Refinement Types for Logical Frameworks

Frank Pfenning
Department of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3891, U.S.A.

Internet: fp@cs.cmu.edu

July 1993

Abstract

We propose a refinement of the type theory underlying the LF logical framework by
a form of subtypes and intersection types. This refinement preserves desirable features
of LF, such as decidability of type-checking, and at the same time considerably simplifies
the representations of many deductive systems. A subtheory can be applied directly to
hereditary Harrop formulas which form the basis of AProlog and Isabelle.

1 Introduction

Over the past two years we have carried out extensive experiments in the application of the LF
Logical Framework [HHP93] to represent and implement deductive systems and their metathe-
ory. Such systems arise naturally in the study of logic and the theory of programming languages.
For example, we have formalized the operational semantics and type system of Mini-ML and
implemented a proof of type preservation [MP91] and the correctness of a compiler to a vari-
ant of the Categorical Abstract Machine [HP92]. LF is based on a predicative type theory
with dependent types. It has proved to be an excellent language for such formalization efforts,
since it allows direct representation of deductions as objects and judgments as types and sup-
ports common concepts such as variable binding, substitution, and generic and hypothetical
judgments. The logic programming language Elf [Pfe91a] implements LF and gives it an oper-
ational interpretation so that LF signatures can be executed as logic programs. It also provides
sophisticated term reconstruction, which is important for realistic applications.

Despite its expressive power, certain weaknesses of LF emerged during these experiments.
One of these is the absence of any direct form of subtyping. Clearly, this is not a theoretical
problem: what is informally presented as subtyping can be encoded either via explicit coercions
or via auxiliary judgments as we will illustrate below. In practice, however, this becomes a
significant burden, and encodings are further removed from informal mathematical practice
than desirable.

An obvious candidate for an extension of the type system are subset types as they are
used for example in Martin-Lof type theory [SS88]. In a logical framework, however, they are
problematic, because they lead to an undecidable type-checking problem. The methodology of
LF reduces proof checking in the object language to type checking in the meta-language (the LF
type theory), and thus decidability is important. Looking elsewhere, we find an extensive body

of work on order-sorted first-order calculi and their use in logic programming and automated
theorem proving (see, for example, [Smo89, SS89]). However, it is not clear how to generalize
these calculi to logics or type theories with higher-order functions, although recently some
interesting work in this direction has begun [Koh92, NQ92]. Similar systems of simple subtypes
have been used in programming languages, in particular in connection with record types and
object-oriented programming, but such systems are not expressive enough for our purposes.
More promising are enhancements of simple subtypes with intersection types [CDCV81], which
have been applied to programming languages [Rey91] and recently also in type theory [Hay91].
General decidability of type-checking or inference in such calculi is problematic, but under
certain restrictions type checking is decidable and principal types exist [Rey88, FP91, CG92].

In this paper we tie together ideas from these threads of research and propose a refinement
of the LF type theory by a version of bounded intersection types, or refinement types, as we
call them. The resulting type theory A allows more direct encodings of deductive systems in
many examples. We show that it has a decidable type-checking problem and is thus useful as
a logical framework. We have not yet implemented this system, but experience with a related
implementation of refinement types for ML [FP91] and the current Elf term reconstruction
algorithm leads us to believe that type-checking will be practical. While similar in spirit to
the work on refinement types for ML [FP91], the technical and practical issues in both systems
are very different. In ML, we are concerned with the decidability of type inference in the
presence of general recursion and polymorphism. Here, we have to deal with type checking in
a language without recursion or polymorphism, but with dependent types. Furthermore, in
ML refinement types are defined inductively; here refinement types are open-ended in the same
way that signatures are essentially open-ended (they can be extended with further declarations
without invalidating earlier declarations).

The system we propose is relevant not only to LF and its Elf implementation, but a restricted
version can be applied directly to AProlog [MNPS91] and Isabelle [PN90] with similar benefits.
A unification algorithm for this restricted A-calculus, A% is described in [KP93].

In future work, we plan to consider the operational aspects of this type theory so that it can
be fully embedded into the current Elf implementation. This includes extending the constraint
solving algorithm in [KP93] to account for dependencies in the style of [Pfe91a, Pfe91b], type re-
construction, and search. Based on experience from first-order logic programming we conjecture
that subtyping constraints can lead to improved operational behavior of many programs.

2 Two Motivating Examples

In this section we give two prototypical examples which motivate our extension of the LF type
theory. Space only permits a rather sketchy discussion of these examples; the interested reader
may find additional explanation in the indicated references.

Hereditary Harrop Formulas. Here we consider, as an object logic, the language of heredi-
tary Harrop formulas [MNPS91], a fragment of logic suitable as a basis for a logic programming
language. For the sake of brevity we restrict ourselves to the propositional formulas.

Formulas F = A|FiANF, | DF|FRVE
Here A ranges over atomic formulas. We now define legal program and goal formulas.

Programs D = A|D;ANDy|G>D
Goals G = A‘Gl/\GQ‘Gl\/GQ‘DDG

2

How do we represent these definitions in LF? The definition of formulas given here in the
concrete syntax of Elf, is straightforward.

form : type.

=> : form -> form -> form. %infix right 10 =>
[: form -> form -> form. %infix right 12 ||
&& : form -> form -> form. %infix right 14 &&

Atomic formulas are not explicitly declared, but we assume that declarations for predicate
constants are added to this basic signature as they are introduced. The next question is how to
represent programs and goals. Here we can go two ways: one is to introduce explicit judgments
atom F, prog F, and goal F' which can be used to prove that a given formula F' is either an
atom, program, or goal. That is, showing only the rules for programs:

atom : form -> type.
goal : form -> type.
prog : form -> type.

p_atom : atom A -> prog A.
p_imp : goal A -> prog B -> prog (A => B).
p_and : prog A -> prog B -> prog (A && B).

Here, free variables in a declaration are implicitly II-quantified.

A judgment, such as P - G (program P entails goal G) must now carry explicit evidence
that the constituents P and G are in fact legal programs and goals. We call this judgment
solve P G, indicating its use as a logic program. It requires backchain as an auxiliary judgment.
{x:A} K is Elf’s concrete syntax for Ilz:A. K.

solve : {P:form} prog P -> {G:form} goal G -> type.
backchain : {P:form} prog P -> {A:form} atom A -> {G:form} goal G -> type.

The rules defining these judgments lead to a very awkward and inefficient implementation of
proof search, since solve is now a type family indexed by four arguments instead of only two.

Another possibility is to declare separate types for programs and goals. Unfortunately,
this means that we have to introduce separate instances of the shared connectives, and the
connection to an overarching language of formulas is lost and would have to be axiomatized
separately.

Both alternatives illustrate general techniques available within the LF type theory. While
feasible for relatively small examples, they become very difficult to manage for larger examples
and obscure the representations greatly compared to the relative simplicity of the informal
definition. In contrast, with refinement types we can declare a type of formulas and then
atoms, programs, and goals as subtypes.

Natural Deductions in Normal Form. The next example illustrates that we often want to
make subtype distinctions at the level of deductions and not only at the level of syntax. We
follow the usual representation of natural deduction in LF [HHP93] and Felty’s trick to enforce

normal forms [Fel89]. We restrict ourselves to the purely implicational fragment.

— X

A

B ADB A
OI* OB
ADB B

The deduction in the premise of the implication introduction rule discharges the hypothesis
A labelled z and is represented as a function from deductions of A to deductions of B. The
derivability judgment is represented by the family pf which is indexed by a formula.

o . type.
imp : o => o -> o.

pf : o -> type.

impi : (pf A -> pf B) -> pf (imp A B).
impe : pf (imp A B) -> pf A -> pf B.

Again, quantifiers over A and B are implicit. A type of the form pf A is the type of all
natural deductions of A. A natural deduction is normal if no introduction of an implication
is immediately followed by its elimination. An equivalent formulation essentially says that we
can only reason with elimination rules from hypotheses and with introduction rules from the
conclusion. We implement this via two judgments, elim and nf, on deductions. This has the
same drawbacks as in the previous example: it is more verbose, and arguments proliferate in
judgments which depend on elim and nf. Here is how this alternative could be written:

nf : pf A -> type.
elim : pf A -> type.

impi_nf : {Q:pf A -> pf B} ({P:pf A} elim P -> nf (Q P)) -> nf (impi Q).
impe_elim : {P:pf (imp A B)} {Q:pf A} elim P -> nf Q -> elim (impe P Q).
elim nf : {P:pf A} elim P -> nf P.

Implicit arguments (to nf, elim, impi, and impe) and type reconstruction in Elf go a long way
towards making this option feasible, but it is still awkward. Felty’s solution introduces new
families elim and nf indexed by formulas. Again, the connection to pf remains informal and
one then has to prove that every normal natural deduction is in fact a natural deduction. Using
refinement types, we will be able to declare deductions in normal form as a subtype of natural
deductions.

3 The Refinement Type System

In this section we present a refinement of the LF type theory (A!) to accomodate commonly
used forms of subtypes. We refer to this system as A%, We have to ensure that the basic,
necessary properties of the LF type theory are not destroyed: in particular, we need to preserve
decidability of type-checking and the adequacy of encodings. These requirements have led us to

a number of basic design decision which we review here before the technical development. The
examples will draw upon Section 2.

Sorts and Proper Types. Semantically, a sort may be best thought of as describing a subset
of a proper type as it exists in LF. This extends through the type hierarchy in straightforward
fashion; for example, the sort (elim A — nf B) will describe a subset of the functions of type
(pf A — pf B), namely those that map a deduction of A by elimination rules to a normal form
deduction of B. Thus we think of sorts as a refinement of the structure of types, and similary
for sort families indexed by objects. Sorts are not distinguished syntactically, but via a new
form of declaration that specifies a sort refining a type. For example, goal :: form declares the
sort goal of legal goals as a refinement of the type form of formulas.

Subsorts and Intersection Types. The space of sorts that refine a given proper type must
possess structure to be useful. We thus introduce new declarations of the form a < a’ that
specify that sort a is a subsort of sort a’. This will only be considered well-formed when both
a and a’ refine some proper type b. At the level of functions, simple subsorting is insufficient,
since a given A-expression may have a number of different sorts. For example, (Az:pf A. z) has
type pf A — pf A, and also sorts elim A — elim A and nf A — nf A. In order to express all
these properties directly we use intersection types:

(Ax:pf A. x) @ (elim A — elim A) &(nf A — nf A) &(pf A — pf A).

Again, in keeping with the basic refinement philosophy, sorts may only be conjoined if they
refine a common type (pf A — pf A, in this example).

Objects. We also make a basic decision not to change the space of objects, but merely to
classify them more accurately than in A'I. This may seem rather drastic insofar as types occur
in objects (labelling \’s) and one might thus expect them to change as the language of types
changes. Through the typing rules we enforce that A-abstractions are labelled by proper types.
The typing rules then allow analysis of the body of the term Ax:A. M for every sort that refines
the type A. This restriction may not be necessary to obtain a decidable system, but it affords a
tremendous simplification of the meta-theory of our calculus without affecting its expressiveness
in any essential way. It is also consistent with the philosphy behind refinement types.

3.1 Syntax

We maintain LE’s three levels and augment families and kinds by intersections. Objects
and contexts remain basically the same, although we have eliminated family-level abstractions
Ax:Aq. Ag, since they do not occur in normal forms and are thus not important in practice.

Kinds K == Type|llz:A. K | K; & K»
Families A = a ‘ AM ‘ H.’BiAl. A2 ‘ Al&AQ
Objects M == c|xz | z:A. M | My M,
Contezts T == -|T,x:A

Signatures may now contain two additional forms of declarations: refinement declarations a;j ::
ao and subsort declarations a1 < as.

Signatures ¥ = |, a:K |X,cA| X a1 a2 | a1 < ag

We now also drop the restriction that a constant may be declared at most once in a signature
(where a:K, a; :: ag, and c:A declare a, a1, and ¢, respectively). Instead we impose other validity
conditions in the next section. As usual, we consider a-convertible terms to be identical.

5

3.2 Judgments

In our approach, it is extremely important that sorts and sort families can be recognized, and
that a sort refines a unique type. Thus we begin by defining the refinement judgment. Since it
must be applied uniformly through all levels (kinds, families, objects) with essentially the same
rules, we use the meta-variables U and V to range over terms from any of the three levels and
d to range over object-level or family-level constants. For an instance of a rule schema to be
valid it must be sensible according to the stratification imposed above. Variables occurring in
the terms involved in this judgment are treated uniformly, so we omit the context here.

f‘g U1 . V1 }_E U2 . V2
k. Type :: Type Hx:Uq. Uy o Iz Vy. Vo
KU =W K Us :: Vo KU 2V KUV
ks U1 U 2 Vi Vo L U & Uy 2V
}_E U1 . V1 }_E U2 . V2
K xox K Az:Uqp. Ug 2 Ax:Vy. Vo

d:U in X a:ain®
K d::d kya:d

Note that the refinement relation is neither transitive nor reflexive. The conditions on valid
signatures will guarantee that exactly one of the last two cases is applicable for any declared
constant, and the second only for a unique a/. This implies that in a valid signature X for a
given U there exists at most one V such that 5, U :: V.

The validity judgments have the following form. Here, Kind is a special token to allow a
uniform presentation of the validity judgments at the three levels.

F X Sig 3 15 a valid signature
K I' Ctx I’ is a valid context
I' s K : Kind K is a valid kind
'k A K A is a valid family of kind K
'k M:A M is a valid object of type A
We also need the auxiliary judgments
=V U is Bn-convertible to V

KUV U is a subsort of V

where the subsorting judgment only applies at the levels of families and kinds. Here are the
rules for valid signatures.

- Sig
F X Sig I K : Kind K K K/ k, K; :: K for any a:K; in & noa:ainX
3, a:K Sig

+ ¥ Sig ks A: Type by A A hy A; o A for any c:A4; in 2
3, c:A Sig

F 3 Sig az:K in ¥ a1 not declared in X

H 2, ai 2 ag Slg
F X Sig ay ::agin X as ::agin X
F X, a1 < ag Sig

A declaration of the form a :: b declares a sort family a which inherits its kind from the type
family b it refines. Valid contexts are straightforward.

K I' Ctx ' A: Type
I - Ctx K I, z:A Ctx

The rules for valid terms are uniform throughout the levels (as long as they apply), so we
give them in schematic form for terms. Note that we do not check validity of signatures or
contexts at the leaves, but require their validity in the theorems and take care to propagate
this property. Where there is no ambiguity we use the usual conventions for the names of
meta-variables. Here, S stands for either Type or Kind.

z:Ain T
I' 5, Type : Kind I'kax: A

d:U in ¥ a:biny b:KinX
I'k.d:U I'kia: K

I'sU:W» IW—EU:VQ1 I'sU:V EVW 'kW:S

(2)

'sU:Vi&Va ' U:W
I'k A:Type INae:AkU: S I'sU;:S TwU:S KUV KUV
' Hz:A. U : S ' U1 &U;: S
' U :1lIz:A V 'kM:A

' UM :[M/x]V
KkB:A I'k A: Type I's, B:Type I‘,a::B}—EM:C'3
'k Az:A. M : 1lx:B. C

I'sU:V V=W I'sW:S

(4)
TkU:W

Note that we need a subsorting rule (2) and a type conversion rule (4), since we have formulated
them as separate judgments which interact very little (formally). In the rule for A-abstraction
(3) one can see that the type label acts as a bound: we can analyze the expression for each sort
B which refines A and conjoin the results using the introduction rule for & (1).

Finally, the rules for subsorting. The rules enforce the restriction that sorts and sort families

can only be compared if they refine a common type.

U= W VW KRU:2W VW
RU&V <U RU&V <V
U<V U<V, a<binX
U< ViI&Vs s a<b
ks AUy 2 W ks HatA. Uy 2 W

ke (Iz:A. Uh) &(Ilz:A. Up) < (Ilz:A. Uy & Us)

k B<A U<V kA<B
K Type < Type b e:A. U <Ilz:B. V kAM<BM

LU=W kU<V sV <W
s U<U s U<W

The subsorting relationship is contravariant in the domain of a function type, as expected.
Indexed sort families may only be compared if the indices are identical, which may require some
applications of the type conversion rule (4) in a typing derivation before the subsumption rule
(2) can be applied.

3.3 Properties of \'&

We begin by defining a forgetful mapping |.|| from A& to M. Tt ignores the distinctions
introduced by sorts by collapsing them to the type they refine. The result of interpreting a
signature ¥ is a signature ¥’ in AI' and a substitution o mapping terms over ¥ into terms over
Y. We use o(U) as a notation for the result of applying o to U with the special provision that

14 ifo(Uy) =0(Uy) =V
undefined otherwise

o(U1 & Us) = {

The application of o to a context I' distributes into the constituent terms. The empty substi-
tution is denoted by [] and the extension of a substitution o mapping the new constant d to d’
is written as o @ [d — d'].

-1 =D

|2, U = ||Z] if d declared in X

|2, d:U|| = (¥,dio(U);o®[d+d]) if d not declared in ¥ and (¥';0) = ||X]|
12,01 2 az]] = (X0 [a1 — ag) where (X';0) = || X
1X,a01 < apf| = X

Lemma 1 If ¥ is valid and k5, U <V then there ezists a (unique) W such that i, U :: W and
KV W.

/

Lemma 2 (Refinement) Let ¥ be a valid signature, I' be a valid context, and ||X| = (¥;0).

Then:
(i) if U=V theno(U)=o(V), (i) ifts U<V then o(U)=0(V),
(iii) if U=V then o(U)=0o(V), (iv) fT'xU:V theno(l) Ky o(U):o(V).

Proof: By straightforward inductions over the derivations of the given judgments, employing
uniqueness of bounds and Lemma 1. O

We call a A& term canonical if it is in long Bn-normal form, as in LF.

Lemma 3 The judgment U = V 1s decidable on valid terms and every valid term U has a
unique equivalent canonical form.

Proof sketch: The corresponding judgment on LF is decidable on valid LF terms (see, for ex-
ample, [Geu92]). Equivalence on types and kinds is structural and therefore trivially decidable,
except for conversions among the embedded objects. But labels of A-abstractions are restricted
to terms which remain unchanged under the forgetful interpretation, and thus conversions in
o(U) and o(V) can be lifted to conversions in U and V. O

The equivalence relation = is defined by U 2 V iff U <V and V < U. It is easily shown
that this is a congruence. Also, the following properties are easily proved.

Lemma 4 (Basic Properties of Sorts) We assume implicitly that both sides of each of the
equivalences below refine the same type.

(i) U&V=Vg&U, (i) U&VE&W)=(U&V)&W,
(iti) U&U U, (iv) (Ma:A. Uy) &(a:A. Up) = (Ha:A. Uy & Us).

Theorem 5 (Decidability of Subsorting) The subsorting judgment b, U < V is decidable for
valid signatures 3.

Proof sketch: By an interpretation into the subtyping problem for Forsythe, for which a
decidability proof has been given by Reynolds [personal communication, 1991]. The proof can
be found in [Pie91] in a slightly different form. Each atomic type of the form a Mj ... M, is
interpreted as a simple type a Mj ... M, which inherits its subsorting property from a. The
main observation in the correctness proof of this interpretation is that AM < BN iff A < B
and M = N. O

We call a type A a minimal type for the object M in context I' if A is canonical and for
every canonical B such that I' i, M : B we have i, A < B. A similar definition applies to
minimal kinds.

Theorem 6 (Decidability of A&) The validity of signatures and contexts and the typing judg-
ment I' 5, U : 'V are decidable. Furthermore, every valid term U has a minimal type or kind.

Proof sketch: Using the forgetful interpretation and the soundness and completeness of the
algorithmic version of LF in [HHP93] we can show that each derivation can be transformed into
one which eagerly applies normalization on types, but otherwise requires no type conversion.
Secondly we show that applications of the subsorting rule in such a derivation can be pushed
up to the leaves, except for A-abstractions and applications, where we can directly calculate
a minimal type from minimal types of the constituents. The completeness of this calculation
relies on the fact that only finitely many sorts (modulo =) refine a given type. O

4 Examples Revisited

Now that the A& calculus has been defined, we revisit the earlier examples. We use the concrete
syntax :: for :: and <: for <.

Hereditary Harrop formulas. Following the previous and unchanged definitions of the
connectives, we declare atoms, goals, and programs as refinements of formulas. Then we declare
sorts for the constructors.

atom :: form. % atoms
goal :: form. % legal goals
prog :: form. ¥ legal programs

atom <: goal. 7% every atom is a legal goal

=> : prog -> goal -> goal.
I : goal -> goal -> goal.
&& : goal -> goal -> goal.

atom <: prog. % every atom is a legal program
=> : goal -> prog -> prog.
&& : prog -> prog -> prog.

The entailment and backchaining judgments can now be declared naturally. Their definition
(not shown here) is also simple and intuitive.

solve : prog -> goal -> type.

backchain : prog -> atom -> goal -> type.

Normal Natural Deductions. Here, both elim and nf become sort families which refine
pf. Following the previous declarations for pf, impi, and impe we complete the definition as
follows.

nf :: pf. % normal form deductions

elim :: pf. 7% pure elimination deductions from hypotheses
elim <: nf. % every elim deduction is in normal form
impi : (elim A -> nf B) -> nf (imp A B).

impe : elim (imp A B) -> nf A -> elim B.

Below we show the obvious deduction of p D (¢ D p) for parameters p and ¢q. Terms of the form
Az:A. M are written as [x:A] M in concrete syntax.
([p:o] [q:0] impi ([P:pf p] impi ([Q:pf ql P))
: {p:o} {q:0} nf (imp p (imp q p)).
These small examples should help to illustrate how refinement types provide a natural and

direct means to express subtyping in the context of a logical framework. Many of the case
studies of deductive systems in LF that we and others have carried out would benefit similarly.

10

5 Conclusion and Further Work

We plan to implement the system A& as an extension of Elf. This requires a generalization
of the constraint solving algorithm in [KP93] to dependent types, and the development of a
feasible type reconstruction algorithm. The type-checking algorithm which arises out of the
proof of Theorem 6 works by bottom-up synthesis and is not practical. However, a top-down
type-checking algorithm as in the implementation of refinement types for ML [FP91]| promises
to be of acceptable efficiency, especially since our language lacks recursion at the level of terms.

We would also like to consider relaxing some of the restrictions currently in place to enforce
orthogonality of conversion and subsorting. In particular, it is intuitively appealing to allow
sorts (to be interpreted as bounds) in the labels of A-abstractions, but we believe that this
necessitates a form of typed or sorted conversion and our decidability proof no longer applies
directly. This slightly different version of A& also appears to be better suited for an extension
to the Calculus of Constructions with refinement types. It is consistent with our system to
allow refinement kinds, that is, declarations of the form k :: Type. This leads to a system which
encompasses ELFT [Gar92] and could also yield a new view of type classes in the context of type
theory. We plan to investigate the meta-theoretic properties of a type theory with refinement
types and refinement kinds.

One might also consider promotion of sorts to types and demotion of types to sorts which
sometimes further economizes representations without making them less intuitive. We plan to
investigate this in the context of the module system for LF described in [HP99].

Finally, there is the question of adequacy proofs for representations in A™ . The normal form
theorem is useful here, but we would also like to give an interpretation which maps a signature
in A" into an equivalent signature in AX. We conjecture that there is such a mapping which
interprets refinement by relativizing II-quantifiers and subsorting by coercions.

Acknowledgments. We would like to thank Michael Kohlhase and Tim Freeman for discus-
sions regarding refinement types and Nevin Heintze, Benjamin Pierce, and Ekkehard Rohwedder
for comments on a draft of this extended abstract.

Appendix: The A-Cube

In this appendix we give a uniform and very elegant presentation of Barendregt’s A-cube and in
particular of LF and the calculus of constructions in which the levels (objects, families, kinds)
are refinements of a proper type of terms. This example also shows why it is useful to allow
K1 & Ko in A& We omit the rules for type conversion for the sake of brevity.

term : type.

tp : term.

pi : term -> (term -> term) -> term.
Im : term -> (term -> term) -> term.

ap : term -> term -> term.

%% Levels

sup :: term. 7 super-kind
knd :: term. Y kinds
fam :: term. Y% families

11

obj :: term. % object
%% The LF declarations.
tp : sup.

tp : knd.
pi : fam -> (obj -> knd) -> knd.

pi : fam -> (obj -> fam) -> fam.
Im : fam -> (obj -> fam) -> fam.
ap : fam -> obj -> fam.

Im : fam -> (obj -> obj) -> obj.
ap : obj -> obj -> obj.

In order to obtain the calculus of construction, we add the following declarations.
pi : knd -> (fam -> knd) -> knd.
Im : knd -> (fam -> fam) -> fam.
ap : fam -> fam -> fam.

pi : knd -> (fam -> fam) -> fam.

Im : knd -> (fam -> obj) -> obj.
ap : obj -> fam -> obj.

The typing judgment is now uniform across the levels.

of : knd -> sup -> type
& fam -> knd -> type
& obj -> fam -> type.

of _tp : of tp tp.

of_pi : of (pi T1 T2) tp
<- of T1 tp
<- {x:term} of x T1 -> of (T2 x) tp.

of _1m : of (Im T1 T2) (pi T1 T3)
<- of T1 tp
<- {x:term} of x T1 -> of (T2 x) (T3 x).

of _ap : of (ap T1 T2) (T4 T2)
<- of T1 (pi T3 T4)
<- of T2 T3.

References

[CDCV81] Mario Coppo, Maria Dezani-Ciancaglini, and B. Venneri. Functional character of
solvable terms. Zeitschrift fiir mathematische Logic und Grundlagen der Mathe-
matik, 27:45-58, 1981.

12

[CG92]

[Fel89)

[FPY1]

[Gar92]

[Geu92]

[Hay91]

[HHP93]

[HP99]

[HP92

[Koh92]

[KP93]

[MNPS91]

M. Coppo and P. Giannini. A complete type inference algorithm for simple intersec-
tion types. In J.-C. Raoult, editor, 17th Colloquium on Trees in Algebra and Pro-
gramming, Rennes, France, pages 102-123, Berlin, February 1992. Springer-Verlag
LNCS 581.

Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic
Programming Language. PhD thesis, Department of Computer and Information
Science, University of Pennsylvania, July 1989. Available as Technical Report MS-
CIS-89-53.

Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of
the SIGPLAN 91 Symposium on Language Design and Implementation, Toronto,
Ontario, pages 268-277. ACM Press, June 1991.

Philippa Gardner. Representing Logics in Type Theory. PhD thesis, University of
Edinburgh, July 1992. Available as Technical Report CST-93-92.

Herman Geuvers. The Church-Rosser property for Gn-reduction in typed A-calculi.
In A. Scedrov, editor, Seventh Annual IEEE Symposium on Logic in Computer
Science, pages 453-460, Santa Cruz, California, June 1992. IEEE Computer Society
Press.

Susumu Hayashi. Singleton, union and intersection types for program extraction.
In T. Tto and A. R. Meyer, editors, Proceedings of the International Conference
on Theoretical Aspects of Software, pages 701-730, Sendai, Japan, September 1991.
Springer-Verlag LNCS 526.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143-184, January 1993.

Robert Harper and Frank Pfenning. A module system for a programming language
based on the LF logical framework. Journal of Functional Programming, 1997 To
appear.

John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov,
editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages 407—
418, Santa Cruz, California, June 1992. IEEE Computer Society Press.

Michael Kohlhase. Unification in order-sorted type theory. In A. Voronkov, editor,
Proceedings of the International Conference on Logic Programming and Automated
Reasoning, pages 421-432, St. Petersburg, Russia, July 1992. Springer-Verlag LNAIT
624.

Michael Kohlhase and Frank Pfenning. Unification in a A-calculus with intersection
types. In Dale Miller, editor, Proceedings of the International Logic Programming
Symposium, Vancouver, Canada, October 1993. MIT Press. To appear.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125—
157, 1991.

13

[MP1]

[NQ92]

[Pfe91al

[Pfe91b

[Pie91]

[PN9O]

[Rey88]

[Rey91]

[Smo8Y]

[SS88]

[SS89]

Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-theory
in Elf. In L.-H. Eriksson, L. Hallnés, and P. Schroeder-Heister, editors, Proceedings
of the Second International Workshop on Extensions of Logic Programming, pages
299-344, Stockholm, Sweden, January 1991. Springer-Verlag LNAI 596.

Tobias Nipkow and Zhenyu Qian. Reduction and unification in lambda calculi with
subtypes. In D. Kapur, editor, Proceedings of the 11th International Conference
on Automated Deduction, pages 66—78, Saratoga Springs, New York, June 1992.
Springer-Verlag LNAT 607.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet
and Gordon Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge Uni-
versity Press, 1991.

Frank Pfenning. Unification and anti-unification in the Calculus of Constructions.
In Sizth Annual IEEE Symposium on Logic in Computer Science, pages 74-85,
Amsterdam, The Netherlands, July 1991.

Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymor-
phism. PhD thesis, School of Computer Science, Carnegie Mellon University, De-
cember 1991. Available as Technical Report CMU-CS-91-205.

Lawrence C. Paulson and Tobias Nipkow. Isabelle tutorial and user’s manual. Tech-
nical Report 189, Computer Laboratory, University of Cambridge, January 1990.

John C. Reynolds. Preliminary design of the programming language Forsythe. Tech-
nical Report CMU-CS-88-159, Carnegie Mellon University, Pittsburgh, Pennsylva-
nia, June 1988.

John C. Reynolds. The coherence of languages with intersection types. In T. Ito and
A. R. Meyer, editors, International Conference on Theoretical Aspects of Computer
Software, pages 675700, Sendai, Japan, September 1991. Springer-Verlag LNCS
526.

G. Smolka. Logic Programming over Polymorphically Order-Sorted Types. Disserta-
tion, Universitat Kaiserslautern, May 1989.

Anne Salvesen and Jan M. Smith. The strength of the subset type in Martin-Lo6f’s
type theory. In Third Annual Symposium on Logic in Computer Science, Edinburgh,
Scotland, pages 384-391. IEEE, July 1988.

Manfred Schmidt-Schau. Computational Aspects of an Order-Sorted Logic with
Term Declarations. Springer-Verlag LNAT 395, 1989.

14

