
Resource Management for the Inverse Method
in Linear Logic ?

Kaustuv Chaudhuri and Frank Pfenning

Carnegie Mellon University, Pittsburgh PA 15213, USA
{kaustuv,fp }@cs.cmu.edu

Abstract. One central aspect of proof search in linear logic is resource
management. Strategies for efficient resource management have been de-
veloped for backward-directed calculi, such as top-down linear logic pro-
gramming, tableaux calculi, and matrix methods. In this paper we con-
sider resource management for forward-directed calculi, such as the in-
verse method, clausal resolution, and bottom-up linear logic program-
ming. We focus on the inverse method for intuitionistic linear logic, and
isolate the resource management problems. They turn out to come from
exponentials, additive unit, and multiplicative unit, exhibiting some sur-
prising differences from the backward-directed calculi. Our solution em-
ploys controlled contraction and weakening, and introduces affine hy-
potheses into sequents.

1 Introduction

In linear logic [5, 2], hypotheses are viewed as resources, with the number of oc-
currences playing a central role in the proof theory. This property allows natural
encodings of theories that are difficult to express in the standard logic. Theorem
proving in linear logic has an additional component of resource management
which is not as critical for the standard logic. The kinds of these resource man-
agement problems are determined by the direction in which inference rules are
read:

– For multi-premiss multiplicative rules, it is undetermined how to divide the
linear context into the premisses when reading the rules backward (“multi-
plicative resource non-determinism”).

∆1 =⇒A ∆2 =⇒B

∆1,∆2 =⇒A⊗B

In the forward direction there is no non-determinism because the context
∆1,∆2 is merely the result of adjoining the contexts ∆1 and ∆2.

? This work has been partially supported by NSF Grant CCR-9988281 “Logical and Meta-
Logical Frameworks”. Draft submitted for publication on January 31, 2003

– For the additive units 0 and >, the linear context is not structurally deter-
mined (“affine resource non-determinism”).

∆ =⇒> ∆,0 =⇒ C

This causes non-determinism in both directions, but the nature is different
in each case. In the forward direction, the contexts have to be invented; for
a discussion of the issues in the backward direction, see [4].

– For the multiplicative unit 1 in the forward direction, or for resource dere-
liction in the backward direction, it is undetermined whether the intro-
duced resource is necessary for the proof (“unknown-use resource non-
determinism”). As a result, there is no control on the number of iterated
applications of the rules.

∆ =⇒ C

∆,1 =⇒ C

!A,∆,A =⇒ C

!A,∆ =⇒ C

The corresponding problems don’t exist in the respective opposite direc-
tions: 1 can always be deleted safely from contexts when reasoning back-
ward, and dereliction shrinks the context in the forward direction.

In the domain of top down linear logic programming – i.e., refining goals
by applying inference rules in the backward direction until they are axiomatic,
for example Lolli [7] or Lygon [14] – resource management approaches fall into
two broad kinds. The first kind perform general search with constraint solving.
For example, in [6], resource use is marked by boolean flags, and the use of an
inference rule is guarded by constraints on these boolean flags. The second kind
commit to a particular search strategy, which amount to particular solutions
to the constraint satisfaction problems in resource management. For example,
in [4] the judgements are refined with boolean “strictness” flags and a context
of lax resources is added.

Neither of these approaches are directly applicable to forward reasoning
because of the strikingly different nature of resource management. However,
the essential idea of refining the sequents to expose the resource management
problems is the gist of our approach. Our calculus is particularly suited for the
inverse method [9, 13], which requires a forward sequent calculus with a strong
subformula property, which our calculus enjoys. The subformula property is
necessary to control iterations of rules like NL1 in the forward direction

Γ # ∆, A =⇒ C

Γ # ∆, A N B =⇒ C
NL1

The inverse method restricts rule application to only those instances where the
principal formula is a subformula of the goal sequent, so the above rule would
not be applied unless a negative instance of A N B is present in the goal. Reso-
lution and the forward reasoning have been examined for classical linear logic
in [10, 12], however without particular attention to affine or unknown-use re-
source non-determinism.

2

Our approach is sufficiently general and logically motivated that it is has
wider application than just the inverse method. For example, the essential ideas
are applicable to forward reasoning in intuitionistic affine logic in the style of [3],
but with a closer attention to the resource management issues. Furthermore,
our approach applies to classical inverse methods also, because classical linear
logic is a simplification of intuitionistic linear logic.

2 Backward Sequent Calculus

We begin with a brief description of Gentzen-type backward sequent calcu-
lus for propositional intuitionistic linear logic without additive disjunction and
quantifiers. See Sec.5 for a brief discussion of the issues involved.

Non-atomic propositions in this fragment are constructed using the follow-
ing connectives: multiplicative and additive conjunctions together with their
units, linear implication and the exponential modality:

Propositions A,B, . . . ::= P Atomic
| A⊗B | 1 Mult. conj. and unit
| A N B | > Add. conj. and unit
| A (B Linear implication
| !A Exponential modality

Contexts Γ, ∆, . . . ::= q Empty
| Γ, A Adjoin

In the sequent calculus we will treat unrestricted assumptions as a separate
context of resources. Sequents will have two kinds of contexts: the unrestricted
context and the linear context.

A1, A2, . . . , Aj︸ ︷︷ ︸
unrestricted

B1, B2, . . . , Bk︸ ︷︷ ︸
linear

=⇒C

We will use Γ and ∆ for the unrestricted and linear contexts, respectively. The
interpretation is that the succedent C is proved using the unrestricted resources
arbitrarily often, and each linear resource exactly once.

The inference rules are given in Fig.1. Linear resources are used structurally
in axiomatic initial sequents of the form Γ # A =⇒A. A copy of any unrestricted
resource can be transferred into the linear context using the dereliction rule,
dl. For the multiplicative rules the unrestricted context is unchanged and the
linear context is distributed among the premisses. For the additive rules, both
contexts remain unchanged in the premisses. The !L and !R rules describe the
exponential modality. Exchanging resources is valid within each kind of context
but not between contexts.

Theorem 1 (Structural properties).

1. (weakening) If Γ # ∆ =⇒ C then Γ, A # ∆ =⇒ C.

3

Initial and Dereliction rules

Γ # A =⇒A
init

Γ, A # ∆, A =⇒ C

Γ, A # ∆ =⇒ C
dl

Multiplicative connectives

Γ # ∆1 =⇒A Γ # ∆2, B =⇒ C

Γ # ∆1, ∆2, A (B =⇒ C
(L

Γ # ∆, A =⇒B

Γ # ∆ =⇒A (B
(R

Γ # ∆, A, B =⇒ C

Γ # ∆, A⊗B =⇒ C
⊗L

Γ # ∆1 =⇒A Γ # ∆2 =⇒B

Γ # ∆1, ∆2 =⇒A⊗B
⊗R

Γ # ∆ =⇒ C

Γ # ∆,1 =⇒ C
1L

Γ # q=⇒ 1
1R

Additive connectives

Γ # ∆, A =⇒ C

Γ # ∆, A N B =⇒ C
NL1

Γ # ∆, B =⇒ C

Γ # ∆, A N B =⇒ C
NL2

Γ # ∆ =⇒A Γ # ∆ =⇒B

Γ # ∆ =⇒A N B
NR

Γ # ∆ =⇒> >R

Exponentials

Γ, A # ∆ =⇒ C

Γ # ∆, !A =⇒ C
!L

Γ # q=⇒A

Γ # q=⇒ !A
!R

Fig. 1. Inference rules for the backward calculus

2. (contraction) If Γ, A,A # ∆ =⇒ C then Γ, A # ∆ =⇒ C.

Proof. By structural induction on the derivations.

The backward sequent calculus enjoys the following substitution properties,
often written as explicit cut rules.

Theorem 2 (Cut).

1. If Γ # ∆1 =⇒A and Γ # ∆2, A =⇒ C, then Γ # ∆1,∆2 =⇒ C.
2. If Γ # q=⇒A and Γ, A # ∆ =⇒ C, then Γ # ∆ =⇒ C.

Proof. See [11, 8].

3 Controlled Weakening

We will now turn to forward reasoning, i.e., with the aim of assembling the
conclusion from the premisses. To summarize, the forward direction has the
following resource management problems:

4

1. Undetermined contexts: the linear context in>R, and the unrestricted con-
texts in init, 1R and >R are not determined from the premisses.

2. Uncontrolled application: the 1L rule may be iterated arbitrarily often. A
defining property of linear logic is sensitivity to the number of occurrences
of linear resources, so these uncontrolled applications can result in a poten-
tially unbounded number of structurally different conclusions from a given
set of premisses.

We will solve these problems with the rules in Fig.1 in stages. In the first
stage, we will show how to eliminate undetermined contexts by making the
introduction of such contexts implicit. Then, we will show how to control the
application of 1L by making all uses of that rule implicit in the backward di-
rection. In the final stage we will turn the modified backward calculus into a
forward selection calculus (Sec.4.3). The resulting calculus will be ready for use
in the inverse method.

First we attack the problem of undetermined contexts. The resulting calcu-
lus will be significantly different from that of the backward direction, so we will
use the −→ sequent arrow to distinguish it.

For the context of unrestricted resources, we will change the interpretation
from that of a weakenable set in the backward direction to that of a strict con-
text with implicit contraction in the forward direction. It will contain only those
resources that are actually required in a particular proof of the sequent. For ex-
ample, the init rule does not use any unrestricted hypotheses, so we will remove
the unrestricted context Γ entirely from the conclusion to get:

q # A−→ A
init

As a result of strictness, the multi-premiss rules will have different unre-
stricted contexts in the premisses. In the conclusion, these contexts of unre-
stricted resources are unioned, and multiple occurrences of a resource are fac-
tored into a single occurrence.1

For the linear context, we will require a more careful enumeration of the
ways in which resources are introduced in a proof.

1. “One use” introduction, as happens in the init rule. In this case, the linear
resource is necessary for the proof.

2. “Zero use” introduction, as happens in the >R rule. In this case, the linear
context is arbitrary. To illustrate, all of the following sequents have essen-
tially the same proof: q # q−→ > and q # A−→ > and q # A,B −→ >.

3. “Undetermined use” introduction, as happens in the 1L rule. During the
introduction, it is unknown if the introduced 1 is required as a linear re-
source.

1 In the presence of quantifiers we apply factoring by unifying unrestricted proposi-
tions as in the ordinary (non-linear) inverse method.

5

The final case is a symptom of a problem with uncontrolled application,
whose solution we will defer until Sec.4.2. For the zero-use and one-use intro-
ductions, we will track the kind of introduction by means of a boolean flag on
the sequent arrow. Our sequents will have the shape:

Γ # ∆ −→w C

where w is a meta variable with value either 0 or 1. This is similar to the strict-
ness annotation in [4], with the difference that the flag in our case denotes that
the context ∆ may be weakened. More precisely, the interpretation is:

Γ;∆ −→0 C corresponds to Γ ′;∆ =⇒ C for any Γ ′ ⊇ Γ

Γ;∆ −→1 C corresponds to Γ ′;∆′ =⇒ C for any ∆′ ⊇ ∆ and Γ ′ ⊇ Γ

We will call sequents with the annotation of 1 weak sequents. The linear con-
text of weak sequents may be weakened when they are used as premisses of
an inference rule. The complete set of rules are shown in Fig.2. Initial sequents
are given the annotation 0 because the lone resource is the principal formula on
both sides of the sequent arrow. Multiplicative and additive rules will disjoin
and conjoin the flags, respectively. For the dereliction and exponential rules, the
flag will remain untouched. The >R rule will now have no contexts at all, but
the conclusion will be weak.

A comment on NR. We define a conditional union of contexts ∆1

w1,w2
∪ ∆2:

∆1

w1,w2
∪ ∆2 =


∆1 with ∆1 = ∆2 if w1 ∨ w2 = 0
∆1 with ∆2 ⊆ ∆1 if w1 = 0 and w2 = 1
∆2 with ∆1 ⊆ ∆2 if w1 = 1 and w2 = 0
∆1 t∆2 if w1 ∧ w2 = 1

The t operator in the final case is multiset join, i.e., the smallest multiset that
contains both operands. These unions capture the essence of the weakening
annotation by allowing the linear contexts of weak premisses to be smaller than
other contexts. Weakening is, therefore, implicit in this rule.

A comment on side conditions. Some rules such as (R1 will carry an extra side
condition to prevent unnecessary non-deterministic choices. For example, we
never have to choose between the following applications:

Γ # A−→1 B

Γ # q−→1 A (B
(R and

Γ # A−→1 B

Γ # A−→1 A (B
(R′

It is complete to use the first of these rules only, because the conclusion is weak
and the resource A can be introduced later if necessary by implicit weakening.
By similar reasoning, a second version of (L where B is not required in the
second premiss and w2 = 1 is unnecessary, because the conclusion would be a
weakened version of the second premiss.

6

Initial and Dereliction rules

q # A−→0 A
init

Γ # ∆, A−→w C

Γ, A # ∆ −→w C
dl

Multiplicative connectives

Γ1 # ∆1 −→w1 A Γ2 # ∆2, B −→w2 C

Γ1 ∪ Γ2 # ∆1, ∆2, A (B −→w1∨w2 C
(L

Γ # ∆, A−→w C

Γ # ∆ −→w A (C
(R

Γ # ∆ −→1 C A /∈ ∆

Γ # ∆ −→1 A (C
(R1

Γ # ∆, A−→1 C B /∈ ∆

Γ # ∆, A⊗B −→1 C
⊗L1

Γ # ∆, B −→1 C A /∈ ∆

Γ # ∆, A⊗B −→1 C
⊗L2

Γ # ∆, A, B −→w C

Γ # ∆, A⊗B −→w C
⊗L

Γ1 # ∆1 −→w1 A Γ2 # ∆2 −→w2 B

Γ1 ∪ Γ2 # ∆1, ∆2 −→w1∨w2 A⊗B
⊗R

Γ # ∆ −→0 C

Γ # ∆,1−→0 C
1L q # q−→0 1

1R

Additive connectives

Γ # ∆, A−→w C

Γ # ∆, A N B −→w C
NL1

Γ # ∆, B −→w C

Γ # ∆, A N B −→w C
NL2

Γ1 # ∆1 −→w2 A Γ2 # ∆2 −→w2 B

Γ1 ∪ Γ2 # ∆1

w1,w2∪ ∆2 −→w1∧w2 A N B
NR q # q−→1 >

>R

Exponentials

Γ, A # ∆ −→w C

Γ # ∆, !A−→w C
!L

Γ # ∆ −→0 C A /∈ Γ

Γ # ∆, !A−→0 C
!L1

Γ # q−→0 A

Γ # q−→0 !A
!R

Fig. 2. Rules for the first forward calculus

A comment on dereliction. The dl rule should not be applied unless the trans-
ferred formula is actually used unrestrictedly, by either occuring in the unre-
stricted context in the goal, or being an operand of the ! modality. In the inverse
method, labelling will flag such subformulas with a weight – heavy if it has an
unrestricted use, and light otherwise. The dl rule will be used to transfer only
heavy subformulas.

Soundness and completeness. Because the linear context has vastly different be-
haviour depending on the weakening annotation of the sequent, the soundness
theorem will have two different cases. In the case for weak sequents, soundness
can be established for any weakening of the linear context.

Theorem 3 (Soundness).

1. If Γ # ∆ −→0 C, then Γ # ∆ =⇒ C.
2. If Γ # ∆ −→1 C, then Γ # ∆′ =⇒ C for any ∆′ ⊇ ∆.

7

Proof. By induction on the structure of the derivation of Γ # ∆ −→w C.

For the completeness theorem, we allow for the possibility that the forward
calculus will find proofs of sequents that do not have unnecessary resources.

Theorem 4 (Completeness). If Γ # ∆ =⇒ C then for some Γ ′ ⊆ Γ,

1. either Γ ′ # ∆ −→0 C;
2. or Γ ′ # ∆′ −→1 C for some ∆′ ⊆ ∆.

Proof. By structural induction on the derivation of Γ # ∆ =⇒ C.

4 Controlling 1L

Uncontrolled application of 1L presents our next obstacle; before proceeding
further, a note on why this rule is interesting. In encoding of theories in linear
logic, sometimes the exactness of the linear resource is too restrictive for the
semantics, for example, if we require an at-most one use semantics. For these
theories, it is a common idiom to wrap such resources in N1. Resources of this
form have an affine interpretation; that is, the following choice of rules is appli-
cable in order to introduce such a resource,

Γ # ∆, A =⇒ C

Γ # ∆, A N 1 =⇒ C

Γ # ∆,1 =⇒ C

Γ # ∆, A N 1 =⇒ C

The first rule is the “one use” case, the second the “zero use” case, and together
they encode the “at-most one use” semantics for A.

4.1 Removing 1L from the Backward Calculus

First we will remove 1L from the backward calculus of Sec.2. The 1L rule may
be viewed as a particular instance of an explicit weakening rule that introduces
new 1 resources. We will first identify the scenarios where 1 is being used as
the multiplicative unit in sequents. We say a formula is in 1-normal form (1NF)
if it contains no occurrences of 1 ⊗ A or A ⊗ 1 or 1 (A or !1 as subformulas.
A context of resources Γ or ∆ is in 1NF if all its resources are in 1NF, and it
doesn’t contain the resource 1. A sequent Γ;∆ =⇒ C is in 1NF if Γ, ∆ and C
are in 1NF.

Formulas are translated into 1NF in the obvious way, by reducing unitary
uses, !1, etc. Fig.3 has a version of the calculus where the premisses and con-
clusions are assumed to be in 1NF. All these are derivable rules of the original
backward calculus (Sec.2), so soundness is immediate.

The cut and completeness theorems requires an update. The proof is imme-
diate because we’ve removed only unitary uses of 1.

Theorem 5 (Cut, Completeness). For A 6= 1,

8

Initial and Dereliction rules

Γ # A =⇒A
init

Γ, A # ∆, A =⇒ C

Γ, A # ∆ =⇒ C
dl

Multiplicative connectives

Γ # ∆1 =⇒A Γ # ∆2, B =⇒ C B 6= 1

Γ # ∆1, ∆2, A (B =⇒ C
(L

Γ # ∆1 =⇒A Γ # ∆2 =⇒ C

Γ # ∆1, ∆2, A (1 =⇒ C
(1L

Γ # ∆, A =⇒B

Γ # ∆ =⇒A (B
(R

Γ # ∆, A, B =⇒ C

Γ # ∆, A⊗B =⇒ C
⊗L

Γ # ∆1 =⇒A Γ # ∆2 =⇒B

Γ # ∆1, ∆2 =⇒A⊗B
⊗R

Γ # q=⇒ 1
1R

Additive connectives

Γ # ∆, A =⇒ C A 6= 1

Γ # ∆, A N B =⇒ C
NL1

Γ # ∆, B =⇒ C B 6= 1

Γ # ∆, A N B =⇒ C
NL2

Γ # ∆ =⇒ C

Γ # ∆, A N 1 =⇒ C
N1L

Γ # ∆ =⇒ C

Γ # ∆,1 N A =⇒ C
1 N L

Γ # ∆ =⇒A Γ # ∆ =⇒B

Γ # ∆ =⇒A N B
NR

Γ # ∆ =⇒> >R

Exponentials

Γ, A # ∆ =⇒ C

Γ # ∆, !A =⇒ C
!L

Γ # q=⇒A

Γ # q=⇒ !A
!R

Fig. 3. Inference rules for the backward calculus without 1L.

1. If Γ # ∆1 =⇒A and Γ # ∆2, A =⇒ C, then Γ # ∆1,∆2 =⇒ C.
2. If Γ # ∆1 =⇒ 1 and Γ # ∆2 =⇒ C, then Γ # ∆1,∆2 =⇒ C.
3. If Γ # q=⇒A and Γ, A # ∆2 =⇒ C, then Γ # ∆2 =⇒ C.
4. If Γ # ∆ =⇒C is in 1NF and it is provable in the original backward calculus, then

it is provable in the modified calculus.

4.2 The Affine Context

Although we have removed the 1L rule, we cannot directly adapt the calculus
for the forward direction because the N1L and 1NL (and no other) rules have
“undetermined use” introductions of resources similar to 1L. We will add such
resources into an affine context, Ψ, which will admit a structural weakening
theorem (Thm.6). Our sequents now have the shape:

Γ # Ψ # ∆ =⇒ C

9

Initial, Dereliction and Crystallisation rules

Γ # Ψ # A =⇒A
init

Γ, A # Ψ # ∆, A =⇒ C

Γ, A # Ψ # ∆ =⇒ C
dl

Γ # Ψ # ∆, A =⇒ C

Γ # Ψ, A # ∆ =⇒ C
dl1

Γ # Ψ, A # ∆ =⇒ C

Γ # Ψ # ∆, A N 1 =⇒ C
cryst

1

Γ # Ψ, A # ∆ =⇒ C

Γ # Ψ # ∆,1 N A =⇒ C
cryst

2

Multiplicative connectives

Γ # Ψ1 # ∆1 =⇒A Γ # Ψ2 # ∆2, B =⇒ C B 6= 1

Γ # Ψ1, Ψ2 # ∆1, ∆2, A (B =⇒ C
(L

Γ # Ψ1 # ∆1 =⇒A Γ # Ψ2 # ∆2 =⇒ C

Γ # Ψ1, Ψ2 # ∆1, ∆2, A (1 =⇒ C
(1L

Γ # Ψ # ∆, A =⇒B

Γ # Ψ # ∆ =⇒A (B
(R

Γ # Ψ # ∆, A, B =⇒ C

Γ # Ψ # ∆, A⊗B =⇒ C
⊗L

Γ # Ψ1 # ∆1 =⇒A Γ # Ψ2 # ∆2 =⇒B

Γ # Ψ1, Ψ2 # ∆1, ∆2 =⇒A⊗B
⊗R

Γ # Ψ # q=⇒ 1
1R

Additive connectives

Γ # Ψ # ∆, A =⇒ C A 6= 1

Γ # Ψ # ∆, A N B =⇒ C
NL1

Γ # Ψ # ∆, B =⇒ C B 6= 1

Γ # Ψ # ∆, A N B =⇒ C
NL2

Γ # Ψ # ∆ =⇒A Γ # Ψ # ∆ =⇒B

Γ # Ψ # ∆ =⇒A N B
NR

Γ # Ψ # ∆ =⇒> >R

Exponentials

Γ, A # Ψ # ∆ =⇒ C

Γ # Ψ # ∆, !A =⇒ C
!L

Γ # q # q=⇒A

Γ # q # q=⇒ !A
!R

Fig. 4. The backward sequent calculus with affine context

Resources in the affine context Ψ may be transferred into the linear context
by wrapping them in N1 or 1N; these are written as a pair of crystallisation rules:

Γ # Ψ, A # ∆ =⇒ C

Γ # Ψ # ∆, A N 1 =⇒ C
cryst1

Γ # Ψ, A # ∆ =⇒ C

Γ # Ψ # ∆,1 N A =⇒ C
cryst2

Furthermore, linear resources may be transferred into the affine context because
any proof that uses a resource linearly also uses that resource affinely:

Γ # Ψ # ∆, A =⇒ C

Γ # Ψ, A # ∆ =⇒ C
dl1

It is of course unsound to continue to carry the resource A in the affine context
in the premiss, unlike the dereliction rule for the unrestricted resources. If we
need a new “zero use” copy of the resource, we make use of the admissible
structural rule of weakening the affine context (Thm. 6 below). The rules for the
backward calculus with the affine context are in Fig. 4.

10

Given an affine context Ψ, we will write Ψ N 1 for that context of resources
formed by replacing each resource A in Ψ with A N 1. The characteristic struc-
tural property of the affine sequent is the admissibility of weakening.

Theorem 6 (Weakening the affine context). If Γ #Ψ #∆=⇒C then Γ ′ #Ψ ′ #∆=⇒C
for any Γ ′ ⊇ Γ and Ψ ′ ⊇ Ψ.

Proof. Structural Induction on the derivation of Γ # Ψ # ∆ =⇒ C.

Theorem 7 (Cut). For A 6= 1,

1. If Γ # Ψ1 # ∆1 =⇒A and Γ # Ψ2 # ∆2, A =⇒ C, then Γ # Ψ1, Ψ2 # ∆1,∆2 =⇒ C.
2. If Γ # Ψ1 # ∆1 =⇒ 1 and Γ # Ψ2 # ∆2 =⇒ C, then Γ # Ψ1, Ψ2 # ∆1,∆2 =⇒ C.
3. If Γ # Ψ1 # q=⇒A and Γ # Ψ2, A # ∆2 =⇒ C, then Γ # Ψ1, Ψ2 # ∆2 =⇒ C.
4. If Γ # q # q=⇒A and Γ, A # Ψ2 # ∆2 =⇒ C, then Γ # Ψ2 # ∆2 =⇒ C.

Proof. Similar to theorems 2 and 5.

Soundness and completeness with respect to the extended backward calcu-
lus of Sec.4.1 are fairly straightforward.

Theorem 8 (Soundness and Completeness).

1. If Γ # Ψ # ∆ =⇒ C, then Γ # Ψ N 1,∆ =⇒ C.
2. If Γ # ∆ =⇒ C, then for any Ψ, Γ # Ψ # ∆ =⇒ C.

Proof. By structural induction on the respective derivations.

4.3 The Forward Selection Calculus

We will now extend the first forward sequent calculus (Sec.3) to remove the 1L
rule, using a similar approach as the previous section. We extend the forward
sequent with an affine context:

Γ # Ψ # ∆ −→w C

Particular care is needed for the crystallisation rules. For illustration, this
selection of rules would contain unacceptable non-determinism:

Γ # Ψ, A # ∆ −→w C

Γ # Ψ # ∆, A N 1−→w C
cryst1

Γ # Ψ # ∆ −→w C A /∈ Ψ

Γ # Ψ # ∆, A N 1−→w C
cryst′1

Γ # Ψ, A # ∆ −→w C

Γ # Ψ # ∆,1 N A−→w C
cryst2

Γ # Ψ # ∆ −→w C A /∈ Ψ

Γ # Ψ # ∆,1 N A−→w C
cryst′2

The reason is that there is no control on the application of cryst′1 and cryst′2. In
fact, a similar problem existed in already with regard to the !L1 rule, which is
uncontrolled in this form:

Γ # Ψ # ∆ −→0 C A /∈ Γ

Γ # Ψ # ∆, !A−→0 C
!L1

11

We will solve these problems by uniting all rules that require membership
of resources in contexts using a selection judgement, which will perform crys-
tallisation and 1L implicitly. We will write this selection judgement as:

(Γ # Ψ # ∆) . (Γ ′ # Ψ ′ # ∆′) | Υ

read “the resources Υ are selected from the contexts Γ #Ψ #∆, leaving Γ ′ #Ψ ′ #∆′”.
Υ is a multiset of resources, just like ∆. We will use the meta variable Ω to
abbreviate Γ # Ψ # ∆. The rules for this selection judgement are as follows:

Ω . Ω | q . triv
Γ # Ψ # ∆ . Ω | Υ

(Γ # Ψ # ∆, A) . Ω | Υ, A
. linear

(Γ # Ψ # ∆) . Ω | Υ
(Γ # Ψ, A # ∆) . Ω | Υ, A N 1 . aff1

(Γ # Ψ # ∆) . Ω | Υ
(Γ # Ψ, A # ∆) . Ω | Υ,1 N A

. aff2

(Γ # Ψ # ∆) . Ω | Υ A /∈ Ψ

(Γ # Ψ # ∆) . Ω | Υ, A N 1 . aff3
(Γ # Ψ # ∆) . Ω | Υ A /∈ Ψ

(Γ # Ψ # ∆) . Ω | Υ,1 N A
. aff4

(Γ # Ψ # ∆) . Ω | Υ
(Γ, A # Ψ # ∆) . Ω | Υ, !A . !1

(Γ # Ψ # ∆) . Ω | Υ A /∈ Γ

(Γ # Ψ # ∆) . Ω | Υ, !A . !2

These rules are not intended to be read in the forward direction. Instead, they
define a bottom-up match for queries of the context Υ. If for Ω and Υ, we cannot
establish Ω . Ω′ | Υ for any Ω′, then we write Ω 7 Υ.

Theorem 9 (Selection). If Ω =⇒C and Ω . (Γ #Ψ #∆) | Υ, then Γ #Ψ #∆, Υ =⇒C.

Proof. Structural induction of the selection Ω . (Γ # Ψ # ∆) | Υ, using theorems
6 and 1 as necessary.

Like with Ψ N 1, we write !Γ for the context formed by replacing every re-
source A in Γ with !A. The following are some simple and useful properties of
selection

Lemma 1 (Characterising Selection). If (Γ # Ψ # ∆) . (Γ ′ # Ψ ′ # ∆′) | Υ then

1. Γ ′ ⊆ Γ, Ψ ′ ⊆ Ψ and ∆′ ⊆ ∆, and
2. !(Γ\Γ ′), (Ψ\Ψ ′) N 1, (∆\∆′) ⊆ Υ.

Proof. By straightforward structural induction on the derivation of (Γ #Ψ #∆) .
(Γ ′ # Ψ ′ # ∆′) | Υ.

Lemma 2 (Weakening a Selection). If (Γ1 # Ψ1 # ∆1) . (Γ2 # Ψ2 # ∆2) | Υ, then for
any ∆, we have (Γ1 # Ψ1 # ∆1,∆) . (Γ2 # Ψ2 # ∆2,∆) | Υ

Proof. By straightforward induction and lemma 1.

12

Using selection, we can now successfully remove the 1L rule from the for-
ward calculus. Our goal is the following correspondence:

Γ # Ψ # ∆ −→0 C corresponds to Γ ′ # Ψ ′,∆′ =⇒ C

for ∆′ ⊇ ∆ where elements of ∆′\∆
are of the form A N 1 or 1 N A or !A

Γ # Ψ # ∆ −→1 C corresponds to Γ ′ # Ψ ′,∆′ =⇒ C for any ∆′ ⊇ ∆

for any Ψ ′ ⊇ Ψ and Γ ′ ⊇ Γ. The full set of rules is shown in Fig. 5.

4.4 Soundness and Completeness

Soundness for the forward selection calculus is not much harder than that for
the forward calculus of Sec.3.

Theorem 10 (Soundness).

1. If Γ # Ψ # ∆ −→0 C, then Γ # Ψ # ∆ =⇒ C
2. If Γ # Ψ # ∆ −→1 C, then Γ # Ψ # ∆′ =⇒ C for any ∆′ ⊇ ∆.

Proof. Structural induction on the derivation of Γ # Ψ # ∆ −→w C, using Lem. 2
and Thm. 1 as necessary.

Completeness cannot be proven directly like for Thm. 4. Instead, the induc-
tion hypothesis must be strengthened.

Theorem 11 (Completeness). If Γ # Ψ # ∆ =⇒ C, then one of the following is true:

1. either Γ1 # Ψ1 # ∆, !Γ2, Ψ2 N 1−→0 C,
2. or Γ1 # Ψ1 # ∆′, !Γ2, Ψ2 N 1−→1 C for some ∆′ ⊆ ∆,

for some Γ1 ∪ Γ2 ⊆ Γ and Ψ1, Ψ2 ⊆ Ψ.

Proof. Structural induction on the derivation of Γ # Ψ # ∆ =⇒ C.

5 Conclusion

We have presented a forward sequent calculus for the multiplicative-additive-
exponential fragment of linear logic (Sec.4.3). Our calculus has the following
properties from the perspective of resource management:

– No “zero use” resources. We identify sequents whose linear context is sub-
ject to weakening, and introduce such resources implicitly.

– Controlled “undetermined use” resources. All resource introductions are
structural, and controlled by tight selection criteria.

13

Initial, Dereliction

q # q # A−→0 A
init

Ω . (Γ # Ψ # ∆) | A Ω −→w C

Γ, A # Ψ # ∆ −→w C
dl

Ω . (Γ # Ψ # ∆) | A Ω −→w C

Γ # Ψ, A # ∆ −→w C
dl1

Multiplicative connectives

Γ1 # Ψ1 # ∆1 −→w1 A Ω . (Γ2 # Ψ2 # ∆2) | B Ω −→w2 C

Γ1 ∪ Γ2 # Ψ1, Ψ2 # ∆1, ∆2, A (B −→w1∨w2 C
(L

Γ1 # Ψ1 # ∆1 −→w1 A Γ2 # Ψ2 # ∆2 −→w2 C

Γ1 ∪ Γ2 # Ψ1, Ψ2 # ∆1, ∆2, A (1−→w1∨w2 C
(1L

Ω . (Γ # Ψ # ∆) | A Ω −→w C

Γ # Ψ # ∆ −→w A (C
(R

Ω −→1 C Ω 7 A

Ω −→1 A (C
(R1

Ω . (Γ # Ψ # ∆) | A, B Ω −→w C

Γ # Ψ # ∆, A⊗B −→w C
⊗L

Ω . (Γ # Ψ # ∆) | B Ω 7 A Ω −→1 C

Γ # Ψ # ∆, A⊗B −→1 C
⊗L1

Ω . (Γ # Ψ # ∆) | A Ω 7 B Ω −→1 C

Γ # Ψ # ∆, A⊗B −→1 C
⊗L2

Γ1 # Ψ1 # ∆1 −→w1 A Γ2 # Ψ2 # ∆2 −→w2 B

Γ1 ∪ Γ2 # Ψ1, Ψ2 # ∆1, ∆2 −→w1∨w2 A⊗B
⊗R q # q # q−→0 1

1R

Additive connectives

Ω . (Γ # Ψ # ∆) | A Ω −→w C B 6= 1

Γ # Ψ # ∆, A N B −→w C
NL1

Ω . (Γ # Ψ # ∆) | B Ω −→w C A 6= 1

Γ # Ψ # ∆, A N B −→w C
NL2

Γ1 # Ψ2 # ∆1 −→w2 A Γ2 # Ψ2 # ∆2 −→w2 B

Γ1 ∪ Γ2 # Ψ1 ∪ Ψ2 # ∆1

w1,w2∪ ∆2 −→w1∧w2 A N B
NR q # q # q−→1 >

>R

Exponentials

Γ # q # q−→0 A

Γ # q # q−→0 !A
!R

Fig. 5. The forward selection calculus

14

We believe our framework to be sufficiently general that some extensions
can be made readily. As remarked earlier, external choice and its unit 0 do not
present any significant challenges. 0 on the left behaves like > on the right, so
sequents which have 0 as a resource will be weak. This will require the right
hand side of sequents to be possibly empty, so sequents will have the shape:
Γ # Ψ # ∆ −→w γ, where γ is either q or a formula C. The 0L rule then becomes
simply:

q # q # 0−→1 q 0L

Extending the calculus to first order connectives requires relaxing equali-
ties to unification. It is relatively straightforward to extend the rules to the first
order case, but the negative existence conditions in the selection rules . aff3,
. aff4 and . !2 require special consideration.

In order to complete a practical implemention of an inverse method theorem
prover that uses this forward calculus, the two most important requirements
are (1) a version of the sequent calculus that incorporates focused derivations
in the sense of Andreoli [1, 8], and (2) an efficient indexing mechanism. Focused
derivations impose further controls on rule application, allowing the creation
of big-step derived inference rules, and thereby cuts down on the number of
new sequents. We are presently examining the interactions between inversion,
focusing, and selection.

References

1. Jean Marc Andreoli. Logic programming with focussing proofs in linear logic. Jour-
nal of Logic and Computation, 2, 1992.

2. Andrew Barber and Gordon Plotkin. Dual intuitionistic linear logic. Technical Re-
port ECS-LFCS-96-347, University of Edinburgh, 1996.

3. Marco Bozzano. A Logic-Based Approach to Model Checking of Parameterized and
Infinite-State Systems. PhD thesis, DISI, Università di Genova, 2002.

4. Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource man-
agement for linear logic proof search. In R. Dyckhoff, H. Herre, and P. Schroeder-
Heister, editors, Proceedings of the 5th International Workshop on Extensions of Logic
Programming, pages 67–81, Leipzig, Germany, March 1996. Springer-Verlag LNAI
1050.

5. J-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
6. James Harland and David J. Pym. Resource-distribution via boolean constraints. In

W. McCune, editor, Proceedings of CADE-14, pages 222–236, Townsville, Australia,
July 1997. Springer-Verlag LNAI 1249.

7. Joshua S. Hodas. Lolli: an extension of λProlog with linear logic context manage-
ment. In Dale Miller, editor, Proceedings of the 1992 workshop on the λProlog program-
ming language, Philadelphia, 1992.

8. Jakob M. Howe. Proof search issues in some non-classical logics. PhD thesis, University
of St. Andrews, September 1999.

9. S. Maslov. The inverse method of establishing deducibility in the classical predicate
calculus. Soviet Mathematical Doklady, 5:1420–1424, 1964.

15

10. Grigori Mints. Resolution calculus for the first order linear logic. Journal of Logic,
Language and Information, 2(1):59–83, 1993.

11. Frank Pfenning. Structural cut elimination in linear logic. Technical Report CMU-
CS-94-222, Carnegie Mellon University, December 1994.

12. Tannel Tammet. Proof strategies in linear logic. Journal of Automated Reasoning,
12(3):273–304, 1994.

13. Andrei Voronkov. Theorem proving in non-standard logics based on the inverse
method. In D. Kapur, editor, Proceedings of the CADE-11, pages 648–662, Saratoga
Springs, New York, 1992. Springer-Verlag LNCS 607.

14. H. Winikoff and James Harland. Implementing the linear logic programming lan-
guage Lygon. In Proceedings of the International Logic Programming Symposium (ILPS),
pages 66–80, December 1995.

16

A. Proofs

We will now present the proofs of the theorems 3, 4, 5, 10, and 11.

Proof (Thm. 3). By induction on the structure of the derivationD of Γ #∆−→w C.
We have the following characteristic cases:

Case. dl, i.e.,

D =
D1

Γ # ∆, A−→w C

Γ, A # ∆ −→w C
dl

w = 0: (1) Γ # ∆, A =⇒ C IH: D1

(2) Γ, A # ∆, A =⇒ C weak: 1
(3) Γ, A # ∆ =⇒ C dl: 2

w = 1: for any ∆′, A ⊇ ∆, A,
(1) Γ # ∆′, A =⇒ C IH: D1,
(2) Γ, A # ∆′, A =⇒ C weak: 1
(3) Γ, A # ∆′ =⇒ C dl: 2

Case. rules that require the weakened form of case (2) for the induction to hold,
for example (R1:

D =
D1

Γ # ∆ −→1 C A /∈ ∆

Γ # ∆ −→1 A (C
(R1

Given ∆′ ⊇ ∆, we have:

(1) Γ # ∆′, A =⇒ C IH: D1

(2) Γ # ∆′ =⇒A (C (R: 1

Case. (L, i.e.,

D =
D1

Γ1 # ∆1 −→w1 A
D2

Γ2 # ∆2, B −→w2 C

Γ1 ∪ Γ2 # ∆1,∆2, A (B −→w1∨w2 C
(L

w1 ∨ w2 = 0: (1) Γ1 # ∆1 =⇒A IH: D1

(2) Γ2 # ∆2, B =⇒ C IH: D2

(3) Γ1 ∪ Γ2 # ∆1 =⇒A weak: 1
(4) Γ1 ∪ Γ2 # ∆2, B =⇒ C weak 2
(5) Γ1 ∪ Γ2 # ∆1,∆2, A (B =⇒ C (L: 3, 4

w1 = 1: in which case for any ∆′
1,∆2, A (B ⊇ ∆1,∆2, A (B,

(1) Γ1 # ∆′
1 =⇒A IH: D1

(2) Γ1 ∪ Γ2 # ∆′
1 =⇒A weak: 1

(3) Γ2 # ∆2, B =⇒ C IH: D2

(4) Γ1 ∪ Γ2 # ∆2, B =⇒ C weak: 3
(5) Γ1 ∪ Γ2 # ∆′

1,∆2, A (B =⇒ C (L: 1, 3

17

Other cases are similar. ut

Proof (Thm. 4). by induction on the structure of the derivation D of Γ # ∆ =⇒C.
We have the following cases for the right rule of D:

Case. init, i.e.,

D =
Γ # A =⇒A

init

In this case, q # A−→0 A, so part (1) holds.
Case. dl, i.e.,

D =
D1

Γ, A # ∆, A =⇒ C

Γ, A # ∆ =⇒ C
dl

Applying the induction hypothesis for D1, we have the following possi-
bilities:
a. Γ ′ # ∆, A −→0 C for some Γ ′ ⊆ Γ, A. Then we apply dl, and satisfy

part (1) of the theorem.
b. Γ ′ # ∆′ −→1 C for some Γ ′ ⊆ Γ, A and ∆′ ⊆ ∆, A. If A /∈ ∆′ we

satisfy part (2), so assume that ∆′ = ∆′′, A. Now, we apply dl to get
Γ ′, A # ∆′′ −→1 C, which satisfies part (2).

Case. (L, i.e.,

D =
D1

Γ # ∆1 =⇒A
D2

Γ # ∆2, B =⇒ C

Γ # ∆1,∆2, A (B =⇒ C
(L

Here we have:

(1) Γ1 # ∆1 −→0 A and Γ2 # ∆2, B −→0 C
assume IH(1): D1 and D2

Γ1 and Γ2 ⊆ Γ
(2) 1 ` Γ1 ∪ Γ2 # ∆1,∆2, A (B −→0 C

(L: 1, satisfies (1)
(3) Γ1 # ∆′

1 −→1 A and Γ2 # ∆2, B −→0 C
assume IH(2): D1 and IH(1): D2

for some Γ1, Γ2 ⊆ Γ and ∆′
1 ⊆ ∆1

(4) 3 ` Γ1 ∪ Γ2 # ∆′
1,∆2, A (B −→1 C

(L: 3, satisfies (2)
(5) Γ1 # ∆1 −→0 A and Γ2 # ∆′

2, B −→1 C
assume IH(1): D1 and IH(2): D2

for some Γ1, Γ2 ⊆ Γ and ∆′
2 ⊆ ∆2

(6) 5 ` Γ1 ∪ Γ2 # ∆1,∆
′
2, A (B −→1 C

(L: 5, satisfies (2)
(7) Γ1 # ∆′

1 −→0 A and Γ2 # ∆′
2, B −→1 C

assume IH(1): D1 and IH(2): D2

18

for some ∆′
1 ⊆ ∆1 and ∆′

2 ⊆ ∆2

and Γ1 ∪ Γ2 ⊆ Γ
(8) 7 ` Γ1 ∪ Γ2 # ∆′

1,∆
′
2, A (B −→1 C

(L: 7, satisfies (2)

If none of the assumptions in 1, 3, 5 or 7 hold, then the conclusion in (L
would be a weakening of one of the premisses, so part (2) is immediately
true of that premiss.

Most of the rules will require a similar enumeration of possibilities.
Case. (R, i.e.,

D =
Γ # ∆, A =⇒B

Γ # ∆ =⇒A (B
(R

If the annotation is not 0 when applying the IH to the premiss, then we
use (R or (R1 depending on whether A is in the linear context or not;
otherwise we apply (R.

Case. ⊗L, i.e.,

D =
Γ # ∆, A,B =⇒ C

Γ # ∆, A⊗B =⇒ C
⊗L

If the annotation is 0 when applying the IH to the premiss, then we use
⊗L. Otherwise we use ⊗L, ⊗LB or ⊗LA depending on whether both A
and B, only A, or only B are in the linear context, respectively; if neither
are in the context, then the premiss itself satisfies part (2).

Case. ⊗R, i.e.,

D =
Γ # ∆1 =⇒A Γ # ∆2 =⇒B

Γ # ∆1,∆2 =⇒A⊗B
⊗R

The conclusion of this rule is structurally weaker than that of the corre-
sponding rule in ⊗R, so the result is straightforward.

Case. 1L or 1R, both of which are trivial.
Case. NL1: this rule is structurally identical to NL1, so the result holds trivially;

similarly with NL2.
Case. NR, i.e.,

D =
Γ # ∆ =⇒A Γ # ∆ =⇒B

Γ # ∆ =⇒A N B
NR

Once again, the conclusion of this rule is weaker than that of the corre-
sponding sequent in NR, so the result holds.

The rules for the exponentials are structurally identical to their forward ana-
logues because the forward rules ignore the weakening annotation. Therefore
these cases are trivial. ut

19

Proof (Thm. 5). The cut cases (1-3) are similar to Thm.2. For case 4, we proceed
by induction on the derivationD of Γ #∆=⇒C in the original calculus (of Sec.2).
We have the following cases:

Case. init, dl, etc., which are identical in the two calculi. For example, for dl:

D =
D′

Γ, A # ∆, A =⇒ C

Γ, A # ∆ =⇒ C
dl

We use the IH onD′ to get Γ, A #∆, A=⇒C in the modified calculus, then
use dl in the modified calculus.

Case. the final rule in D is (L, i.e.

D =
D1

Γ # ∆1 =⇒A
D2

Γ # ∆2, B =⇒ C

Γ # ∆1,∆2, A (B =⇒ C
(R

In this case A 6= 1 because otherwise A (B is not in 1NF. We use the IH
for D1 and D2, and based on whether B = 1 or not, either (L or (1L.
Most of the rules require an analysis of this flavour. The remaining inter-
esting cases are for the NL rules.

Case. the final rule in D is NL1, i.e.,

D =
D′

Γ # ∆, A =⇒ C

Γ # ∆, A N B =⇒ C
NL1

If A = 1, then we know from the IH for D′ that Γ # ∆ =⇒ C, so we use
1 N L. Otherwise, we have Γ # ∆, A =⇒ C, in which case we use NL1.
The case for NL2 is similar. ut

Proof (Thm. 10). By induction on the structure of the derivation D of Γ # Ψ #
∆−→w C, using the selection Thm. 9 as required. All the rules that use selection
on premisses require analyses of the same flavour. For illustration, here is the
case for the dereliction rules:

D = Ω . Γ # Ψ # ∆ | A
D′

Ω −→w C

Γ, A # Ψ # ∆ −→w C
dl

If w = 0, then by the induction hypothesis for D′ and the selection theorem
(9), Γ # Ψ # ∆, A =⇒ C, so by dl, Γ, A # Ψ # ∆ =⇒ C. If w = 1, then let ∆′ =
∆, ∆1 be given. If Ω = ΓΩ # ΨΩ # ∆Ω , then by the selection weakening lemma
(2), ΓΩ # ΨΩ # ∆Ω ,∆1 . Γ # Ψ # ∆, ∆1 | A. By the induction hypothesis for D′,
ΓΩ # ΨΩ # ∆Ω ,∆1 =⇒C, and so by the selection theorem, Γ # Ψ # ∆, ∆1, A =⇒C,
so Γ, A # Ψ # ∆, ∆1 =⇒ C. ut

Proof (Thm. 11). By induction on the structure of the derivationD of Γ #Ψ #∆=⇒
C. We have the following characteristic cases:

20

Case. the last rule in D is init, dl, dl1, 1R, >R or !R: these cases follow imme-
diately from the corresponding forward rule, which is structurally iden-
tical.

Case. the last rule in D is one of the crystallisation rules, say cryst1:

D =
D′

Γ # (Ψ, A) # ∆ =⇒ C

Γ # Ψ # ∆, A N 1 =⇒ C
cryst1

Given Γ1 ∪ Γ2 ⊆ Γ and Ψ1, Ψ2 ⊆ Ψ, A:
(a) if Γ1 # Ψ1 # ∆, !Γ1, Ψ1 N 1 −→0 C, then if A N 1 ∈ Ψ1 N 1 then we are

done. Otherwise, Ψ1, Ψ2 ⊆ Ψ.
(b) otherwise Γ1 #Ψ2 #∆′, !Γ1, Ψ2N1−→1C for some ∆′ ⊆ ∆. Regardless of

the constitution of ∆′, the argument of the previous case still applies.
Case. the last rule in D is (R:

D =
D′

Γ # Ψ # ∆, A =⇒B

Γ # Ψ # ∆ =⇒A (B
(R

Given Γ1 ∪ Γ2 ⊆ Γ and Ψ1, Ψ2 ⊆ Ψ:
(a) if Γ1 # Ψ1 # ∆, A, !Γ2, Ψ2 N 1−→0 C, then we use (R1.
(b) otherwise, Γ1 # Ψ2 # ∆′, !Γ1, Ψ2 N 1−→1 C for some ∆′ ⊆ ∆.

All rules require a similar analysis in order to extend the corresponding case
from the proof of Thm. 4. ut

Please do not distribute without the permission of the authors.
Compiled: January 31, 2003

21

