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ABSTRACT
We present a system of linear session types that integrates several

features aimed at verification of different properties of concurrent

programs, specifically types indexed with arithmetic expressions,

linear constraints and quantification. We prove the standard type

safety properties of session fidelity and deadlock freedom. In order

to control the verbosity of programs we introduce implicit syntax

and an algorithm for reconstruction, which is complete under some

mild assumptions on the structure of types. We then illustrate the

expressive power of our language (called Rast) with a variety of ex-

amples, including normalization for the linear λ-calculus, balanced
ternary arithmetic, binary counters and tries.

CCS CONCEPTS
• Theory of computation→ Linear logic; Type theory; • Com-
puting methodologies→ Concurrent programming languages.
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1 INTRODUCTION
Session types [20–22, 33] provide a structured way of prescribing

communication protocols of message-passing systems. This paper

focuses on binary session types governing the interactions along

channels with two endpoints. Binary session types without general

recursion exhibit a Curry-Howard isomorphism with linear logic

[5, 6, 34] and are therefore of particular foundational significance.

Moreover, type safety derives from properties of cut reduction and

guarantees deadlock freedom (global progress) and session fidelity
(type preservation) ensuring that at runtime the sender and receiver

exchange messages conforming to the channel’s type.

However, even in the presence of recursive types, the kinds

of protocols that can be specified are limited, which has led to

a number of extensions, such as context-free session types [1, 28],
label-dependent session types [29], and general dependent session
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types [17, 24, 30, 31]. In prior work, we have proposed arithmeti-
cally refined session types [12] and have investigated their properties
independently of any specific programming language. With arith-

metically refined types we can, for example, express a protocol that

sends a natural number n and then a sequence of messages exactly

of length n, and many more complex protocols (for additional exam-

ples, see Section 6). We found that type equality, naturally defined

via a bisimulation between observable communication behaviors,

is undecidable, but also proposed a simple and practical algorithm.

In this paper we present the design, theory, and pragmatics of a

programming language for processes in which type checking guar-

antees compliance with arithmetically refined session types. Here,

type checking is defined over a language where constructs related

to arithmetic constraints have explicit communication counterparts.

We observe, however, that many programs in this explicit lan-

guage are unnecessarily verbose and therefore tedious for the pro-

grammer to write, because the process constructs pertaining to

the refinement layer contribute only to verifying its properties,

but not its observable computational outcomes. As is common for

refinement types, we therefore also designed an implicit language
for processes where most constructs related to index refinements

are omitted. The problem of reconstruction is then to map such an

implicit program to an explicit one. We provide an algorithm for

reconstruction that is complete (if there is a reconstruction, it can

be found). This algorithm exploits proof-theoretic properties of the

sequent calculus akin to focusing [2] to avoid backtracking and

consequently provides precise error messages that we have found

to be helpful.

Thus, our main results are the following:

(1) The design of an explicit language with a bidirectional type-

checking algorithm that is sound and complete relative to

an oracle for type equality.

(2) A type soundness theorem that establishes session fidelity

(type preservation) and deadlock freedom (global progress)

for well-typed programs.

(3) The design of a significantly more compact implicit syntax
and a reconstruction algorithm producing explicit programs.

Reconstruction is complete under some mild conditions on

the language of types.

(4) Several case studies that explore the possibilities and lim-

itations of program properties that can be captured with

arithmetic refinements.

We have already reported on the implementation of the design

and theory presented here in a system description that overviews

the Rast programming language [11]. All examples in this paper

have been type-checked and executed in Rast and are publicly

available [27]. Due to space constraints, there is an important aspect

of Rast that we do not cover in this paper: it provides ergometric [10]
and temporal [9] types to measure and verify (amortized) work and

https://doi.org/10.1145/NNNNNNN.NNNNNNN
https://doi.org/10.1145/NNNNNNN.NNNNNNN
https://doi.org/10.1145/NNNNNNN.NNNNNNN


PPDP ’20, September 8–10, 2020, Bologna, Italy Ankush Das and Frank Pfenning

span of concurrently executing session-typed programs. The above-

cited prior works manually compute and check complexity bounds

at an informal metalevel. The arithmetic refinements in the Rast

language allow us to internally express these bounds and, for the

first time, verify them automatically.

The rest of the paper is organized as follows: Section 2 overviews

the Rast language with an illustrative queue data structure. Sec-

tion 3 formalizes the type system, semantics and type safety of Rast;

Section 4 presents the reconstruction algorithm. Section 5 describes

the implementation and Section 6 highlights some interesting ex-

amples with their key properties verified in Rast. Finally, Section 7

describes related work and Section 8 concludes.

2 OVERVIEW OF REFINED SESSION TYPES
Basic session types have limited expressivity. As a simple example,

consider the session type provided by a queue data structure storing

elements of type A.

queueA = N{ins : A ⊸ queueA,
del : ⊕{none : 1,

some : A ⊗ queueA}}

This type describes a queue interface supporting insertion and

deletion. The external choice operator N dictates that the process

providing this data structure accepts either one of two messages:

the labels ins or del. In the case of the label ins, it then receives an

element of type A denoted by the ⊸ operator, and then the type

recurses back to queueA. On receiving a del request, the process
can respond with one of two labels (none or some), indicated by

the internal choice operator ⊕. It responds with none and then

terminates (indicated by 1) if the queue is empty, or with some
followed by the element of type A (expressed with the ⊗ operator)

and recurses if the queue is nonempty. However, the simple session

type does not express the conditions under which the none and
some branches must be chosen, which requires tracking the length

of the queue in the type.

We enhance the session type with a simple arithmetic refinement.

The more precise type

queueA[n] = N{ins : A ⊸ queueA[n + 1],
del : ⊕{none : ?{n = 0}. 1,

some : ?{n > 0}.A ⊗ queueA[n − 1]}}

uses the index refinement n to indicate the size of the queue. In

addition, the refined type uses a type constraint ?{ϕ}.A which can

be read as “there exists a proof of ϕ”. Here, the process providing the
queue must (conceptually) send a proof of n = 0 after it sends none,
and a proof of n > 0 after it sends some. It is therefore constrained
in its choice between the two branches based on the value of the

index n. Because the index domain from which the propositions ϕ
are drawn is Presburger arithmetic and hence decidable, no proof of

ϕ will actually be sent, but we can nevertheless verify the constraint

statically. The dual to ?{ϕ}.A is the type constraint !{ϕ}.A to be

interpreted as “for all proofs of ϕ”. The refinement type system also

supports explicit quantifiers ∃n.A and ∀n.A that send and receive

natural numbers, respectively. Because intrinsic properties of data

structures (such as the number of elements) must be nonnegative we

work over the natural numbers 0, 1, . . . rather than general integers.

This includes a static validity check for types to ensure that all

index refinements are nonnegative. For example, while checking

empty ins

c1 : queue[0]
elem

c2 : queue[1]

empty
ins

c1 : queue[0]
elem

c2 : queue[2]

empty
c0 : queue[0]

elem
c1 : queue[1]

elem
c2 : queue[2]

Figure 1: Inserting an element into the queue

empty

del

c0 : queue[0]
elem

c1 : queue[1]

empty
c0 : queue[0]

elem
c1 : queue[1]

elem
c2 : queue[2]

some, x2

empty
c0 : queue[0]

elem
c1 : queue[1]

elem
c2 : queue[2]

Figure 2: Deleting an element from the queue

the validity of queueA[n], we encounter the constraint n > 0 in

the some branch, so we assume it and then verify that n − 1 ≥ 0,

ensuring the validity of queueA[n − 1].
Our language design is based on two key dual principles: the type

?{ϕ}.A corresponds to an assertion of ϕ, whereas the type !{ϕ}.A
corresponds to an assumption ofϕ. Consequently, we introduce dual
process terms: (i) assert x {ϕ} to assert constraint ϕ on channel x ,
and dually, (ii) assume x {ϕ} to assume ϕ on x . Following the same

principle, we observe that ∃n.A requires the provider to send a

natural number and∀n.Amandates the provider to receive a natural

number. Thus, we introduce (i) send x {e} to send an arithmetic

expression e on channel x and (ii) {n} ← recv x to receive a natural

number on channel x and bind it to variable n.
One parallel implementation of such a queue data structure is a

sequence of elem processes, each storing an element of the queue,

terminated by an empty process, representing the empty queue.

Figures 1 and 2 describe the sequence diagrams for insertion and

deletion w.r.t. this implementation of queues. In Figure 1, the initial

queue (of size 1) consists of an empty process that provides along c1 :
queueA[0] (indicated by • between empty and c1) and does not use
any channels, and an elem process that uses c1 : queueA[0], and an

element of typeA (not shown) and provides c2 : queueA[1]. The ins
message is first received on c2, then passed on to c1, which spawns a
new empty process offering on c0 : queueA[0]. The original process
offering on c1 then transitions to elem. In Figure 2, the del message

is received on c2, which replies with the some label and an element

x2 stored inside (not shown) the offering elem process. The process

then terminates by forwarding channel c2 onto c1. As demonstrated

by Figures 1 and 2, insertions take place at the tail of the queue

while deletions occur at the head of the queue.
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1: · ⊢ empty :: (s : queueA[0])
2: s ← empty =
3: case s (
4: ins⇒ x ← recv s ; % (x : A) ⊢ (s : quA[1])

5: e ← empty ; % (x : A), (e : quA[0]) ⊢ (s : quA[1])

6: s ← elem[0] x e
7: | del⇒ s .none ; % · ⊢ (s : ?{0 = 0}. 1)
8: assert s {0 = 0} ; % · ⊢ (s : 1)
9: close s)
10: (x : A), (t : queueA[n]) ⊢ elem[n] :: (s : queueA[n + 1])
11: s ← elem[n] x, t =
12: case s (
13: ins⇒ y ← recv s ;
14: t .ins ;
15: send t y ; % (x : A), (t : quA[n + 1]) ⊢ (s : quA[n + 2])

16: s ← elem[n + 1] x t
17: | del⇒ s .some ;
18: assert s {n + 1 > 0} ;

19: send s x ; % (t : quA[n]) ⊢ (s : quA[n])

20: s ↔ t)

Figure 3: Implementations for the empty and elem processes.

Formally, the empty process offers type queueA[0] while the

elem[n] process (indexed by arithmetic variable n) uses channels
of type queueA[n] and A and offers type queueA[n + 1]. In our

notation, the process declarations will be written as (used channels

on the left and provided channel on the right)

· ⊢ empty :: (s : queueA[0])
(x : A) (t : queueA[n]) ⊢ elem[n] :: (s : queueA[n + 1])

Figure 3 presents the implementation of empty and elem pro-

cesses along with their derivations on the right (type queueA[n]
abbreviated to quA[n]). Upon receiving the ins label and element

x : A (line 4), the empty process spawns a new empty process (line 5),
binds it to channel e , and tail calls elem[0] (line 6). On inputting the

del label, the empty process takes the none branch (line 7) since

it stores no elements. Therefore, it needs to send a proof of n = 0,

and since it provides queueA[0], it sends the trivial proof of 0 = 0

(line 8), and closes the channel terminating communication (line 9).

The elem process receives the ins label and element y : A (line 13),

passes on these two messages on the tail t (lines 14,15), and recurses
with elem[n + 1] (line 16). The type expected by elem[n + 1] indeed
matches the type of the input and output channels, as confirmed by

the process declaration. On receiving the del label, the elem process

replies with the some label (line 17) and the proof of n + 1 > 0

(line 18), again trivial since n is a natural number. It terminates with

forwarding s along t (line 20). This forwarding is valid since the

types of s and t exactly match as described by the id rule in Sec-

tion 3.1 (corresponds to identity). The programmer is not burdened

with writing the asserts (in blue) as they are automatically inserted

by our reconstruction algorithm (Section 4).

At runtime, each arithmetic proposition will be closed, so if it

has no quantifiers it can simply be evaluated. In the presence of

quantifiers, a decision procedure for Presburger arithmetic can be

applied dynamically (if desired, or if a provider or client may not

be trusted), but no actual proof object needs to be transmitted.

An interesting corner case would be, say, if a process with one

element (n = 1) responded with none to the del request. It would
have to follow up with a proof that 1 = 0, which is of course

impossible. Therefore, our refinements guarantee that no further

communication along this channel could take place.

3 BASIC AND REFINED SESSION TYPES
This section presents the basic system of session types and its

arithmetic refinement along with corresponding process terms and

typing rules. The underlying base system of session types is de-

rived from a Curry-Howard interpretation [5, 6] of intuitionistic

linear logic [16]. The key idea is that an intuitionistic linear sequent

A1,A2, . . . ,An ⊢ A is interpreted as the interface to a process ex-

pression P . We label each of the antecedents with a channel name

xi and the succedent with channel name z. The xi ’s are channels
used by P and z is the channel provided by P .

x1 : A1, x2 : A2, . . . , xn : An ⊢ P :: (z : C)

The resulting judgment formally states that process P provides a

service of session type C along channel z, while using the services

of session types A1, . . . ,An provided along channels x1, . . . , xn
respectively. We abbreviate the antecedent of the sequent by ∆.

In addition to the type constructors arising from the connectives

of intuitionistic linear logic (⊕, N, ⊗, 1 ⊸), we have type names,

indexed by a sequence of arithmetic expressions V [e], existential
and universal quantification over natural numbers (∃n.A, ∀n.A)
and existential and universal constraints (?{ϕ}.A, !{ϕ}.A).Wewrite

i for constant and n for variable natural numbers.

Types A,B ::= ⊕{ℓ : Aℓ}ℓ∈L | N{ℓ : Aℓ}ℓ∈L
| A ⊗ B | A ⊸ B | 1 | V [e]
| ?{ϕ}.A | !{ϕ}.A | ∃n.A | ∀n.A

Arith. Exps. e ::= i | e + e | e − e | i × e | n

Arith. Props. ϕ ::= e = e | e > e | ⊤ | ⊥ | ϕ ∧ ϕ
| ϕ ∨ ϕ | ¬ϕ | ∃n.ϕ | ∀n.ϕ

Procs P,Q ::= x .k ; P | case x (l ⇒ P)l ∈L
| send x y ; P | y ← recv x ; P
| close x | wait x ; P
| x ↔ y | x ← f y ; P
| assert x {ϕ} ; P | assume x {ϕ} ; P
| send x {e} ; P | {n} ← recv x ; P

Our implementation does not support type polymorphism but it

is convenient in some of the examples. We therefore allow defini-

tions such as queueA[n] = . . . and interpret them as a family of

definitions, one for each possible type A.
The typing judgment has the form of a sequent

V ; C ; ∆ ⊢Σ P :: (x : A)

whereV are index variables n, C are constraints over these vari-

ables expressed as a single proposition, ∆ are the linear antecedents

xi : Ai , P is a process expression, and x : A is the linear succedent.

We propose and maintain that the xi ’s and x are all distinct, and

that all free index variables in C, ∆, P , and A are contained among

V . Finally, Σ is a fixed signature containing type and process defini-

tions (explained in Section 3.1) Because it is fixed, we elide it from
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Type Continuation Process Term Continuation Description

c : ⊕{ℓ : Aℓ}ℓ∈L c : Ak c .k ; P P provider sends label k along c
case c (ℓ ⇒ Qℓ)ℓ∈L Qk client receives label k along c

c : N{ℓ : Aℓ}ℓ∈L c : Ak case c (ℓ ⇒ Pℓ)ℓ∈L Pk provider receives label k along c
c .k ; Q Q client sends label k along c

c : A ⊗ B c : B send c w ; P P provider sends channelw : A along c
y ← recv c ; Qy Qy [w/y] client receives channelw : A along c

c : A ⊸ B c : B y ← recv c ; Py Py [w/y] provider receives channelw : A along c
send c w ; Q Q client sends channelw : A along c

c : 1 — close c — provider sends close along c
wait c ; Q Q client receives close along c

Table 1: Basic session types with operational description

the presentation of the rules. In addition we writeV ; C ⊨ ϕ for

semantic entailment (proving ϕ assuming C) in the constraint do-

main whereV contains all arithmetic variables in C and ϕ. Table 1
overviews the session types their associated process terms, their

continuation (both in types and terms) and operational description.

We formalize the operational semantics as a system of multiset
rewriting rules [7]. We introduce semantic objects proc(c, P) and
msg(c,M) which mean that process P or messageM provide along

channel c . A process configuration is a multiset of such objects,

where any two channels provided are distinct (formally described

in Section 3.3).

3.1 Basic Session Types
In this subsection, we review the syntax and semantics for the basic

session type operators (N, ⊕, ⊗,⊸ and 1). A summary of the cor-

responding process terms and intuitive explanation for semantics

is provided in Table 1.

External Choice. The external choice type constructor N{ℓ :

Aℓ}ℓ∈L is an n-ary labeled generalization of the additive conjunc-

tion A N B. Operationally, it requires the provider of x : N{ℓ :

Aℓ}ℓ∈L to branch based on the label k ∈ L it receives from the

client and continue to provide type Ak . The corresponding process

term is written as case x (ℓ ⇒ P)ℓ∈L . Dually, the client must send

one of the labels k ∈ L using the process term (x .k ; Q) where Q is

the continuation.

(∀ℓ ∈ L) V ; C ; ∆ ⊢ Pℓ :: (x : Aℓ)

V ; C ; ∆ ⊢ case x (ℓ ⇒ Pℓ)ℓ∈L :: (x : N{ℓ : Aℓ}ℓ∈L)
NR

(k ∈ L) V ; C ; ∆, (x : Ak ) ⊢ Q :: (z : C)

V ; C ; ∆, (x : N{ℓ : Aℓ}ℓ∈L) ⊢ (x .k ; Q) :: (z : C)
NL

Communication is asynchronous, so that the client c .k ; Q sends

a message k along c and continues as Q without waiting for it

to be received. As a technical device to ensure that consecutive

messages on a channel arrive in order, the sender also creates a

fresh continuation channel c ′ so that the message k is actually

represented as (c .k ; c ↔ c ′) (read: send k along c and continue

along c ′). When the message k is received along c , we select branch
k and also substitute the continuation channel c ′ for c . Rules NS

and NC below describe the operational behavior of the provider

and client respectively (c ′ fresh).

(NS) : proc(d, c .k ; Q) 7→ msg(c ′, c .k ; c ′ ← c), proc(d,Q[c ′/c])
(NC) : proc(c, case c (ℓ ⇒ Qℓ)ℓ∈L),

msg(c ′, c .k ; c ′ ← c) 7→ proc(c ′,Qk [c
′/c])

The internal choice constructor ⊕{ℓ : Aℓ}ℓ∈L is the dual of

external choice requiring the provider to send one of the labels

k ∈ L that the client must branch on.

(k ∈ L) V ; C ; ∆ ⊢ P :: (x : Ak )

V ; C ; ∆ ⊢ (x .k ; P) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

(∀ℓ ∈ L) V ; C ; ∆, (x : Aℓ) ⊢ Qℓ :: (z : C)

V ; C ; ∆, (x : ⊕{ℓ : Aℓ}ℓ∈L) ⊢ case x (ℓ ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

This dual constructor reverses the role of the provider and client.

The provider (x .k ; P) of x : ⊕{ℓ : Aℓ}ℓ∈L) sends the label k along

x and continues to provide x : Ak . Correspondingly, the client

branches on the label received using channel x : Aℓ in branch ℓ

with process term Qℓ . The rules of operational semantics (⊕S, ⊕C)
are exact dual of NS and NC and omitted for brevity.

Channel Passing. The tensor operator A ⊗ B prescribes that

the provider of x : A ⊗ B sends a channel y of type A and continues

to provide type B. The corresponding process term is send x y ; P
where P is the continuation. Correspondingly, its client must re-

ceives a channel using the term y ← recv x ; Q , binding it to

variable y and continuing to execute Q .

V ; C ; ∆ ⊢ P :: (x : B)

V ; C ; ∆, (y : A) ⊢ (send x y ; P) :: (x : A ⊗ B)
⊗R

V ; C ; ∆, (y : A), (x : B) ⊢ Q :: (z : C)

V ; C ; ∆, (x : A ⊗ B) ⊢ (y ← recv x ; Q) :: (z : C)
⊗L

Operationally, the provider send c d ; P sends the channel d and

the continuation channel c ′ along c as a message and continues with

executing P . The client receives the channel d and continuation

channel c ′ and substitutes d for x and c ′ for c .

(⊗S) : proc(c, send c d ; P) 7→ proc(c ′, P[c ′/c]),
msg(c, send c d ; c ← c ′)

(⊗C) : msg(c, send c d ; c ← c ′),
proc(e, x ← recv c ; Q) 7→ proc(e,Q[c ′,d/c, x])
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The dual operator A ⊸ B allows the provider to receive a channel

of type A and continue to provide type B. The client of A ⊸ B, on
the other hand, sends the channel of type A and continues to use B.

V ; C ; ∆, (y : A) ⊢ P :: (x : B)

V ; C ; ∆ ⊢ (y ← recv x ; P) :: (x : A ⊸ B)
⊸R

V ; C ; ∆, (x : B) ⊢ Q :: (z : C)

V ; C ; ∆, (x : A ⊸ B), (y : A) ⊢ (send x y ; Q) :: (z : C)
⊸L

Termination. The type 1, the multiplicative unit of linear logic,

indicates termination requiring that the provider send a close mes-

sage followed by terminating the communication. Linearity en-

forces that the provider not use any channels.

V ; C ; · ⊢ (close x) :: (x : 1) 1R

V ; C ; ∆ ⊢ Q :: (z : C)

V ; C ; ∆, (x : 1) ⊢ (wait x ; Q) :: (z : C)
1L

Operationally, the provider waits for the closing message, which

has no continuation channel since the provider terminates.

(1S) : proc(c, close c) 7→ msg(c, close c)
(1C) : msg(c, close c), proc(d,wait c ; Q) 7→ proc(d,Q)

Forwarding. A process x ↔ y identifies the channels x and y
so that any further communication along either x or y will be along

the unified channel. Its typing rule corresponds to the logical rule

of identity.

V ; C ; y : A ⊢ (x ↔ y) :: (x : A)
id

Operationally, a process c ↔ d forwards any message M that ar-

rives on d to c and vice-versa. Since channels are used linearly, the

forwarding process can then terminate, ensuring proper renaming,

as exemplified in the rules below.

(id+C) : msg(d,M), proc(c, c ← d) 7→ msg(c, [c/d]M)
(id−C) : proc(c, c ← d),msg(e,M(c)) 7→ msg(e, [d/c]M(c))

We writeM(c) to indicate that c must occur in messageM ensuring

thatM is the sole client of c .

Process Definitions. Process definitions have the form ∆ ⊢
f [n] = P :: (x : A) where f is the name of the process and P
its definition. In addition, n is a sequence of arithmetic variables

that ∆, P and A can refer to. All definitions are collected in a fixed

global signature Σ. For a well-formed signature, we require that

n ; ⊤ ; ∆ ⊢ P :: (x : A) for every definition, thereby allowing defini-
tions to be mutually recursive. A new instance of a defined process

f can be spawned with the expression x ← f [e] y ; Q where y
is a sequence of channels matching the antecedents ∆ and [e] is a
sequence of arithmetic expression matching the variables [n]. The
newly spawned process will use all variables in y and provide x to

the continuation Q .

y′ : B ⊢ f [n] = Pf :: (x ′ : A) ∈ Σ

∆′ = (y : B)[e/n] V ; C ; ∆, (x : A[e/n]) ⊢ Q :: (z : C)

V ; C ; ∆,∆′ ⊢ (x ← f [e] y ; Q) :: (z : C)
def

The declaration of f is looked up in the signature Σ (first premise),

and e is substituted for n while matching the types in ∆′ and y
(second premise). Similarly, the freshly created channel x has type

A from the signature with e substituted for n. The corresponding
semantics rule also performs a similar substitution (a fresh).

(defC) : proc(c, x ← f [e] d ; Q) 7→

proc(a, Pf [a/x,d/y′, e/n]), proc(c,Q[a/x])

where y′ : B ⊢ f [n] = Pf :: (x ′ : A) ∈ Σ.
Sometimes a process invocation is a tail call, written without

a continuation as x ← f [e] y. This is a short-hand for x ′ ←
f [e] y ; x ↔ x ′ for a fresh variable x ′, that is, we create a fresh
channel and immediately identify it with x.

Type Definitions. As our queue example already showed, ses-

sion types can be defined recursively, departing from a strict Curry-

Howard interpretation of linear logic, analogous to the way pure

ML or Haskell depart from a pure interpretation of intuitionistic

logic. For this purpose we allow (possibly mutually recursive) type

definitionsV [n] = A in the signature Σ. Here, n denotes a sequence

of arithmetic variables. Again, for a well-formed signature, we re-

quire A to be contractive [15] meaning A should not itself be a type

name. Our type definitions are equirecursive so we can silently

replace type names V [e] indexed with arithmetic refinements by

A[e/n] during type checking, and no explicit rules for recursive

types are needed.

All types in a signature must be valid, formally denoted with the

judgmentV ; C ⊢ A valid, which requires that all free arithmetic

variables of C andA are contained inV , and that for each arithmetic

expression e inAwe can proveV ′ ; C′ ⊢ e : nat for the constraints
C′ known at the occurrence of e (implicitly proving that e ≥ 0).

3.2 The Refinement Layer
We now describe quantifiers (∃n.A, ∀n.A) and constraints (?{ϕ}.A,
!{ϕ}.A) [12]. An overview of the types, process expressions, and

their operational meaning can be found in Table 2.

Quantification. The provider of (c : ∃n.A) should send a wit-

ness i along channel c and then continue as A[i/n]. The witness
is specified by an arithmetic expression e which, since it must be

closed at runtime, can be evaluated to a number i (following stan-
dard evaluation rules of arithmetic). From the typing perspective,

we just need to check that the expression e denotes a natural num-

ber, using only the permitted variables inV . This is represented

with the auxiliary judgment V ; C ⊢ e : nat (implicitly proving

that e ≥ 0 under constraint C).

V ; C ⊢ e : nat V ; C ; ∆ ⊢ P :: (x : A[e/n])

V ; C ; ∆ ⊢ send x {e} ; P :: (x : ∃n.A)
∃R

V,n ; C ; ∆, (x : A) ⊢ Q :: (z : C) (n fresh)

V ; C ; ∆, (x : ∃n.A) ⊢ {n} ← recv x ; Q :: (z : C)
∃L

Statically, the client adds n toV to ensure that Q and A are closed

w.r.t.V . Operationally, the provider sends the arithmetic expression

with the continuation channel as a message that the client receives

and appropriately substitutes.

(∃S) : proc(c, send c {e} ; P) 7→
proc(c ′, P[c ′/c]), msg(c, send c {e} ; c ↔ c ′)

(∃C) : msg(c, send c {e} ; c ↔ c ′),
proc(d, {n} ← recv c ; Q) 7→ proc(d,Q[e/n][c ′/c])
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Type Continuation Process Term Continuation Description

c : ∃n.A c : A[i/n] send c {e} ; P P provider sends the value i of e along c
{n} ← recv c ; Q Q[i/n] client receives number i along c

c : ∀n.A c : A[i/n] {n} ← recv c ; P P[i/n] provider receives number i along c
send c {e} ; Q Q client sends value i of e along c

c : ?{ϕ}.A c : A assert c {ϕ} ; P P provider asserts ϕ on channel c
assume c {ϕ} ; Q Q client assumes ϕ on c

c : !{ϕ}.A c : A assume c {ϕ} ; P P provider assumes ϕ on channel c
assert c {ϕ} ; Q Q client asserts ϕ on c

Table 2: Refined session types with operational description

The dual type ∀n.A reverses the role of the provider and client.

The client sends (the value of) an arithmetic expression e which
the provider receives and binds to n.

V,n ; C ; ∆ ⊢ Pn :: (x : A)

V ; C ; ∆ ⊢ {n} ← recv x ; Pn :: (x : ∀n.A)
∀R

V ; C ⊢ e : nat V ; ∆, (x : A[e/n]) ⊢ Q :: (z : C)

V ; C ; ∆, (x : ∀n.A) ⊢ send x {e} ; Q :: (z : C)
∀L

(∀S) : proc(d, send c {e} ; P) 7→
msg(c ′, send c {e} ; c ′ ↔ c), proc(d, [c ′/c]P)

(∀C) : proc(d, {n} ← recv c ; Q),
msg(c ′, send c {e} ; c ′ ↔ c) 7→ proc(d, [e/n][c ′/c]Q)

Constraints. Refined session types also allow constraints over

index variables. As we have already seen in the examples, these

critically govern permissible messages. From the message-passing

perspective, the provider of (c : ?{ϕ}.A) should send a proof of

ϕ along c and the client should receive such a proof. However,

since the index domain is decidable and future computation cannot

depend on the form of the proof (what is known in type theory as

proof irrelevance) suchmessages are not actually exchanged. Instead,

it is the provider’s responsibility to ensure that ϕ holds, while the

client is permitted to assume that ϕ is true. Therefore, and in an

analogy with imperative languages, we write assert c {ϕ} ; P for

a process that asserts ϕ for channel c and continues with P , while
assume c {ϕ} ; Q assumes ϕ and continues with Q .

Thus, the typing rules for this new type constructor are

V ; C ⊨ ϕ V ; C ; ∆ ⊢ P :: (x : A)

V ; C ; ∆ ⊢ assert x {ϕ} ; P :: (x : ?{ϕ}.A)
?R

V ; C ∧ ϕ ; ∆, (x : A) ⊢ Q :: (z : C)

V ; C ; ∆, (x : ?{ϕ}.A) ⊢ assume x {ϕ} ; Q :: (z : C)
?L

Notice how the provider must verify the truth of ϕ given the cur-

rently known constraints C (the premise V ; C ⊨ ϕ), while the
client assumes ϕ by adding it to C.

Operationally, the provider creates a message containing the

constraint that is received by the client (c ′ fresh).

(?S) : proc(c, assert c {ϕ} ; P) 7→
proc(c ′, [c ′/c]P), msg(c, assert c {ϕ} ; c ↔ c ′)

(?C) : msg(c, assert c {ϕ} ; c ↔ c ′),
proc(d, assume c {ϕ ′} ; Q) 7→ proc(d, [c ′/c]Q)

In well-typed configurations (which arise from executing well-

typed processes) the constraint ϕ in these rules will always be

closed and true so there is no need to check this explicitly.

The dual operator !{ϕ}.A reverses the role of provider and client.

The provider of x : !{ϕ}.A may assume the truth of ϕ, while the
client must verify it. The dual rules are

V ; C ∧ ϕ ; ∆ ⊢ P :: (x : A)

V ; C ; ∆ ⊢ assume x {ϕ} ; P :: (x : !{ϕ}.A)
!R

V ; C ⊨ ϕ V ; C ; ∆, (x : A) ⊢ Q :: (z : C)

V ; C ; ∆, (x : !{ϕ}.A) ⊢ assert x {ϕ} ; Q :: (z : C)
!L

The remaining issue is how to type-check a branch that is im-

possible due to unsatisfiable constraints. For example, if a client

sends a del request to a provider along c : queueA[0], the type then
becomes

c : ⊕{none : ?{0=0}. 1, some : ?{0>0}.A ⊗ queueA[0−1]}

The client would have to branch on the label received and then

assume the constraint asserted by the provider

case c (none⇒ assume c {0 = 0} ; P1
| some⇒ assume c {0 > 0} ; P2)

but what could we write for P2 in the some branch? Intuitively,

computation should never get there because the provider can not

assert 0 > 0. Formally, we use the process expression ‘impossible’
to indicate that computation can never reach this spot:

case c (none⇒ assume c {0 = 0} ; P1
| some⇒ assume c {0 > 0} ; impossible)

In implicit syntax (see Section 4) we could omit the some branch
altogether and it would be reconstructed in the form shown above.

Abstracting away from this example, the typing rule for impossibil-

ity simply checks that the constraints are indeed unsatisfiable

V ; C ⊨ ⊥

V ; C ; ∆ ⊢ impossible :: (x : A)
unsat

There is no operational rule for this scenario since in well-typed

configurations the process expression ‘impossible’ is dead code and
can never be reached.

Type Equality. At the core of an algorithm for type checking is

type equality. Informally, two types are equal if they permit exactly

the same communication behaviors. This is captured in the recently

proposed type equality algorithm [12] that takes two types as input,
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∆ ⊩ (·) :: ∆
emp ∆1 ⊩ S1 :: ∆2 ∆2 ⊩ S2 :: ∆3

∆1 ⊩ (S1,S2) :: ∆3

comp

· ; ⊤ ; ∆ ⊢ P :: (x : A)

∆ ⊩ proc(x, P) :: (x : A)
proc · ; ⊤ ; ∆ ⊢ M :: (x : A)

∆ ⊩ msg(x,M) :: (x : A)
msg

Figure 4: Typing rules for a configuration

and attempts to create a bisimulation between them. Despite the

incompleteness of the algorithm (since the problem is undecidable),

we found the algorithm to be sufficient for all our examples.

3.3 Type Safety
The main theorems that establish the deep connection between

our refined type system and operational semantics are the usual

type preservation and progress, also referred as session fidelity and

deadlock freedom. At runtime, a program is represented using a set

of semantic objects, i.e. processes and messages together defined

as a configuration.
S ::= · | S,S′ | proc(c, P) | msg(c,M)

We say that proc(c, P) (ormsg(c,M)) provide channel c . We stipulate

that no two distinct semantic objects provide the same channel.

Type Preservation. A key question then is how to type configu-
rations? We define a well-typed configuration using the judgment

∆1 ⊩Σ S :: ∆2 denoting that configuration S uses channels ∆1

and provides channels ∆2. The rules for typing a configuration

are defined in Figure 4. A configuration is always typed w.r.t. a

well-formed signature Σ, requiring that all (i) all type definitions are
valid and contractive, and (ii) all process definitions are well-typed.
Since the signature Σ is fixed, we elide it from the presentation.

The rule emp defines that an empty configuration provides all

the channels ∆ that it uses. The comp rule composes two configura-

tions S1 and S2; S1 provides channels ∆2 while S2 uses channels

∆2. The rule proc creates a configuration out of a single process.

Configurations only exist at runtime where all arithmetic expres-

sions in process terms are closed, i.e. they do not refer to any free

variables. Hence, we use V = · and C = ⊤ when typing process

P (premise in proc rule). Similar to proc, the rule msg creates a

configuration out of a single message (where a message is also

represented as a process).

Global Progress. To state progress, we need the notion of a

poised process [25]. A process proc(c, P) is poised if it is trying to

receive a message on c . Dually, a message msg(c,M) is poised if it

is sending along c . A configuration is poised if every message or

process in the configuration is poised. Conceptually, this means

that the configuration is trying to communicate externally along

one of the channels it uses or provides.

Theorem 1 (Type Safety). For a well-typed configuration ∆1 ⊩Σ
S :: ∆2:

(i) (Preservation) If S 7→ S′, then ∆1 ⊩Σ S
′
:: ∆2

(ii) (Progress) Either S is poised, or S 7→ S′.

Proof. The proof of preservation proceeds by case analysis on

the rules of operational semantics, applying inversion to the given

V ; C ⊨ ϕ V ; C ; ∆ i⊢ P :: (x : A)

V ; C ; ∆ i⊢ P :: (x : ?{ϕ}.A)
?R

V ; C ∧ ϕ ; ∆, (x : A) i⊢ Q :: (z : C)

V ; C ; ∆, (x : ?{ϕ}.A) i⊢ Q :: (z : C)
?L

V ; C ∧ ϕ ; ∆ i⊢ P :: (x : A)

V ; C ; ∆ i⊢ P :: (x : !{ϕ}.A)
!R

V ; C ⊨ ϕ V ; C ; ∆, (x : A) i⊢ Q :: (z : C)

V ; C ; ∆, (x : !{ϕ}.A) i⊢ Q :: (z : C)
!L

Figure 5: Implicit Typing Rules

typing derivation of S, and then assembling a new derivation of S′.

Progress is proved by induction on the right-to-left typing of S so

that either S is empty (and therefore poised) or S = (D, proc(c, P))
or S = (D,msg(c,M)). By induction hypothesis,D can either take

a step (and then so can S), or D is poised. In the latter case, we

analyze the cases for P andM , applying multiple steps of inversion

to show that in each case either S can take a step or is poised. □

4 CONSTRAINT RECONSTRUCTION
The process expressions introduced so far in the language follow

simple syntax-directed typing rules. This means they are immedi-

ately amenable to be interpreted as an algorithm for type-checking,

calling upon a decision procedure where arithmetic entailments

and type equalities need to be verified. However, this requires the

programmer to write a significant number of explicit process con-

structs pertaining to the refinement layer in their code. Relatedly,

this hinders reuse: we are unable to provide multiple types to the

same program so that it can be used in different contexts.

This section introduces an implicit type system in which the

source program never contains the assume and assert expressions,
i.e. constructs corresponding to proof constraints. Moreover, impos-

sible branches may be omitted from case expressions. The missing

branches and other constructs are restored by a type-directed pro-

cess of reconstruction.
Interestingly, the nature of Presburger arithmetic makes full re-

construction impossible. For example, the proposition ∀n. ∃k . (n =
2k∨n = 2k+1) is true but the witness fork as a Skolem function ofn
(namely ⌊n/2⌋) cannot be expressed in Presburger arithmetic. Since

witnesses are critical for establishing correctness of programs, we

require that type quantifiers ∀n.A and ∃n.A have explicit witnesses

in processes and we do not reconstruct them.

In the first phase, a case expression with a missing branch for

label ℓ is transformed into a branch ℓ ⇒ impossible so that type

checking later verifies that the omitted branch is indeed impossible.

Then assumes and asserts are inserted according to a reconstruction

algorithm described in this section.

Following branch reconstruction, the resulting process expres-

sion is checked with the implicit typing judgmentV ; C ; ∆ i⊢ P ::

(x : A). The implicit system differs from the explicit system in only

one way: for the implicit constructs related to constraints (!R, !L, ?R,
?L), the process expression does not change on application of these
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rules. Selected typing rules are described in Figure 5 and illustrate

that expressions P and Q are unchanged in the premise and con-

clusion. For the remaining rules pertaining to base session types

(Section 3.1) and quantifiers (∃R, ∃L, ∀R, ∀L), no reconstruction is

involved and the implicit rules exactly match the explicit rules.

The implicit rules are sound and complete with respect to the

explicit system, since from an implicit typing derivation we can

read off the corresponding explicit process expression and vice

versa. The rules are also manifestly decidable since the types in the

premise are smaller than the conclusion for all the rules presented.

However, the implicit type system is highly nondeterministic.

Since the process expressions do not change on the application of

implicit rules in Figure 5, they can be applied in many different

orders. And each valid order corresponds to a different explicit pro-
gram, intuitively changing the order in which constraints are sent

and received. Thus, an implicit source program may correspond

to many different explicit programs. The necessary backtracking

would greatly complicate error messages and would also be expo-

nential and severely inefficient.

To solve this problem, we introduce a novel forcing calculus
which enforces an order among these implicit constructs. The core

idea of this calculus is to follow the structure of each type, but

within that assume should be inserted as early as possible, and assert
should be inserted as late as possible. This reasoning is sound since

the constraints obey a monotonicity property: if a constraint is true
at a program point, it will always be true later in the program.

Thus, eagerly assuming and lazily asserting constraints is sound:

if a constraint can be proved now, it can be proved later. It is also

complete under the mild assumption that the types can be polarized

(explained below). Logically, the !R, ?L rules are invertible, and are

applied eagerly while their dual rules are applied lazily.

This strategy is formally realized in the forcing calculus using

the judgmentV ; C ; ∆ ; Ω ⊢ P :: (x : A). The context is split into
two: the linear context ∆ contains stable propositions on which the

invertible left rules have been applied, while the ordered context

Ω stores channels on which invertible rules can possibly still be

applied to. First, we assign polarities to the type operators with

implicit expressions, a notion borrowed from focusing [2] with

a similar function here. Type definitions are unfolded in order

to determine their polarity, which is always possible since type

definitions are contractive. The types that involve communication

are called structural and represented by S .

A+ ::= S | ?{ϕ}.A+

A− ::= S | !{ϕ}.A−

A ::= A+ | A−

S ::= ⊕{ℓ : A}ℓ∈L | N{ℓ : A}ℓ∈L | A ⊗ A | 1 | A ⊸ A
| ∃n.A | ∀n.A

Not all types can be polarized in this manner, particularly types

containing alternating proof constraints e.g., !{ϕ}. ?{ψ }.A. When

checking the validity of types before performing reconstruction

we reject such types with alternating polarities. We also require

that all process declarations contain only structural types at the

top-level. Both these restrictions turn out to be mild in practice and

can be resolved by introducing additional communications.

Thus, the ? operator is positive, while ! is negative. The structural

types, denoted by S are considered neutral. In the forcing calculus,

the invertible rules are applied first.

V ; C ∧ ϕ ; ∆− ; Ω ⊢ P :: (x : A−)

V ; C ; ∆− ; Ω ⊢ P :: (x : !{ϕ}.A−)
!R

V ; C ∧ ϕ ; ∆− ; Ω · (x : A+) ⊢ P :: (z : C+)

V ; C ; ∆− ; Ω · (x : ?{ϕ}.A+) ⊢ P :: (z : C+)
?L

If a negative type is encountered in the ordered context, it is con-

sidered stable (invertible rules applied) and moved to ∆−.

V ; C ; ∆−, (x : A−) ; Ω ⊢ P :: (z : C+)

V ; C ; ∆− ; Ω · (x : A−) ⊢ P :: (z : C+)
move

The ordered context Ω imposes an order on the channels on which

these invertible rules are applied.

Once all the invertible rules are applied, we reach a stable sequent

of the formV ; C ; ∆− ; · ⊢ P :: (x : A+), i.e., the ordered context

is empty and the provided type A+ is positive. A stable sequent

implies that all constraints have been received. We send a constraint

lazily, i.e., just before communicating on that channel. We realize

this by forcing the channel just before communicating on it. As an

example, while sending (or receiving) a label on channel x , we force
it effectively sending any pending constraints.

V ; C ; ∆− ; · ⊢ x .k ; P :: [x : A+]

V ; C ; ∆− ; · ⊢ x .k ; P :: (x : A+)
⊕FR

V ; C ; ∆, [x : A−] ; · ⊢ case x (ℓ ⇒ Qℓ)ℓ∈L :: (z : C+)

V ; C ; ∆, (x : A−) ; · ⊢ case x (ℓ ⇒ Qℓ)ℓ∈L :: (z : C+)
⊕FL

The square brackets [·] indicates that the channel is forced, indi-

cating that a communication is about to happen on it. If there are

assert constructs pending on the forced channel, they are applied

now.

V ; C ⊨ ϕ V ; C ; ∆− ; · ⊢ P :: [x : A+]

V ; C ; ∆− ; · ⊢ P :: [x : ?{ϕ}.A+]
?R

V ; C ⊨ ϕ V ; C ; ∆−, [x : A−] ; · ⊢ P :: (z : C+)

V ; C ; ∆−, [x : !{ϕ}.A−] ; · ⊢ P :: (z : C+)
!L

Finally, if a forced channel has a structural type, we apply the

corresponding structural rule and lose the forcing. Again, as an
example, we consider the internal choice operator.

(k ∈ L) V ; C ; ∆− ; · ⊢ P :: (x : Ak )

V ; C ; ∆− ; · ⊢ (x .k ; P) :: [x : ⊕{ℓ : Aℓ}ℓ∈L]
⊕Rk

(∀ℓ ∈ L) V ; C ; ∆ ; (x : Aℓ) ⊢ Qℓ :: (z : C+)

V ; C ; ∆, [x : ⊕ {ℓ : Aℓ}] ; · ⊢ case x (ℓ ⇒ Qℓ)::(z:C
+)
⊕L

In either case, applying the structural rule creates a possibly unsta-

ble sequent, thereby restarting the inversion phase.

Remarkably, the forcing calculus is sound and complete with respect
to the implicit type system, assuming types can be polarized. Since

every rule in the forcing calculus is also present in the implicit

system, it is trivially sound.Moreover, applying assume eagerly, and
assert lazily also turns out to be complete due to the monotonicity

property of constraints.

Theorem 2 (Soundness and Completeness). For (valid) polar-
ized types A and contexts ∆ we have:

(1) IfV ; C ; ∆ i⊢ P :: (x : A), thenV ; C ; · ; ∆ ⊢ P :: (x : A).
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Abstract Type Concrete Type Concrete Syntax

⊕{l : A, . . .} +{l : A, ...} x.k
N{l : A, . . .} &{l : A, ...} case x (l => P | )
A ⊗ B A * B send x w
A ⊸ B A -o B y <- recv x
1 1 close x
∃n.A ?n. A send x {e}
∀n.A !n. A {n} <- recv x
?{n = 0}.A ?{n = 0}. A assert x {n = 0}
!{n = 0}.A !{n = 0}. A assume x {n = 0}
V [e] V{e1}...{ek}

Table 3: Abstract and Corresponding Concrete Syntax

(2) IfV ; C ; · ; ∆ ⊢ P :: (x : A), thenV ; C ; ∆ i⊢ P :: (x : A).

Proof. Part (1) of Theorem 2 corresponds to soundness. The

proof of soundness follows by induction on the implicit typing judg-

ment. Intuitively, soundness follows from the simple observation

that every rule in the forcing calculus is also valid in the implicit

typing judgment. Theorem 2 part (2) corresponds to completeness

whose proof proceeds by induction on the forcing judgment. The

proof relies on two key lemmas: (i) the rules !R and ?L are invertible,

and (ii) if V ; C ; ∆− ; Ω ⊢ (x : A+) and V ; C ⊨ ϕ, then
V ; C ; ∆− ; Ω ⊢ (x : ?{ϕ}.A+), i.e. asserting a constraint ϕ on a

channel can be done at any program point where ϕ holds assuming

C, and thus, can be delayed. □

If a process is well-typed in the implicit system, it is well-typed

using the forcing calculus. Once the typing derivation, i.e., ordering

of the typing rules is fixed by the forcing calculus, a unique explicit
program is constructed by applying the explicit typing rules to the
derivation. Thus, if a reconstruction is possible, the forcing calculus

will find it! We use this calculus to reconstruct the explicit program,

which is then typechecked using the explicit typing system.

5 IMPLEMENTATION
We have implemented a prototype for the language in Standard

ML (about 6500 lines of code) available open-source that closely

adheres to the theory presented here. Command line options deter-

mine whether to use explicit or implicit syntax, and the result of

reconstruction can be displayed if desired. We use a straightforward

implementation of Cooper’s algorithm [8] to decide Presburger

arithmetic with two small but significant optimizations. First, we

leverage the fact that we are working over natural numbers rather

than integers which bounds possible solutions from below, and the

second is to eliminate constraints of the form x = e by substituting e
for x in order to reduce the number of variables. After checking the

validity of types, the implementation reconstructs missing branches

and then constraints. Verifying constraints is postponed to the final

pass of type-checking the reconstructed process expression.

Syntax. So far, we have described the types and process terms

in an abstract syntax. Our Rast implementation, however, uses a

concrete syntax. Table 3 describes the abstract syntax of each type

operator, its corresponding concrete type, and the concrete syntax

Module iLOC eLOC R (ms)

arithmetic 69 143 0.353

integers 90 114 0.200

linlam 54 67 0.734

list 244 441 1.534

primes 90 118 0.196

segments 48 65 0.239

ternary 156 235 0.550

theorems 79 141 0.361

tries 147 308 1.113

Total 977 1632 5.280

Table 4: Case Studies

of the process term of a provider of that type. More details about

the Rast implementation are presented in a system description [11].

A program contains a series of mutually recursive type and

process declarations and definitions.

type v{n1}...{nk} = A
decl f : (x1 : A1) ... (xn : An) |- (x : A)
proc x <- f x1 ... xn = P

The first line is a type definition, where v is the name with index

variables ni and A is its definition. The second line is a process
declaration, where f is the process name, (x1 : A1) . . . (xn : An )
are the used channels and corresponding types, while the provided

channel is x of type A. Finally, the last line is a process definition
for the same process f defined using the process expression P .
We use a hand-written lexer and shift-reduce parser to read an

input file and generate the corresponding abstract syntax tree of

the program. The reason to use a hand-written parser instead of a

parser generator is to anticipate the most common syntax errors

that programmers make and respond with the best possible error

messages.

We describe the results for 9 representative case studies in Ta-

ble 4. We present the module name (Module), the lines of code in
implicit syntax before reconstruction (iLOC), the lines of code after
reconstruction (eLOC), and the time taken by the reconstruction

engine (R (ms)). The experiments were run on an Intel Core i5 2.7

GHz processor with 16 GB 1867 MHz DDR3 memory. We briefly de-

scribe each case study: arithmetic: natural numbers in unary (Sec-

tion 6.1) and binary (Section 6.2) representation; integers: standard
operations on an integer counter; linlam: the linear λ-calculus im-

plementation (Section 6.4); list: lists indexed by their size; primes:
prime sieve of Eratosthenes; segments: partial lists with constant-

work append operation; ternary: natural numbers represented in

balanced 6.3; theorems: circular [13] proofs of simple arithmetic

theorems; tries: a trie data structure to store multisets of binary

numbers 6.6. More details about each module can be found in the

Rast system description [11] or the open-source repository [27].

The two main observations from Table 4 are (i) reconstruction
reduces a significant amount of programmer overhead. The recon-

structed code is almost twice in size compared to the implicit code,

and (ii) reconstruction is very efficient. The forcing calculus com-

pletely eliminates any backtracking in the reconstruction process,

thus converting an exponential task to a linear one. Moreover, the
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forcing calculus does not even need to solve arithmetic constraints

to reconstruct the refinement constructs, further improving its

efficiency.

6 EXAMPLES
We draw some representative examples from our case studies and

study their key properties. In particular, we describe how our arith-

metic refinements can help in lightweight verification and complexity
analysis of standard concurrent programs.

6.1 Unary Natural Numbers
As a first simple example consider natural numbers in unary form,

as usually defined in Peano arithmetic.

type nat = +{ zero : 1, succ : nat }

A process P :: (c : nat) is required to send a stream of succ labels,
possibly followed by zero and close. Except for the infinite stream
of succ labels, every such stream represents a natural number. We

can force finiteness and also track the value of the natural number

by indexing the type.

type nat{n} = +{ zero : ?{n = 0}. 1,
succ : ?{n > 0}. nat{n-1} }

A process P :: (c : nat[i]) will now send exactly i succ labels

followed by zero and close.
We can use indexing to verify the correctness of some simple

processes. We start with “constructor” processes zero and succ that
correspond to the given labels.

decl zero : . |- (x : nat{0})
decl succ{n} : (y : nat{n}) |- (x : nat{n+1})

proc x <- zero = x.zero ; close x
proc x <- succ{n} y = x.succ ; x <-> y

The type of succ ensures that it definitely increments the value

of the input. Slightly more interesting is a half process which is

constrained to take an even number of value 2 ∗ n and output a

number of value n.

decl half{n} : (y : nat{2*n}) |- (x : nat{n})
proc x <- half{n} y =

case y ( zero => wait y ; x.zero ; close x
| succ => case y ( % no branch for zero

succ => x.succ ; x <- half{n-1} y) )

Since y : nat[2 ∗ n] initially, in the succ branch, the type of y

becomes nat[2∗n−1], thus guaranteeing that the inner zero branch
is now impossible since 2 ∗ n − 1 , 0. Reconstruction will fill in the

branch for zero in the inner case and mark it as impossible, which

is then verified by the type checker. Again, type-checking verifies

correctness of this implementation.

6.2 Binary Natural Numbers
Representing natural numbers in binary form is somewhat more

complicated. We represent a number by a stream of bits b0 and b1,
terminated by e. The least significant bit comes first so that, for

example, the number 6 = (110)2 is represented by the sequence of

labels b0 ; b1 ; b1 ; e.
type bin = +{ b0 : bin, b1 : bin, e : 1 }

To capture the value of the number, we note that if c : bin[n] then
after sending b0 along c , the channel should now have type bin[n/2]
(andn would have to have been even). However, the integer division

operator is not directly part of Presburger arithmetic, but can be

expressed using an existential quantifier: if b0 is sent along c : bin[n]
then there exists a k such that n = 2 ∗ k and the remaining stream

has type bin[k]. In addition, we would like to rule out leading zeros

(which are actually “trailing” in this representation) and we achieve

this by requiring that n > 0 in the case of b0.

type bin{n} = +{b0 : ?{n > 0}. ?k. ?{n = 2*k}. bin{k},
b1 : ?k. ?{n = 2*k+1}. bin{k},
e : ?{n = 0}. 1}

Recall that ?k is concrete syntax for ∃k .
Now the successor process will have to implement the carry

familiar from binary addition. That’s done by a recursive call to the

successor process on the remaining bit sequence. Again, the types

guarantee the correctness of the code.

decl bzero : . |- (x : bin{0})
decl bsucc{n} : (x : bin{n}) |- (y : bin{n+1})

proc x <- bzero = x.e ; close x

proc y <- bsucc{n} x =
case x ( b0 => {k} <- recv x ;

y.b1 ; send y {k} ;
y <-> x

| b1 => {k} <- recv x ;
y.b0 ; send y {k+1} ;
y <- bsucc{k} x

| e => y.b1 ; send y {0} ;
y.e ; wait x ; close y )

Because the quantifiers require explicit witnesses (rather than being

reconstructed), this process has to send and receive a suitable k
in each branch. If we know that the witness is computationally

irrelevant (currently the case in Rast), no actual k has to be sent or

received when the program executes.

6.3 Balanced Ternary Representation
We can represented integers (not just natural numbers) in balanced
ternary form which is defined using three digits: −1, 0, and +1. If

we disallow leading zeros, this representation of integers is unique.

Here, we face the difficulty that our index domain consists of natural

numbers, not arbitrary integers, so we index each ternary number

by two values a and b where tern[a,b] represents an integer with

value a − b. If we don’t bother preventing leading zeros, we get the

following type

type tern{a}{b} =
+{ m1 : ?c. ?d. ?{a+3*d+1 = 3*c+b}. tern{c}{d},

z0 : ?c. ?d. ?{a+3*d = 3*c+b}. tern{c}{d},
p1 : ?c. ?d. ?{a+3*d = 3*c+b+1}. tern{c}{d},
e : ?{a = b}. 1 }

where m1 represents digit −1, z0 represents digit 0, and p1 rep-

resents digit +1. Looking at the first line, for example, balanced

ternary means the digit −1 (m1) implies a−b = 3∗(c−d)−1, which
we normalize to the constraint a + 3 ∗d + 1 = 3 ∗ c +b to avoid side
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conditions on the natural numbers a and b. Similar calculations

apply for the other digits. The empty sequence e represents the

number 0, that is a − b = 0.

As an example, we define the predecessor process, which is quite

simple, except that we have to send and receive the witnesses c and
d . The carry occurs only in the case of m1.
decl pred{a}{b} : (x : tern{a}{b}) |- (y : tern{a}{b+1})
proc y <- pred{a}{b} x =

case x ( m1 => {c} <- recv x ; {d} <- recv x ;
y.p1 ; send y {c} ; send y {d+1} ;
y <- pred{c}{d} x

| z0 => {c} <- recv x ; {d} <- recv x ;
y.m1 ; send y {c} ; send y {d} ;
y <-> x

| p1 => {c} <- recv x ; {d} <- recv x ;
y.z0 ; send y {c} ; send y {d} ;
y <-> x

| e => y.m1 ; send y {0} ; send y {0} ;
y.e ; wait x ; close y

)

Note that once again, type checking verifies the correctness of this

implementation because a − (b + 1) = (a − b) − 1.
We have the property that tern[a,b] = tern[a+x,b +x], and our

type equality algorithm [12] recognizes and exploits this equality

while type checking. This is different from functional languages

with indexed or dependent types, where recursively defined types

are usually nominal.

6.4 Linear λ-Calculus
An example along entirely different lines is an implementation of

the linear λ-calculus and evaluation (weak head normalization) of

terms. It illustrates a number of different techniques from the other

examples in paper. We use higher-order abstract syntax, represent-

ing linear abstraction in the object language by a process receiving

a message corresponding to its argument.

type exp = +{ lam : exp -o exp,
app : exp * exp }

We would like evaluation to return a value (a λ-abstraction), so we

take advantage of the structural nature of types (allowing us to

reuse the label lam) to define the value type.

type val = +{ lam : exp -o exp }

We have that val is a subtype of exp, but we actually to not take

advantage of this fact (the current implementation of Rast does not

support subtyping). We can derive straightforward constructors

apply for expressions and lambda for values (we do not need the

corresponding constructor for expressions).

decl apply : (e1 : exp) (e2 : exp) |- (e : exp)
proc e <- apply e1 e2 =

e.app ; send e e1 ; e <-> e2

decl lambda : (f : exp -o exp) |- (v : val)
proc v <- lambda f = v.lam ; v <-> f

As a simple example, here is the representation of a combinator to

swap the arguments to a function.

(* swap = \f. \x. \y. (f y) x *)

decl swap : . |- (e : exp)
proc e <- swap =

e.lam ; f <- recv e ;
e.lam ; x <- recv e ;
e.lam ; y <- recv e ;
fy <- apply f y ;
e <- apply fy x

Evaluation is now the following very simple process.

decl eval : (e : exp) |- (v : val)
proc v <- eval e =

case e ( lam => v <- lambda e
| app => e1 <- recv e ; % e = e2

v1 <- eval e1 ;
case v1 ( lam => send v1 e ;

v <- eval v1 ) )

If e sends a lam label, we just rebuild the expression as a value.

If e sends an app label then e represents a linear application e1 e2
and the continuation has type exp ⊗ exp. This means we receive a
channel representing e1 and the continuation (still called e) behaves
like e2. We note this with a comment in the source.We then evaluate

e1 which exposes a λ-expression along the channel v1. We send

e along v1, carrying out the reduction via communication. The

result of this (still called v1) is evaluated to yield the final value v .
This particular call-by-name strategy has practically no parallelism;

modeling parallel evaluation requires a small modification of the

representation with lam : val ⊸ exp and an inclusion of values in

expressions. We would now like to prove that the value of a linear

λ-expression is smaller than or equal to the original expression. At

the same time we would like to rule out a class of so-called exotic
terms in the representation, which are possible due to the presence

of recursion in the metalanguage. We achieve this by indexing the

types exp and val with their size. For an application, this is easy:

the size is one more than the sum of the sizes of the subterms.

type exp{n} = +{ lam : ...
app : ?n1. ?n2. ?{n = n1+n2+1}. exp{n1} * exp{n2} }

The size n2 + 1 of a λ-expression is one more than the size n2 of
its body, but what is that in our higher-order representation? The

body is a linear function takes an expression of size n1 and then

behaves like an expression of size n1 +n2. Solving for n2 then gives

use the following type definitions and types for the constructor

processes.

type exp{n} =
+{lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1},

app : ?n1. ?n2. ?{n = n1+n2+1}. exp{n1} * exp{n2}}

type val{n} =
+{ lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1} }

decl apply{n1}{n2} :
(e1 : exp{n1}) (e2 : exp{n2}) |- (e : exp{n1+n2+1})
decl lambda{n2} :
(f : !n1. exp{n1} -o exp{n1+n2}) |- (v : val{n2+1})

The universal quantification over n1 in the type of lam is important,

because a linear λ-expression may be applied to an argument of any

size. We also cannot predict the size of the result of evaluation, so
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we have to use existential quantification: The value of an expression

of size n will have size k for some k ≤ n.

decl eval{n} : (e : exp{n}) |- (v : ?k. ?{k <= n}. val{k})

Because witnesses for quantifiers are not reconstructed, the evalua-

tion process has to send and receive suitable sizes.

proc v <- eval{n} e =
case e ( lam => send v {n} ;

v <- lambda{n-1} e
| app => {n1} <- recv e ;

{n2} <- recv e ;
e1 <- recv e ;
v1 <- eval{n1} e1 ;
{k2} <- recv v1 ;

case v1 ( lam => send v1 {n2} ;
send v1 e ;
v2 <- eval{n2+k2-1} v1 ;
{l} <- recv v2 ;
send v {l} ; v <-> v2))

Type-checking now verifies that if evaluation terminates, the re-

sulting value is smaller than the expression (or of equal size). This

comes down to deciding certain chains of linear inequalities.

For readers familiar with ergometric types [10], we show howwe

can bound the number of reductions using an amortized analysis

of work. For this, we assign 1 erg (unit of potential) to each λ-
expression. Our cost model is that all operations are free, except the

equivalent of a β-reduction which costs 1 erg. Because transfer of

potential is reconstructed, the program is very close to the original,

size-free program.

type exp = +{ lam : |> exp -o exp,
app : exp * exp }

type val = +{ lam : |> exp -o exp }

decl apply : (e1 : exp) (e2 : exp) |- (e : exp)
proc e <- apply e1 e2 =

e.app ; send e e1 ; e <-> e2

decl lambda : (f : exp -o exp) |{1}- (v : val)
proc v <- lambda f =

v.lam ; v <-> f

decl eval : (e : exp) |- (v : val)
proc v <- eval e =

case e ( lam => v <- lambda e
| app => e1 <- recv e ; % e = e2

v1 <- eval e1 ;
case v1 ( lam => work ;

send v1 e ; % beta
v <- eval v1 ) )

Type-checking here verifies that the reduction of a given expres-

sion with n λ-abstractions to a value performs at most k < n β-
reductions, with a potential ofn−k for further reductions remaining

in the value. This means that there are exactly n − k λ-abstractions
remaining in the result.

As a final variation on the theme of the linear λ-calculus we
show an implementation suitable for parallel evaluation of terms.

Because we would like to evaluate the body of a λ-abstraction in

parallel with the argument, we have to pass a channel promising a

value to an abstraction. These considerations yield the type

type exp = +{ app : exp * exp ,
val : val }

type val = +{ lam : val -o exp }

Here, the constructor val implements the inclusion of a value in

an arbitrary expression. From this basic observation, the code for

evaluation follows the previous pattern.

decl eval : (e : exp) |- (v : val)
proc v <- eval e =

case e ( val => v <-> e
| app => e1 <- recv e ; % e = e2

v1 <- eval e1 ;
v2 <- eval e ;
case v1 ( lam => send v1 v2 ;

v <- eval v1 ) )

The key point is that the evaluation of e with destination v2 (which
represents the argument to the function) is started early and pro-

ceeds in parallel with the evaluation of e1 and, once that is finished,
the body of the function (v1, in the final tail call). This version can

also be annotated to track size and other information in a manner

that is analogous to the more sequential versions of eval.

6.5 A Binary Counter
A binary counter has an internal value of n and an interface with

two operations: increment (inc message) and obtain the value (val
message). Due to linearity, obtaining the value turns the counter

into a number in binary form as introduced in Section 6.2.

type ctr{n} = &{ inc : ctr{n+1},
val : bin{n} }

We represent a counter as a chain of processes, each holding one

bit, where the least significant bit faces the client. bit0[n] represents
a bit 0, where the whole counter has value 2 ∗n. To prevent leading
zeros, we require n > 0. Similarly bit1[n] represent a bit 1, where
the whole counter has value 2 ∗ n + 1. Finally, empty represents the

number 0 (an empty sequence of bits).

decl empty : . |- (c : ctr{0})
decl bit0{n|n > 0} : (d : ctr{n}) |- (c : ctr{2*n})
decl bit1{n} : (d : ctr{n}) |- (c : ctr{2*n+1})

The implementation of counters is entirely straightforward.

proc c <- empty =
case c ( inc => c0 <- empty ;

c <- bit1{0} c0
| val => c.e ; close c )

proc c <- bit0{n} d =
case c ( inc => c <- bit1{n} d

| val => c.b0 ; send c {n};
d.val ; c <-> d )

proc c <- bit1{n} d =
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case c ( inc => d.inc ;
c <- bit0{n+1} d

| val => c.b1 ; send c {n} ;
d.val ; c <-> d )

The type checker verifies several properties, including that sending

an inc message to the counter will indeed increment its value, and

that requesting its value with the val message will return a binary

number with the correct value.

6.6 A Trie for Multisets of Natural Numbers
We now implement multisets of natural numbers (in binary form).

One of the key questions is how to maintain linearity in the design

of the data structure and interface. For example, should we be able

to delete an element from the trie, not knowing a priori if it is

even in the trie? To avoid exceedingly complex types to account for

these situations, the process maintaining a trie offers an interface

with two operations: insert (label ins) and delete (label del). We

index the type trie[n] with the number of elements in the trie,

so inserting an element always increases n by 1. If the element

is already present, we just add 1 to its multiplicity. Deleting an

element actually removes all copies of it and returns its multiplicity

m. If the element is not in the trie, we just return a multiplicity of

m = 0. In either case, the trie contains n −m elements afterwards.

type trie{n} =
&{ins : !k. bin{k} -o trie{n+1},
del : !k. bin{k} -o ?m. ?{m <= n}. bin{m} * trie{n-m}}

This type requires universal quantification over k , (written !k)
which is the value of the number inserted into or deleted from the

trie on each interaction (which is arbitrary).

The basic idea of the implementation is that each bit in the

number x : bin[k] addresses a subtrie: if it is b0 we descend into

the left subtrie, if it is b1 we descent into the right subtrie. If it

is e we have found (or constructed) the node corresponding to x
and we either increase its multiplicity (for insert), or respond with

its multiplicity and set the new multiplicity to zero (for delete).

We have two forms of processes: a leaf with zero elements and

an interior node with n0 +m + n1 elements (where n0 and n1 and
the number of elements in the left and right subtries, andm is the

multiplicity of the number corresponding to this node in the trie).

decl leaf : . |- (t : trie{0})
decl node{n0}{m}{n1} :

(l : trie{n0}) (c : ctr{m}) (r : trie{n1})
|- (t : trie{n0+m+n1})

The code is somewhat repetitive, so we only show the code for

inserting an element into an interior node.

proc t <- node{n0}{m}{n1} l c r =
case t ( ins => {k} <- recv t ;

x <- recv t ;
case x ( b0 =>

{k'} <- recv x ;
l.ins ; send l {k'} ; send l x ;
t <- node{n0+1}{m}{n1} l c r

| b1 =>
{k'} <- recv x ;
r.ins ; send r {k'} ; send r x ;

t <- node{n0}{m}{n1+1} l c r
| e =>

wait x ;
c.inc ;
t <- node{n0}{m+1}{n1} l c r )

| del => ...)

What does type-checking verify in this case? It shows that the

number of elements in the trie increases and decreases as expected

for each insert and delete operation. On the other hand, it does not

verify that the correctmultiplicities are incremented or decremented,

which is beyond the reach of the current type system.

7 FURTHER RELATEDWORK
Languages with index refinements such as Zenger’s [37], DML [36]

or, more recently, Granule [23] (to name just three of them) were

developed in the realm of functional languages. Bidirectional type

checking was developed in part to tame the complexity of type

checking in DML, which, as a functional language, exhibited an

analogy to natural deduction. As this paper demonstrates, matters

are simpler in some respects when the underlying language is

based on the sequent calculus: type checking is very naturally

bidirectional and therefore robust under refinement. On the other

hand, session types are generally structural rather than nominal,

and that complicates matters to the extent that the underlying type
equality becomes undecidable [12], even if we restrict ourselves

to universal prefix quantifiers. Fortunately, our experience shows

that the algorithm for type equality we proposed in prior work and

implemented in Rast [11] is quite robust.

Label-dependent session types [29] also integrate session types

indexed by natural numbers. However, they use a fixed schema of

iteration and specific unfolding equality on types, which seems to

apply only in a small number of our examples.

LiquidPi [19] also refines a language of session types, but limits it-

self to refining basic data types rather than equirecursively defined

session types. As a result, in their language even full type inference
is decidable (under some assumptions on the constraint domain),

but it cannot express many of our motivating examples. A similar re-

finement system designed for dynamic monitoring rather than static
checking has been proposed by Gommerstadt et al. [17, 18]. Also re-

lated is a system by Wu and Xi [35], which only mentions recursive

session types as a possible extension, but does not investigate its

properties. Zhou et al. [38, 39] refine types with arithmetic expres-

sion in the context ofmultiparty session types. In this recursion-free

setting, they obtain a decidable notion of typing. Another session

typed language with refinements is SePi [3, 14], where refinements

represent capabilities and are therefore quite different from ours.

A step in a different direction is to integrate fully dependent

types, which has also been considered with different aims and

technical realizations [17, 24, 30, 32]. Generally, the theory of type

equality and type checking in these languages has not yet been

developed and, in any case, is likely to be quite different from an

algorithm rooted in the decidability of Presburger arithmetic. Also,

generally speaking, such languages require proof objects to be

communicated (with some specific exceptions [17, 24]).
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8 CONCLUSION
In this paper we have shown how to construct a concurrent pro-

gramming language over arithmetically indexed binary session

types. The message-passing semantics of this language is based on

the natural polarity of the quantifiers and associated constraints in

linear logic, and thereby follows similar proof-theoretically moti-

vated designs and admits an effective bidirectional type-checking

algorithm. The language is quite verbose, which is addressed to

some extent by our implicit syntax and reconstruction algorithm

which is complete for a large class of types. We have probed the

expressive power of our language with several examples, all of

which easily check in our implementation.

While the general idea of reconstruction easily extends to er-
gometric types for expressing amortized complexity, our language

for temporal types [9] for expressing parallel complexity has so

far resisted a similar analysis, in essence because the next-time

operator affects multiple channels at once and its proof-theoretic

properties are not as uniform as those for the types treated here.

We would like to explore if a similar reconstruction algorithm can

nevertheless be devised.

Other natural generalizations we intend to pursue are richer con-

straint domains and mixed linear/nonlinear languages [4], perhaps

all the way to adjoint session types [25, 26]. These would open up

a whole new class of examples that are difficult or impossible to

express in a purely linear language such as Rast is at present.
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