to satisfying the second condition, the lesser the amount of the compiler that
needs to be trusted. Moreover, as we discuss in Section 3, typed intermediate
languages are valuable for automated certification, even if the end result is a
typed executable.

2.3 Automated Verification

Since it plays such a central role for provably safe mobile code, we now elab-
orate on the mechanisms for verifying safety certificates.

Explicit Proofs

As discussed above, the Proof-Carrying Code infrastructure employs the LF
logical framework. In the terminology of logical frameworks, a judgment is an
object of knowledge which may be evident by virtue of a proof. Typical safety
properties require only a few judgments, such as the truth of a proposition in
predicate logic, or the equality of two integers.

In LF, a judgment of an object logic is represented by a type in the logical
framework, and a proof by a term. If we have a proof P for a judgment J ,
then the representation P has type J, where we write () for the representation
function. The adequacy theorem for a representation function guarantees this
property and its inverse: whenever we have a term M of type J then there is
a proof P for J . Both directions are critical, because together they mean that
we can reduce the problem of checking the validity of a proof P to verifying
that its representation P is well-typed.
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So in PCC, checking compliance with a safety policy can be reduced to type
checking the representation of a safety proof in the logical framework.

But how does this technique allow for different safety policies? Since proofs
are represented as terms in LF, an inference rule is represented as a function
from the proofs of its premises to the proof of its conclusion. To represent a
complete logical system we only need to introduce one type constant for each
basic judgment and one term constant for each inference rule. The collection
of these constant declarations is called a signature. 1 So a particular safety
policy consists of a verification condition generator, which extracts a proof
obligation from a binary, and signature in LF, which expresses the valid proof
principles for the verification condition. This means that different policies can
be expressed by different signatures, and that the basic engine that verifies
evidence (the LF type checker) does not change for different policies. However,
we do have to trust the correctness of the LF signature representing a policy—
an inconsistent signature, for example, would allow arbitrary code to pass the
safety check.

Type checking in LF is syntax-directed and therefore in practice quite ef-
ficient [13], especially if we avoid checking some information which can be
statically shown to be redundant [14]. Currently, the Touchstone compiler for
PCC discussed in Section 3.1 uses a small, efficient type checker for LF terms
written in C. Related projects on proof-carrying code [19,20] and certifying
decision procedures [12] use the Twelf implementation [21–23]. For more in-
formation on logical frameworks, see [24].

Type Annotations

In case the safety policy is expressed in the form of typing rules, checking
compliance immediately reduces to type checking. In this case we have to
carefully design the language of annotations so that type checking is practical.
Generally, the more complicated the safety property the more annotations are
required. Once the safety property is fixed, there is a trade-off between space
and time: the more type annotations we have, the easier the type checking
problem. One extreme consists of no type annotations at all, which means
that type checking is undecidable. The other extreme is a full typing derivation
(represented, for example, in the logical framework) which is quite similar to
a proof in the PCC approach. For the safety policies we have considered so
far, it has not been difficult to find appropriate compromises between these
extremes that are both compact and permit fast type checking [25].

It is worth noting that in both cases (explicit proofs and type annotations) the
verification method is type checking. For proof-carrying code, this is always

1 This should not be confused with a digital signature used to certify authenticity.
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type checking in the LF logical framework with some optimizations to elim-
inate redundant work. For typed assembly language the algorithm for type
checking varies with the safety property that is enforced, although the basic
nature of syntax-directed code traversal remains the same.

3 Automated Certification

How are certificates of safety to be obtained? In principle we may use any
means at our disposal, without restriction or limitation. This freedom is as-
sured by the checkability of safety certificates — it is always possible to deter-
mine mechanically whether or not a given certificate underwrites the safety of
a given program. Since the code recipient can always check the validity of a
safety certificate, there is no need to rely on the means by which the certificate
was produced.

Two factors determine how hard it is to construct a safety certificate for a
program:

(1) The strength of the assurances we wish to make about a program. The
stronger the assurances, the harder it is to obtain a certificate.

(2) The complexity of the programming language itself. The more low-level
the language, the harder it is to certify the safety of programs.

As a practical matter, the easier it is to construct safety certificates, the more
likely that code certification will be widely used.

The main technique we have considered for building safety certificates is to
build a certifying compiler for a safe, high-level language such as ML or Java
(or any other type-safe language, such as Ada or Modula). A certifying com-
piler generates object code that is comparable (and often superior) in quality
to that of an ordinary compiler. A certifying compiler goes beyond conven-
tional compilation methods by augmenting the object code with a checkable
safety certificate warranting the compliance of the object code with the safety
properties of the source language. In this way we are able to exploit the safety
properties of semantically well-defined high-level languages without having to
trust the compiler itself or having to ensure the integrity of code in transit
from producer to consumer.

The key to building a certifying compiler is to propagate safety invariants
from the source language through the intermediate stages of compilation to
the final object code. This means that each compilation phase is responsible for
the preservation of these invariants from its input to its output. Moreover, to
ensure checkability of these invariants, each phase must annotate the program
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with enough information for a code recipient to reconstruct the proof of these
invariants. In this way the code recipient can check the safety of the code,
without having to rely on the correctness of the compiler. In the (common)
case that the compiler contains errors, the purported safety certificate may
or may not be valid, but the recipient can detect the mistake. Since each
compilation phase can be construed as a recipient of the code produced by
the preceding stage, the compiler can check its own integrity by verifying the
claimed invariants after each stage. This has proved to be an invaluable aid
to the compiler writer [11,18].

3.1 Constructing Evidence of Safety

We have explored two main methods for propagating safety invariants during
compilation:

(1) Translation between typed intermediate languages [26]. Safety
invariants are captured by a type system for the intermediate languages
of the compiler. The type system is designed to ensure that well-typed
expressions are safe, and enough type information attached to interme-
diate forms to ensure that we may mechanically check type correctness.
The typed intermediate forms are “self-certifying” in the sense that the
attached type information serves as a checkable certificate of safety.

(2) Compilation to proof-carrying code [11]. Safety invariants are di-
rectly expressed as logical assertions about the execution behavior of
conventional intermediate code. The soundness of the logic ensures that
these assertions correctly express the required safety properties of the
code. The safety of the object code is checked by a combination of verifica-
tion condition generation and automatic theorem proving. By equipping
the theorem prover with the means to generate a formal representation
of a proof, we may generate checkable safety certificates for the object
code.

These two methods are not mutually exclusive. We are currently exploring
their integration using dependent types which allow assertions to be blended
with types in a single type-theoretic formalism. This technique is robust
and can be applied to high-level languages [27,28] as well as low-level lan-
guages [29], thereby providing an ideal basis for their use in certifying com-
pilers.
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3.2 Typed Intermediate Languages

To give a sense of how type information might be attached to intermediate
code, we give an example derived from the representation of lists. At the level
of the source language, there are two methods for creating lists:

(1) nil, which stands for the empty list;
(2) cons(h, t), which constructs the non-empty list with head h and tail t.

These values are assigned types according to the following rules: 2

(1) nil has type list;
(2) If h has type int and t has type list, then cons(h,t) has type list.

There are a variety of operations for manipulating lists, including the car and
cdr operations, which have the following types:

(1) If l has type list, then car(l) has type int;
(2) If l has type list, then cdr(l) has type list.

The behavior of these operations is governed by the following transitions in
an operational semantics for the language:

(1) car(cons(h,t)) reduces to h;
(2) cdr(cons(h,t)) reduces to t.

One task of the compiler is to decide on a representation of lists in memory,
and to generate code for car and cdr consistently with this representation. A
typical (if somewhat simple-minded) approach is to represent a list by

(1) A pointer to . . .
(2) . . . a tagged region of memory containing . . .
(3) . . . a pair consisting of the head and tail of the list.

The tag field distinguishes empty from non-empty lists, and the pointer iden-
tifies the address of the node in the heap. This representation can be depicted
as the following compound term:

ptr(tag[cons](pair(h, t)))

What is interesting is that each individual construct in this expression may
be thought of as a primitive of a typed intermediate language. Specifically,

2 For simplicity we consider only lists of integers.
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(1) ptr(v) has type list if v has type [nil:void,cons:int*list]. The
bracketed expression defines the tags (nil and cons), and the type of
their associated data values (none, in the case of nil, a pair in the case
of a cons).

(2) tag[t](v) has type [t:τ,...] if v has type τ . In particular,
tag[cons](pair(h,t)) has type [nil:void,cons:int*list] if h has
type int and t has type list.

(3) pair(l,r) has type τl*τr if l has type τl and r has type τr. In particular,
pair(h,t) has type int*list if h has type int and t has type list.

Corresponding to this representation we may generate code for, say, car(l)
that behaves as follows:

(1) Dereference the pointer l. The value l must be a pointer because its type
is list.

(2) Check the tag of the object in the heap to ensure that it is cons. It must
be either cons or nil because the type of the dereferenced pointer is
[nil:void,cons:int*list].

(3) Extract the underlying pair and project out its first component. It must
have two components because the type of the tagged value is int*list.

When expressed formally in a typed intermediate language, the generated code
for the car operation is defined in terms of primitive operations for performing
these three steps. The safety of this code is ensured by the typing rules as-
sociated with these operations — a type correct program cannot misinterpret
data by, for example, treating the head of a list as a floating point number
(when it is, in fact, an integer).

A type-directed compiler [26] is one that performs transformations on typed
intermediate languages, making use of type information to guide the trans-
lation, and ensuring that typing is preserved by each transformation stage.
In a type-directed compiler each compilation phase translates not only the
program code, but also its type, in such a way that the translated program
has the translated type. How far this can be pushed is the subject of ongoing
research. In the TILT compiler we are able to propagate type information
down to the RTL (register transfer language level), at which point type prop-
agation is abandoned. The recent development of Typed Assembly Language
(TAL) [7,2] demonstrates the feasibility of propagating type information down
to x86-like assembly code. The integration of TILT and TAL is the subject of
ongoing research.

What does the propagation of type information have to do with safety? A
well-behaved type system is one for which we can prove a soundness theorem
relating the execution behavior of a program to its type. One consequence of
the soundness theorem for the type system is that it is impossible for well-
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typed programs to incur type errors, memory errors, or control errors. That is,
well-typed programs are safe. Of course not every safe program is well-typed
— typing is a sufficient condition for safety, but not a necessary one. However,
we may readily check type correctness of a program using lightweight and
well-understood methods. The technique of type-directed compilation demon-
strates that a rich variety of programs can be certified using typed intermediate
languages. Whether there are demands that cannot be met using this method
remains to be seen.

3.3 Logical Assertions and Explicit Proofs

Another approach to code certification that we are exploring [30,11] is the
use of a combination of logical assertions and explicit proofs. A certifying
compiler such as Touchstone works by augmenting intermediate code with
logical assertions tracking the types and ranges of values. Checking the validity
of these assertions is a two-step process:

(1) Verification condition generation (vcgen). The program is “symbolically
evaluated” to propagate the implications of the logical assertions through
each of the instructions in the program. This results in a set of logical
implications that must hold for the program to be considered properly
annotated.

(2) Theorem proving. Each of the implications generated during vcgen are
verified using a combination of automatic theorem proving techniques,
including constraint satisfaction procedures (such as simplex) and proof
search techniques for first-order logic.

In this form the trusted computing base must include both the vcgen proce-
dure and the theorem prover(s) used to check the verification conditions. In
addition, a specification of a safety policy which describes the conditions for
safe execution as well as pre- and post-conditions on all procedures supplied
by the host operating system and required of the certified code.

To reduce the size of the trusted computing base, we may regard the com-
bination of vcgen and theorem proving as a kind of “post-processing” phase
in which the validity of the annotated program is not only checked, but a
formal representation of the proof for the validity of the verification condi-
tions is attached to the code. This is achieved by using certifying theorem
provers [11,12] that not only seek to prove theorems, but also provide an ex-
plicit representation of the proof whenever one is found. Once the proofs have
been obtained, it is much simpler to check them than it is to find them. Indeed,
only the proof checker need be integrated into the trusted computing base;
the theorem provers need not be trusted nor be protected from tampering.
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To gain an understanding of what is involved here, consider the array subscript
operation in a safe language. Given an array A of length n and an integer i, the
operation sub(A,i) checks whether or not 0 ≤ i < n and, if so, retrieves the
ith element of A. At a high level this is an atomic operation, but when compiled
into intermediate code it is defined in terms of more primitive operations along
the following lines:

if (0 <= i && i < *A) {
return A[i+1] /* unsafe access */

} else {
... signal an error ...

}

Note that *A refers to the length of array A. Here we assume that an integer
array is represented by a pointer to a sequence of words, the first of which
contains the array’s length, and the rest of which are its contents.

Annotating this code with logical assertions, we obtain the following:

/* int i, array A */

if (0 <= i && i < *A) {
/* 0 <= i < length(A) */

return A[i+1]

} else {
... signal an error ...

}

The assertion that A is an array corresponds to the invariants mentioned
above; in practice, a much lower-level type system is employed [11]. It is a
simple matter to check that the given assertions are correct in this case.

Observe that the role of the conditional test is to enable the theorem prover
to verify that the index operation A[i+1] is memory-safe — it does not stray
beyond the bounds of the array. In many cases the run-time test is redundant
because the compiler is able to prove that the run-time test must come out
true, and therefore can be eliminated. For example, if the high-level code were
a simple loop such as the following, we can expect the individual bounds checks
to be elided:

int sum = 0;

for (i=0; i<length(A); i++) {
/* 0 <= i < length(A) */

sum += sub(A,i);

}
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At the call site for sub the compiler is able to prove that 0 ≤ i < n, where
n is the length of A. Propagating this through the code for sub, we find that
the conditional test can be eliminated because the compiler can prove that
the test must always be true. This leads to the following code (after further
simplification):

int sum = 0;

for (i=0; i<*A; i++) {
/* 0 <= i < length(A) */

sum += A[i+1];

}

Given this annotation, we can now perform verification condition generation
and theorem proving to check that the required precondition on the unsafe
array subscript operation is indeed true, which ensures that the program is
safe to execute. However, rather than place this additional burden on the
programmer, we can instead attach a formal representation π of the proof of
this fact to the assertions:

int sum = 0;

for (i=0; i<*A; i++) {
/* π : 0 <= i < length(A) */

sum += A[i+1]

}

The proof term π is a checkable witness to the validity of the given assertions
that can be checked by the code recipient. In practice this witness is a term
of the LF λ-calculus for which proof checking is simply another form of type
checking (see Section 2.3).

4 Experimental Results

As mentioned earlier, we have implemented several systems to test and demon-
strate the ideas of certified code, typed intermediate languages, certifying com-
pilers, and certifying theorem provers. The results of our experiments with
these systems confirm several important claims about the general framework
for safety certification of code that we have presented in this paper.

(1) Approaches to certified code such as PCC and TAL allow highly opti-
mized code to be verified for safety. This means that few if any compro-
mises need to be made between high performance and safety.

(2) The various approaches to certifying compilers that we have explored,
such as typed intermediate languages and logical assertions, can be scaled
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Fig. 1. Comparison of generated object-code performance between the Touch-
stone, GCC, and DEC CC optimizing compilers. The height of the bars shows
the speedup of the object code relative to unoptimized code as produced by
gcc.

up to languages of realistic scale and complexity. Furthermore, they pro-
vide an automatic means of obtaining code that is certified to hold stan-
dard safety properties such as type safety, memory safety, and control
safety.

(3) The need to include annotations and/or proofs with the code is not an
undue burden. Furthermore, checking these certificates can be performed
quickly and reliably.

In order to support these claims and give a better feel for the practical details
in our systems, we now present some results of our experiments.

4.1 The Touchstone Certifying Compiler

Touchstone is a certifying compiler for an imperative programming language
with a C-like syntax. Although the source programs look very much like C
programs, the language compiled by Touchstone is made “safe” by having a
strong static type system, eliminating pointer arithmetic, and ensuring that
all variables are initialized. Although this language makes restrictions on C,
it is still a rich and powerful language in the sense of allowing recursive pro-
cedures, aliased variables, switch statements, and dynamically allocated data
structures. Indeed, it is straightforward to translate many practical C source
programs into the language compiled by Touchstone [31].

Given such a source program, Touchstone generates a highly optimized native
code target program for the DEC Alpha architecture with an attached proof
of its type, memory, and control safety.

Figure 1 shows the results of a collection of benchmark programs when com-
piled with Touchstone, the Gnu gcc C compiler, and the DEC cc C compiler.
The benchmark programs were obtained from standard Unix utility applica-
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Fig. 2. Breakdown of time required to generated the proof-carrying code bina-
ries.

tions (such as the xv and gzip programs) and then edited in a completely
straightforward way to replace uses of pointer arithmetic with array-indexing
syntax. (Recall that the C-like language compiled by Touchstone does not
support pointer arithmetic.) The bars in the figure were generated by first
compiling each program with the Gnu gcc compiler with all optimizations
turned off. Then, Touchstone, Gnu gcc, and DEC cc were used to compile the
programs with all optimizations turned on. The bars in the figure show the
relative speed improvements produced by each optimizing compiler relative to
the unoptimized code.

The figure shows that the Touchstone compiler generates object code which
is comparable in speed to that produced by the gcc and cc compilers, and
in fact is superior to gcc overall. This result is particularly surprising when
one considers that Touchstone is obligated to guarantee that all array accesses
and pointer dereferences are safe (that is, Touchstone must sometimes perform
array-bounds and null-pointer checks), whereas the gcc and cc compilers do
not do this. In fact, Touchstone is able to optimize away almost all array-
bounds and null-pointer checks, and generates proofs that can convince any
code recipient that all array and pointer accesses are still safe.

In Figure 2 we provide a breakdown of the time required to compile each
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benchmark program into a PCC binary. Each bar in the figure is divided into
four parts. The bottom-most part shows the “conventional” compile time. This
is the time required to generate the DEC Alpha assembly code plus invariant
annotations required by the underlying PCC system. Because Touchstone is a
highly aggressive optimizing compiler, it is a bit slower than typical compilers.
However, on average it is comparable in compiling times to the DEC cc com-
piler with all optimizations enabled. The second part shows the time required
to generate the verification conditions. Finally, the third and fourth parts show
the times required for proof generation and proof checking, respectively.

One can see that very little time is required for the verification-condition
generation and proof checking. This is important because it is these two steps
that must also be performed by any recipient of the generated code. The fact
that these two parts are so small is an indication that the code recipient in
fact has very little work to do.

Early measurements with the Touchstone compiler showed that the proofs
were about 2 to 4 times larger than the code size [31]. Since the time that
those experimental results were obtained, we have made considerable progress
on reducing the size of the proofs, without increasing the time or effort required
to check them. These reductions lead to proof sizes on the order of 10% to
40% of the size of the code. In addition, we have been experimenting with a
new representation (which we refer to as the “oracle string” representation)
which, for the types of programs described here, further reduces proof sizes
to be consistently less than 5% of the code size, at the cost of making proof
checking about 50% slower. We hope to be able to describe these techniques
and show their effects in a future report.

4.2 The Cedilla Systems Special J Compiler

The experimental results shown above are admittedly less than convincing,
due to the relatively small size of the test programs. Recently, however, we
have “spun off” a commercial enterprise to build an industrial-strength im-
plementation of a proof-carrying code system. This enterprise, called Cedilla
Systems Incorporated, is essentially an experiment in technology transfer, in
the sense that it is attempting to take ideas and results directly out of the
laboratory and into commercial practice. Cedilla Systems has shown that the
ideas presented in this paper can be scaled up to full-scale languages. This
is shown most clearly in an optimizing native-code compiler for the full Java
programming language, called Special J [32], which successfully compiles over
300 “real-world” Java applications, including rather large ones such as Sun’s
StarOffice application suite and their HotJava web browser.
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The operation of Special J is similar to Touchstone, in that Special J pro-
duces optimized target code annotated with invariants that make it possible
to construct a proof of safety. A verification-condition generator is then used
to extract a verification condition, and a certifying theorem prover generates
the proof which is attached to the target code.

To see a simple example of this process, consider the following Java program:

public class Bcopy1 {
public static void bcopy(int[] src,

int[] dst)

{
int l = src.length;

int i = 0;

for(i=0; i<l; i++) {
dst[i] = src[i];

}
}
}

This source program is compiled by Special J into the target program for
the Intel x86 architecture shown in Figure 3. Included in this target program
are numerous data structures to support Java’s object model and run-time
system. The core of this output, however, is the native code for the bcopy

method shown above.

This code is largely conventional except for the insertion of several invariants,
each of which is marked with a special “ANN ” macro. These annotations are
“hints” from the compiler that help the automatic proof generator do its job.
They do not generate code, and they do not constrain the object code in any
way. However, they serve an important engineering purpose, as we will now
describe.

The ANN LOCALS annotation simply says that the compiled method uses three
locals. In this case, the register allocator did not need any spill space on the
stack, so the only locals are the two formal parameters and the return address.
This hint is useful for proving memory safety. The prover could, in principle,
analyze the code itself to reverse-engineer this information; but it is much
easier for the compiler to communicate what it already knows. Since one of
our engineering goals is to simplify as much as possible the size of the trusted
computing base, it is better to have the compiler generate this information,
leaving only the checking problem to the PCC infrastructure.

The ANN UNREACHABLE annotations come from the fact that the safety policy
specifies that array accesses must always be in bounds and null pointers must
never be dereferenced. In Java, such failures result in run-time exceptions, but
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ANN LOCALS( bcopy 6arrays6Bcopy1AIAI, 3)

.text

.align 4

.globl bcopy 6arrays6Bcopy1AIAI

bcopy 6arrays6Bcopy1AIAI:

cmpl $0, 4(%esp) ;src==null?

je L6

movl 4(%esp), %ebx

movl 4(%ebx), %ecx ;l = src.length

testl %ecx, %ecx ;l==0?

jg L22

ret

L22:

xorl %edx, %edx ;initialize i

cmpl $0, 8(%esp) ;dst==null?

je L6

movl 8(%esp), %eax

movl 4(%eax), %esi ;dst.length

L7:

ANN INV(ANN DOM LOOP,

LF (/\ (csubneq ebx 0)

(/\ (csubneq eax 0)

(/\ (csubb edx ecx)

(of rm mem)))) LF,

RB(EDI,EDX,EFLAGS,FFLAGS,RM))

cmpl %esi, %edx ;i<dst.length?

jae L13

movl 8(%ebx, %edx, 4), %edi ;src[i]

movl %edi, 8(%eax, %edx, 4) ;dst[i]=

incl %edx ;i++

cmpl %ecx, %edx ;i<l?

jl L7

ret

ANN INV(ANN DOM LOOP,

LF true LF,

RB(FFLAGS))

ret

L13:

call Jv ThrowBadArrayIndex

ANN UNREACHABLE

nop

L6:

call Jv ThrowNullPointer

ANN UNREACHABLE

nop

Fig. 3. Special J output code
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the safety policy in our example requires a proof that these exceptions will
never be thrown. Therefore, the compiler points out places that must never be
reached during execution so that the proof generator does not need to reverse-
engineer where the source-code array accesses and pointer dereferences ended
up in the binary.

The first ANN INV annotation is by far the most interesting of all the annota-
tions. Note that the Special J compiler has optimized the tight loop:

• Both required null checks are hoisted. (Note that the null check on dst

cannot be hoisted before the loop entry because the loop may never be
entered at all; but it can be hoisted to the first iteration.)
• The bounds check on src is hoisted. (Note that hoisting the bounds check

on dst would be a more exotic optimization, because in the case that dst

is not long enough, the loop must copy as far as it can and then throw an
exception.)

The proof generator must still prove memory safety, so it must prove that
inside the loop there are no null-pointer dereferences or out-of-bounds mem-
ory accesses. Essentially, the proof generator needs to go through the same
reasoning that the compiler went through when it hoisted those checks out-
side the loop. Therefore, to help the proof generator, the compiler outputs the
relevant loop invariants that it discovered while performing the code-hoisting
optimizations. In this case, it discovered that:

• src (in register ebx) is not null: (csubneq ebx 0).
• dst (in register eax) is not null: (csubneq eax 0).
• i (edx) is unsigned-below src.length (ecx): (csubb edx ecx).

The “csub” prefix denotes the result of a Pentium comparison. Other things
in the loop invariant specify:

• which registers are modified in the loop: RB(...),
• that memory safety is a loop invariant: (of rm mem)

Pseudo-register rm denotes the computer’s memory, and (of rm mem) means
that no unsafe operations have been performed on the memory.

After this target code is generated by Special J, the Cedilla Systems proof
generator reads it and outputs a proof that the code satisfies the safety policy.
The first step to doing this is to generate a logical predicate, called a verifi-
cation condition (or simply VC), whose logical validity implies the safety of
the code. It is important that the same VC be used by both the producer and
the recipient of the code, so that the recipient can guarantee that the “right”
safety proof is provided, as opposed to a proof of some unrelated or irrelevant
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property.

As we explained earlier, both the proofs and the verification conditions are
expressed in a language called the Logical Framework (LF). Space prevents us
from including the entire VC for our bcopy example. However, the following
excerpt illustrates the main points. (Note that X0 is the dst parameter, X1 is
the src parameter, X2 is a pseudo-register representing the current state of
the heap, and X3 is the variable i.

(=> (csubb X3 (sel4 X2 (add X1 4)))

(=> (csubneq X0 0)

(=> (csubneq X1 0)

(=> (csubb X3 (sel4 X2 (add X0 4)))

(/\ (saferd4

(add X1 (add (imul X3 4) 8)))

(/\ (safewr4

(add X0 (add (imul X3 4) 8))

(sel4 X4

(add X1 (add (imul X3 4) 8))))

(/\

(=> (csublt (add X3 1)

(sel4 X2 (add X1 4)))

(/\ (csubneq X1 0)

(/\ (csubneq X0 0)

(/\ (csubb (add X3 1)

(sel4 X2 (add X1 4)))

This excerpt of the VC says that, given the loop-invariant assumptions

• (csubb X3 (sel4 X2 (add X1 4))) (i.e., src[i] is in bounds),
• (csubneq X0 0) (i.e., dst is non-null), and
• (csubneq X1 0) (i.e., src is non-null),

and given the bounds check that was emitted for dst:

• (csubb X3 (sel4 X2 (add X0 4)))

as well as some additional assumptions outside the loop (not shown in this
snippet), proofs are required to establish the safety of the read of the src array
and the write to the dst array. Furthermore, given the additional loop-entry
condition

• (csublt (add X3 1) (sel4 X2 (add X1 4)))

proofs are required to reestablish the loop invariants.

Here, X0 corresponds to eax (dst in the source), X1 to ebx (src in the source),
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X2 to rm (the memory pseudo-register), and X3 to edx (i in the source). Note
that src.length is (sel4 X2 (add X1 4)), because the length is stored at
byte-offset 4 in an array object. The safety policy, and hence the VC, specifies
and enforces these requirements on data-structure layout.

The proof generator reads the VC and outputs a proof of it. A tiny excerpt of
this proof is shown below:

(impi

([ASS10: pf (csubb X3

(sel4 X2 (add X1 4)))]

(impi

([ASS11: pf (csubneq X0 0)]

(impi

([ASS12: pf (csubneq X1 0)]

(impi

([ASS13: pf (csubb X3

(sel4 X2

(add X0 4)))]

(andi

(rdArray4 ASS4 ASS3

(sub0chk ASS12)

szint

(aidxi 4

(below1 ASS10)))

...

The proofs are shown here in a concrete syntax for LF developed for the
Elf system [22,21]. In this very small snippet of the proof, one can see that
assumptions (marked with the “ASS...” identifiers) are labeled and then used
in the body of the proof. Logical inference rules such as “impi”, which in this
case stands for the “implication-introduction” rule, are specified declaratively
in the LF language, and included with the PCC system as part of the definition
of the safety policy.

Finally, a binary encoding of the proof is made and attached to the target code.
The proof is included in the data segment of a standard binary in the COFF
format. In this case, the proof takes up 7.1% of the total object file. We note
that we currently use an unoptimized binary encoding of the proof in which
all proof tokens are 16 bits long. Huffman encoding produces an average token
size of 3.5 bits, and so a Huffman-encoded binary is expected to be about 22%
of the size of a non-Huffman-encoded binary. In this case, that would make
the size of the proof approximately 45 bytes, or less than 2% of the object
file. While Huffman encoding would indeed be an effective means of reducing
the size of proofs, we have found that other representations such as “oracle
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strings” do an even better job, without incurring the cost of decompression. In
the case of the current example, the oracle string representation of the proof
requires less than 6 bytes. We hope to report in detail on this representation
in a future report.

5 Conclusion and Future Work

We have presented a general framework for the safety certification of code. It
relies on the formal definition of a safety policy and explicit evidence for com-
pliance attached to mobile code. This evidence may take the form of formal
safety proofs (in proof-carrying code) or type annotations (in typed assem-
bly language). In both cases one can establish with mathematical rigor that
certified code is tamper-proof and can be executed safely without additional
run-time checks or operating system protection boundaries. Experience with
the approaches has shown the overhead to be acceptable in practice, both
in the time to validate the certificate and the space to represent it, using
advanced techniques from logical frameworks and type theory.

We also sketched how certificates can be obtained automatically through the
use of certifying compilers and theorem provers. The approach of typed in-
termediate languages propagates safety properties which are guaranteed for
the high-level source language throughout the compilation process down to
low-level code. Safety remains verifiable at each layer through type-checking.
A certifying compiler such as Touchstone uses logical assertions throughout
compilation in a similar manner, except that the validity of the logical asser-
tions must be assured by theorem proving. This is practical for the class of
safety policies considered here, since the compiler can provide the information
necessary to guarantee that a proof can always be found. Finally, a certifying
theorem prover does not need to be part of the trusted computing base since
it produces explicit proof terms which can be checked independently by an
implementation of a logical framework.

The key technology underlying our approaches to safety is type theory as
used in modern programming language design and implementation. The idea
that type systems guarantee program safety and modularity for high-level
languages is an old one. We see our main contribution in demonstrating in
practical, working systems such as Touchstone, the TILT compiler, and the
Twelf logical framework, that techniques from type theory can equally be
applied to intermediate and low-level languages down to machine code in order
to support provably safe mobile code for which certificates can be generated
automatically.
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