
Dependent Session Types
via Intuitionistic Linear Type Theory

Bernardo Toninho
Carnegie Mellon University &
Universidade Nova de Lisboa

Pittsburgh, PA, USA
btoninho@cs.cmu.edu

Luı́s Caires
Universidade Nova de Lisboa

Lisbon, Portugal
luis.caires@di.fct.unl.pt

Frank Pfenning
Carnegie Mellon University

Pittsburgh, PA, USA
fp@cs.cmu.edu

Abstract
We develop an interpretation of linear type theory as dependent
session types for a term passing extension of the π-calculus. The
type system allows us to express rich constraints on sessions, such
as interface contracts and proof-carrying certification, which go
beyond existing session type systems, and are here justified on
purely logical grounds. We can further refine our interpretation
using proof irrelevance to eliminate communication overhead for
proofs between trusted parties. Our technical results include type
preservation and global progress, which in our setting naturally
imply compliance to all properties declared in interface contracts
expressed by dependent types.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ing of Programs]: Semantics of Programming Languages; F.4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic

Keywords type theory, dependent types, session types, π-calculus

1. Introduction
We introduce a theory of dependent session types for distributed
processes, based on an interpretation of pure linear type theory for
a term passing extension of the π-calculus.

The π-calculus is a foundational model for interacting concur-
rent processes, building on the key ideas of naming, and name mo-
bility. Name mobility overcame essential limitations of previous
models, which were expressive enough to capture value passing
concurrent computation, but not dynamic allocation and reference
passing, as needed to model, e.g., ML-like programming languages
and higher-order processes [26, 30]. As for the λ-calculus, the π-
calculus was originally presented as an untyped language. This has
opened the opportunity for intensive research on various type dis-
ciplines, some based on notions of linearity and sharing, inspired
by concepts originating in linear logic [24]. More recently, session
types have been introduced as a general typing discipline for name
passing processes that structure interactions around the notion of
sessions [20, 22].

[Copyright notice will appear here once ’preprint’ option is removed.]

A session connects, via a private communication channel, ex-
actly two subsystems which interact on it in perfect harmony. In-
teractions within a session always match precisely: when one side
sends, the other receives; when one side offers a selection, the other
chooses; when one side terminates, the other quits as well. Such
discipline is enforced even when session channels are passed along
in communications. New sessions may be dynamically created by
calling on capabilities of persistent shared servers. Various forms
of session types have proven useful to model realistic concurrent
interactions in scenarios ranging from service-oriented computing
[11] to operating system kernels [15].

In prior work [10], we have discovered a remarkable correspon-
dence between session types and (intuitionistic) linear logic, which
offers the first purely logical account of all the key features (both
linear and shared) of session types. In this paper, we extend our ba-
sic interpretation to cover processes that communicate data values
of an underlying functional language, not just pure sessions, and
generalize it by introducing dependent types.

Our framework yields a powerful theory of dependent session
types in which types may be used to specify not only the dynamics
of protocols, but also properties of data received and sent in com-
munications in the style of interface contracts. For generality, we
assume data to be defined by terms of some dependent type theory,
such as LF [19]. This way, functional terms may be used to repre-
sent not only basic data (such as integers, strings, structures, and
higher-order functions) but also, quite importantly, proofs of data
properties. Such proof terms may also be exchanged in communi-
cations, thus modeling a form of proof-carrying certification (cf.
[27]), clearly useful for distributed computing. Our development is
based on a purely logical foundation, via an interpretation of a stan-
dard sequent calculus proof system for linear logic [4], where base
types are drawn from an underlying functional type theory [12].

All types in the logical structure are interpreted as some kind
of session behavior. Following [10], multiplicative types A (B
andA⊗B, correspond to input and output session typesA?.B, the
type of sessions that receive a session of type A and then behaves
as B, and A!.B, the type of sessions that send a session of type
A and then behaves as B, respectively. The exponential type !A is
used to type shared channels, associated with replicated servers. As
we will see, a session channel of base type $τ just carries a basic
value N of the appropriate functional type τ . A dependent type
∀x:τ.B types a session process that inputs a value N of type τ ,
and then behaves as B{N/x}. Compatibly, a type ∃x:τ.B types a
session process that outputs a value N of type τ , and then behaves
as B{N/x}. As an example, consider the process:

Up(x) , x(n).x〈n+ 1〉.0

1 2011/5/12

In a classical session type system, this process is given type x :
?int.!int.end, which in our basic linear session type system is
rendered x : $int (($int ⊗ 1). Using dependent types we
can provide a much more informative interface contract, such as
(among many others):

UpInterface(x) , x : ∀n:int.∀p:(n > 0).∃y:int.∃q:(y > 0).0

This type specifies that if the process receives a positive amount (on
session x), it will send back a positive amount as well. A sample
process inhabiting type UpInterface(x) is

UpCert(x) , x(n).x(p).x〈n+ 1〉.x〈incp(n, p)〉.0

Here, we have used incp(n, p) to denote a proof term of type
(n+ 1 > 0), computed by some function

incp : Πm:int.(m > 0)→ (m+ 1 > 0)

given n and p. Clearly, process UpCert(x) mimics Up(x) defined
above, but also explicitly receives and sends proof certificates for
the interface properties, thus witnessing the validity, at the appro-
priate steps, of all properties expressed by dependent types. For
example, UpCert(x), after outputting m, also issues a proof of
(m > 0).

Explicitly manipulating proof certificates may be necessary in a
distributed setting, but may also turn out redundant in other scenar-
ios. To address this potential issue, again building on purely logical
foundations, we explore proof irrelevance [29]. Proof irrelevance
allows us to safely mark parts of a type specification that must be
respected at runtime, but need not to be explicitly witnessed in the
typed process. Irrelevant components A in a type are marked by
a bracketing operator [A]. So, instead of type UpInterface(x) for
UpCert(x), we may instead pick type

UpInterfaceP(x) , x : ∀n:int.∀p:[n > 0].∃y:int.∃q:[y > 0].0

Then, by applying to the process UpCert(x) a type-directed era-
sure map based on UpInterfaceP(x), we may prune the behavior
associated with irrelevant components of the process type. We then
get back to the process

Up(x) , x(n).x〈n+ 1〉.0

which can still be shown to conform to the rich interface type
UpInterfaceP(x), in a precise sense, since we know the process
passed type-checking with the extra information.

Our technical results show that our logical type system enjoys
type preservation under reduction in a rather strong sense, and
(global) progress, meaning that well typed processes never get
stuck. The standard result of type preservation naturally holds in
our system (Theorem 3.3). A stronger result, relating reduction in
the process world and cut reduction/conversion steps in the sequent
calculus world also holds, but is out of the scope of this particular
presentation. The progress property (Theorem 3.5), in our setting,
implies not only that all communications prescribed by types will
succeed, but also that all “assertions” captured by dependent types
hold at the appropriate protocol steps.

The presentation is structured as follows: In Section 2 we dis-
cuss our interpretation of linear logic as session types, beginning
with a session composition principle that is embodied by a sequent
calculus cut. We interpret each of the propositions of intuitionistic
linear logic as session behaviors, beginning with the multiplicative
fragment, followed by atomic propositions, additives and exponen-
tials and, finally, quantifiers, which correspond to input and output
of proof terms. Section 3 presents the results of type preservation
and progress for our type system. Section 4 describes the usage of
proof irrelevance as a form of type-directed runtime optimization
of processes and Section 5 concludes.

2. Linear Logic as Session Types
In this section, we present our correspondence of quantified linear
logic propositions as session types for a term passing π-calculus by
interpreting each linear logic proposition as a type describing the
session behavior of a particular channel (a summary of the process
calculus definition is given in Section 2.9). The interpretation ex-
tends the one given in [10] with a functional layer, based on some
dependent type theory, giving meaning to base types, and also cru-
cially, with universal and existential dependent type constructors.

We begin by first defining our typing judgment. We start off
with a single typing context ∆ which is used according to a linear
discipline (it is not subject to weakening or contraction). Later in
the paper we add new context regions as necessary to account for
the full generality of our system. Our type system assigns types to
channels. The context ∆ records assignments of the form x : A, de-
noting that a process typed under such an assumption expects to be
placed in an environment providing the behavior A along channel
x. Our typing judgment is: ∆ ⇒ P :: z : A, meaning that pro-
cess P implements, on channel z, the session behavior described
by A provided it is composed with a process environment that im-
plements the behaviors specified by ∆ (linearity imposes that all
behaviors specified in ∆ are completely used by P). We tacitly as-
sume that all channels declared in ∆ and the channel z are distinct.
We can apply renaming as necessary to satisfy this condition. We
always consider processes modulo structural congruence, therefore
typing is closed under structural congruence by definition.

In existing presentations of session types [20] a notion of type
duality is commonly present, in which the behavior of the inhab-
itants of a type is in some sense symmetric to the behavior of the
inhabitants of its dual (e.g. the output session is dual to the input
session, the choice session is dual to the branch session). In our
setting a notion of behavioral duality also arises naturally from the
additive and multiplicative nature of linear logic propositions. Mul-
tiplicative conjunction ⊗ and implication (are dual in the sense
that using a session of one type is equivalent to implementing a
session of the other. The same applies to additive conjunction and
disjunction.

2.1 Cut as composition
A fundamental aspect of process calculi is parallel composition.
Parallel composition allows for a process to rely on the function-
ality of another to implement its own. In our typed setting, this
means that given a process P that implements behavior A along
some channel x, that is, ∆ ⇒ P :: x : A, we can take a process
Q that uses the behavior of typeA (and maybe more) to implement
the behavior C on z (formally ∆′, x : A ⇒ Q :: z : C) and com-
pose the two processes so that the composition provides C along z
outright. Since we follow a linear typing discipline, Q requires all
the behavior supplied by P along x and therefore the composition
must restrict the scope of x to the two processes. The cognoscenti
will have already identified this reasoning principle as a sequent
calculus cut, and we thus obtain the rule:

∆⇒ P :: x : A ∆′, x : A⇒ Q :: z : C

∆,∆′ ⇒ (νx)(P | Q) :: z : C
cut

When we compose two processes as in the above rule, we do so in
order for them to interact with one another. In general, both P and
Q may perform some interaction with the outside environment, but
the point of composing them together with a shared local name
is so they communicate with each other and evolve together to
some residual processes P ′ and Q′. All of these process reductions
(interaction with the “outside world” by P , by Q, and interaction
between P and Q) can be given meaning through the reduction
of cuts in a proof. We thus take the correspondence of principal
cut reductions and process reductions as a guiding principle in our

2 2011/5/12

design, just as the correspondence between proof reductions and λ-
calculus reductions are the guiding principle for the Curry-Howard
isomorphism.

We now build up the system, following and extending [10].
We interpret linear logic propositions as types that characterize
behaviors of processes as session-based interactions. The grammar
of propositions is given by:

A,B ::= 1 | $τ |A (B | A⊗B | !A
| A N B | A⊕B | ∀x:τ.B | ∃x:τ.B

2.2 Linear implication
The usual way of reading A (B in linear logic is that, given an
A, we consume it and produce a B. Alternatively, we can think
of A (B as receiving something of type A and producing
something of type B. We therefore type a channel z with A (B
as:

∆, x : A⇒ P :: z:B

∆⇒ z(x).P :: z:A (B
(R

Given a process that performs an input on z, binding it to x and
continuing as P , we can type z with A (B if, under the
assumption that x provides a behavior of type A, P will use that
behavior to provide B along z. We have defined what it means to
type a channel with A (B, so we must now define what it means
to use such a channel:

∆⇒ P :: y : A ∆′, x:B ⇒ Q :: z:C

∆,∆′, x:A (B ⇒ (νy)x〈y〉.(P | Q) :: z:C
(L

We use a channel of typeA (B to produce behaviorC along z by
first outputting a fresh name y. Since the contract of x : A (B
dictates that x expects to receive a session that is to be used as
A, we must ensure that such is indeed the case, which we do by
having P provide A along y. Having given x a channel of type
A, it will now provide behavior of type B, which can be used
by Q to provide C along z. We can see that this interpretation
is reasonable by composing an instance of (R with an instance
of (L and appealing to our guiding principle of corresponding
process reductions with cut reductions (we omit the full typing
contexts for brevity):

y:A⇒ P :: x : B

⇒ x(y).P :: x:A (B

⇒ Q1 :: y:A x:B ⇒ Q2 :: z:C

x:A (B ⇒ (νy)x〈y〉.(Q1 | Q2) :: z:C

⇒ (νx)(x(y).P | (νy)x〈y〉.(Q1 | Q2)) :: z:C

−→

⇒ Q1 :: y:A y:A⇒ P :: x:B

⇒ (νy)(Q1 | P) :: x:B x : B ⇒ Q2 :: z:C

⇒ (νx)((νy)(Q1 | P) | Q2) :: z:C

We can isolate the process reduction induced by this cut reduction

(νx)(x(y).P |(νy)x〈y〉.(Q1 |Q2)) −→ (νx)((νy)(Q1 |P) |Q2)

and observe that, modulo structural congruence, it is the expected
interaction between an input process x(y).P and output process
x〈y〉.(Q1 | Q2) along a private channel x.

2.2.1 A simple example
Consider we want to describe a bank service in our system. With
what we have presented so far, we can specify what is, for the
moment, the protocol of a very simple bank process that receives a
string encoding a user’s identification and an amount that is to be
deposited and just terminates:

TBank , $string (($nat (1)

We have not yet introduced base types (such as $string), but we
will get into that shortly. The multiplicative unit 1, as we show in

the following section, denotes the terminated session. An example
of a process providing a session of this type on channel x is:

x(s).x(n).0 :: x : TBank

This is not yet a particularly interesting example. However, as we
interpret more linear logic connectives, we can gradually refine our
bank specification to describe richer and more interesting features.

2.3 Multiplicative unit
The multiplicative unit of intuitionistic linear logic, written 1, is
a proposition that is proved using no resources. Dually, using the
unit just consumes it, providing no resources. In a process calculus
setting, we interpret 1 as the terminated session:

· ⇒ 0 :: z : 1
1R

∆⇒ P :: z : C
∆, x : 1⇒ P :: z : C

1L

We provide a session of type 1 with the terminated process (it
uses no further ambient resources) and use it (if such is even
the appropriate term) by simply erasing. This is one of the two
cases where no process reduction takes place in composition, since
the inactive process and the scope restriction are erased through
structural congruence, not through reduction:

⇒ 0 :: x : 1
⇒ P :: z : C

x : 1⇒ P :: z : C
⇒ (νx)(0 | P) :: z : C ≡ ⇒ P :: z : C

Note that in terms of behavior duality, 1 is self-dual.

2.4 Multiplicative conjunction
Multiplicative conjunction, written A ⊗ B, means that we must
be able to divide our resources (in our interpretation, the sessions
available for interaction in the context) in such a way that we can
produce both an A and a B. In fact, the rules for ⊗ exhibit a deep
symmetry with those for linear implication (⊗ is behaviorally dual
to (in the manner explained in the introduction of Section 2). We
exploit this symmetry and interpret ⊗ on the right as output and as
input on the left:

∆⇒ P :: y : A ∆′ ⇒ Q :: z : B

∆,∆′ ⇒ (νy)z〈y〉.(P | Q) :: z : A⊗B
⊗R

Since we need to able to provide both session behaviors A and B,
we output a fresh channel y, through which the process P provides
a session of type A. Since we are already communicating along
z, we use it to provide a session of type B, which is realized by
process Q. We use a session of type A⊗B as follows:

∆, y : A, x : B ⇒ P :: z : C

∆, x : A⊗B ⇒ x(y).P :: z : C
⊗L

We input along x, because the contract of x : A⊗ B enforces that
an output of a channel which can be used as a session of typeAwill
take place on x, we bind that channel to y, and we can then safely
use x as providing type B to provide C along z. The reduction that
supports this interpretation is:

⇒ P1 :: y:A ⇒ P2 :: x:B

⇒ (νy)x〈y〉.(P1 | P2) :: x:A⊗B
y:A, x:B ⇒ P :: z:C

x:A⊗B ⇒ x(y).Q :: z:C

⇒ (νx)((νy)x〈y〉.(P1 | P2) | x(y).Q) :: z:C

−→
⇒ P2 :: x:B

⇒ P1 :: y:A y:A, x:B ⇒ Q :: z:C

x:B ⇒ (νy)(P1 | Q) :: z:C

⇒ (νx)(P2 | (νy)(P1 | Q)) :: z:C

Again, modulo structural congruence, this is exactly the appropriate
process reduction, communicating along the private channel x.

3 2011/5/12

2.4.1 A slightly less simple example
The example of 2.2.1 consists of a bank specification that only
allows a client to send its user identification, an amount to be
deposited and then terminate. Now that we have available the ⊗
type, we can slightly enrich our bank to send back to the client a
receipt of the deposited amount:

TBank , $string (($nat (($nat⊗ 1))

For which we can produce the process:

z(s).z(a).(νr)z〈r〉.(Preceipt | 0) :: z : TBank

where Preceipt is a process that will return an appropriate receipt
back to the client. In order to give a precise definition of Preceipt we
need to develop a way of mentioning basic values such as numbers,
which we do in the following section.

Note, however, that this is still a rather simplistic bank process
in that it only offers deposit operations (which would not leave its
clients very happy), and only runs once. Moreover, this specifica-
tion only really guarantees that the bank will send back a number.
Nothing ensures that it really corresponds to the same value that the
client wanted to deposit. In the following sections we develop our
system to adress each of these issues, ultimately building up to the
a dependent linear type theory of sessions.

2.5 Base types and the identity rule
In the previous section we have shown how to interpret linear im-
plication and conjunction as the types of input and output sessions,
respectively. Before proceeding to the remaining linear logic con-
nectives, we will assign meaning to base types and interpret the
identity axiom of linear logic. As we have hinted at in the previous
example, these turn out to be essential for our development.

A base type $τ denotes a proposition that can only be ultimately
proved from an ambient assumption of that particular type because
it cannot be decomposed further. In this sense, $τ is an atom.
Moreover, linear logic only allows us to prove $τ if it is our only
remaining resource. In previous work [10], since the focus was on
interpreting the composite connectives as pure process behavior,
no interpretation was given for atomic types. Here, atomic types
connect us to another language layer.

Commonly, we want processes to exchange data, such as num-
bers and strings (indeed, most work on session types takes this for
granted and assumes that processes exchange channels and data
values [7, 8, 18, 22]). In our approach processes communicate not
just names, but also terms of a functional language that assigns
meaning to the base types of the full calculus and, as we show in
Section 2.8, produces the witnesses for universally and existentially
quantified types.

Note that while these terms populate base types, the types need
not actually be atomic in the term language. Any extra type struc-
ture only has meaning in the term language, while from the per-
spective of the process calculus they are opaque types with no fur-
ther decomposable structure. Letters M , N range over the terms
of this language and we rely on a separate judgment for well-
formedness of such terms, written Ψ ` M : τ . Ψ is a context
region that is reserved for the term language (we may trivially add
the context Ψ to all the sequents in the rules we have seen so far,
since these do not affect Ψ). Note that τ itself has meaning in the
functional language, while in the process calculus all such types are
internalized as $τ .

We refrain from fully specifying the term language to maintain
full generality. We instead assume that the term language is defined
by some intuitionistic system of natural deduction with the usual
properties of substitution and weakening (we could relax the re-
quirement of weakening by considering a typed linear lambda cal-

culus as the term language such as [12], but we refrain from doing
so for simplicity of presentation).

We only require two additional rules to fully account for base
types and the corresponding terms of the functional language:

Ψ `M : τ
Ψ; · ⇒ [z ←M] :: z : $τ

$R

The $R rule allows us to use terms from the functional language to
give meaning to names at base type. The process construct [z ←
M] locates functional term M at name z (we will introduce the
operational semantics for this construct shortly). The final missing
piece is a rule that takes names of base type from the linear context
and places them in the appropriate Ψ context:

Ψ, x : τ ; ∆⇒ P :: z : C

Ψ; ∆, x : $τ ⇒ P :: z : C
$L

This rule realizes our design to give meaning to base types in
the external functional language: given a channel that provides
complex session behavior, we successively play out the session
down to its basic constituents (which are the types of the functional
term language, the terminated session 1 or, as we detail later,
persistent sessions), at which point, if we are in the presence of
a base type, we move it to the context Ψ where it can be further
interpreted as needed.

We can now determine what the behavior of the construct in the
$R rule should be:

`M : τ
⇒ [x←M] :: x : $τ

x : τ ; · ⇒ P :: z : C

x : $τ ⇒ P :: z : C

⇒ (νx)([x←M] | P) :: z : C

−→⇒ P{M/x} :: z : C

where P{M/x} is the substitution of term M for variable x in P .
The construct [x ← M] is reminiscent of the applied π-calculus
notion of active substitution [1]. In the applied π-calculus, there is
no reduction step like the one above, and the substitution is instead
silently performed by a structural congruence principle. Although
we might have alternatively interpreted this cut-elimination step by
a structural congruence (as we have done for multiplicative unit),
we prefer not to do so, without any loss of generality, to maintain
a crisper correspondence with the dynamics suggested by the proof
theory.

2.5.1 Identity as renaming
We have stated that hypotheses denote the existence of ambient
names providing certain behaviors. On the logical side, initial se-
quents Ψ;x : A ⇒ P :: z : A allow us to use an assumption
directly to prove the conclusion, a rule absent in [10]. We know
that x stands for a name or a term of type A, whatever it may be,
and we want to make use of x to provide that same A as z. We
thus want to equate x and z as the same, and that is precisely the
behavior that process P must implement. For this we introduce a
new process construction, [x ↔ z], meaning that both names are
interchangeable, obtaining the rule:

Ψ;x : A⇒ [x↔ z] :: z : A
id

4 2011/5/12

The proof reductions that we obtain in cut elimination can inform
us of what the reductions should be:

y : A⇒ [y ↔ x] :: x : A x : A⇒ P :: z : C

y : A⇒ (νx)([y ↔ x] | P) :: z : C

−→ y : A⇒ P{y/x} :: z : C

⇒ P :: x : A x : A⇒ [x↔ z] :: z : A

⇒ (νx)(P | [x↔ z]) :: z : A

−→ ⇒ P{z/x} :: z : A

And so interchangeable names will, operationally, be substituted
for each other. We are justified in renaming one to the other in a
type-safe way. It is possible to replace this construct at any com-
posite type by a process that acts as an intermediary between the
ambient session and the provided one, simply acting as a copycat
process, until we reach a base type, at which point the two names
are equated to refer to the same functional term. This is the compu-
tational content of the meta-theoretic proof of admissibility of the
identity rule (or initial rule) in a sequent calculus.

The two rules above define the reduction of the renaming con-
struct with the proviso that y and z do not occur in P , respectively.
In general, we impose the formation restriction that one of the
names appearing in the renaming construct must be bound, while
the other one must not occur within the remaining scope of the re-
naming construct, which is enforced by our typing discipline. By
adding a structural congruence, [y ↔ x] ≡ [x ↔ y], we can sum-
marize the two rules as one:

(νx)([y ↔ x] | P) −→ P{y/x}

2.6 Additive conjunction and disjunction
We now turn our attention to additive conjunction, written AN B.
Additive conjunction represents alternative availability of resources
(we are prepared to provide sessionsA andB, but can only provide
one of them), where the choice of resource A or B is made by the
client of A N B. We thus type a channel with A N B if it offers a
choice between the two behaviors A and B:

Ψ; ∆⇒ P :: z : A Ψ; ∆⇒ Q :: z : B

Ψ; ∆⇒ z.case(P,Q) :: z : ANB
NR

The process above branches to provide either A or B. If A is
selected, the process P provides the necessary session behavior
along z, otherwise, process Q provides the session behavior B
along z. We can use a channel of type A N B by triggering either
one of the possible choices:

Ψ; ∆, x : A⇒ P :: z : C

Ψ; ∆, x : ANB ⇒ x.inl;P :: z : C
NL1

Ψ; ∆, x : B ⇒ P :: z : C

Ψ; ∆, x : ANB ⇒ x.inr;P :: z : C
NL2

This form of minimal labeled choice is comparable to the n-ary
branching constructs of standard session-oriented π-calculi [22].
The behavioral dual of binary branching is binary choice, which
corresponds to additive disjunction:

Ψ; ∆⇒ P :: z : A

Ψ; ∆⇒ z.inl;P :: z : A⊕B ⊕R1

Ψ; ∆⇒ P :: z : B

Ψ; ∆⇒ z.inr;P :: z : A⊕B ⊕R2

This means that in order to use a session of type A ⊕ B to offer
a session behavior of type C, we must be able to offer C for both

possibilities of the choice:
Ψ; ∆, x : A⇒ P :: z : C Ψ; ∆, x : B ⇒ Q :: z : C

Ψ; ∆, x : A⊕B ⇒ x.case(P,Q) :: z : C
⊕L

The reduction we obtain through composition is:
⇒ P1 :: x:A ⇒ P2 :: x:B

⇒ x.case(P1, P2) :: x:ANB

x:A⇒ Q :: z:C

x:ANB ⇒ x.inl;Q :: z:C

⇒ (νx)(x.case(P1, P2) | x.inl;Q) :: z:C

−→
⇒ P1 :: x:A x:A⇒ Q :: z:C

⇒ (νx)(P1 | Q) :: z:C

and symmetrically:
⇒ P1 :: x:A ⇒ P2 :: x:B

⇒ x.case(P1, P2) :: x:ANB

x:B ⇒ Q :: z : C

x:ANB ⇒ x.inr;Q :: z:C

⇒ (νx)(x.case(P1, P2) | x.inr;Q) :: z:C

−→
⇒ P1 :: x:B x:B ⇒ Q :: z:C

⇒ (νx)(P2 | Q) :: z:C

2.6.1 A slightly less simple example. . . with choice
We refine our previous bank specification to account for the fact
that a bank offers several possible operations to its clients. In
particular, we consider the deposit operation of Section 2.4.1 and
consulting the account balance:

TBank , $string ((($nat (($nat⊗ 1)) N ($nat⊗ 1))

We abstract the details of performing the deposit operation with
a function dep : string → nat → nat that takes the user iden-
tification and the deposit amount and returns the receipt, and the
details of obtaining the balance of an account with a function
bal : string → nat that takes the user identification and returns
the balance of the account:

z(s).z.case(z(a).(νr)z〈r〉.([r ← dep(s, a)] | 0),
(νb)z〈b〉.([b← bal(s)] | 0) :: z : TBank

2.7 Replication and exponential
We now develop the technical apparatus to provide an interpreta-
tion of the linear logic exponential !A. Proof-theoretically, the ex-
ponential enables a form of controlled weakening and contraction.
More precisely, a proposition !A provides an arbitrary number of
copies of A (possibly 0). This means that to prove !A, we cannot
use any linear resource, otherwise we would not be able to use A
an arbitrary number of times. To cleanly account for the ability to
weaken and contract certain resources, we split the context in an un-
restricted zone that is subject to weakening and contraction, which
we call Γ, and the linear zone (not subject to weakening or contrac-
tion), which we still denote as ∆ (this form of context splitting is
consistent with Barber and Plotkin’s DILL [4]). Variables declared
in Γ are called unrestricted and are denoted by (u, v, w). As before
with the context Ψ, we simply add Γ to all sequents in the rules we
have presented so far, since they do not use or change Γ in any way.

We can now assign the type !A to a channel z as follows:
Ψ; Γ; · ⇒ P :: y : A

Ψ; Γ; · ⇒!z(y).P :: z : !A
!R

We represent the persistent (or unrestricted) nature of the exponen-
tial by using an input-guarded process replication construct. The
above process expects an input along z (call it y) to trigger the
replication. The received name y will be the one through which P
provides the session behavior of type A. Since the input is repli-
cated (and P does not depend on any linear sessions), the process
is able to provide an arbitrary number of copies of the session be-
havior A. Note that while we do require the linear context to be

5 2011/5/12

empty, we can use any ambient persistent session channel (called
standard channels in [17]) in Γ to implement a session of type !A.

Using a (linear!) channel x of type !A conceptually requires
two steps. The first is to unlock the ability for this channel to
provide session A multiple times. This is accomplished simply by
renaming, taking care to make sure that the new channel u : A is
persistent and therefore declared in Γ.

Ψ; Γ, u : A; ∆⇒ P :: z : C

Ψ; Γ; ∆, x : !A⇒ P{x/u} :: z : C
!L

The second step is to actually create a fresh channel y : A while
retaining the capability to create more in the future, encoded by
keeping u : A in the context.

Ψ; Γ, u : A; ∆, y : A⇒ P :: z : C

Ψ; Γ, u : A; ∆⇒ (νy)u〈y〉.P :: z : C
copy

This copy rule is characteristic of sequent calculi implementing
DILL. It is interesting that !L merely renames, while copy outputs a
new bound name, being the computationally significant operation.

To follow our program of identifying process reductions with
principal cut reductions, we must first observe that our previous
composition rule cut cannot properly account for ambient unre-
stricted assumptions and thus does not completely explain typed
composition in its full generality. In fact, if we simply compose the
instances of !R and !L using cut:

Ψ; Γ; · ⇒ P :: y:A

Ψ; Γ; · ⇒ !x(y).P :: z:!A

Ψ; Γ, u:A; ∆⇒ Q :: z:C

Ψ; Γ; ∆, x:!A⇒ Q{x/u} :: z:C

Ψ; Γ; ∆⇒ (νx)(!x(y).P | Q{x/u}) :: z:C

not only can we not produce a process reduction (which is expected
due to the “silent” nature of !L), but we also are unable to produce
a proof reduction, since up to this point we have not defined a per-
sistent version of cut. We can fix this by considering a composition
rule for unrestricted sessions:

Ψ; Γ; · ⇒ P :: x : A Ψ; Γ, u : A; ∆⇒ Q :: z : C

Ψ; Γ; ∆⇒ (νu)(!u(x).P | Q) :: z : C
cut!

Given a process P that provides a session A along x without
using any ambient linear sessions, and a processQ that implements
session behavior C along z by (potentially) using the unrestricted
ambient session u : A (as well as linear ambient sessions ∆), we
may compose Q with P if we prepend a replicated input along
u to P , so it may now provide the necessary multiple copies of
the session behavior A to produce a process that provides C along
z outright. We can now exhibit our correspondence on the copy
rule, where the process reduction is matched with a proof reduction
obtained by the elimination of a persistent cut:

⇒ P :: x:A

u:A;x:A⇒ Q :: z:C

u:A;⇒ (νx)u〈x〉.Q :: z:C

⇒ (νu)(!u(x).P | (νx)u〈x〉.Q) :: z:C −→

⇒ P :: x:A

u:A⇒ P :: x:A u:A;x:A⇒ Q :: z:C

u:A⇒ (νx)(P | Q) :: z:C

⇒ (νu)(!u(x).P | (νx)(P | Q)) :: z:C

If we now revisit our previous composition of !R and !L, we can
observe that the process composition is structurally equivalent to
persistent composition (which we know to exhibit the appropriate
process reduction when the persistent session u is actually used).
Similarly to what happens with 1, this is also one of the situations
where we witness a proof reduction (of a cut to a persistent cut) that
is matched by structural congruence in the process calculus. Note
that the proof reductions of the persistent cut are again matched by
process reductions (as we have shown above).

This form of composition of unrestricted resources introduces a
proof conversion in which the unrestricted resource is “garbage col-
lected” if never used. We can interpret this conversion as extending
the standard structural congruence ≡ between processes with the
following rule (we will refer to this extended congruence as ≡S):

(νx)(!x(y).P | Q) ≡S Q if x 6∈ fn(Q)

While not essential to our development, ≡S allows us to provide a
more concise statement for some of the theorems of Section 3.

2.7.1 A bank with a persistent service
Having properly defined persistent sessions through linear logic
exponentials, we can now have a bank service that persists through
multiple sessions, instead of just being available for one usage:

TBank , !($string ((($nat (($nat⊗ 1)) N ($nat⊗ 1)))

We modify the bank process to be

!z(y).y(s).y.case(y(a).(νr)y〈r〉.([r ← dep(s, a)] | 0),
(νb)y〈b〉.([b← bal(s)] | 0)) :: z : TBank

which now receives a session channel (bound to y) and spawns a
replica that provides the behavior $string ((($nat (($nat ⊗
1)) N ($nat⊗ 1)) along y.

We now have what may seem to be a good specification for
what a bank process should be. However, if we only consider the
type TBank, we are really only describing a persistent service that
will receive a string and give a choice between either receiving a
number and sending one back or just sending a number. When seen
under this light, it becomes less obvious that we should be happy
with our specification of what a simple bank process should be.
In the next section, we develop a way of refining the specification
such that typing will ensure strong guarantees not just on the pure
session behavior, but also on the relationships between the actual
communicated data. This refinement comes from the universal and
existential quantifiers of linear logic, which are interpreted as a
form of dependent product and sum, respectively.

2.8 Quantification and term passing
In intuitionistic first-order linear logic we usually consider the
quantifiers ∀x.A and ∃x.A as ranging over a single domain that
is left unspecified in order to study quantification in a general
setting, independent of a particular domain of discourse. We now
reconsider the quantifiers as ∀x:τ.A and ∃x:τ.A, and therefore
focus on quantification where the domain of discourse is typed (in
particular, with a type τ).

Let us first consider universal quantification. Logic allows us to
conclude ∀x:τ.A if by hypothesizing the existence of some element
of type τ , labeled by x, we can prove A (which may depend on x).
In linear logic, the hypothesis x : τ is given an unrestricted char-
acter since it avoids the problematic situation where a proposition
may refer to an object that may have already been consumed. Con-
versely, we use an assumption of ∀x:τ.A by providing an object of
type τ , which enables us to use A with the free variable x appro-
priately instantiated (in type theory this means that A depends on
a term of type τ). We thus interpret a channel of type ∀x:τ.A as
follows:

Ψ, x : τ ; Γ; ∆⇒ P :: z : A

Ψ; Γ; ∆⇒ z(x).P :: z : ∀x : τ.A
∀R

Similarly to how in type theory the universal quantifier corresponds
to implication, we type the name z with ∀x:τ.A if after performing
an input of a term of type τ , we can type z with A in the continua-
tion P . We now define how to use a name of type ∀y:τ.A:

Ψ ` N : τ Ψ; Γ; ∆, x : A{N/y} ⇒ P :: z : C

Ψ; Γ; ∆, x : ∀y : τ.A⇒ x〈N〉.P :: z : C
∀L

6 2011/5/12

To use an ambient channel x of this type, we must output a func-
tional term of type τ . Upon doing so, x now offers the session A,
where the free variable in A has been instantiated with the term N ,
which we can use in P to provide session C along z.

We choose to use functional terms as the quantifier witnesses
because they allow us to refer to the values communicated by pro-
cesses (which are defined by the same functional language). This
allows us to express rich properties of the values communicated by
processes (which we will see shortly). Furthermore, it allows us to
give a clean and logically based account of processes that exchange
proof objects (i.e., the functional terms) which can serve as a form
of inspectable proof certificate (vis., a high-level model of proof
carrying code [27]).

The reduction for the processes in ∀R and ∀L is:

y:τ ;−;− ⇒ P :: x:A

⇒ x(y).P :: x:∀y:τ.A

` N :τ x:A{N/y} ⇒ Q :: z:C

x : ∀y:τ.A⇒ x〈N〉.Q :: z:C

⇒ (νx)(x(y).P | x〈N〉.Q) :: z:C

−→
⇒ P{N/y} :: x:A{N/y} x:A{N/y} ⇒ Q :: z:C

⇒ (νx)(P{N/y} | Q) :: z:C

We now consider existential quantification. Logic allows us to con-
clude ∃x:τ.A if we can produce a witness of type τ and (poten-
tially) use it to show A (in which x may be free and therefore we
need to instantiate the variable xwith the witness). Just as universal
quantification was interpreted as term input, we interpret existential
quantification as its behavioral dual, that is, as term output:

Ψ ` N : τ Ψ; Γ; ∆⇒ P :: z : A{N/x}
Ψ; Γ; ∆⇒ z〈N〉.P :: z : ∃x:τ.A

∃R

The term N provides a witness of τ , which is used to instantiate x
in the session type A provided by P along z. Using a channel of
type ∃y:τ.A is defined as:

Ψ, y : τ ; Γ; ∆, x : A⇒ P :: z : C

Ψ; Γ; ∆, x : ∃y:τ.A⇒ x(y).P :: z : C
∃L

Given that the contract of x : ∃y:τ.A is to output a term of
type τ along x and then provide behavior A (with the appropriate
instantiation of the variable y), we use a session of existential type
by performing an input along x, that is bound in the continuation
as y, which then uses the residual behavior A to provide C along
z.

The reduction of the process composition is identical to that for
sessions of universal quantification type:

` N :τ ⇒ P :: x:A{N/y}
⇒ x〈N〉.P :: x:∃y:τ.A

y:τ ;x:A⇒ Q :: z:C

x:∃y:τ.A⇒ x(y).Q :: z:C

⇒ (νx)(x〈N〉.P | x(y).Q) :: z:C

−→
⇒ P :: x:A{N/y} x:A⇒ Q{N/y} :: z:C

⇒ (νx)(P | Q{N/y}) :: z:C

We must note that as of this moment in our presentation, our system
is not yet a truly dependent type theory of sessions, since we have
not yet defined a way in which we can actually have occurrences
of the quantified variables in the bodies of types. In logic, this is
achieved by allowing atomic propositions p to depend on (typed)
variables, that is, to have atomic propositions be predicates on
typed objects (e.g. in ∀x:τ.p(x), p is a predicate on objects of
type τ). In type theory, predicates correspond to indexed families
of types. For instance, ∀x:τ.p(x) defines a type family p indexed
by objects of type τ , that is, p(N) is a type for any object N
of type τ . We refrain from presenting further insights into the
technical aspects of dependent type theories for the sake of brevity,
simply noting that their expressive power gives rise to practical and

useful solutions to problems that range from foundational aspects
[13, 14, 25] to more practical aspects of computer science [28, 31].

In our interpretation, we assume that we can define type fam-
ilies in the functional term language, that is, the functional term
language is a dependent type theory in the style of [19, 28]. We
thus introduce the final requirement that makes our interpretation a
fully dependent type theory of sessions.

2.8.1 A more sophisticated bank service
We now extend our running example of the bank process to a
system with a bank and an ATM that interfaces between the bank
and its clients. The ATM charges any client a small amount for
any operations performed. We therefore specify such an ATM, with
the additional caveat that it may only charge at most 2 dollars per
operation, and it must provide a proof of such to the client. We
begin with the bank specification:

TBank , !(∀s : string.$uid(s) (
(∀n : nat.$deposit(s, n) (($receipt(s, n)⊗ 1)) N
(∃m : nat.$balance(s,m)⊗ 1))

By using dependent types at both the session level and at the
functional term level, we can provide a refined specification in
which the bank receives the user identification and then offers the
deposit and balance operations: the former receives a deposit order
of n dollars for the specified user s and issues a receipt that refers to
s and n (all of which is ensured by typing); the latter simply issues
a balance statement that refers to s and an amountm corresponding
to the account balance. We use dependent functions dep with type
Πs : string.Πn : nat.deposit(s, n) → receipt(s, n) and bal with
type Πs : string.Σm : nat.balance(s,m) to implement the bank
process (πi(N) denotes the ith projection of N):

!z(y).y(s).y(id).y.case(y(n).y(d).(νr)y〈r〉.
([r ← dep(s, n, d)] | 0), y〈π1(bal(s))〉.(νb)y〈b〉.

([b← π2(bal(s))] | 0)) :: z : TBank

The ATM client interface specification is (to make matters simpler,
we assume the ATM only performs deposits):

TATMClient , ∀s : string.$uid(s) (
(∀n : nat.$deposit(s, n) (∃m : nat.
∃p : (n− 2 ≤ m ≤ n).($receipt(s,m)⊗ 1))

The client sends its user id, a deposit instruction for some amount
n, and the ATM sends back to the client the receipt for the de-
posited amount, along with a proof object p that guarantees that
the amount charged for the deposit is within the bounds imposed
by the specification. Note that we can now ensure by typing alone
that any well-typed ATM will be guaranteed to not overcharge its
clients. For the ATM process, we use a function charge of type:

charge : Πs :string.Πn :nat.deposit(s, n)→
Σm : nat.Σp : (n− 2 ≤ m ≤ n).deposit(s,m)

The charge function takes the deposit object and issues a new
deposit object, providing the necessary proof objects to ensure that
the amount charged for the operation is within specification bounds.
An inhabitant of type TATMClient (assuming the bank session is
available on channel x) is:

z(s).z(id).z(n).z(d).
(νy)x〈y〉.y〈s〉.(νi)y〈i〉.([i← id] |
y.inl; y〈π1(charge(s, n, d))〉.

(νd′)y〈d′〉.([d′ ← π2(π2(charge(s, n, d)))] |
y(r).z〈π1(charge(s, n, d))〉.
z〈π1(π2(charge(s, n, d)))〉.

(νt)z〈t〉.([t↔ r] | 0))) :: z : TATMClient

Note that there are potentially several inhabitants of the type
TATMClient, due to the many possible ways in which the com-

7 2011/5/12

munication on the bank session channel x and the client session
channel z can be validly interleaved (e.g. the ATM might send the
proof objects to the client before sending the deposit message to
the bank).

2.9 Summary
We now take a step back and summarize. We have presented a type
system of dependent session types for a term passing π-calculus,
whose process constructors are given below:

P ::= 0 | P |Q | (νy)P
| x〈y〉.P | x〈N〉.P | x(y).P
| !x(y).P | x.inl;P | x.inr;P
| x.case(P,Q) | [y ↔ x] | [x← N]

The typing rules for our system are summarized in Fig. 1, which is
defined modulo structural congruence. Structural congruence is the
least congruence on processes defined by the following rules:

P | 0 ≡ P P ≡α Q⇒ P ≡ Q
P | (Q |R) ≡ (P |Q) | R P |Q ≡ Q |P
x 6∈ fn(P)⇒ P |(νx)Q ≡ (νx)(P |Q) (νx)0 ≡ 0
(νx)(νy)P ≡ (νy)(νx)P [y ↔ x] ≡ [x↔ y]

The operational semantics for the [y ↔ x] and [x← N] constructs,
as informed by the proof theory, consist of channel renaming and
term substitution, respectively. The channel renaming construct’s
behavior is to “re-implement” an ambient session on a different
name. The reduction rules for our calculus are summarized below:

x〈y〉.Q | x(z).P → Q | P{y/z}
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P

x〈N〉.Q | x(z).P → Q | P{N/z}
(νx)([x↔ y] | P)→ P{y/x}
(νx)([x← N] | P)→ P{N/x}
x.inl;P | x.case(Q,R)→ P | Q
x.inr;P | x.case(Q,R)→ P | R
Q→ Q′ ⇒ P | Q→ P | Q′

P → Q⇒ (νy)P → (νy)Q

P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q

The term substitution construct is similar to the active substitutions
of the applied π-calculus, with the particular differences that active
substitutions are persistent and applied by structural congruence,
while ours obey a linear discipline and are applied by an actual
reduction step. Our term language is also very different from the
one in the applied π-calculus, since our terms are defined in a
functional language that does not include the notion of process
calculus (channel) name, whilst the terms in [1] can contain names.
A labeled transition system that characterizes relevant external
actions can be defined by a judgment P α−→ Q, where α denotes
an action that can be silent, an output or input of a (bound) name or
of a term:

α ::= τ | (νz)x〈z〉 | x(y) | x〈N〉 | x(N)

We now present some of the formal results that we have established
for our system.

3. Properties of the type system
In this section we establish the results of type preservation and
progress for our type system, following the results of [10]. The
proof of type preservation relies on several reduction lemmas that
relate process reductions with parallel composition through the cut
rule. We illustrate these with the cases for the quantifiers.

Lemma 3.1. Assume

(a) Ψ; Γ; ∆1 ⇒ P :: x : ∀y : τ.A with P
x(N)→ P ′

(b) Ψ; Γ; ∆2, x : ∀y : τ.B ⇒ Q :: z : C with Q
x〈N〉→ Q′

Then:

(c) Ψ; Γ; ∆1,∆2 ⇒ (νx)(P ′ | Q′) :: z : C

Lemma 3.2. Assume

(a) Ψ; Γ; ∆1 ⇒ P :: x : ∃y : τ.B with P
x〈N〉→ P ′ and

(b) Ψ; Γ; ∆2, x : ∃y : τ.B ⇒ Q :: z : C with Q
x(N)→ Q′

Then:

(c) Ψ; Γ; ∆1,∆2 ⇒ (νx)(P ′ | Q′) :: z : C

We can now state and sketch the proof of type preservation.

Theorem 3.3 (Type Preservation). If Ψ; Γ; ∆ ⇒ P :: z : A and
P → Q then Ψ; Γ; ∆⇒ Q :: z : A

Proof. By induction on the typing derivation. When the last rule is
an instance of cut, we appeal to the reduction lemmas, one for each
type C of the cut formula (these are of the form of Lemmas 3.1 and
3.2), or to the rules for renaming and substitution.

To establish progress, a lemma that establishes a contextual progress
property is required. First, we define:

live(P) , P ≡ (νn)(Q | R) for some Q,R, n

where Q ≡ π.Q′ (π is a non-replicated prefix), Q ≡ [x ↔ y]
or Q ≡ [x ← N]. Given an action label α, we denote by s(α)
the subject of the action α (i.e., the name through which the action
takes place). We can now establish the contextual progress property
(note the use of ≡S , defined in Section 2.7).

Lemma 3.4. Let Ψ; Γ; ∆⇒ P :: z : C. If live(P) then there is Q
such that one of the following holds:

(a) P → Q,
(b) P α→ Q for some α where s(α) ∈ z,Γ,∆ and s(α) ∈ Γ,∆ if

C = !A,
(c) P ≡S [x↔ z], for some x ∈ ∆,
(d) P ≡S [z ← N] for some N .

Proof. Induction on typing. The proof is similar to that of [10],
with more cases when the last rule applied is cut, to account for
renaming, term substitutions, and quantifiers.

Global progress follows directly from Lemma 3.4.

Theorem 3.5 (Progress). If ·; ·; · ⇒ P :: x : 1, and live(P), then
there exists a process Q such that P → Q.

Note that this is the case because P cannot perform any action α
with subject x, since x : 1.

The guiding principle mentioned earlier allows us to make a
stronger formal connection between cut reductions and pi-calculus
reductions, but this is beyond the scope of this particular paper (and
is straightforward, given the results of [10] and the earlier presented
reductions).

4. Proof irrelevance
We now tackle the problem of eliminating some of the commu-
nication overhead generated by the exchange of explicit proof ob-
jects. Process calculi are a class of languages that allow us to reason
about concurrent processes that may or may not be executing in a
distributed setting. If such is indeed the case, there is an argument

8 2011/5/12

Ψ; Γ;x : A⇒ [x↔ z] :: z : A
id

Ψ `M : τ
Ψ; Γ; · ⇒ [z ←M] :: z : $τ

$R
Ψ, x : τ ; Γ; ∆⇒ P :: z : C

Ψ; Γ; ∆, x : $τ ⇒ P :: z : C
$L

Ψ; Γ; · ⇒ 0 :: z : 1
1R

Ψ; Γ; ∆⇒ P :: z : C

Ψ; Γ; ∆, x : 1⇒ P :: z : C
1L

Ψ; Γ; · ⇒ P :: y : A

Ψ; Γ; · ⇒ !z(y).P :: z : !A
!R

Ψ; Γ, u : A; ∆⇒ P :: z : C

Ψ; Γ; ∆, x : !A⇒ P{x/u} :: z : C
!L

Ψ; Γ, u : A; ∆, y : A⇒ P :: z : C

Ψ; Γ, u : A; ∆⇒ (νy)u〈y〉.P :: z : C
copy

Ψ; Γ; ∆⇒ P :: z : A Ψ; Γ; ∆⇒ Q :: z : B

Ψ; Γ; ∆⇒ z.case(P,Q) :: z : ANB
NR

Ψ; Γ; ∆, x : A⇒ P :: z : C

Ψ; Γ; ∆, x : ANB ⇒ x.inl;P :: z : C
NL1

Ψ; Γ; ∆, x : B ⇒ P :: z : C

Ψ; Γ; ∆, x : ANB ⇒ x.inr;P :: z : C
NL2

Ψ; Γ; ∆1 ⇒ P :: y : A Ψ; Γ; ∆2 ⇒ Q :: z : B

Ψ; Γ; ∆1,∆2 ⇒ (νy)z〈y〉.(P | Q) :: z : A⊗B ⊗R

Ψ; Γ; ∆, y : A, x : B ⇒ P :: z : C

Ψ; Γ; ∆, x : A⊗B ⇒ x(y).P :: z : C
⊗L

Ψ; Γ; ∆⇒ P :: z : A

Ψ; Γ; ∆⇒ z.inl;P :: z : A⊕B ⊕R1

Ψ; Γ; ∆⇒ P :: z : B

Ψ; Γ; ∆⇒ z.inr;P :: z : A⊕B ⊕R2

Ψ; Γ; ∆, x : A⇒ P :: z : C Ψ; Γ; ∆, x : B ⇒ Q :: z : C

Ψ; Γ; ∆, x : A⊕B ⇒ x.case(P,Q) :: z : C
⊕L

Ψ, x : τ ; Γ; ∆⇒ P :: z : A

Ψ; Γ; ∆⇒ z(x).P :: z : ∀x : τ.A
∀R

Ψ ` N : τ Ψ; Γ; ∆, x : A{N/y} ⇒ P :: z : C

Ψ; Γ; ∆, x : ∀y : τ.A⇒ x〈N〉.P :: z : C
∀L

Ψ ` N : τ Ψ; Γ; ∆⇒ P : A{N/x}
Ψ; Γ; ∆⇒ z〈N〉.P :: z : ∃x : τ.A

∃R
Ψ, y : τ ; Γ; ∆, x : A⇒ P :: z : C

Ψ; Γ; ∆, x : ∃y : τ.A⇒ x(y).P :: z : C
∃L

Ψ; Γ; ∆1 ⇒ P :: x : A Ψ; Γ; ∆2, x : A⇒ Q :: z : C

Ψ; Γ; ∆1,∆2 ⇒ (νx)(P | Q) :: z : C
cut

Ψ; Γ; · ⇒ P :: x : A Ψ; Γ, u : A; ∆⇒ Q :: z : C

Ψ; Γ; ∆⇒ (νu)((!u(x).P) | Q) :: z : C
cut!

Figure 1. A Dependent Type Theory of Sessions.

to be made that trust between the communicating parties should
not be assumed outright. In these scenarios, our system, in which
properties of the communicated data are ensured by typing but also
witnessed by explicit proof objects that are passed by processes,
seems to be a reasonable way of addressing the issue of trust (or
lack thereof). A client may not trust the remote server code, but
provided the server sends the proof objects, the client may in prin-
ciple check that the proof objects are valid and thus obtains further
assurances on the server.

However, it may not necessarily be the case that the communi-
cation of explicit proof objects is required by the parties involved.
For instance, the properties in question may be easily decidable,
or we have a scenario where we have code residing on the same
machine that represents multiple communicating sessions (e.g. an
operating system, a file system, etc.), or it may be the case that the
communicating parties do indeed exist in a distributed setting, but
have established trust by some exterior means. In some of these
cases we can type-check the process code, and so the proof ob-
jects are in principle no longer really needed at runtime. Of course,
the system as we have presented so far has really no way of deter-
mining if it is really the case that a proof object is not used for its
computational content. Luckily, proof theory can help us, with the
concept of proof irrelevance [3, 29].

Proof irrelevance is a technique that allows us to selectively
hide portions of a proof. These “hidden” proofs must exist, but
it must also be the case that they can be safely erased from a
process at runtime. This means that typing must ensure that these
hidden proofs are never required to compute something that is
not erased. We internalize this notion of proof irrelevance in the
functional term language with a new type, [A] (read bracket A),
meaning that there is a term of type A, but the term itself can
be safely erased before runtime without changing the meaning of
the process. We can give a precise meaning to [A] by adding a
new introduction form for terms, written [M], meaning that M
will not be available computationally. We also add a new class

of assumptions x ÷ A, meaning that x stands for a term of type
A that is not computationally available. Following the style of
[29], we define a promotion operation on contexts that transforms
computationally irrelevant hypotheses into ordinary ones:

(·)⊕ , ·
(Ψ, x : A)⊕ , Ψ⊕, x : A

(Ψ, x÷A)⊕ , Ψ⊕, x : A

We can then define the introduction and elimination forms of proof
irrelevant terms:

Ψ⊕ `M : A
Ψ ` [M] : [A]

[]I
Ψ `M : [A] Ψ, x÷A ` N : C

Ψ ` let [x] = M in N : C
[]E

These rules guarantee that a variable of the form x ÷ A can only
be used in terms that are irrelevant (in the technical sense). In such
terms, we are allowed to refer to all variables, including the irrel-
evant ones, since the term is not intended to be available at run-
time. Terms of bracket type can still be used through the let binding
shown above, but the bound variable x is tagged with the irrelevant
hypothesis form, to maintain the invariant that no relevant term can
use irrelevant variables in a computational manner. Using brack-
eted types, we ensure that assigned terms are never explored for
their computational value, and so can be safely erased at runtime.
We first illustrate this with a very simple example and then gener-
alize to our running example of the bank. Consider a very simple
process with the following type:

T , ∀f :nat→ nat.∀n:nat.∀p:(n > 0).$nat⊗ 1

The type describes a process that receives a natural number func-
tion f , a natural number n and a proof that n is strictly positive
(for instance, because f is not defined for 0). It will then reply with
a natural number (the result of applying f to n) and terminate. A
sample process obeying this specification is:

Server , x(f).x(n).x(p).(νy)x〈y〉.([y ← f(n)] | 0) :: x : T

9 2011/5/12

A sample client that properly interacts with the above process is

Client , x〈M〉.x〈1〉.x〈N〉.x(r).[r ↔ z] :: z : nat

where M must be a term of type nat → nat and N is a term of
type 1 > 0.

Notice that in this situation, the proof object p in Server only
serves the purpose of ensuring a restriction on n, its content is never
actually used in a computationally meaningful manner. That is, p is
a computationally irrelevant proof object. We can now make use of
proof irrelevance to identify that the proof object p in Server can
be erased at runtime:

TI , ∀f : nat→ nat.∀n : nat.∀p : [n > 0].$nat⊗ 1

The server process stays the same, while the Client must now send
[N] instead of just N :

ClientI , x〈M〉.x〈1〉.x〈[N]〉.x(r).[r ↔ z] :: z : nat

We can define an operation that, given a well-typed process, erases
all terms of bracket type and the respective communication actions.
This erasure is obviously not type preserving in general, in the
sense that the resulting process may no longer be assigned the same
type in our system. However, the erasure is to be applied after we
have ensured that a process is well typed (and therefore abides by
whatever specification is defined in its type), but before the code is
actually executed. Thus, the erasure is safe because we know that
all properties that typing ensured still hold.

In our example above, the erased server and client processes
would be:

Te , ∀f :nat→ nat.∀n:nat.$nat⊗ 1

Servere , x(f).x(n).(νy)x〈y〉.([y ← f(n)] | 0) :: x : Te

Cliente , x〈M〉.x〈1〉.x(r).[r ↔ z] :: z : nat

The precise definition of the erasure function is standard, since its
interaction with the process layer is minimal with the restriction to
base types $τ only. We therefore elide its formal definition and the
companion correctness theorem from this presentation for the sake
of brevity.

In our running example of the bank system, if we assume the
client trusts the ATM code to not be malicious, we may employ
proof irrelevance and write the type of the ATM interface as:

TATMClientI , ∀s : string.$uid(s) (
(∀n : nat.$deposit(s, n) (∃m : nat.
∃p : [n− 2 ≤ m ≤ n].($receipt(s,m)⊗ 1))

which then allows us to safely erase the communication overhead
of the proof object p. To conclude, the technique of internalizing
proof irrelevance in bracket types provides a clean and modular
way of singling out terms (through their types) that are never used
for their computational content. This provides us with the opportu-
nity to erase these terms and minimize communication overheads
when appropriate.

5. Concluding Remarks
We have presented an interpretation of intuitionistic linear type the-
ory as a dependent session type system for a π-calculus with value
passing. Our framework introduces value passing by interpreting
the (higher-order) type structure of an underlying functional de-
pendent type theory as atomic from the process perspective. De-
pendent types may be used to elegantly specify properties of data
exchanged by processes in their session types. Previous work [7]
encoded these as assertions built into the session type. In partic-
ular, we have shown how certified interface contracts, expressing
rich properties of distributed protocols, may be expressed in our
framework. Our development provides a new account of dependent

session types [8] that is completely grounded in logic, and is free
from special-purpose technical machinery that is usually required
in this setting.

Our approach naturally addresses challenges not yet tackled by
other session type systems, such as the use of proof-based certi-
fication in scenarios involving communication between untrusted
parties. We have also explored proof irrelevance as a way of sin-
gling out proofs that may be safely erased at runtime. We have
proven that our system ensures type preservation, session fidelity,
and global progress. We do not address the issue of describing in-
finite protocols through recursive types, since the technical chal-
lenges of recursive types are well understood and extending our
system with recursive types is straightforward and orthogonal to
our development.

Several other connections between the π-calculus and linear
logic have been established. A first line of research has investigated
the use of linearity in type systems (see, e.g., [9, 18, 23, 24]). These
type systems have not developed any interpretation of the pure
linear logic connectives as behavioral (session) type operators, a
program that we have initiated [10], and extend here to the setting
of a much richer dependent linear type theory. A second line of
work has investigated operational interpretations of linear logic
proofs in the π-calculus and related models (see, e.g., [2, 5, 6,
21]). We may broadly characterize these as applications of the π-
calculus as a convenient language for analyzing linear logic proof
objects, while our aim is to develop the linear propositions-as-types
paradigm as a foundation for distributed, session-based, practical
programming languages, with rich interface specifications.

In future work, we plan on extending our program of provid-
ing logical explanations to the phenomena of concurrency to multi-
party session types, which are a generalization of the binary ses-
sion types we have given logical meaning in this and prior work.
To achieve this, we plan to investigate potential relationships of
multi-party sessions to linear modal logic [16], which provides a
natural way of reasoning about several principals. Another inter-
esting line of research is the development of appropriate theories
of bisimulation and observational equivalence for (dependent) ses-
sion types and the study of their relationship to forms of logical and
proof equivalence. Finally, we also wish to consider a potentially
tighter integration of functional and concurrent computation that
does not require the two-layer stratification that we have presented
in this paper. Ongoing research in concurrent evaluation strategies
for functional programs using logical interpretations might provide
deeper insights in this particular direction.

Acknowledgments
Support for this research was provided by the Fundação para a
Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) through the Carnegie Mellon Portugal Program, under
grants SFRH / BD / 33763 / 2009 and INTERFACES NGN-44 /
2009, and CITI.

References
[1] M. Abadi and C. Fournet. Mobile values, new names, and secure

communication. In 28th Symposium on Principles of Programming
Languages, POPL’01, pages 104–115. ACM, 2001.

[2] S. Abramsky. Computational Interpretations of Linear Logic. Theor.
Comp. Sci., 111(1&2), 1993.

[3] S. Awodey and A. Bauer. Propositions as [types]. J. Log. Comput.,
14(4):447–471, 2004.

[4] A. Barber and G. Plotkin. Dual Intuitionistic Linear Logic. Technical
Report LFCS-96-347, Univ. of Edinburgh, 1997.

[5] E. Beffara. A Concurrent Model for Linear Logic. ENTCS, 155:147–
168, 2006.

10 2011/5/12

[6] G. Bellin and P. Scott. On the π-Calculus and Linear Logic. Theor.
Comp. Sci., 135:11–65, 1994.

[7] L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-
by-contract for distributed multiparty interactions. In 21st Interna-
tional Conference on Concurrency Theory, CONCUR’10, pages 162–
176. Springer LNCS 6269, 2010.

[8] E. Bonelli, A. Compagnoni, and E. L. Gunter. Correspondence Asser-
tions for Process Synchronization in Concurrent Communications. J.
of Func. Prog., 15(2):219–247, 2005.

[9] L. Caires. Logical Semantics of Types for Concurrency. In Interna-
tional Conference on Algebra and Coalgebra in Computer Science,
CALCO’07, pages 16–35. Springer LNCS 4624, 2007.

[10] L. Caires and F. Pfenning. Session types as intuitionistic linear propo-
sitions. In 21st International Conference on Concurrency Theory,
CONCUR’10, pages 222–236. Springer LNCS 6269, 2010.

[11] L. Caires and H. T. Vieira. Conversation types. Theor. Comput. Sci.,
411(51-52):4399–4440, 2010.

[12] I. Cervesato and F. Pfenning. A linear logical framework. Inf. &
Comput., 179(1), 2002.

[13] R. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, 1986.

[14] T. Coquand and G. Huet. The calculus of constructions. Inf. &
Comput., 76:95–120, February 1988.

[15] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. C. Hunt, J. R.
Larus, and S. Levi. Language support for fast and reliable message-
based communication in Singularity OS. In EuroSys 2006, pages 177–
190. ACM, 2006.

[16] D. Garg, L. Bauer, K. Bowers, F. Pfenning, and M. Reiter. A linear
logic of affirmation and knowledge. In Proceedings of the 11th Eu-
ropean Symposium on Research in Computer Security, ESORICS’06,
pages 297–312. Springer LNCS 4189, Sept. 2006.

[17] S. Gay and M. Hole. Subtyping for Session Types in the Pi Calculus.
Acta Informatica, 42(2-3):191–225, 2005.

[18] M. Giunti and V. T. Vasconcelos. A Linear Account of Session Types
in the Pi-Calculus. In 21st International Conference on Concurrency
Theory, CONCUR’10, pages 432–446. Springer LNCS 6269, 2010.

[19] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
J. ACM, 40:143–184, January 1993.

[20] K. Honda. Types for dyadic interaction. In 4th International Confer-
ence on Concurrency Theory, CONCUR’93, pages 509–523. Springer
LNCS 715, 1993.

[21] K. Honda and O. Laurent. An exact correspondence between a typed
pi-calculus and polarised proof-nets. Theor. Comp. Sci., 411:2223–
2238, 2010.

[22] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type discipline for structured communication-based programming. In
7th European Symposium on Programming Languages and Systems,
ESOP’98, pages 122–138. Springer LNCS 1381, 1998.

[23] A. Igarashi and N. Kobayashi. A generic type system for the pi-
calculus. In 28th Symposium on Principles of Programming Lan-
guages, POPL’01, pages 128–141. ACM, 2001.

[24] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-
calculus. In 23rd Symposium on Principles of Programming Lan-
guages, POPL’96, pages 358–371. ACM, 1996.

[25] P. Martin-Löf. Constructive mathematics and computer programming.
In Logic, Methodology and Philosophy of Science VI, pages 153–175.
North-Holland, 1980.

[26] R. Milner. Functions as processes. Math. Struct. in Comp. Sci.,
2(2):119–141, 1992.

[27] G. C. Necula. Proof-carrying code. In 24th Symposium on Principles
of Programming Languages, POPL’97, pages 106–119. ACM, 1997.

[28] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden, September 2007.

[29] F. Pfenning. Intensionality, extensionality, and proof irrelevance in
modal type theory. In 16th Symposium on Logic in Computer Science,
LICS’01, pages 221–230. IEEE Computer Society, 2001.

[30] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[31] H. Xi and F. Pfenning. Eliminating array bound checking through
dependent types. In Conference on Programming Language Design
and Implementation, PLDI’98, pages 249–257. ACM, 1998.

11 2011/5/12

	Introduction
	Linear Logic as Session Types
	Cut as composition
	Linear implication
	A simple example

	Multiplicative unit
	Multiplicative conjunction
	A slightly less simple example

	Base types and the identity rule
	Identity as renaming

	Additive conjunction and disjunction
	A slightly less simple example…with choice

	Replication and exponential
	A bank with a persistent service

	Quantification and term passing
	A more sophisticated bank service

	Summary

	Properties of the type system
	Proof irrelevance
	Concluding Remarks

