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Abstract
Session types provide a means to prescribe the communication
behavior between concurrent message-passing processes. However,
in a distributed setting, some processes may be written in languages
that do not support static typing of sessions or may be compromised
by a malicious intruder, violating invariants of the session types.
In such a setting, dynamically monitoring communication between
processes becomes a necessity for identifying undesirable actions.
In this paper, we show how to dynamically monitor communication
to enforce adherence to session types in a higher-order setting. We
present a system of blame assignment in the case when the monitor
detects an undesirable action and an alarm is raised. We prove that
dynamic monitoring does not change system behavior for well-
typed processes, and that one of an indicated set of possible culprits
must have been compromised in case of an alarm.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.3 [Language Constructs and Fea-
tures]: Concurrent programming structures; F.3.2 [Semantics of
Programming Languages]: Process models

Keywords Session types, contracts, monitors, blame assignment

1. Introduction
Session types (Honda 1993; Honda et al. 1998) provide a means
to prescribe the communication behavior between concurrent
message-passing processes. A variant of previously defined session
type systems has been discovered to be in a Curry-Howard corre-
spondence with linear logic (Caires and Pfenning 2010; Wadler
2012; Caires et al. 2013), where session types correspond to linear
propositions, process expressions to sequent proofs, and commu-
nication to cut reduction. This observation has formed the basis
for SILL (Toninho et al. 2013), a programming language integrat-
ing ordinary functional with message-passing concurrent compu-
tation. Separately, it has been shown that the logical foundation
supports not only the synchronous communication model of Caires
and Pfenning (2010) but also asynchronous communication with
message queues (DeYoung et al. 2012). Recently, these two styles
of communication have been unified using the logical concept of

polarization (Pfenning and Griffith 2015). In this formulation, com-
munication is a priori asynchronous, but synchronization can be
specified via so-called shift operators in the type.

All of the above mentioned systems and languages satisfy ses-
sion fidelity (a generalization of type preservation) and global
progress (a generalization of ordinary progress). These properties
are inherited directly from cut elimination in linear logic, since the
operational semantics is based on cut reduction. They continue to
hold in the presence of recursive session types when other prop-
erties such as productivity and termination fail. Despite exhibiting
significant concurrency in the operational semantics, the languages
also have strong confluence properties (Pérez et al. 2014), again
inherited from the confluence of cut reduction in linear logic. They
therefore occupy a kind of middle ground between functional lan-
guages and foundational calculi such as the π-calculus with much
inherent nondeterminism.

At this point one might consider the basic foundational ques-
tions regarding logic-based session-typed languages to be solved.
Usually, static typing together with a type preservation theorem is
seen as license to erase types at runtime. In the setting of message-
passing concurrency, however, there are two important reasons to
also consider dynamic monitoring of communication. The first is
that when spawning a new process, part of the execution of a pro-
gram now escapes immediate control of the original process. If the
new process is compromised by a malicious intruder, then incorrect
yet unchecked messages can wreak havoc on the original process,
inducing undefined behavior such as the infamous buffer overruns.
A second reason is that session types are explicitly designed to ab-
stract away from local computation. This means we can use them
to safely connect communicating processes written in a variety of
different and even incompatible languages, as long as they (dynam-
ically!) adhere to the session protocol and basic data formats. But
there is often no reason to trust remote processes, or believe in the
correctness of the code even for trusted processes, so dynamically
monitoring communication becomes a necessity.

However, designing monitoring infrastructure that allows pre-
cise blame assignment in the presence of higher-order processes
is challenging. In such settings, channels of arbitrary type can be
passed along other channels. When this occurs, the runtime mon-
itor cannot immediately determine if the process communicating
over the channel being passed along satisfies session fidelity, but
must monitor further communication over this channel.

This paper makes the following main contributions:

• We define a powerful but intuitive adversary model for session-
typed communicating processes.

• We show how to dynamically monitor communication to en-
force adherence to session types in a higher-order setting.

• We present a precise system of blame assignment in the case an
alarm is raised.
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• We prove that dynamic monitoring does not change system
behavior for well-typed processes, and that one of an indicated
set of possible culprits must have been compromised in case of
an alarm.

For simplicity, the formal development omits affine and shared
channels present in Pfenning and Griffith (2015), but our tech-
niques are general enough to also encompass them. Of course, in-
truders could fly under the rader of the dynamic monitor and send
incorrect values of the correct types. To capture such violations,
additional measures such as contracts or dependent types (Swamy
et al. 2011; Pfenning et al. 2011; Caires et al. 2012; Griffith and
Gunter 2013; Scholliers et al. 2015) need to be considered. We con-
jecture that the framework presented in this paper is sufficient to
permit generalizations to these more precise properties.

Due to space constraints, we only present the key definitions and
theorems. Additional definitions and detailed proofs can be found
in our companion technical report (Jia et al. 2015).

2. Polarized Session Typed Processes
The first fundamental idea behind our system of session types is
that every linear channel has two endpoints: a provider and a client.
A process always provides along a single channel, but it may be
the client of multiple channels. This identification is quite strong:
each channel is provided by a unique process, and each process
provides along a unique channel which never changes. Our basic
typing judgment is therefore

x1:A1, . . . xn:An ` P :: (x : A)

where P is a process providing x : A and using xi:Ai. The
session types A and Ai prescribe the communication behavior
along channels x and xi, respectively.

We first explain the session types A and their intuitive interpre-
tation in terms of process behavior, followed by the process expres-
sion and the typing rules.

2.1 Polarized Session Types
The distinction between provider and client is orthogonal to the
direction of communication: a process can both send and receive
along the channel it provides and any channel that it uses. Of
course, the session type of the channel will tell us which.

We explicitly polarize the types: any change in the direction of
communication must be explicitly denoted by a shift operator (Lau-
rent 1999). The polarized formulation of session types supports
synchronous and asynchronous communication in the same lan-
guage, while at the same time providing a uniform integration of
linear, affine, and shared channels (Pfenning and Griffith 2015).
It also simplifies monitoring since message queues always have a
definitive direction. From the perspective of monitoring and blame

τ ::= int | bool | · · ·

A+, B+ ::= 1 send end and terminate
| A+ ⊗B+ send channel a:A+, cont. as B+

| ⊕{labi : B+
i }i send some label labj , cont. as B+

j

| τ ∧B+ send a data value v:τ , cont. as B+

| ↓A− send shift, then receive

A−, B− ::= A+ ( B− receive a channel a:A+, cont. as B−

| N{labi : B−i } receive a label labj , cont. as B−j
| τ → B− receive a data value v:τ , cont. as B−

| ↑A+ receive shift, then send

Figure 1: Polarized linear session types

assignment, under our assumptions, there is no significant differ-
ence between linear and affine channels, so for simplicity we treat
only linear ones. Shared channels can be handled straightforwardly
with our techniques, so we omit them from the development in or-
der to streamline the presentation.

From the perspective of the provider, positive types correspond
to sending a message and negative types correspond to receiving a
message. The kinds of messages we consider here are basic data
values v (like integers or booleans), labels lab that indicate an
internal or external choice between alternative ways to continue
a session, channels a, and special tokens ’end’, to indicate the
end of a session and ’shift’, to indicate a change in direction of
communications.

As an example for the use of session types, we consider the
specification of the behavior of a priority queue. A priority queue
offers the client a choice between inserting an element into the
queue, or deleting the element of the currently highest priority. The
elements themselves are channels of some arbitrary positive type
A+. This is represented as an external choice:

pq−A+ = N{ ins : . . . ,
del : . . . }

The type pqA+ is negative, since the process providing a priority
queue has to start by receiving, either the label ins or the label del.

When the client elects to insert, it first has to send the priority as
an integer, and then the channel. After that, the provider has to once
again behave as a priority queue which means the type is recursive.

pq−A+ = N{ ins : int→ A+ ( pq−A+,
del : . . . }

When the client elects to delete the element of highest priority,
the provider sends back either the label none (indicating that the
priority queue is empty) and terminates, or the label some, followed
by the priority and then element itself. This is an example of an
internal choice, since the provider has to send the label in this case.

pq−A+ = N{ ins : int→ A+ ( pq−A+,
del : ↑⊕{none : 1, some : int ∧A+ ⊗ ↓pq−A+ }

Note that we needed to insert some shifts to indicate the change of
direction in communication: after receiving label del, the provider
will then have to send a shift followed by another label (either none
or some). Before we recurse, we have to shift once again to be ready
to receive the next insert or delete.

The type pqA is an example of a recursive session type. Re-
cursive types are equal to their unfolding, i.e., equirecursive, so
there are no special type constructors for them. However, we allow
matching recursive process definitions. Similarly, we allow types
and process definitions to be (implicitly) polymorphic. Type vari-
ables, however, must have a well-defined polarity and can only be
instantiated with types of that polarity. For example, the definition
of pq−A+ is parameterized by a positive type A+. If we want to
instantiate it with a negative type B−, we have to use ↓B−.

2.2 Process Expressions
The syntactic constructs for writing processes are relatively straight-
forward. We indicate dependence on a bound variable x (for chan-
nels) or n (a value) using a subscript that we may substitute for.

Returning to our example, we now give some (recursive) pro-
cess definitions. We write c ← p n1 · · · nk ← d1, . . . , dm for a
process that provides a session along channel c and uses channels
d1, . . . , dm. It is parameterized by data values n1, . . . , nk which
constitute a form of local state. We write the type of such as func-
tion as τ1 → · · · → τk → {A ← A1, . . . , Am} as in SILL (Ton-
inho et al. 2013).

empty : {pq−A+}
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∆, y:A ` (x← y) :: (x:A)
id

∆ ` Px :: (x:A) ∆′, x:A ` Qx :: (z:C)

∆,∆′ ` (x← Px ; Qx) :: (z:C)
cut

∆ ` P :: (x:A+)

∆ ` (shift← recv x ; P ) :: (x:↑A+)
↑R

∆, x:A+ ` Q :: (z:C)

∆, x:↑A+ ` (send x shift ; Q) :: (z:C)
↑L

∆ ` Q :: (x:A−)

∆ ` (send x shift ; Q) :: (x:↓A−)
↓R

∆, x:A− ` P :: (z:C)

∆, x:↓A− ` (shift ← recv x ; P ) :: (z:C)
↓L

· ` (close x) :: (x:1)
1R

∆ ` Q :: (z:C)

∆, x:1 ` (wait x ; Q) :: (z:C)
1L

∆ ` Py :: (y:A+) ∆′ ` Q :: (x:B+)

∆,∆′ ` (send x (y ← Py) ; Q) :: (x:A+ ⊗B+)
⊗R

∆, y:A+, x:B+ ` Ry :: (z:C)

∆, x:A+ ⊗B+ ` (y ← recv x ; Ry) :: (z:C)
⊗L

∆, y:A+ ` Ry :: (x:B−)

∆ ` (y ← recv x ; Ry) :: (x:A+ ( B−)
(R

∆ ` Py :: (y:A+) ∆′, x:B− ` Q :: (z:C)

∆,∆′, x:A+ ( B− ` (send x (y ← Py) ; Q) :: (z:C)
(L

(∆ ` Pi :: (x:A−i ))i

∆ ` case x {labi → Pi}i :: (x:N{labi : A−i }i)
NR

∆, x:A−j ` Q :: (z:C)

∆, x: N {labi : A−i }i ` (x.labj ; Q) :: (z:C)
NLj

∆ ` Q :: (x:A+
j )

∆ ` (x.labj ; Q) :: (x:⊕{labi : A+
i }i)

⊕Rj

(∆, x:A+
i ` Pi :: (z:C))i

∆, x:⊕{labi : A+
i }i ` case x {labi → Pi}i :: (z:C)

⊕L

Figure 3: Typing process expressions

c← empty =
case c of
| ins→ p← recv c ; % receive priority p

x← recv c ; % receive channel x to be stored
e← empty ; % spawn new empty pri. queue
c← elem p← x, e % cont. as singleton pri. queue

% holding p and x
| del→ shift← recv c ; % shift direction to send

c.none ; % send lab none (queue is empty)
close c % close channel c and terminate

Next, the code which implements a non-empty priority queue. The
process c ← elem p ← x, d holds the element x with priority
p, offering the priority queue interface along c. It also connects
along d to all the elements of lower priority. In other words, we

P,Q,R ::=
close c send end and terminate

| wait c ; Q recv end, cont. with Q
| send c (x← Px) ; Q send new a along c,

spawn Pa and cont. as Q
| x← recv c ; Qx receive a along c, cont. as Qa

| c.labj ; Q send labj along c, cont. as Q
| case c of {labi ⇒ Qi}i recv labj along c, cont. as Qj

| send c v ; Q send value v along c, cont. as Q
| n← recv c ; Qn recv value v along c, cont. as Qv

| send c shift ; Q send shift along c, cont. as Q
| shift← recv c ; Q receive shift along c, cont. as Q

| x← Px ; Qx create new a, spawn Pa, cont. as Qa

| c← d connect c with d and terminate

Figure 2: Linear process expressions

maintain the priority queue as a linked collection of processes with
decreasing priority.

elem : int→ {pq−A+ ← A+, pq−A+}
c← elem p← x, d =

case c of
| ins→ q ← recv c ;

y ← recv c ;
case (p > q) of
| true→ d.ins ; % pass y with priority q to d

send d q ;
send d y ;
c← elem p← x, d

| false→ e← elem p← x, d
c← elem q ← y, e

| del→ shift← recv c ; % shift c to send
c.some ; % send label some
send c p ; % send priority p
send c x ; % send highest priority channel x
send c shift ; % shift c to recv
c← d % forward d as c

The typing rules for process expressions, defining the judgment
∆ ` P :: (x : A) are given in Figure 3, omitting only the
simple cases of sending and receiving basic values (types τ ∧B+,
τ → B−). Here, ∆ is a sequence of channel declarations xi:Ai for
pairwise distinct xi whose order is irrelevant.

2.3 Operational Semantics
The computational meaning of process expressions is given in the
form of a substructural operational semantics (Pfenning 2004;
Simmons 2012) which relies on multiset rewriting (Cervesato and
Scedrov 2009). The rules can be found in Figure 4, again omitting
the sending and receiving of basic values.
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id+ : queue(c′,
←−
p , c)⊗ proc(c, c← d′)⊗ queue(d′,

←−
q , d) ( {queue(c′,

←−−
p · q, d)}

id− : queue(c′,
−→
p , c)⊗ proc(c, c← d′)⊗ queue(d′,

−→
q , d) ( {queue(c′,

−−→
p · q, d)}

cut+ : proc(c, x:A+ ← Px ; Qx)

( {∃a. ∃a′. proc(c,Qa′)⊗ queue(a′,
←−
· , a)⊗ proc(a, Pa)}

cut− : proc(c, x:A− ← Px ; Qx)

( {∃a. ∃a′. proc(c,Qa′)⊗ queue(a′,
−→
· , a)⊗ proc(a, Pa)}

up s : proc(a, send c′ shift ; Q)⊗ queue(c′,
−→
q , c)

( {proc(a,Q)⊗ queue(c′,
−−−−→
shift · q, c)}

up r : queue(c′,
−−→
shift, c)⊗ proc(c, shift← recv c ; P )

( {queue(c′,
←−
· , c)⊗ proc(c, P )}

down s : queue(c′,
←−
p , c)⊗ proc(c, send c shift ; Q)

( {queue(c′,
←−−−−
p · shift, c)⊗ proc(c,Q)}

down r : proc(a, shift← recv c′ ; P )⊗ queue(c′,
←−−
shift, c)

( {proc(a, P )⊗ queue(c′,
−→
· , c)}

one s : queue(a′,
←−
p , a)⊗ proc(a, close a) ( {queue(a′,

←−−−−
p · end, )}

one r : proc(c,wait a′ ; Q)⊗ queue(a′,
←−
end, ) ( {proc(c,Q)}

tensor s : queue(a′,
←−
p , a)⊗ proc(a, send a (y ← Py) ; Q)

( {∃b. ∃b′. queue(a′,
←−−
p · b′, a)⊗ proc(a,Q)⊗ queue(b′,

←−
· , b)⊗ proc(b, Pb)}

tensor r : proc(c, y ← recv a′ ; Ry)⊗ queue(a′,
←−−
b′ · q, a)

( {proc(c,Rb′)⊗ queue(a′,
←−
q , a)}

lolli s : proc(c, send a′ (y ← Py) ; Q)⊗ queue(a′,
−→
q , a)

( {∃b. ∃b′. proc(c,Q)⊗ queue(a′,
−−→
b′ · q, a)⊗ queue(b′,

−→
· , b)⊗ proc(b, Pb)}

lolli r : queue(a′,
−−→
p · b′, a)⊗ proc(a, y ← recv a ; Ry)

( {queue(a′,
−→
p , a)⊗ proc(a,Rb′)}

with s : proc(c, a′.labj ; Q)⊗ queue(a′,
−→
q , a)

( {proc(c,Q)⊗ queue(a′,
−−−−→
labj · q, a)}

with r : queue(a′,
−−−−→
p · labj , a)⊗ proc(a, case a {labi → Pi}i)

( {queue(a′, p, a)⊗ proc(a, Pj)}

plus s : queue(a′,
←−
p , a)⊗ proc(a, a.labj ; Q)

( {queue(a′,
←−−−−
p · labj , a)⊗ proc(a,Q)}

plus r : proc(c, case a′ {labi → Pi}i)⊗ queue(a′,
←−−−−
labj · q, a)

( {proc(c, Pj)⊗ queue(a′,
←−
q , a)}

Figure 4: Operational Semantics

Because communication is asynchronous, a configuration of
multiple interacting processes is described by a multiset of proposi-
tions of the form queue(c′, q, c) and proc(c, P ). Here, proc(c, P )
means that a process providing a service along c is executing pro-
cess expression P . We do not explicitly record the channels that
are used by P , which are simply its free names fn(P ) − {c}. The
predicate queue(c′, q, c) describes the state of a message queue
q connecting a providing process along c with its client along c′.
Message queues have a definitive direction which is needed so pro-

cesses don’t accidentally receive their own messages. The direction
of a queue is indicated as

←−
p (the provider sends) or

−→
p (the client

sends). Receipt of a shift will change the direction of the queue.
We often elide this direction information when it can be inferred or
is insignificant. This bare form of the propositions does not track
the types which are necessary for monitoring. Therefore, the queue
propositions in the monitored semantics in Figure 6 contain some
additional information.
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We use Ω to refer to a multiset of proc and queue propositions,
which describe the state of a concurrent computation. Each rule of
the operational semantics has the form

F1 ⊗ . . .⊗ Fm ( {∃x1. . . . ∃xk. G1 ⊗ . . .⊗Gn}

which represents a transition from one multiset to another:

Ω, F1, . . . , Fm −→ Ω, [a1/x1, . . . , ak/xk](G1, . . . Gn)

were a1, . . . ak are freshly chosen names. Persistent propositions
which can not be rewritten are preceded by an exponential modality
!F . On the left-hand side, such propositions can represent a condi-
tion to be checked.

3. Monitoring Untrusted Processes
In a distributed setting, processes can be compromised by an at-
tacker, may be untrusted, or may be written in a language that can
not statically enforce session types. They may therefore deviate
from their prescribed session types. For simplicity, we sometimes
refer to all these situations as an “attack” compromising a process.
We use runtime monitors to detect such deviations and attribute
blame to rogue processes. In this section, we discuss the adversary
and trust model and explain the monitor design. We then formally
define the operational semantics for the monitoring mechanism and
for the blame assignment.

3.1 System Assumptions
Adversary and trust models We assume that processes are dis-
tributed across the network and communicate with each other using
the message queues. We assume that there is a secure (trusted) net-
work layer which maintains the message queues. In other words,
we do not consider network attackers that eavesdrop or intercept
messages, or tamper with the message queue. We say that all mes-
sage queues are trusted. In contrast, all processes are untrusted;
any process could be compromised by an attacker. We consider this
a conservative assumption – we could easily refine our system to
distinguish between trusted and untrusted processes which would
lead to more precise blame assignments.

Monitor capabilities We assume that the monitor can inspect
communications between processes to check session fidelity, but
it cannot observe internal operations of the executing processes.
Only send, receive, spawn (cut), and forward (identity) requests can
be seen by the monitor. This design decision is important because
it allows our monitoring techniques to be applied in the situation
where we make no assumptions about the internal structure of the
communicating processes. The monitor is also trusted.

Monitors can raise alarms and assign blame when messages
sent to queues are of the wrong type, which we explain in detail
in Section 3.2. In this paper we do not consider error recovery or
network failure, which are important, but belong to a different level
of abstraction. If a protocol violation is detected and alarm is raised,
we assume the whole distributed computation will be aborted.

We have a one-to-one correspondence between channels and
processes, since every channel is provided by exactly one process,
and each process provides exactly one channel. When a process
wants to spawn a new process, it makes a corresponding request
to the network layer, which also creates a new message queue of
specified type. This type must be taken as prescriptive; violating
it will raise an alarm. If we had access to the source of the code
executed in the new process, we could type-check it against the
given type, and absolve the spawning process. However, this may
be difficult to do when executing a new binary, or cloning the
current process, so we do not assume we can type-check processes
before they start executing.

Adversary capabilities Our adversary model has to describe ad-
versary capabilities: what an attacker might do with an untrusted
process. The first possibility would be to simply replace the exe-
cuting code with arbitrary other code. However, this model is too
strong: under this attacker model, the adversary can gain send and
receive access to any channel in the current system of processes.
Under those circumstances, any hope at precise blame assignment
has to be abandoned. Instead, we assume that channels are private
in that only the processes at the two endpoints of a channel can
send to or receive from it. Further, channel names are capabilities
that are hard to forge. An attacker only knows the channel names
that are given to it by the trusted runtime (e.g., through spawning a
new process).

We define the following transition rule (named havoc) to repre-
sent an attacker’s action of taking control of a process. The attacker
replaces the original process with one of the attacker’s choice.
However, the attacker cannot forge channel names, and therefore,
the set of channel names in Q is a subset of that in P .

havoc : proc(c, P )⊗!(fn(P ) ⊇ fn(Q)) ( {proc(c,Q)}

Finally, because processes are untrusted, they cannot raise an alarm.

3.2 Monitoring and Blame Assignment
Placement of the monitor First, we examine several possible de-
sign choices for the monitor and explain our chosen design. Fig-
ure 5a shows two processes that offer along channels a and b re-
spectively. Trusted components have a grey background. We fur-
ther assume that process b uses the client channel a′. (Since pro-
cesses are uniquely identified by the channel they provide, we use
the channel name as a process id.) We link a process to its providing
channel at the right end of the queue with a line labeled p. We link a
process to the client channels that it uses with lines labeled c. These
client channels are the left ends of the queues. Let us assume that
process a is a newly spawned process offering a service of type
A. Processes a and b can communicate by sending and receiving
messages through the queue queue(a′, ·, a). Because both a and b
can be compromised by an attacker, the task of the monitor is to
mediate their communications through queue(a′, ·, a): initially, a
is supposed to offer a service of type A and b is supposed to use a
service of type A through a′.

Figures 5b to 5d show three different monitor designs for me-
diating communication between processes a and b. Figure 5b illus-
trates the design where a partial identity process acts as the monitor
and mediates communications between a and b. Here, the monitor
process m relays messages between a and b and makes sure that
the types of the messages entering the queue queue(m′, ·,m) and
the messages entering the queue queue(a′, ·, a) are consistent. Ini-
tially, m and a′ are of type A, which is the type of the service
offered by process a. The process proc(m,M) is a partial iden-
tity process from A to A. In this design, every spawned process
(by means of the cut, tensor, or lolli rules), has an accompanying
monitoring process generated at the time when it is spawned. The
advantage is that the monitor is a process defined within the same
language as the rest of the system, so implementing the monitors is
straightforward. The drawback is that blame assignment becomes
difficult. When a process c sends a message of the wrong type to
a client channel m′, the monitor can only raise an alarm after the
message reaches the other end of the queue and is observed by the
monitor. At this point, the monitor does not know where the mes-
sage came from, because several processes could legitimately have
access tom′. To move forward with this approach, additional book-
keeping would be needed to mark the provenance of messages.

A second approach is to place the monitors directly at the ends
of the message queues (Figure 5c). The monitor then keeps track of
the types of the ends of the queues and checks the message pattern
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proc(a, P)!queue(a', ., a)!
p!

queue(m', ., m)! proc(m, M)!
p!

proc(b, Q)!queue(b', q, b)!
p!

c!

c!

proc(a, P)!queue(a', ., a)!
p!

proc(b, Q)!queue(b', q, b)!
p!

c!

c!

proc(b, Q)!
p!

queue(b', q, b)!M! M!
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Figure 5: Monitoring Architectures

before a message is placed into the queue. The monitor does not
need to check the messages leaving the queue, because they will
have already been checked. The advantage of this approach is that
when a process attempts to send messages of the wrong type, the
monitor will raise an alarm before the message is added to the
queue. This leads to more precise blame attribution than the first
approach.

Finally, in a mutually untrusting environment, it may make
sense to place the monitor locally at each process node (Figure 5d).
When a process contacts the queue to receive a message, the moni-
tor is contacted instead, and the monitor checks the message before
handing it to the process. This is necessary because these messages
are sent by other processes. The monitor trusts its local process;
when a process sends messages to queues, its local monitor does
not check the messages. This approach fits the distributed model
more naturally, as the monitor is local to each process. However,
this approach suffers from a similar problem as the first approach:
the blame assignment is difficult. Moreover, since all processes are
a priori untrusted, a separate mechanism would be needed to some-
how verify alarms and blame processes.

To help solve the provenance issue mentioned earlier, one can
imagine requiring processes to always send a message together
with its signature which is generated by the private key of the pro-
cess. Unfortunately, the signature alone is not enough; the system
still suffers from replay attacks. Consider the following scenario: a
process b receives a message of type int from process c via chan-
nel a′, with c’s signature, then later, b sends this message back to
a′, but now a′ expects a channel name. When the monitor eventu-
ally raises an alarm, the signature from c is valid, but c is not to be
blamed. We either need to record which processes have access to
which channels, or need to associate each message with more de-
tailed provenance information. In either case, this design is signifi-
cantly more complicated than the approach of placing the monitors
at the ends of the queues (shown in Figure 5c).

After considering these different approaches, we chose the ap-
proach that places monitors at the ends of the queues because it is
simple and provides relatively precise blame assignment. Next, we
define the formal monitor semantics.

Monitor Semantics We augment the operational semantics in
Figure 4 to include monitor actions. To assign blame, the moni-
tor maintains a graph data structure that records process spawns
throughout the execution of the entire system. We write G to de-
note the graph (defined below). The nodes in the graph, denotedN ,
are provider channel names. After a process offering along channel
a spawns a process offering along channel b, an edge a →sp b is
added to the graph. G is a set of trees.

Process graph G ::= (N,E)
Edges E ::= · | E, a→sp b
messages m ::= n | end | ch(a) | lab(l) | shift

We write m to denote message patterns. We define m�A to mean
that a message pattern m is compatible with type A. It describes
the pattern of the message that a channel of type A expects to

receive (defined below). The monitor uses message patterns to
decide whether a message is allowed to be enqueued; the monitor
raises an alarm if the message is not compatible with the type
expected by the queue.

ch(a) � A+ ⊗ B+ ch(a) � A+ ( B−

lab(labj) �⊕{labi : A+
i }i lab(labj) � N{labi : A−i }i

shift� ↓A− shift� ↑A+

end� 1 n� int
s� �Kτ if verify(s, τ, pub Key(K))

The last pattern matches a signed value s against the type �Kτ ,
which requires the monitor to use cryptographic primitives to check
whether s is a validly signed value of type τ using K’s public
key. This signature is only valid if it is generated using K’s private
key. This type is explained in detail in (Pfenning et al. 2011). Our
monitoring framework is extensible, so the details of typechecking
whether the first-order value (e.g.,�Kτ ) are a matter of additional
theory.

We show the key semantic rules in Figure 6. Most of the rules
in Figure 6 involve actions by the monitor. We write monitor(t)
to denote a check on condition t by the monitor. The conditions
highlighted in gray are only used to prove properties of the monitor;
they are not needed to understand the semantics of the monitor
nor could they actually be checked by a monitor. For example, an
application of the havoc rule is by design an internal transition and
not observable. For the rest of this section, conditions highlighted
in gray can be safety ignored. We will come back to these rules and
explain these conditions in detail in Section 4.

The first five rules define the semantics for a forwarding pro-
cess where the first two rules apply to both positive and negative
types. The only differences between these two rules are the high-
lighted gray boxes which we will explain in detail in Section 4.2.
A forwarding process is only allowed to concatenate the two mes-
sage queues if their corresponding types match. Rule id a raises an
alarm when a process tries to connect two queues that are expect-
ing messages of different types. The argument of the alarm is the
provider channel of the process that forwards. The equality check
of the types also ensures that the directions of the two queues are
the same, which is an invariant maintained by the queue.

Rule idap raises an alarm because the forwarding process tries
to connect two wrong ends of the queues which would incorrectly
identify two providers. Rule id′ap raises an alarm because the pro-
cess c tries to forward to a queue with the wrong provider channel.
Well-typed processes will not trigger the last three rules, as these
processes cannot be typed using rules in Figure 3.

The rules for cut are augmented, so that new edges are added
persistently to the graph G. The monitor also records the types of
the ends of the newly generated message queue. The monitor will
check session fidelity based on these types. These two rules only
differ for proof purposes. We omit the cut rules for negative types.

The rules for waiting for a channel to terminate only differ for
proof purposes and are the same as rule one r. If a process waits
on the wrong channel, the process gets stuck and the monitor does
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id : queue(c′:A1, p, c:A2)⊗ proc(c, c← d′)⊗ queue(d′:B1, q, d:B2)⊗ !(monitor(A2 = B1))⊗ !(c /∈ H)

( {queue(c′:A1, p · q, d:B2)}

idh : queue(c′:A1, p, c:A2)⊗ proc(c, c← d′)⊗ queue(d′:B1, q, d:B2)⊗ !(monitor(A2 = B1))⊗ !(c ∈ H)

( {queue(c′:A1, p · q, d:B2)⊗ !(dangling(d′)) }
ida : queue(c′:A1, p, c:A2)⊗ proc(c, c← d′)⊗ queue(d′:B1, q, d:B2)⊗ !(monitor(A2 6= B1))

( {alarm(c)}
idap : queue(c′:A1, p, c:A2)⊗ proc(c, c← d)⊗ queue(d′:B1, q, d:B2) ( {alarm(c)}
id′ap : queue(c′:A1, p, c:A2)⊗ proc(c, a← d′)⊗ !(monitor(a 6= c)) ( {alarm(c)}

cut+ : proc(c, x:A+ ← Px ; Qx)⊗ !(c /∈ H)

( {∃a. ∃a′. proc(c,Qa′)⊗ queue(a′:A+,
←−
· , a:A+)⊗ proc(a, Pa)⊗ !(G(c→sp a))}

cut+h : proc(c, x:A+ ← Px ; Qx)⊗ !(c ∈ H)

( {∃a. ∃a′. proc(a,Qa′)⊗ queue(a′:A+,
←−
· , a:A+)⊗ proc(a, Pa)⊗ !(G(c→sp a))⊗ !(H(c→sp a)) }

one r : proc(c,wait a′ ; Q)⊗ queue(a′:1,
←−
end, )⊗ !(c /∈ H) ( {proc(c,Q)}

one rh : proc(c,wait a′ ; Q)⊗ queue(a′:1,
←−
end, )⊗ !(c ∈ H) ( {proc(c,Q)⊗ !(dangling(a′)) }

one sa : queue(a′:B, q, a:A)⊗ proc(a, close a)⊗ !(monitor(¬(end�A))) ( {alarm(a)}
one sap : queue(a′:B, q, a:A)⊗ proc(a, close b)⊗ !(monitor(a 6= b)) ( {alarm(a)}

alarms : proc(c, send a′ m ; R)⊗ queue(a′:A, q, a:B)⊗ !(monitor(¬(m�A))) ( {alarm(c)}
alarmp : queue(b′:A, q, b:B)⊗ proc(a, send b ; R)⊗ !(monitor(a 6= b)) ( {alarm(a)}

havoc : proc(c, P )⊗ !(fn(P ) ⊇ fn(Q)) ( {proc(c,Q)⊗ !(havoc(c)) }

Figure 6: Selected Monitor Rules. We write monitor(t) to denote a check on condition t by the monitor. The conditions highlighted in gray
are only used to prove properties of the monitor. Predicate dangling(a) means that the channel name a is a dangling channel name that has
no queue associated with it, either because it was closed or forwarded, but may still appear in some processes.

not take any action. This is because the monitor does not inspect
any internal actions of the process. Rule one sa raises an alarm
if a process tries to close a channel that either is not the process’
provider channel or is not of type 1.

The two alarm rules in Figure 6 summarize common cases
where the monitor raises an alarm. Rule alarm s raises an alarm
when the message sent to the queue is not compatible with the
type expected by the queue. This rule also covers the case when
a process sends a message to a queue that has the wrong direction.
Rule alarm p raises an alarm when a process a uses a provider
channel that is not its own provider channel.

We omit additional rules as they are similar to the ones in
Figure 6. For the send and receive cases where the monitor’s checks
pass, the monitor additionally is in charge of changing the types of
the channels recorded at the end of the message queues.

Blame assignment When an alarm (alarm(a)) is raised, the mon-
itor assigns blame to all the direct ancestors of a in the graph G.
That is, we find the tree in G that contains a, and let c1 →sp

c2 · · · cn →sp a be the path in that tree from the root to a. Then, the
processes in the set {c1, · · · , cn, a} are jointly blamed. Informally,
at least one of the processes in that set must have “havoced”; other-
wise, type preservation will ensure that no alarm is raised. We for-
mally show the correctness of the blame assignment in Section 4.

3.3 Motivating Examples
In this example, we illustrate monitoring with a mobile photoshar-
ing application, Snapchat, that takes and shares a user’s photos
and sends them to some remote entity. To take photos, Snapchat
needs to operate the camera. To prevent the Snapchat application

from continuously taking and sharing the user’s photos, the cam-
era requires that the user grant Snapchat permission every time
Snapchat wants to take and share a photo.

This example contains three main processes: the Snapchat
application process, the camera process, and the user process. The
monitor checks messages when they are enqueued by a sender. If
the Snapchat process deviates from its prescribed session types,
for instance, if it tries to sends an invalid permission to the camera
process, the monitor should raise an alarm.

3.3.1 Types and Encoding
We encode the expected behavior of each process as a session type
declaration below.

stype Cam− = &{take : photoPerm+

(↑(picHandle+ ⊗ ↓Cam−)}
stype User− = &{picPerm : ↑⊕{fail : ↓User−;

succ : photoPerm+

⊗↓User−}}
stype photoPerm+= ⊕{once : �Uok ∧ 1}
stype Snap+ = ⊕{share : pic ∧ ↓↑Snap+}

Camera The camera process offers a service of type Cam, which
is an external choice with a single option: take. After the client
selects take, the camera process requires the client to send the
channel of a photo permission process of type photoPerm before
sending a handle to a picture to the client. Once the permission is
received and checked and picture handle is sent, the camera process
continues to offer a service of type Cam.

588



The camera application runs the following CameraFun pro-
cess. We assume that the takePic function returns a picture han-
dle. The code also details the communication pattern between the
camera process and the photo permission process (lines 5–7). Upon
receiving a channel pm , the camera process receives a signature
from the channel pm . In this example, the camera process does not
validate the signature of the permission by itself, but instead relies
on the monitor to check the signature, which we will explain later
when we discuss the monitoring scenarios.

1 CameraFun : {Cam−} =

2 c← CameraFun =
3 case c of
4 | take→ pm ← recv c ;
5 case pm of
6 | once→ x← recv pm ;
7 wait pm ;
8 shift← recv c ;
9 picH ← takePic ;
10 send c picH ;
11 send c shift ;
12 c← CameraFun

User The user process offers a service of type User, which is
an external choice with a single option picPerm. When a process
needs permission to access the camera, it communicates with the
user process and selects picPerm. The user process then waits to
receive a shift before it can send an internal choice label of either
fail or succ. After the user sends the fail label, the user process
continues to offer a service of type User, without granting its client
permission to use the camera. After the user process sends a succ
label, it then spawns a new process that provides a service of type
photoPerm and sends the new process’ channel to its client. The
type photoPerm is an internal choice, labeled once. The newly
spawned process first sends the label once, then sends a digital
signature of a token ok (of type ok) using the camera’s private key,
before it terminates. The digital signature serves as an unforgeable
authentication token for a permission to access the camera once.

The code snippet that corresponds to the permission process
spawned by the user is given below.

1 send pm once ;
2 send (sign K priv(U) ok) ;
3 close pm ;

The function sign will use the user’s private key to sign the abstract
type ok. We assume that this permission process has access to the
user’s private key as it is spawned by the user process.

Snapchat Finally, the Snapchat application offers a service of
type Snap, which states that the application offers a single inter-
nal choice with label share that first sends a picture, then continues
behaving as Snap. The double shifts forces a synchronization be-
tween Snapchat and its client; Snapchat will not send a second
picture before the client has received the first picture in the mes-
sage queue. The Snapchat application uses services offered by the
camera process and the user process. These communications are
not specified in the Snap type, but in the Cam and User type.

Next, we define the process for the Snapchat application. The
ToSnap process uses c to communicate with the camera process c
and u to communicate with the user process and offers the picture
sharing service along channel s. We note that convert is a function
that converts a picture handle to a string of type pic.

1 ToSnap : {Snap+ ← User−,Cam−}
2 s← ToSnap ← u, c =
3 c.take ;

4 u.picPerm ;
5 send u shift ;
6 case u of
7 | fail→ shift← recv c ;
8 shift← recv u ;
9 s← ToSnap ← u, c
10 | succ→ s.share ;
11 perm← recv u ;
12 send c (y ← (y ← perm)) ;
13 send c shift ;
14 picH ← recv c ;
15 send s convert(picH) ;
16 send s shift ;
17 shift← recv c ;
18 shift← recv u ;
19 shift← recv s ;
20 s← ToSnap ← u, c

The Snapchat application first instructs the camera via channel
c to take a picture. The ToSnap process then asks the user process
for permission and cases on the response from the user. If the user
does not grant the permission (line 7), then no picture is sent and the
Snapchat process continues to try and send a picture. If the user
grants the permission (line 10), the Snapchat application sends its
client the label share, receives a channel connecting to a permission
process from the user, then forwards the channel to the camera (line
12). It then receives a picture handle from the camera, which is
converted to a picture and sent to Snapchat’s client.

3.3.2 Monitoring Scenarios
We show three monitoring scenarios to demonstrate how our moni-
tor can detect violations of invariants specified by the session types.
In the scenarios, an attacker tries to take pictures without being
granted permissions required by the camera.

Scenario 1 The Snapchat process is compromised by an at-
tacker. The havoced process does not ask for permission from the
user and instead of sending a permission to the camera, sends an
integer value (i.e. replacing lines 6-20 of the ToSnap process with
(send c n). Right before this send, the queue associated with the
camera process is:

queue(cm ′:photoPerm+(↑(picHandle+ ⊗ ↓Cam−),
−→
· ,

cm:photoPerm+(↑(picHandle+ ⊗ ↓Cam−)
The Snapchat process is proc(s, send cm ′ n ; · · · ). Here, the

program variable c is substituted by the concrete channel cm ′. The
queue is expecting a value of type PhotoPerm which should be a
channel. The monitor checks n�photoPerm+(↑(picHandle+⊗
↓Cam−). The check fails, causing the monitor to raise an alarm
(alarm(s)). In this case, s is a node in the monitor’s graph G
with no edges attached. Here, blame is assigned to one process,
Snapchat (offering along channel s).

Scenario 2 Snapchat is again compromised. Instead of asking
for permission, it tries to spawn a permission process using a fake
signature. That is, replacing lines 6-20 of the ToSnap process with

send c (y ← y.once ;
send y (sign K priv(A) ok) ;
close y)

The above send will succeed and spawn a new process:
proc(d, send d once ; send d (sign ok) ; close d)
At this point, the graph G is augmented with s→sp d. After the

label once is sent, the queue associated with process d is:
queue(d′ : photoPerm+,

←−−
once, d : �Uok ∧ 1)

When the process d tries to send a signature, it does not have the
user’s key, it cannot generate a value v such that v � �Uok. When
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the process d sends (sign ok) to d, the monitor’s check fails and
raises an alarm (alarm(d)). The blame is assigned to the set {s, d}
as G includes s→sp d, and s is the root.

Scenario 3 The Snapchat process is working appropriately and
has gotten a legitimate photo permission from the user. When the
Snapchat process spawns a process on line 12 to send the permis-
sion to the camera, the spawned process is taken over by an attacker.
Instead of proc(d , d ← pm), where the process offering along pm
is spawned by the user, the attacker changes it to proc(d , send d n).
The monitor will raise an alarm (alarm(d)) when the above com-
promised process tries to send an integer value to d, because the
monitor is expecting the label once. The graphG includes s→sp d,
so the blame is assigned to {s, d}. This scenario has the same blame
assignment as the previous scenario, even though two different pro-
cesses are compromised. One interesting point is that in this sce-
nario, Snapchat actually has the right permission. The attacker ef-
fectively launched a denial of service attack.

4. Metatheory
We first define several properties of the monitor, then we prove that
our monitor satisfies those properties. The main challenge in con-
structing these proofs lies in identifying the invariants maintained
at runtime in the presence of havoced processes. Formalizing these
invariants and proving that the invariants hold at runtime is essen-
tial for proving the blame correctness theorem.

4.1 Properties of the Monitor
We identify four high-level properties that the monitor should sat-
isfy: correctness of the blame assignment, minimality of the blame
assignment, the fact that well-typed processes are not blamed, and
transparency of the monitor.

The correctness of the blame assignment is defined as follows.
Recall that Ω is the multiset of processes and queues describing
the current state of computation. We say that it is correct to blame
a set of processes if at least one of the processes in the set has
made a havoc transition. As some of the examples below show, we
cannot in general narrow it down to a single process because the
monitors can only observe messages and not anything regarding
the internal state of process. We write |= Ω : wf to denote that the
state Ω is well-typed, formally defined in Section 4.2. This well-
typedness requires that all processes in Ω be typed using typing
rules in Figure 3 and that the use of the channel names in Ω satisfy
linearity constraints1.

Definition 1 (Correctness of blame). A set of processes N is
correct to be blamed w.r.t. the execution trace T = Ω, G −→∗
Ω′, alarm(a) with |= Ω : wf if there is a b ∈ N such that b has
made a havoc transition in T .

Second, if all processes are well-typed to begin with and no pro-
cess is compromised at runtime, then the monitor should not raise
an alarm. This property shows that a havoc transition is necessary
for the monitor to halt the execution and assign blame.

Definition 2 (Well-typed configurations do not raise alarms).
Given any T = Ω, G −→∗ Ω′, G′ such that |= Ω : wf and T
does not contain any havoc transitions, there does not exists an a
such that alarm(a) ∈ Ω′.

Third, the set of processes that the monitor assigns blame to
should be as small as possible. An algorithm that always blames all
processes in the case of an alarm is correct (according to our defini-
tion), but not minimal. Formalizing minimality requires a theory of

1 We use two notions of well-typedness: the above mentioned wf judgment
and a weaker, more general one that types compromised processes based on
free channel names that appear in them. We will explain this in Section 4.2.

observational equivalence with respect to a class of monitors and is
beyond the scope of this paper. However, as some of our examples
illustrate, including ancestors of a for alarm(a) in the blame set is
required. Since we do not include any processes beyond these, we
conjecture that our blame sets are indeed minimal.

Finally, the monitor should not change the behavior of well-
typed processes. We write −→− to denote the operational seman-
tics without the monitor. If the initial configuration is well-typed
and no process is compromised, then executing the configuration
with and without the monitor should yield the same result.

Definition 3 (Monitor transparency). Given any T = Ω, G −→∗
Ω′, G′ such that |= Ω : wf and T does not contain any havoc
transitions. Then Ω(−→−)∗Ω′′, where Ω′′ is obtained from Ω′ by
removing typing information from queues.

4.2 Validating Properties of our Monitor
We prove that our monitor assigns blame correctly, does not blame
well-typed processes, and is transparent. We illustrate the minimal-
ity of the blame assignment of our monitor through examples. For
the rest of this section, we call a process that has made a havoc
transition, or is a descendant of a process that has made a havoc
transition a havoced process.

Augmenting the configuration To formally define and analyze
the properties of our monitor, we augment the operational seman-
tics with more information about the actions of havoced processes.

We write ΩQ to denote a list of queues, and ΩP and ΩH to
denote a list of unhavoced and havoced processes respectively.

States Ω ::= ΩP ,ΩQ

Queues ΩQ ::= · | queue(a:A, q,R),ΩQ

Processes ΩP ,ΩH ::= · | proc(c, P ),ΩP

First, we use an additional graph H to keep track of havoced
processes. GraphH should be a sub-graph ofG and each tree inH
is rooted at a provider channel name of a process that has made a
havoc transition. When a process makes a havoc transition, a new
node is added to H , denoted by !(havoc(a)) in the operational
semantic rule for havoc (highlighted in gray in Figure 6). When
a process offering along a spawns a new process b and a is a
node in H , then an edge from a to b is added to H , denoted by
!(H(a →sp b)) (e.g., in cut+h rule in Figure 6). When b is a node
in H (denoted b ∈ H), b is a havoced process.

Second, because havoced processes may violate linearity con-
straints, we define Θ to denote the set of channel names that are
used by havoced processes. Channels in Θ could potentially have
aliases or be dangling references to closed or forwarded channels.

The small-step operational semantics rules are either of the form
Ω, G,H,Θ −→ Ω′, G′, H ′,Θ′ or Ω, G,H,Θ −→ , H, alarm(a).
Since we assume a global abort, we do not write out the full config-
uration in the second kind of transition. In these rules,H and Θ are
present purely for the purpose of proving metatheorems. The set of
channel names in Θ may increase because compromised processes
generate dangling pointers via closing a channel or forwarding a
channel. In Figure 6, rules idh and one rh augment Θ and generate
two dangling processes names. In Figure 6, rule id is different from
idh in that the forwarding process is a havoced process in the latter
case. Similarly, the two cut rules differ in whether the process that
spawns a new process is a havoced process.

It is easy to show that Ω, G,H,Θ −→ Ω′, G′, H ′,Θ′ implies
Ω, G −→ Ω′, G′ and Ω, G,H,Θ −→ , H ′, alarm(a) implies
Ω, G −→ , alarm(a).

Typing the configurations The typing rules for states use several
contexts. The context Ψ maps channel names to their types. We
note that all channels in Ψ are linear. The queue channel typing
context Γ contains type bindings for both ends of a queue. For
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instance, d′:A ⇐ d:B denotes that the provider channel of the
queue has type B and the client channel of the queue has type A.

Linear chan. typing ctx Ψ ::= · | Ψ, d:A
Queue chan. typing ctx Γ ::= · | Γ, d:A⇐ R
Non-linear Chan. ctx Θ ::= · | Θ, d
Right endpoint R ::= c:C |

We define two functions client(Γ) and provider(Γ). The function
client(Γ) returns the channel typing context that contains only
client channels in Γ. That is, for every d:A ⇐ R in Γ, client(Γ)
returns d:A. Similarly, we define provider(Γ) to return the context
that contains only provider channels in Γ: for every d:A⇐ R in Γ,
provider(Γ) returns R. We write ] to denote that two contexts are
disjoint in their domains. We write Ψ1]Ψ1...]Ψn to mean that any
two contexts Ψi and Ψj have disjoint domains, where i, j ∈ [1, n].

The typing rules for queues, processes, and configurations are
summarized in Figure 7. The judgment Ψ |=q ΩQ : Γ means that
queues in ΩQ are well-typed under Ψ. The context Γ contains the
provider/client channel types of all the queues in ΩQ. The rule for
checking a single queue uses the judgment Ψ ` queue(a:A, q,R)
(shown in Figure 8) to check that the elements in q are exactly the
channel names in the domain of Ψ and that the types of elements in
q, as specified in Ψ, respect the types of the two ends of the queue.
The last rule ensures channels names are used linearly.

The typing judgment for unhavoced processes is H; Ψi |=u

ΩP : Ψo. The rules for this judgment check that processes in
ΩP are not in H and that the processes use channels in Ψi and
provide services on channels in Ψo. The rule is similar to the last
rule for queue typing: it ensures that processes only use channel
names linearly.

The typing judgment for havoced processes is H; Θ |=h ΩH :
Ψo. As before, H is the graph tracking havoc transitions and the
context Ψo maps channel names to their types. The context Θ con-
tains all the channels used by processes in ΩH (not necessarily lin-
early). The rule for checking a single havoced process proc(c, P )
checks that a free name used in the process is either in Θ, or the
provider channel of the process, or a direct ancestor of c in H . The
last rule type checks a set of havoced processes. Here, the variable
contexts are shared across the premises of that rule. This means that
havoced processes do not need to use channel names linearly.

The top-level typing rule for the entire state is H; Θ |= Ω.
We write Ψ∗ to denote the context resulted from erasing types
in Ψ. The context Ψ∗ only contains the channel names in Ψ.
The key points of the above typing rule are that: (1) the queues,
unhavoced processes, and havoced processes use mutually disjoint
sets of channels, (2) havoced processes additionally use a set of
dangling channels (in Θ), (3) the client channels, including their
types, used by queues and processes should match exactly the set
of client channels of the queues, and (4) the provider channels of
the queues can be split into two disjoint sets, one that matches
the set of provider channels, including their types, of unhavoced
processes; the other that matches the provider channel names of
havoced processes.

By restricting H and Θ to be empty, we obtain the stricter defi-
nition of well-typedness of configurations used in our property def-
initions. We define |= Ω : wf as ∅; · |= Ω. That is, the configuration
Ω can be typed under the assumption that no processes have hav-
oced and all channel names are used linearly.

We make the implicit well-formedness assumption that the con-
text Γ’s provider and client channels are disjoint from each other.
That is client(Γ) ] provider(Γ). The queue typing rules only gen-
erate well-formed Γ’s.

Ψ |= ΩQ : Γ

· |=q · : ·
Ψ `q queue(a:A, q,R) a /∈ dom(R)

Ψ |=q queue(a:A, q,R) : a:A⇐R

Ψ |=q ΩQ : Γ Ψ′ |=q Ω′Q : Γ′ Ψ ]Ψ′ Γ ] Γ′

Ψ,Ψ′ |=q ΩQ,Ω
′
Q : Γ,Γ′

H; Ψi |=u ΩP : Ψo

H; · |=u · : ·
c /∈ H Ψ ` P :: (c:A)

H; Ψ |=u proc(c, P ) : c: A

Ψ |=u ΩP : Ψo Ψ′ |=u Ω′P : Ψ′o Ψ ]Ψ′ Ψo ]Ψ′o

Ψ,Ψ′ |=u ΩP ,Ω
′
P : Ψo,Ψ

′
o

H; Θ |=h ΩH : Ψo

H; · |=h · : ·

c ∈ H fn(P ) ⊆ Θ ∪ ancestors(H, c) ∪ {c}
H; Θ |=h proc(c, P ) : c: havoc

H; Θ |=h ΩP : Ψo H; Θ |=h Ω′P : Ψ′o Ψo ]Ψ′o

H; Θ |=h ΩP ,Ω
′
P : Ψo,Ψ

′
o

H; Θ |= Ω

Ψi
Q |=q ΩQ : Γo

Q

H; Ψi
U |=u ΩU : Ψo

U

H; Θ, (Ψi
H)∗ |=h ΩH : Ψo

H

dom(Θ) ∩ dom(Ψi
Q,Ψ

i
U ,Ψ

i
H) = ∅

Γo
Q = ΓQ,ΓU ,ΓH Ψi

Q = client(ΓQ)
Ψi

U = client(ΓU ) Ψi
H = client(ΓH)

Γo
Q = Γ1,Γ2 Ψo

U = provider(Γ1)
dom(Ψo

H) = dom(provider(Γ2))

H; Θ |= ΩQ,ΩU ,ΩH

Figure 7: Typing the process, queues, and configurations

Blame Correctness Theorem The fact that our monitor assigns
blame correctly (Definition 1) is a collorary of Theorem 1 (see
below).

Theorem 1 (Alarm).

1. If ∅; · |= Ω and Ω, ∅, ∅, · −→∗ Ω′, G,H,Θ then H; Θ |= Ω′

2. If ∅; · |= Ω and Ω, ∅, ∅, · −→∗ , H, alarm(a) then a ∈ H .

The above theorem states that from an initial configuration, a
well-typed configuration can make a series of transitions to either
another well-formed configuration, or a state where an alarm is
raised on a process a that is in theH graph. Based on the semantics,
H only contains processess that either have made a havoc transition
or are descendants of one that has made a havoc transition, and H
is a subgraph of G, and therefore, the blame assigned to a and a’s
direct ancestors in G is correct.

Another collorary of Theorem 1 is that well-typed processes are
not blamed: if the configuration is well-formed and no process is
compromised, then the monitor will not raise any alarm. This is
easy to prove because if there is an alarm associated with a, then
a must be in H . However, when no process havocs, H remains
empty; a contradiction.
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· ` queue(a:A+,
←−
· , c:A+)

· ` queue(a:A−,
−→
· , c:A−)

· ` queue(a:1,
←−
end, )

Ψ ` queue(a:A+,
←−
p ,R)

Ψ, b:B+ ` queue(a:B+ ⊗A+,
←−−
b · p,R)

Ψ ` queue(a:A+
j ,
←−
p ,R)

Ψ ` queue(a:⊕{labi : A+
i }i,
←−−−−
labj · p,R)

· ` queue(a:↓A−,
←−−
shift, c:A−)

Ψ ` queue(a:A,
−→
q , c:C−)

Ψ, b:B+ ` queue(a:A,
−−→
q · b, c:B+ ( C−)

Ψ ` queue(a:A,
−→
q , c:C−j })

Ψ ` queue(a:A,
−−−−→
q · labj , c:N{labi : C−i })

· ` queue(a:A+,
−−→
shift, c:↑A+)

Figure 8: Typing of Queues

The correctness proof for the blame assignment is similar to that
of a preservation proof. The key lemma is Lemma 2, which states
that if a well-typed configuration makes a transition, then it either
steps to another well-formed configuration, or an alarm is raised on
a process a that is in the H graph.

Lemma 2 (Alarm (one step)). If H; Θ |= Ω and Ω, G,H,Θ −→
then

1. Ω, G,H,Θ −→ Ω′, G′, H ′,Θ′ implies H ′; Θ′ |= Ω′

2. Ω, G,H,Θ −→ , H, alarm(a) implies a ∈ H .

Using the above lemma, we can prove Theorem 1 which con-
siders a sequence of transitions. The proof is done by induction on
the length of the trace.

Minimality We show an example scenario (Figure 9) where the
monitor cannot tell which process in the blame set is compromised.
Initially, no process is compromised. The initial configuration is
Ω0, which contains a process b and a queue. We omit other pro-
cesses and queues, as they are not important for this example. The
process offering along b spawns a process, which spawns another
process that sends an integer to a′. We consider three execution
traces T1, T2, and T3. We mark the havoc step using a superscript
H(x), where x is the channel name of the process that makes the
havoc step. The configurations Ωi and Ω′i are the intermediary con-
figurations in those traces. We use the convention that Ω′i contains a
compromised process; instead of sending 1 to a′, the compromised
process tries to send a channel to a′. When this send is executed,
the monitor will raise an alarm.

All of the three traces end up raising the same alarm. When the
alarm is raised, the graph G that the monitor maintains contains a
chain denoting that b has spawned b1 and b1 has spawned b2. Here,
T1, T2, and T3 are observationally equivalent to the monitor. We

P = send a′shift;wait a′

Ω0 = proc(b, x1 ← (x2 ← (send a′ 1;P ; close x2);
wait x2; close x1);

wait x1; close b)

⊗ queue(a′ : int→ ↑1,
−→
· , a : int→ ↑1)

Ω′0 = proc(b, x1 ← (x2 ← (send a′ (y ← close y);
P ; close x2);

wait x2; close x1);
wait x1; close b)

⊗ queue(a′ : int→ ↑1,
−→
· , a : int→ ↑1)

Ω1 = proc(b,wait b′1; close b)

⊗ queue(b′1 : 1,
←−
· , b1 : 1)

⊗ proc(b1, x2 ← (send a′ 1;P ; close x2);
wait x2; close b1);

⊗ queue(a′ : int→ ↑1,
−→
· , a : int→ ↑1)

Ω′1 = proc(b,wait b′1; close b)

⊗ queue(b′1 : 1,
←−
· , b1 : 1)

⊗ proc(b1, x2 ← (send a′ (y ← close y);P ; close x2);
wait x2; close b1);

⊗ queue(a′ : int→ ↑1,
−→
· , a : int→ ↑1)

Ω2 = proc(b,wait b′1; close b)

⊗ queue(b′1 : 1,
←−
· , b1 : 1)

⊗ proc(b1,wait b
′
2; close b1);

⊗ queue(b′2 : 1,
←−
· , b2 : 1)

⊗ proc(b2, send a
′ 1;P ; close b2)

⊗ queue(a′ : int→ ↑1,
−→
· , a : int→ ↑1)

Ω′2 = proc(b,wait b′1; close b)

⊗ queue(b′1 : 1,
←−
· , b1 : 1)

⊗ proc(b1,wait b
′
2; close b1);

⊗ queue(b′2 : 1,
←−
· , b2 : 1)

⊗ proc(b2, send a
′ (y ← close y);P ; close b2)

⊗ queue(a′ : int→ ↑1,
−→
· , a : int→ ↑1)

G = b→sp b1 →sp b2
For simplicity, we omit G from the traces.
T1 = Ω0 −→H(b) Ω′0 −→ Ω′1 −→ Ω′2 −→ , alarm(b2)

T2 = Ω0 −→ Ω1 −→H(b1) Ω′1 −→ Ω′2 −→ , alarm(b2)

T3 = Ω0 −→ Ω1 −→ Ω2 −→H(b2) Ω′2 −→ , alarm(b2)
N = {b, b1, b2}

Figure 9: An example illustrating minimality of blame assignment.

define two traces to be observationally equivalent to the monitor if
the lengths of the traces are the same and for any two states at the
same position on the traces, all the channel names of the queues
are the same and the graphs G are the same. This definition is
reasonable because the monitor state consists entirely of the queue
typing and the graph. In all three scenarios, the monitor assigns
blame to the set {b, b1, b2}. This blame is minimal as the monitor
cannot distinguish which trace it is on when an alarm is raised.

Transparency Our monitor is transparent; it does not alter the be-
havior of well-formed configurations. The proof is done by exam-
ining how each monitor check is applied to well-formed configura-
tions. Since well-formed configurations do not have havoced pro-
cesses (H is empty), all processes and queues are well-typed using
the stricter typing rules. The fact that the monitor checks never fail
can be obtained by inverting the typing judgments of the relevant
queues and processes.

Preservation and progress? The above theorem is not the same
as the preservation lemma proven in Pfenning and Griffith (2015).
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Circular dependency:
proc(c, send a′ (x←(y←recv a′ ; P{x,y})) ; Q)⊗
queue(a′:A+(B−,

−→
· , a:A+(B−)⊗

proc(a, z←recv a ; z′←recv z ; Rz′)

( ∃d.∃d′. proc(c,Q)⊗ queue(a′:B−,
−→
d′ , a:A+(B−)⊗

proc(a, z←recv a ; z′←recv z ; Rz′)⊗
queue(d′:A+,

←−
· , d:A+)⊗

proc(d, y←recv a′ ; P{d,y})

(proc(c,Q)⊗ queue(a′:B−,
−→
· , a:B−)⊗

proc(a, z′←recv d′ ; Rz′)⊗
queue(d′:A+,

←−
· , d:A+) ⊗proc(d, y←recv a′ ; P{d,y})

Dangling channel:
queue(c′:A+,

←−
p , c:A+)⊗ proc(c, c←d′)⊗

queue(d′:A+,
←−
q , d:A+)⊗ proc(a, send d′ ; P )

( queue(c′:A+,
←−−
p · q, d:A+)⊗ proc(a, send d′ ; P )

Figure 10: Example configurations.

This is because the configuration typing rules maintain looser in-
variants than those in Pfenning and Griffith (2015). More con-
cretely, the preservation allows violation of linearity by havoced
processes, such as sharing channels, using dangling channels, and
creating circular dependencies of queues. These violations are not
possible if no havoc transitions are made.

For similar reasons, well-typed configurations may be stuck (do
not have progress). We show a few examples of violations that
result in stuck system states in Figure 10. In the first example,
process c has havoced. Notice that c uses the client channel a′

multiple times. In the first step, c spawns a new process d and
sends the client channel d′ of that new process to the queue a′.
In the second step, process a receives the client channel d′, and
waits to receive from d′. At the same time process d waits on
a′. Now processes a and d wait on each other and the system is
stuck. In the second example, both processes a and c have havoced.
Otherwise, they can’t both have access to the client channel d′.
(For a and c to share a channel, we can use the same trick used
in the previous example: c can be spawned by a and contains all
the channels that a can access). Process c forwards d′ to c, now d′

disappears. However, process a can still attempt to operate on d′.
Since d′ doesn’t exist anymore, a is stuck.

5. Related Work
There is a rich body of work on higher-order contracts and the
correctness of blame assignments in the context of lambda calcu-
lus since Findler and Felleisen (2002) first introduced higher-order
contracts and the concept of blame. Wadler and Findler (2009) de-
fined the first blame calculus and established that blame always lies
with the less-precisely typed-code. More comprehensive theorems
about the correctness of blame assignment have been proposed by
Dimoulas et al. (2012, 2011).

Subsequent work on gradual typing that considers systems with
both static and dynamic typing also uses “blame always lies with
the less-precisely typed code” as a criteria for correctness. For
instance, Ahmed et al. (2011) developed a blame calculus for a
language that integrates parametric polymorphism with static and
dynamic typing. Fennell and Thiemann (2012) proved a blame
theorem for a linear lambda calculus with type Dynamic. Most
recently, Wadler (2015) surveys the history of the blame calculus
and presents the latest developments. Keil and Thiemann (2015)
develop a blame assignment for higher order contracts that includes
intersection and union contracts. Siek et al. (2015) develop three

calculi for gradual typing and relate them in an effort to unite the
concepts of blame and coercion.

Compared to the body of work mentioned above, our work
focuses on distributed systems, where processes communicate with
each other via message queues. At a high-level, we can relate our
adversary model to the work on blame assignment as follows. Each
process can be viewed as a program written in dynamically typed
language. Our monitor enforces the coercion of session types by
observing the communications between the processes. Our blame
assignment is the ancestor closure of the process that has directly
caused an alarm to be raised. The set of processes that is blamed
always includes a compromised process (all of its descendants are
likely to have been compromised too). If we view the compromised
process as a less-precisely-typed program, our correctness of blame
property is similar to the notion proposed in Wadler and Findler
(2009): blame always falls on less-precisely-typed programs.

Disney et al. investigated behavior contracts that enforce tem-
poral properties for modules (Disney et al. 2011). Our contracts
(i.e., session types) enforce temporal properties as well; the session
types specify the order in which messages are sent and received by
the processes. Our contracts are not as expressive as the temporal
higher-order contracts proposed by Disney et al, but our system is
concurrent, while their system does not consider concurrency.

The work most closely related to ours is on multi-party session
types (Bocchi et al. 2013; Chen et al. 2011; Thiemann 2014). Boc-
chi et al. (2013)’s work and Chen et al. (2011)’s work assume a sim-
ilar asynchronous message passing model as ours. Their monitor
architecture is also similar to ours; monitors are placed at the ends
of the communication channels and monitor communication pat-
terns. One key difference is that their monitors do not raise alarms;
instead, the monitors suppress “bad” messages and move on. Our
monitors halt the execution and assign blame. Consequently, this
work does not have theorems about blame assignment which are
central to our work. Using global types, their monitors can addi-
tionally enforce global properties such as deadlock freeness, which
our monitors cannot. Our work supports higher-order processes,
while their work is strictly first-order. Recently, Thiemann (2014)
has taken steps towards integrating gradual typing and a two-party
session-type system. There, the communications are synchronous.
A proxy process acts as a monitor for a forked dynamically typed
process, mediating the communications of the forked process. This
proxy can be viewed as a partial identity process that eta-expands
the coerced session type. As discussed in Section 3.2, we moved
away from that design and chose a more local monitoring strat-
egy to achieve more precise blame assignment. Neither our system
nor their system prevents deadlock. We additionally proved both
the correctness of blame and the monitor transparency properties
of our monitor.

6. Conclusion
We have presented a system for monitoring and blame assign-
ment for session types based on a Curry-Howard interpretation
of linear logic. Communication is asynchronous, through message
queues, and our monitors manage these queues based on a types-
as-contracts interpretations of the session types. Monitored com-
munications include spawning of processes (logically the cut rule),
forwarding between processes (logically the identity rule), internal
and external choice, as well as passing of channels along channels
which gives the language some higher-order aspects. Our adver-
sary or failure model allows a process to make arbitrary transitions
to ill-typed code in a step we call havoc, subject to the constraint
that a havoced process can not gain access to other private chan-
nels. Proving correctness of the blame assignment has been tech-
nically challenging because execution may continue with havoced
processes for many steps before an observable type violation occurs
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(if at all). Process configurations with rogue processes are complex
and, among other invariants, may violate the linearity constraints
which force channels to have exactly one provider and one client.

We have omitted shared channels from this presentation. An
in-depth discussion of their typing and operational reading can be
found in Pfenning and Griffith (2015). A shared channel is always
provided by a unique persistent process and can be used by arbi-
trarily many other processes. We can only use a shared channel of
type ↑UA by spawning a new linear session of type A, leaving the
persistent process in place. This new linear session would be mon-
itored with the techniques described here. Monitoring and blame
assignment of the shared channels themselves is actually easier,
since persistent message “queues” are always empty or singletons.

We do not consider the mechanics of how to connect to offered
services, be they linear or persistent. As long as offered services
come with a type (which is required in any case for session-typed
communication), monitoring can then commence as described in
this paper once a connection has been established.

One remaining interesting technical question is whether our
blame assignment identifies a minimal set of potential culprits,
given the kinds of observations we allow the monitor to make. We
conjecture that this is so, but currently we lack the theory of ob-
servational equivalence in this setting to answer it definitively. An-
other interesting question is whether we can be more precise if we
allow more global observations about the state of the computation,
for example, the geometry of the connections. Precision here can
refer both to smaller blame sets and to discovering more violations
which are undetected by simple type-checking. Along the latter di-
mension, it would also be interesting to add contracts or dependent
types to the language so that more violations can be discovered
(potentially both statically and dynamically).
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