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ABSTRACT
As probabilistic computations play an increasing role in solv-
ing various problems, researchers have designed probabilis-
tic languages that treat probability distributions as primi-
tive datatypes. Most probabilistic languages, however, focus
only on discrete distributions and have limited expressive
power. In this paper, we present a probabilistic language,
called λ©, which uniformly supports all kinds of probability
distributions – discrete distributions, continuous distribu-
tions, and even those belonging to neither group. Its math-
ematical basis is sampling functions, i.e., mappings from the
unit interval (0.0, 1.0] to probability domains.

We also briefly describe the implementation of λ© as an
extension of Objective CAML and demonstrate its practi-
cality with three applications in robotics: robot localization,
people tracking, and robotic mapping. All experiments have
been carried out with real robots.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Specialized application
languages

General Terms
Languages, Experimentation

Keywords
Probabilistic language, Probability distribution, Sampling
function, Robotics

1. INTRODUCTION
As probabilistic computations play an increasing role in

solving various problems, researchers have designed proba-
bilistic languages to facilitate their modeling [11, 7, 30, 23,
26, 15, 21]. A probabilistic language treats probability dis-
tributions as primitive datatypes and abstracts from their
representation schemes. As a result, it enables programmers
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to concentrate on how to formulate probabilistic computa-
tions at the level of probability distributions rather than
representation schemes. The translation of such a formu-
lation in a probabilistic language usually produces concise
and elegant code.

A typical probabilistic language supports at least discrete
distributions, for which there exists a representation scheme
sufficient for all practical purposes: a set of pairs consist-
ing of a value in the probability domain and its probabil-
ity. We can use such a probabilistic language for problems
involving only discrete distributions. For those involving
non-discrete distributions, however, we usually use a conven-
tional language for the sake of efficiency, assuming a specific
kind of probability distributions (e.g., Gaussian distribu-
tions) or choosing a specific representation scheme (e.g., a
set of weighted samples). For this reason, there has been lit-
tle effort to develop probabilistic languages whose expressive
power is beyond discrete distributions.

Our work aims to develop a probabilistic language sup-
porting all kinds of probability distributions – discrete dis-
tributions, continuous distributions, and even those belong-
ing to neither group. Furthermore we want to draw no
distinction between different kinds of probability distribu-
tions, both syntactically and semantically, so that we can
achieve a uniform framework for probabilistic computation.
Such a probabilistic language can have a significant practi-
cal impact, since once formulated at the level of probability
distributions, any probabilistic computation can be directly
translated into code.

The main idea in our work is that we can specify any
probability distribution by answering “How can we generate
samples from it?”, or equivalently, by providing a sampling
function for it. A sampling function is defined as a map-
ping from the unit interval (0.0, 1.0] to a probability domain
D. Given a random number drawn from a uniform distri-
bution over (0.0, 1.0], it returns a sample in D, and thus
specifies a unique probability distribution. For our purpose,
we use a generalized notion of sampling function which maps
(0.0, 1.0]∞ to D×(0.0, 1.0]∞ where (0.0, 1.0]∞ denotes an in-
finite product of (0.0, 1.0]. Operationally it takes as input an
infinite sequence of random numbers drawn independently
from a uniform distribution over (0.0, 1.0], consumes zero
or more random numbers, and returns a sample with the
remaining sequence.

We present a probabilistic language, called λ©, whose
mathematical basis is sampling functions. We exploit the
fact that sampling functions form a state monad, and base
the syntax of λ© upon the monadic metalanguage [17] in the
formulation of Pfenning and Davies [24]. A syntactic dis-



tinction is drawn between regular values and probabilistic
computations through the use of two syntactic categories:
terms for regular values and expressions for probabilistic
computations. It enables us to treat probability distribu-
tions as first-class values, and λ© arises as a conservative
extension of a conventional language. Examples show that
λ© provides a unified representation scheme for probabil-
ity distributions, enjoys rich expressiveness, and allows high
versatility in encoding probability distributions.

An important aspect of our work is to demonstrate the
practicality of λ© by applying it to real problems. As the
main testbed, we choose robotics [29]. It offers a variety
of real problems that necessitate probabilistic computations
over continuous distributions. We implement λ© as an ex-
tension of Objective CAML and use it for three applications
in robotics: robot localization [29], people tracking [20], and
robotic mapping [31]. We use real robots for all experiments.

λ© does not support precise reasoning about probability
distributions in that it does not permit a precise implemen-
tation of queries on probability distributions (such as expec-
tation). This is in fact a feature of probability distributions
that precise reasoning is impossible in general. In other
words, lack of support for precise reasoning is the price we
pay for rich expressiveness of λ©. As a practical solution,
we use the Monte Carlo method to support approximate
reasoning. As such, λ© is a good choice for those problems
in which all kinds of probability distributions are used or
precise reasoning is unnecessary or impossible.

This paper is organized as follows. Section 2 gives a mo-
tivating example for λ©. Section 3 presents the type system
and the operational semantics of λ©. Section 4 shows how to
encode various probability distributions in λ©, and Section 5
shows how to formally prove the correctness of encodings,
based upon the operational semantics. Section 6 demon-
strates the use of the Monte Carlo method for approximate
reasoning and briefly describes our implementation of λ©.
Section 7 presents three applications of λ© in robotics. Sec-
tion 8 discusses related work and Section 9 concludes. We
refer readers to [22] for figures from experiments in Section 7.

Notation
If a variable x ranges over the domain of a probability dis-
tribution P , then P (x) means, depending on the context,
either the probability distribution itself (as in “probability
distribution P (x)”) or the probability of a particular value x
(as in “probability P (x)”). If we do not need a specific name
for a probability distribution, we use Prob. Similarly P (x|y)
means either the conditional probability P itself or the prob-
ability of x conditioned on y. We write Py or P (·|y) for the
probability distribution conditioned on y. U(0.0, 1.0] de-
notes a uniform distribution over the unit interval (0.0, 1.0].

2. A MOTIVATING EXAMPLE
A Bayes filter [9] is a popular solution to a wide range

of state estimation problems. It estimates the state s of a
system from a sequence of actions and measurements, where
an action a makes a change to the state and a measurement
m gives information on the state. At its core, a Bayes fil-
ter computes a probability distribution Bel(s) of the state
according to the following update equations:

Bel(s) ←
∫
A(s|a, s′)Bel(s′)ds′ (1)

Bel(s) ← ηP(m|s)Bel(s) (2)

A(s|a, s′) is the probability that the system transitions to

state s after taking action a in another state s′, P(m|s) the
probability of measurement m in state s, and η a normalizing
constant ensuring

∫
Bel(s)ds = 1.0. The update equations

are formulated at the level of probability distributions in the
sense that they do not assume a particular representation
scheme.

Unfortunately the update equations are difficult to imple-
ment for arbitrary probability distributions. When it comes
to implementation, therefore, we usually simplify the update
equations by making additional assumptions on the system
or choosing a specific representation scheme. For instance,
with the assumption that Bel is a Gaussian distribution,
we obtain a variant of the Bayes filter called a Kalman fil-
ter [32]. If we approximate Bel with a set of samples, we
obtain another variant called a particle filter [3].

Even these variants of the Bayes filter are, however, not
trivial to implement in conventional languages, not to men-
tion the difficulty of understanding the code. For instance,
a Kalman filter requires various matrix operations includ-
ing matrix inversion. A particle filter needs to manipulate
weights associated with individual samples, which often re-
sults in complicated code.

An alternative approach is to use an existing probabilis-
tic language after discretizing all probability distributions.
This idea is appealing in theory but impractical for two rea-
sons. First, given a probability distribution, we cannot eas-
ily choose an appropriate subset of its support upon which
we perform discretization. Even when such a subset is fixed
in advance, the process of discretization may require a con-
siderable amount of programming; see [4] for an example.
Second there are some probability distributions that cannot
be discretized in any meaningful way. An example is proba-
bility distributions over probability distributions, which do
occur in real applications (see Section 7). Another example
is probability distributions over function spaces.

If we had a probabilistic language that supports all kinds
of probability distributions without drawing a syntactic or
semantic distinction, we could implement the update equa-
tions with much less effort. We present such a probabilistic
language λ© in the next section.

3. PROBABILISTIC LANGUAGE λ©

In this section, we develop our probabilistic language λ©.
We begin by explaining why we choose sampling functions
as the mathematical basis of λ©.

3.1 Mathematical basis
The expressive power of a probabilistic language is de-

termined to a large extent by its mathematical basis, i.e.,
which mathematical objects are used to specify probability
distributions. Since we intend to support all kinds of proba-
bility distributions without drawing a syntactic or semantic
distinction, we cannot choose what is applicable only to a
specific kind of probability distributions (e.g., probability
mass functions, probability density functions, or cumulative
distribution functions). Probability measures are a possibil-
ity because they are synonymous with probability distribu-
tions. They are, however, not a practical choice: a proba-
bility measure on a domain D maps not D but the set of
events on D to [0.0, 1.0], and may be difficult to represent if
D is an infinite domain.

Sampling functions overcome the problem with probabil-
ity measures: they are applicable to all kinds of probability
distributions, and are also easy to represent because a global



random number generator supplants the use of infinite se-
quences of random numbers. For this reason, we choose
sampling functions as the mathematical basis of λ©.1

It is noteworthy that sampling functions form a state
monad [16, 17] whose set of states is (0.0, 1.0]∞. Moreover
sampling functions are operationally equivalent to proba-
bilistic computations because they describe procedures for
generating samples. These two observations imply that if
we use a monadic syntax for probabilistic computations,
it becomes straightforward to interpret probabilistic com-
putations in terms of sampling functions. Hence we use a
monadic syntax for probabilistic computations in λ©.

3.2 Syntax and type system
As the linguistic framework of λ©, we use the monadic

metalanguage of Pfenning and Davies [24]. It is a reformu-
lation of Moggi’s monadic metalanguage λml [17], following
Martin-Löf’s methodology of distinguishing judgments from
propositions [14]. It augments the lambda calculus, consist-
ing of terms, with a separate syntactic category, consisting
of expressions in a monadic syntax. In the case of λ©, terms
denote regular values and expressions denote probabilistic
computations. We say that a term evaluates to a value and
an expression computes to a sample.

The abstract syntax for λ© is as follows:

type A, B ::= A→ A | A×A | ©A | real
term M, N ::= x | λx :A. M | M M |

(M, M) | fst M | snd M |
fix x :A. M | prob E | r

expression E, F ::= M | sample x from M in E | S
value/sample V, W ::= λx :A. M | (V, V ) | prob E | r
real number r
sampling sequence s ::= r1r2 · · · ri · · ·

where ri ∈ (0.0, 1.0]
typing context Γ ::= · | Γ, x : A

We use x as variables. λx : A. M is a lambda abstraction,
and M M is an application term. (M, M) is a product term,
and fst M and snd M are projection terms; we include these
terms in order to support joint distributions. fix x : A. M
is a fixed point construct for recursive terms. A probability
term prob E encapsulates an expression E; it is a first-class
value denoting a probability distribution. Real numbers r
are implemented as floating point numbers, since the over-
head of exact real arithmetic is not justified in the domain
where we work with samples and approximations anyway.

There are three kinds of expressions: terms M , bind ex-
pressions sample x from M in E, and sampling expressions
S. As an expression, M denotes a probabilistic computation
that returns the result of evaluating M . sample x from M in E
sequences two probabilistic computations (if M evaluates to
a probability term). S consumes a random number from a
sampling sequence, which is an infinite sequence of random
numbers drawn independently from U(0.0, 1.0].

The type system employs a term typing judgment Γ `M :
A and an expression typing judgment Γ ` E÷A (Figure 1).
Γ ` M : A means that M evaluates to a value of type A
under typing context Γ, and Γ ` E÷A that E computes to

1Note, however, that not every sampling function specifies a
probability distribution. For instance, no probability distri-
bution is specified by a sampling function mapping rational
numbers to 0 and irrational numbers to 1. Thus we restrict
ourselves to those sampling functions that determine prob-
ability distributions (i.e., measurable sampling functions).

x : A ∈ Γ
Γ ` x : A

Var
Γ, x : A ` M : B

Γ ` λx :A. M : A→ B
Lam

Γ ` M1 : A→ B Γ ` M2 : A

Γ ` M1 M2 : B
App

Γ ` M1 : A1 Γ ` M2 : A2

Γ ` (M1, M2) : A1 ×A2
Prod

Γ ` M : A1 ×A2

Γ ` fst M : A1
Fst

Γ ` M : A1 ×A2

Γ ` snd M : A2
Snd

Γ, x : A ` M : A

Γ ` fix x :A. M : A
Fix

Γ ` E ÷A

Γ ` prob E : ©A
Prob

Γ ` r : real
Real

Γ ` M : A
Γ ` M ÷A

Term
Γ ` M : ©A Γ, x : A ` E ÷B

Γ ` sample x from M in E ÷B
Bind

Γ ` S ÷ real
Sampling

Figure 1: Typing rules of λ©

a sample of type A under typing context Γ. The rule Prob
is the introduction rule for the type constructor ©; it shows
that type ©A denotes probability distributions over type A.
The rule Bind is the elimination rule for the type construc-
tor ©. The rule Term means that every term converts into
a probabilistic computation that involves no probabilistic
choice. All the remaining rules are standard.

3.3 Operational semantics
Since λ© draws a syntactic distinction between regular

values and probabilistic computations, its operational se-
mantics needs two judgments: one for term evaluations and
another for expression computations. A term evaluation
is always deterministic and the corresponding judgment in-
volves only terms. In contrast, an expression computation
may consume random numbers and the corresponding judg-
ment involves not only expressions but also sampling se-
quences. Since an expression computation may invoke term
evaluations (e.g., to evaluate M in sample x from M in E),
we first present the judgment for term evaluations and then
use it for the judgment for expression computations. Both
judgments use capture-avoiding substitutions [N/x]M and
[N/x]E defined in a standard way.

For term evaluations, we introduce a judgment M 7→ N in
a call-by-value discipline. We could have equally chosen call-
by-name or call-by-need, but λ© is intended to be embedded
in Objective CAML and hence we choose call-by-value for
pragmatic reasons. We use evaluation contexts which are
terms with a hole [] indicating where a term reduction may
occur. We use M 7→R N for term reductions:

evaluation context κ ::= [] | κ M | (λx :A. M) κ |
(κ, M) | (V, κ) | fst κ | snd κ

(λx :A. M) V 7→R [V/x]M
fst (V1, V2) 7→R V1

snd (V1, V2) 7→R V2

fix x :A. M 7→R [fix x :A. M/x]M

M 7→R N

κ[M ] 7→ κ[N ]

We use M 7→∗ V for a term evaluation where 7→∗ denotes
the reflexive and transitive closure of 7→. A term evaluation
is always deterministic.

For expression computations, we introduce a judgment
E @ s ⇒ F @ s′ which means that the computation of
E with sampling sequence s reduces to the computation of
F with sampling sequence s′. It uses computation contexts



which are expressions with either a term hole []term or an
expression hole []exp. []term expects a term and []exp expects
an expression. We use E @ s ⇒R F @ s′ for expression
reductions:

computation context ι ::= []exp | []term |
sample x from []term in E |
sample x from prob ι in E

sample x from prob V in E @ s ⇒R [V/x]E @ s
S @ rs ⇒R r @ s

M 7→ N
ι[M ]term @ s⇒ ι[N ]term @ s

E @ s⇒R F @ s′

ι[E]exp @ s⇒ ι[F ]exp @ s′

We use E @ s ⇒∗ V @ s′ for an expression computation
where ⇒∗ denotes the reflexive and transitive closure of ⇒.
Note that an expression computation itself is deterministic;
it is only when we vary sampling sequences that an expres-
sion exhibits probabilistic behavior.

An expression computation E @ s ⇒∗ V @ s′ means
that E takes a sampling sequence s, consumes a finite prefix
of s in order, and returns a sample V with the remaining
sequence s′:

Proposition 3.1.
If E @ s⇒∗ V @ s′, then s = r1r2 · · · rns′ (n ≥ 0) where

E @ s⇒∗ E1 @ r2 · · · rns′ ⇒∗ · · · ⇒∗ En−1 @ rns′ ⇒∗ V @ s′

for a sequence of expressions E1, · · · , En−1.

Thus an expression computation coincides with the opera-
tional description of a sampling function when applied to a
sampling sequence, which implies that an expression repre-
sents a sampling function.

The type safety of λ© consists of two properties: type
preservation and progress. The proof of type preservation
requires a substitution lemma, and the proof of progress
requires a canonical forms lemma.

Theorem 3.2 (Type preservation).
If M 7→ N and · ` M : A, then · ` N : A.
If E @ s⇒ F @ s′ and · ` E ÷A, then · ` F ÷A.

Theorem 3.3 (Progress).
If · ` M : A, then either M is a value ( i.e., M = V ), or

there exists N such that M 7→ N .
If · ` E ÷A, then either E is a sample ( i.e., E = V ), or

for any sampling sequence s, there exist F and s′ such that
E @ s⇒ F @ s′.

The syntactic distinction between terms and expressions
in λ© is optional in the sense that the grammar does not
need to distinguish expressions as a separate non-terminal.
On the other hand, the semantic distinction, both statically
(in the form of two typing judgments) and dynamically (in
the form of evaluation and computation judgments) appears
to be essential for a clean formulation of our probabilistic
language.

λ© is a conservative extension of a conventional language
because terms constitute a conventional language of their
own. In essence, term evaluations are always determinis-
tic and we need only terms when writing deterministic pro-
grams. As a separate syntactic category, expressions also
provide a framework for probabilistic computation that ab-
stracts from the definition of terms. For instance, the ad-
dition of a new term construct does not change the defi-
nition of expression computations. When programming in
λ©, therefore, the syntactic distinction between terms and

expressions aids us in deciding which of deterministic eval-
uations and probabilistic computations we should focus on.
In the next section, we show how to encode various proba-
bility distributions and further investigate properties of λ©.

4. EXAMPLES
When encoding a probability distribution in λ©, we natu-

rally concentrate on a method of generating samples, rather
than trying to calculate the probability assigned to each
event. If the probability distribution itself is defined in terms
of a process of generating samples, we simply translate the
definition. If, however, the probability distribution is de-
fined in terms of a probability measure or an equivalent, we
may not always derive a sampling function in a mechanical
manner. Instead we have to exploit its unique properties to
devise a sampling function.

Below we show examples of encoding various probabil-
ity distributions in λ©. These examples demonstrate three
properties of λ©: a unified representation scheme for proba-
bility distributions, rich expressiveness, and high versatility
in encoding probability distributions. The sampling meth-
ods used in the examples are all found in simulation the-
ory [2].

We assume primitive types int and bool, arithmetic and
comparison operators, and a conditional term construct
if M then N1 else N2. We also assume standard let-binding,
recursive let rec-binding, and pattern matching when it is
convenient for the examples. While we do not discuss here
type inference or polymorphism, the implementation han-
dles these in the manner familiar from ML. We use the
following syntactic sugar for expressions:

unprob M ≡ sample x from M in x
eif M then E1 else E2 ≡

unprob (if M then prob E1 else prob E2)

unprob M chooses a sample from the probability distribution
denoted by M and returns it. eif M then E1 else E2 branches
to either E1 or E2 depending on the result of evaluating M .

Unified representation scheme
λ© provides a unified representation scheme for probability
distributions. While its type system distinguishes between
different probability domains, its operational semantics does
not distinguish between different kinds of probability distri-
butions, such as discrete, continuous, or neither. We show
an example for each case.

We encode a Bernoulli distribution over type bool with
parameter p as follows:

let bernoulli = λp : real.
prob sample x from prob S in x ≤ p

bernoulli can be thought of as a binary choice construct.
It is expressive enough to specify any discrete distribution
with finite support. In fact, bernoulli 0.5 suffices to spec-
ify all such probability distributions, since it is capable of
simulating a binary choice construct [5].

As an example of continuous distribution, we encode a
uniform distribution over a real interval (a, b] by exploiting
the definition of the sampling expression:

let uniform = λa : real. λb : real.
prob sample x from prob S in a + x ∗ (b− a)

We also encode a combination of a point-mass distribution
and a uniform distribution over the same domain, which is



neither a discrete distribution nor a continuous distribution:

let point uniform = prob sample x from prob S in
if x < 0.5 then 0.0 else x

Rich expressiveness
We now demonstrate the expressive power of λ©with a num-
ber of examples.

We encode a binomial distribution with parameters p and
n0 by exploiting probability terms:

let binomial = λp : real. λn0 : int.
let bernoullip = bernoulli p in
let rec binomialp = λn : int.

if n = 0 then prob 0
else prob sample x from binomialp (n− 1) in

sample b from bernoullip in
if b then 1 + x else x

in
binomialp n0

Here binomialp takes an integer n as input and returns a
binomial distribution with parameters p and n.

If a probability distribution is defined in terms of a re-
cursive process of generating samples, we can translate the
definition into a recursive term. For instance, we encode a
geometric distribution with parameter p as follows:

let geometric rec = λp : real.
let bernoullip = bernoulli p in
let rec geometric =

prob sample b from bernoullip in
eif b then 0
else sample x from geometric in

1 + x
in

geometric

Note that a geometric distribution has infinite support.
We encode an exponential distribution by using the in-

verse of its cumulative distribution function as a sampling
function, which is known as the inverse transform method :

let exponential1.0 = prob sample x from S in −log x

The rejection method, which generates a sample from a
probability distribution by repeatedly generating samples
from other probability distributions until they satisfy a cer-
tain condition, can be implemented with a recursive term.
For instance, we encode a Gaussian distribution with mean
m and variance σ2 by the rejection method with respect to
exponential distributions:

let bernoulli0.5 = bernoulli 0.5
let gaussian rejection = λm : real. λσ : real.

let rec gaussian =
prob sample y1 from exponential1.0 in

sample y2 from exponential1.0 in
eif y2 ≥ (y1 − 1.0)2/2.0 then

sample b from bernoulli0.5 in
if b then m + σ ∗ y1 else m− σ ∗ y1

else unprob gaussian
in

gaussian

We encode the joint distribution between two indepen-
dent probability distributions using a product term. If MP

denotes P (x) and MQ denotes Q(y), the following term de-
notes the joint distribution Prob(x, y) ∝ P (x)Q(y):

prob sample x from MP in
sample y from MQ in
(x, y)

For the joint distribution between two interdependent prob-
ability distributions, we use a conditional probability, which
we represent as a lambda abstraction taking a regular value
and returning a probability distribution. If MP denotes
P (x) and MQ denotes a conditional probability Q(y|x), the
following term denotes the joint distribution Prob(x, y) ∝
P (x)Q(y|x):

prob sample x from MP in
sample y from MQ x in
(x, y)

We compute the integration Prob(y) =
∫

Q(y|x)P (x)dx in
a similar way:

prob sample x from MP in
sample y from MQ|P x in
y

Due to lack of semantic constraints on sampling functions,
we can specify probability distributions over unusual do-
mains such as infinite data structures (e.g., trees), function
spaces, cyclic spaces (e.g., angular values), and even prob-
ability distributions themselves. For instance, we add two
probability distributions over angular values in a straight-
forward way:

let add angle = λa1 :©real. λa2 :©real.
prob sample s1 from a1 in

sample s2 from a2 in
(s1 + s2) mod (2.0 ∗ π)

With the modulo operation mod, we take into account the
fact that an angle θ is identified with θ + 2π.

As a simple application, we implement a belief network [27]:

We assume that Palarm|burglary denotes the probability dis-
tribution that the alarm goes off when a burglary happens;
other variables of the form P·|· are interpreted in a similar
way.

let alarm = λ(burglary , earthquake) :bool× bool.
if burglary then Palarm|burglary
else if earthquake then Palarm|¬burglary∧earthquake

else Palarm|¬burglary∧¬earthquake

let john calls = λalarm :bool.
if alarm then PJohn calls|alarm
else PJohn calls|¬alarm

let mary calls = λalarm :bool.
if alarm then PMary calls|alarm
else PMary calls|¬alarm

The conditional probabilities alarm, john calls, and
mary calls do not answer any query on the belief network;
they only describe its structure. In order to answer a specific



query, we have to implement a corresponding probability
distribution. For instance, in order to answer “what is the
probability pMary calls|John calls that Mary calls when John
calls?”, we use QMary calls|John calls below, which essentially
implements logic sampling [8]:

let rec QMary calls|John calls =
prob sample b from Pburglary in

sample e from Pearthquake in
sample a from alarm (b, e) in
sample j from john calls a in
sample m from mary calls a in
eif j then m else unprob QMary calls|John calls

in
Qburglary|John calls

Pburglary denotes the probability distribution that a bur-
glary happens, and Pearthquake denotes the probability dis-
tribution that an earthquake happens. Then the mean of
QMary calls|John calls gives pMary calls|John calls . We will see how
to calculate pMary calls|John calls in Section 6.

We can also implement most of the common operations on
probability distributions. An exception is the Bayes opera-
tion ] (the second update equation of the Bayes filter uses
it). P ] Q results in a probability distribution R such that
R(x) = ηP (x)Q(x) where η is a normalization constant en-
suring

∫
R(x)dx = 1.0; if P (x)Q(x) is zero for every x, then

P ] Q is undefined. Since it is difficult to achieve a general
implementation of P ] Q, we usually make an additional
assumption on P and Q to achieve a specialized implemen-
tation. For instance, if we have a function p and a constant
c such that p(x) = kP (x) ≤ c for a certain constant k, we
can implement P ] Q by the rejection method:

let bayes rejection = λp :A→ real. λc : real. λQ :©A.
let rec bayes =

prob sample x from Q in
sample u from prob S in
eif u < (p x)/c then x else unprob bayes

in
bayes

We will see another implementation in Section 6.

High versatility
λ© allows high versatility in encoding probability distribu-
tions: given a probability distribution, we can exploit its
unique properties and encode it in many different ways. For
instance, exponential1.0 uses a logarithm function to encode
an exponential distribution, but there is also an ingenious
method (due to von Neumann) that requires only addition
and subtraction operations:

let exponential von Neumann1.0 =
let rec search = λk : real. λu : real. λu1 : real.

prob sample u′ from prob S in
eif u < u′ then k + u1

else sample u from prob S in
eif u ≤ u′ then unprob (search k u u1)
else sample u from prob S in

unprob (search (k + 1.0) u u)
in

prob sample u from prob S in
unprob (search 0.0 u u)

The recursive term in gaussian rejection consumes at least
three random numbers. We can encode a Gaussian distri-

bution with only two random numbers:

let gaussian Box Muller = λm : real. λσ : real.
prob sample u from prob S in

sample v from prob S in
m + σ ∗

√
−2.0 ∗ log u ∗ cos (2.0 ∗ π ∗ v)

We can also approximate a Gaussian distribution by exploit-
ing the central limit theorem:

let gaussian central = λm : real. λσ : real.
prob sample x1 from prob S in

sample x2 from prob S in
· · ·

sample x12 from prob S in
m + σ ∗ (x1 + x2 + · · ·+ x12 − 6.0)

The three examples above serve as evidence of high ver-
satility of λ©: the more we know about a probability distri-
bution, the better we can encode it.

All the examples in this section just rely on our intuition
on sampling functions and do not actually prove the cor-
rectness of encodings. For instance, we still do not know if
bernoulli indeed encodes a Bernoulli distribution, or equiva-
lently, if the expression in it generates True with probability
p. In the next section, we investigate how to formally prove
the correctness of encodings.

5. PROVING THE CORRECTNESS OF EN-
CODINGS

When programming in λ©, we often ask “What probabil-
ity distribution characterizes outcomes of computing a given
expression?” The operational semantics of λ© does not di-
rectly answer this question because an expression compu-
tation returns only a single sample from a certain, yet un-
known, probability distribution. Therefore we need a dif-
ferent methodology for interpreting expressions directly in
terms of probability distributions.

We take a simple approach that appeals to our intuition
on the meaning of expressions. We write E ∼ Prob if out-
comes of computing E are distributed according to Prob.
To determine Prob from E, we supply an infinite sequence
of independent random variables from U(0.0, 1.0] and an-
alyze the result of computing E in terms of these random
variables. If E ∼ Prob, then E denotes a probabilistic com-
putation of generating samples from Prob and we regard
Prob as the denotation of prob E.

We illustrate the above approach with a few examples. In
each example, Ri means the i-th random variable and R∞

i

means the infinite sequence of random variables beginning
from Ri (i.e., RiRi+1 · · · ). A random variable is regarded
as a value because it represents real numbers in (0.0, 1.0].

As a trivial example, consider prob S. The computation
of S proceeds as follows:

S @ R∞
1 ⇒ R1 @ R∞

2

Since the outcome is a random variable from U(0.0, 1.0], we
have S ∼ U(0.0, 1.0].

As an example of discrete distribution, consider bernoulli p.
The expression in it computes as follows:

sample x from prob S in x ≤ p @ R∞
1

⇒ sample x from prob R1 in x ≤ p @ R∞
2

⇒ R1 ≤ p @ R∞
2

⇒ True @ R∞
2 if R1 ≤ p;

False @ R∞
2 otherwise.



Since R1 is a random variable from U(0.0, 1.0], the probabil-
ity of R1 ≤ p is p. Thus the outcome is True with probability
p and False with probability 1.0−p, and bernoulli p denotes
a Bernoulli distribution with parameter p.

As an example of continuous distribution, consider
uniform a b. The expression in it computes as follows:

sample x from prob S in a + x ∗ (b− a) @ R∞
1

⇒∗ a + R1 ∗ (b− a) @ R∞
2

Since we have

a + R1 ∗ (b− a) ∈ (a0, b0] iff R1 ∈ (
a0 − a

b− a
,
b0 − a

b− a
],

the probability that the outcome lies in (a0, b0] is

b0 − a

b− a
− a0 − a

b− a
=

b0 − a0

b− a
∝ b0 − a0

where we assume (a0, b0] ⊂ (a, b]. Thus uniform a b denotes
a uniform distribution over (a, b].

The following proposition shows that binomial p n de-
notes a binomial distribution with parameters p and n, which
we write as Binomialp,n:

Proposition 5.1. If binomialp n 7→∗ prob Ep,n, then
Ep,n ∼ Binomialp,n.

Proof. By induction on n.
Base case n = 0. We have Ep,n = 0. Since Binomialp,n

is a point-mass distribution centered on 0, we have Ep,n ∼
Binomialp,n.

Inductive case n > 0. The computation of Ep,n proceeds
as follows:

sample x from binomialp (n− 1) in
sample b from bernoullip in
if b then 1 + x else x @ R∞

1

⇒∗ sample x from prob xp,n−1 in
sample b from bernoullip in
if b then 1 + x else x @ R∞

i

⇒∗ sample b from prob bp in
if b then 1 + xp,n−1 else xp,n−1 @ R∞

i+1

⇒∗ 1 + xp,n−1 @ R∞
i+1 if bp = True;

xp,n−1 @ R∞
i+1 otherwise.

By induction hypothesis, binomialp (n− 1) generates a sam-
ple xp,n−1 from Binomialp,n−1 after consuming R1 · · ·Ri−1

for some i (which is actually n). Since Ri is an independent
random variable, bernoullip generates a sample bp that is
independent of xp,n−1. Then we obtain an outcome k with
the probability of

bp = True and xp,n−1 = k − 1 or
bp = False and xp,n−1 = k,

which is equal to
p ∗ Binomialp,n−1(k − 1) + (1.0− p) ∗ Binomialp,n−1(k)

= Binomialp,n(k).
Thus we have Ep,n ∼ Binomialp,n.

As a final example, we show that geometric rec p de-
notes a geometric distribution with parameter p. Suppose
geometric 7→∗ prob E and E ∼ Prob. The computation of
E proceeds as follows:

E @ R∞
1

⇒∗ sample b from prob bp in
eif b then 0
else sample x from geometric in

1 + x
@ R∞

2

⇒∗ 0 @ R∞
2 if bp = True;

sample x from prob E in 1 + x @ R∞
2 otherwise.

The first case happens with probability p and we get Prob(0) =
p. In the second case, we compute the same expression E
with sampling sequence R∞

2 . Since all random variables
are independent, R∞

2 can be thought of as a fresh sequence
of random variables. Therefore the computation of E with
sampling sequence R∞

2 returns samples from the same prob-
ability distribution Prob and we get Prob(1 + k) = (1.0 −
p) ∗ Prob(k). Solving the two equations, we get Prob(k) =
p ∗ (1.0 − p)k−1, which is the probability mass function for
a geometric distribution with parameter p.

The above approach can be thought of as an adaption of
the method established in simulation theory [2]. An alter-
native approach would be to develop a denotational seman-
tics. For instance, if we ignore fixed point constructs, it
is straightforward to translate expressions into probability
measures because probability measures form a monad [6, 26]
and expressions already follow a monadic syntax.2 In prac-
tice, however, the translation does not immediately reveal
the probability measure corresponding to a given expression
and we have to go through essentially the same analysis as
in the above approach. Ultimately we have to invert a sam-
pling function represented by a given expression (because
an event is assigned a probability proportional to the size of
its inverse image under the sampling function), but this is
difficult to do in a mechanical way in the presence of various
operators. Therefore it seems to be reasonable to analyze
each expression individually as demonstrated in this section.

6. APPROXIMATE COMPUTATION IN λ©

We have explored both how to encode probability distri-
butions in λ© and how to interpret λ© in terms of proba-
bility distributions. In this section, we discuss another im-
portant aspect of probabilistic languages: reasoning about
probability distributions.

The expressive power of a probabilistic language is an im-
portant factor affecting its practicality. Another important
factor is its support for reasoning about probability distri-
butions to determine their properties. In other words, it is
important not only to be able to encode various probability
distributions but also to be able to determine their prop-
erties such as means, variances, and probabilities of specific
events. Unfortunately λ©does not support precise reasoning
about probability distributions. That is, it does not permit
a precise implementation of queries on probability distribu-
tions. Intuitively we must be able to calculate probabilities
of specific events, but this is essentially inverting sampling
functions.

Given that we cannot hope for precise reasoning in λ©,
we choose to support approximate reasoning by the Monte
Carlo method [13]. It approximately answers a query on
a probability distribution by generating a large number of
samples and then analyzing them. For instance, in the
belief network example in Section 4, we can approximate
pMary calls|John calls by generating a large number of samples
and counting the number of True’s. Although the Monte
Carlo method gives only an approximate answer, its accu-
racy improves with the number of samples. Moreover it can
be applied to all kinds of probability distributions and is
therefore particularly suitable for λ©.
2In the presence of fixed point constructs, expressions should
be translated into a domain-theoretic structure because of
recursive equations. While the work by Jones [10] suggests
that such a structure could be constructed from a domain-
theoretic model of real numbers, we have not investigated
in this direction.



In this section, we apply the Monte Carlo method to an
implementation of the expectation query. We also show how
to exploit the Monte Carlo method in implementing the
Bayes operation. Then we briefly describe our implemen-
tation of λ©.

6.1 Expectation query
Among common queries on probability distributions, the

most important is the expectation query. The expectation
of a function f with respect to a probability distribution P
is the mean of f over P , which we write as

∫
fdP . Other

queries may be derived as special cases of the expectation
query. For instance, the mean of a probability distribution
over real numbers is the expectation of an identity function.

The Monte Carlo method states that we can approximate∫
fdP with a set of samples V1, · · · , Vn from P :

lim
n→∞

f(V1) + · · ·+ f(Vn)

n
=

∫
fdP

We introduce a term construct expectation which exploits
the above equation:

term M ::= · · · | expectation Mf MP

Γ ` Mf : A→ real Γ ` MP : ©A

Γ ` expectation Mf MP : real
Exp

Mf 7→∗ f MP 7→∗ prob EP

EP @ si ⇒∗ Vi @ s′i f Vi 7→∗ vi 1 ≤ i ≤ n

expectation Mf MP 7→R

∑
i vi

n

ExpR

The rule ExpR says that if Mf evaluates to a lambda ab-
straction denoting f and MP evaluates to a probability term
denoting P , then expectation Mf MP reduces to an approxi-
mation of

∫
fdP . A runtime variable n specifies the number

of samples to be generated from P . The runtime system
initializes sampling sequence si to generate sample Vi.

A problem with the above definition is that although
expectation is a term construct, its reduction is probabilis-
tic because of sampling sequence si in the rule ExpR. This
violates the principle that a term evaluation is always de-
terministic, and now the same term may evaluate to differ-
ent values if it contains expectation. In practice, however,
this is acceptable because λ© is intended to be embedded in
Objective CAML in which side-effects are already allowed
for terms. Besides, mathematically the expectation of a
function with respect to a probability distribution is always
unique (if it exists).3

Now we can calculate pMary calls|John calls as
expectation (λx :bool. if x then 1.0 else 0.0) QMary calls|John calls .

6.2 Bayes operation
The previous implementation of the Bayes operation P ] Q

assumes that we have a function p and a constant c such
that p(x) = kP (x) ≤ c for a certain constant k. It is, how-
ever, often difficult to find the optimal value of c (i.e., the
maximum value of p(x)) and we have to take a conserva-
tive estimate of c. The Monte Carlo method, in conjunction
with importance sampling [13], allows us to dispense with c
by approximating Q with a set of samples and P ] Q with
a set of weighted samples. We introduce a term construct

3We define expectation as a term construct only for prag-
matic reasons. For instance, examples in Section 7 become
much more complicated if expectation is defined as an ex-
pression construct.

bayes for the Bayes operation and an expression construct
importance for importance sampling:

term M ::= · · · | bayes Mp MQ

expression E ::= · · · | importance {(Vi, wi)|1 ≤ i ≤ n}

In the spirit of data abstraction, importance represents only
an internal data structure and is not directly available to
the programmer.

Γ ` Mp : A→ real Γ ` MQ : ©A

Γ ` bayes Mp MQ : ©A
Bayes

Γ ` Vi : A Γ ` wi : real 1 ≤ i ≤ n

Γ ` importance {(Vi, wi)|1 ≤ i ≤ n} ÷A
Imp

Mp 7→∗ p MQ 7→∗ prob EQ

EQ @ si ⇒∗ Vi @ s′i p Vi 7→∗ wi 1 ≤ i ≤ n

bayes Mp MQ 7→R

prob importance {(Vi, wi)|1 ≤ i ≤ n}

BayesR

∑k−1
i=1 wi

S
< r ≤

∑k
i=1 wi

S
where S =

∑n
i=1 wi

importance {(Vi, wi)|1 ≤ i ≤ n} @ rs⇒R Vk @ s
ImpR

The rule BayesR approximates Q with n samples V1, · · · , Vn,
where n is a runtime variable as in the rule ExpR. Then
it applies p to each sample Vi to calculates its weight wi

and creates a set {(Vi, wi)|1 ≤ i ≤ n} of weighted samples
as an argument to importance. The rule ImpR implements
importance sampling: we use a random number r to prob-
abilistically select a sample Vk by taking into account the
weights associated with all the samples.

As with expectation, we decide to define bayes as a term
construct despite the fact that its reduction is probabilis-
tic. The decision also conforms to our intuition that math-
ematically the result of the Bayes operation between two
probability distributions is always unique.

6.3 Implementation ofλ©

We have implemented λ© by extending the syntax of Ob-
jective CAML. The runtime system uses a global random
number generator for all sampling sequences. Hence it gen-
erates fresh random numbers whenever it needs to compute
sampling expressions, without explicitly initializing sampling
sequences. The runtime system also allows the program-
mer to change the runtime variable n in the rules ExpR and
BayesR, both of which invoke expression computations dur-
ing term evaluations. Thus the programmer can control the
accuracy in approximating probability distributions.

7. APPLICATIONS
In this section, we present three applications of λ© in

robotics: robot localization, people tracking, and robotic
mapping. The goal is to estimate the state of a robot from
sensor readings, where the definition of state differs in each
case. In order to cope with uncertainty in sensor readings
(due to limitations of sensors and noises from the environ-
ment), we estimate the state with a probability distribution.
We use a Bayes filter as a framework for updating the prob-
ability distribution.

There are two kinds of sensor readings: action and mea-
surement. As in a Bayes filter, an action induces a state
change whereas a measurement gives information on the
state. An action is represented as an odometry reading
which returns the pose (i.e., position and orientation) of the
robot relative to its initial pose. A measurement includes



range readings which return distances to objects at certain
angles.

We first consider robot localization, since it directly im-
plements update equations (1) and (2) in Section 2.

7.1 Robot localization
Robot localization [29] is the problem of estimating the

pose of a robot when a map of the environment is available.
If the initial pose is given, the problem becomes pose track-
ing which keeps track of the robot pose by compensating
errors in sensor readings. If the initial pose is not given, the
problem becomes global localization which begins with mul-
tiple hypotheses on the robot pose (and is therefore more
difficult than pose tracking).

We consider robot localization under the assumption that
the environment is static. This assumption allows us to use
a Bayes filter over the robot pose. Specifically the state
in the Bayes filter is the robot pose s = (x, y, θ), and we
estimate s with a probability distribution Bel(s) over three-
dimensional real space. We compute Bel(s) according to
update equations (1) and (2) with the following interpreta-
tion:

• A(s|a, s′) is the probability that the robot moves to
pose s after taking action a in another pose s′. A is
called an action model.

• P(m|s) is the probability that measurement m is taken
at pose s. P is called a perception model.

Given an action a and a pose s′, we can generate a new
pose s from A(·|a, s′) by adding a noise to a and applying
it to s′. Given a measurement m and a pose s, we can also
compute κP(m|s) where κ is an unknown constant: the map
determines a unique measurement ms for the pose s, and
the difference between m and ms is proportional to P(m|s).
Then, if MA denotes conditional probability A and MP m
returns a function f(s) = κP(m|s), we can implement up-
date equations (1) and (2) as follows:

let Belnew = prob sample s′ from Bel in
sample s from MA (a, s′) in
s

 (1)

let Belnew = bayes (MP m) Bel } (2)

Now we can implement pose tracking or global localiza-
tion by specifying an initial probability distribution of robot
pose. In the case of pose tracking, it is usually a point-mass
distribution or a Gaussian distribution; in the case of global
localization, it is usually a uniform distribution over the
open space in the map.

7.2 People tracking
People tracking [20] is an extension of robot localization

in that it estimates not only the robot pose but also the
positions of people (or unmapped objects). As in robot lo-
calization, the robot can take an action to change its pose.
Unlike in robot localization, however, the robot must catego-
rize sensor readings in a measurement by deciding whether
they are caused by objects in the map or by people. Those
sensor readings that correspond with objects in the map are
used to update the robot pose; the rest of sensor readings
are used to update the positions of people.

A simple approach is to maintain a probability distribu-
tion Bel(s, ~u) of robot pose s and positions ~u of people.
While it works well for pose tracking, this approach is not a

general solution for global localization. The reason is that
sensor readings from people are correctly interpreted only
with a correct hypothesis on the robot pose, but during
global localization, there may be multiple incorrect hypothe-
ses that lead to incorrect interpretation of those sensor read-
ings. This means that during global localization, there exists
a dependence between the robot pose and the positions of
people, which is not captured by Bel(s, ~u).

Hence we maintain a probability distribution Bel(s, Ps(~u))
of robot pose s and probability distribution Ps(~u) of positions
~u of people conditioned on robot pose s. Ps(~u) captures the
dependence between the robot pose and the positions of peo-
ple. Bel(s, Ps(~u)) can be thought of as a probability distri-
bution over probability distributions.

As in robot localization, we update Bel(s, Ps(~u)) with a
Bayes filter. The difference from robot localization is that
the state is a pair of s and Ps(~u) and that the action model
takes as input both an action a and a measurement m. We
use update equations (3) and (4) in Figure 2 (which are
obtained by replacing s by s, Ps(~u) and a by a, m in update
equations (1) and (2)).

The action model A(s, Ps(~u)|a, m, s′, Ps′(~u′)) requires us

to generate s, Ps(~u) from s′, Ps′(~u′) utilizing action a and
measurement m. We generate first s and next Ps(~u) accord-
ing to equation (5) in Figure 2. We write the first Prob in

equation (5) as Arobot(s|a, m, s′, Ps′(~u′)). The second Prob
in equation (5) indicates that we have to generate Ps(~u)

from Ps′(~u′) utilizing action a and measurement m, which
is exactly a situation where we can use another Bayes fil-
ter. For this inner Bayes filter, we use update equations
(6) and (7) in Figure 2. We write Prob in equation (6) as

Apeople(~u|a, ~u′, s, s′); we simplify Prob in equation (7) into
Prob(m|~u, s) because m does not depend on s′ given s, and
write it as Ppeople(m|~u, s).

Figure 3 shows the implementation of people tracking
in λ©. MArobot and MApeople denote conditional probabili-
ties Arobot and Apeople, respectively. MPpeople m s returns a
function f(~u) = κPpeople(m|~u, s) for a constant κ. In im-
plementing update equation (4), we exploit the fact that
P(m|s, Ps(~u)) is the expectation of a function
g(~u) = Ppeople(m|~u, s) with respect to Ps(~u):

P(m|s, Ps(~u)) =
∫
Ppeople(m|~u, s)Ps(~u)d~u

We can further simplify the models used in the update
equations. For instance, we can use Arobot(s|a, s′) instead

of Arobot(s|a, m, s′, Ps′(~u′)) as in robot localization. In our

implementation, we use Apeople(~u|~u′) on the assumption that
the positions of people are not affected by the robot pose.

7.3 Robotic mapping
Robotic mapping [31] is the problem of building a map

(or a spatial model) of the environment from sensor read-
ings. Since measurements are a sequence of inaccurate local
snapshots of the environment, a robot must simultaneously
localize itself as it explores the environment so that it can
correct and align the local snapshots to construct a global
map. For this reason, robotic mapping is also referred to
as simultaneous localization and mapping (or SLAM). It is
one of the most difficult problems in robotics, and is under
active research.

We assume that the environment consists of an unknown
number of stationary landmarks. Then the goal is to esti-
mate the positions of landmarks as well as the robot pose.



Bel(s, Ps(~u)) ←
∫
A(s, Ps(~u)|a, m, s′, Ps′(~u′))Bel(s′, Ps′(~u′))d(s′, Ps′(~u′)) (3)

Bel(s, Ps(~u)) ← ηP(m|s, Ps(~u))Bel(s, Ps(~u)) (4)

A(s, Ps(~u)|a, m, s′, Ps′(~u′)) = Prob(s|a, m, s′, Ps′(~u′)) Prob(Ps(~u)|a, m, s′, Ps′(~u′), s) (5)

= Arobot(s|a, m, s′, Ps′(~u′)) Prob(Ps(~u)|a, m, s′, Ps′(~u′), s)

Ps(~u) ←
∫
Prob(~u|a, ~u′, s, s′)Ps′(~u′)d~u′ =

∫
Apeople(~u|a, ~u′, s, s′)Ps′(~u′)d~u′ (6)

Ps(~u) ← η′Prob(m|~u, s, s′)Ps(~u) = η′Ppeople(m|~u, s)Ps(~u) (7)

Figure 2: Equations used in people tracking. (3) and (4) for the Bayes filter computing Bel(s, Ps(~u)). (5) for
decomposing the action model. (6) and (7) for the inner Bayes filter computing Ps(~u).

let Belnew = prob sample (s′, Ps′(~u′)) from Bel in

sample s from MArobot (a, m, s′, Ps′(~u′)) in

let Ps(~u) = prob sample ~u′ from Ps′(~u′) in

sample ~u from MApeople (a, ~u′, s, s′) in
~u

 (6)

in
let Ps(~u) = bayes (MPpeople m s) Ps(~u) in } (7)
(s, Ps(~u))


(5)


(3)

let Belnew = bayes λ(s, Ps(~u)) : . (expectation (MPpeople m s) Ps(~u)) Bel } (4)

Figure 3: Implementation of people tracking in λ©. Numbers on the right-hand side show corresponding
equations in Figure 2.

The key observation is that we can think of landmarks as
people who never move in an empty environment. It means
that the problem is a special case of people tracking and we
can use all the equations in Figure 2. Below we use subscript

landmark instead of people for the sake of clarity.
As in people tracking, we maintain a probability distribu-

tion Bel(s, Ps(~u)) of robot pose s and probability distribu-
tion Ps(~u) of positions ~u of landmarks conditioned on robot
pose s. Since landmarks are stationary and
Alandmark(~u|a, ~u′, s, s′) is non-zero if and only if ~u = ~u′, we
can skip update equation (6) in implementing update equa-

tion (3). Arobot in equation (5) can use Plandmark(m|~u′, s) to
test the likelihood of each new robot pose s with respect to
old positions ~u′ of landmarks, as in FastSLAM 2.0 [19]:

Arobot(s|a, m, s′, Ps′(~u′)) (8)

=
∫
Prob(s|a, m, s′, u′)Ps′(~u′)d~u′

=

∫
Prob(s|a, ~u′)Prob(m, s′|s, a, ~u′)

Prob(m, s′|a, ~u′)
Ps′(~u′)d~u′

=
∫

η′′Prob(m, s′|s, a, ~u′)Ps′(~u′)d~u′

where η′′ =
Prob(s|a, ~u′)

Prob(m, s′|a, ~u′)

=
∫

η′′Prob(s′|s, a, ~u′, m)Prob(m|s, a, ~u′)Ps′(~u′)d~u′

=
∫

η′′Prob(s′|s, a)Prob(m|s, ~u′)Ps′(~u′)d~u′

= η′′Arobot(s|a, s′)
∫
Plandmark(m|~u′, s)Ps′(~u′)d~u′

Given a and s′, we implement the above equation with a
Bayes operation on Arobot(·|a, s′).

Figure 4 shows the implementation of robotic mapping in
λ©. MArobot and MPlandmark are interpreted in the same way
as in people tracking. Since landmarks are stationary, we
no longer need MAlandmark .

7.4 Experimental results
We have implemented the above three systems in λ©. To

test the robot localizer and the people tracker, we use a mo-
bile robot Nomad XR4000 in Wean Hall at Carnegie Mellon
University. We use CARMEN [18] for controlling the robot
and collecting sensor readings. To test the mapper, we use
the a data set collected with an outdoor vehicle in Victo-
ria Park, Sydney [1]. All the systems run on Pentium III
500Mhz with 384 MBytes memory.

We test the robot localizer for global localization with 8
runs in Wean Hall (each run takes a different path). For
an initial probability distribution of robot pose, we use a
uniform distribution over the open space in the map. In a
test experiment, it succeeds to localize the robot on 5 runs
and fails on 3 runs. As a comparison, the CARMEN robot
localizer, which uses particle filters, succeeds on 3 runs and
fails on 5 runs.

The people tracker uses the implementation in Figure 3
during global localization, but once it succeeds to localize
the robot and starts pose tracking, it maintains an indepen-
dent probability distribution for each person in sight (be-
cause there is no longer a dependence between the robot
pose and the positions of people).

We test the mapper with a data set in which the vehicle
moves approximately 323.42 meters (according to the odom-
etry readings) in 128.8 seconds. Since the vehicle is driving
over uneven terrain, raw odometry readings are noisy and
do not reflect the true path of the vehicle, in particular when
the vehicle follows a loop. The mapper successfully closes
the loop, building a map of the landmarks around the path.
The experiment takes 145.89 seconds.

Our finding is that the benefit of implementing probabilis-
tic computations in λ©, such as readability and conciseness
of code, outweighs its disadvantage in speed. As a com-
parison (although not particularly meaningful), our robot



let Belnew =

prob sample (s′, Ps′(~u′)) from Bel in

sample s from bayes λs : . (expectation (MPlandmark m s) Ps′(~u′)) (MArobot (a, s′)) in } (8)
let Ps(~u) = bayes (MPlandmark m s) Ps(~u) in } (7)
(s, Ps(~u))

 (5)

 (3)

let Belnew = bayes λ(s, Ps(~u)) : . (expectation (MPlandmark m s) Ps(~u)) Bel } (4)

Figure 4: Implementation of robotic mapping in λ©. Compared with the implementation in Figure 3, it omits
equation (6) and uses equation (8).

localizer is 1349 lines long (868 lines of Objective CAML
code and 481 lines of C code), and the CARMEN robot lo-
calizer, written in C, is 3397 lines long. The speed loss is
also not significant. For instance, while the CARMEN robot
localizer processes 100.0 sensor readings, our robot localizer
processes on average 54.6 sensor readings (and nevertheless
shows comparable accuracy).

8. RELATED WORK
There are a number of probabilistic languages that focus

on discrete distributions. Such a language usually provides
a probabilistic construct that is equivalent to a binary choice
construct. Saheb-Djahromi [28] presents a probabilistic lan-
guage with a binary choice construct (p1 → e1, p2 → e2)
where p1 + p2 = 1.0. Koller, McAllester, and Pfeffer [11]
present a first order functional language with a coin toss
construct flip(p). Pfeffer [23] generalizes the coin toss con-
struct to a multiple choice construct dist [p1 : e1, · · · , pn : en]
where

∑
i pi = 1.0. Gupta, Jagadeesan, and Panangaden [7]

present a stochastic concurrent constraint language with a
probabilistic choice construct choose x from Dom in e where
Dom is a finite set of real numbers. All these constructs, al-
though in different forms, are equivalent to a binary choice
construct and have the same expressive power.

An easy way to compute a binary choice construct (or
an equivalent) is to generate a sample from the probability
distribution it denotes, as in the above probabilistic lan-
guages. Another way is to return an accurate representa-
tion of the probability distribution itself, by enumerating
all elements in its support along with their probabilities.
Pless and Luger [25] present an extended lambda calculus
which uses a probabilistic construct of the form

∑
i ei : pi

where
∑

i pi = 1.0. An expression denoting a probability
distribution computes to a normal form

∑
i vi : pi, which

is an accurate representation of the probability distribution.
Jones [10] presents a metalanguage with a binary choice con-
struct e1 orp e2. Its operational semantics uses a judgment
e ⇒

∑
pivi. Mogensen [15] presents a language for speci-

fying die-rolls. Its denotation semantics (called probability
semantics) is formulated in a similar style, directly in terms
of probability measures.

Jones and Mogensen also provide an equivalent of a fixed
point construct which enables programmers to specify dis-
crete distributions with infinite support (e.g., geometric dis-
tribution). Such a probability distribution is, however, dif-
ficult to represent accurately because of an infinite number
of elements in its support. For this reason, Jones assumes∑

pi ≤ 1.0 in the judgment e⇒
∑

pivi and Mogensen uses
partial probability distributions in which the sum of proba-
bilities may be less than 1.0. The intuition is that we allow
only a finite recursion depth so that we can omit some ele-
ments in the enumeration.

There are a few probabilistic languages supporting con-
tinuous distributions. Kozen [12] investigates the seman-
tics of probabilistic while programs. A random assignment
x := random assigns a random number to variable x. Since
it does not assume a specific probability distribution for the
random number generator, the language serves only as a
framework for probabilistic languages. The third author [30]
extends C++ with probabilistic data types which are cre-
ated from a template prob<type>. Although the language
supports common continuous distributions, its semantics is
not formally defined. The first author [21] presents a proba-
bilistic calculus whose mathematical basis is sampling func-
tions. In order to encode sampling functions directly, the
calculus uses a sampling construct γ�e where γ is a formal
argument and e denotes the body of a sampling function.
As in λ©, the computation of γ�e proceeds by generating a
random number from U(0.0, 1.0] and substituting it for γ in
e.

The idea of using a monadic syntax in λ© was inspired by
Ramsey and Pfeffer [26]. They present a stochastic lambda
calculus (with a binary choice construct choose p e1 e2)
whose denotational semantics is based upon the monad of
probability measures, or the probability monad [6]. In im-
plementing a query for generating samples from probabil-
ity distributions, they note that the probability monad can
also be interpreted in terms of sampling functions, both de-
notationally and operationally. In designing λ©, we take
the opposite approach: first we use a monadic syntax for
probabilistic computations and relate it directly to sampling
functions; then we interpret it in terms of probability distri-
butions.

9. CONCLUSION AND FUTURE WORK
We have presented a probabilistic language λ©whose math-

ematical basis is sampling functions. λ© supports all kinds
of probability distributions without drawing a syntactic or
semantic distinction. We have demonstrated the practical-
ity of λ© with three applications in robotics. To the best of
our knowledge, λ© is the only probabilistic language with
a formal semantics that has been applied to real problems
involving continuous distributions. There are a few other
probabilistic languages that are capable of simulating con-
tinuous distributions (by combining an infinite number of
discrete distributions), but they require a special treatment
such as the lazy evaluation strategy in [11, 23] and the lim-
iting process in [7].

λ© does not support precise reasoning about probability
distributions. Note, however, that this is not an inherent
weakness of λ© due to its use of sampling functions as the
mathematical basis; rather this is a necessary feature of λ©
because precise reasoning about probability distributions is
impossible in general. In other words, if λ© supported pre-



cise reasoning, it could support only a small number of prob-
ability distributions and operations on them.

The utility of a probabilistic language depends on each
problem to which it is applied. λ© is a good choice for
those problems in which all kinds of probability distribu-
tions are used or precise reasoning is unnecessary. Robotics
is a good example, since all kinds of probability distribu-
tions are used (even those probability distributions similar
to point uniform in Section 4 are used in modeling laser
range finders) and also precise reasoning is unnecessary (sen-
sor readings are inaccurate at any rate). On the other hand,
λ© may not be the best choice for those problems involv-
ing only discrete distributions, since its rich expressiveness
is not fully exploited and approximate reasoning may be too
weak for discrete distributions.

We are investigating how to generate a large number of
samples quickly, which is important for improving accuracy
of approximate reasoning in λ©. For instance, instead of
computing a given expression repeatedly (as in the current
implementation of λ©), we could run through it only once
by performing multiple, either independent or correlated,
computations simultaneously.
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