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Abstract 1 Introduction

Ordered type theory is an extension of linear type theory in which High-level programming languages such as ML and Java allow pro-

variables in the context may be neither dropped nor re-ordered. Thisgrammers to program in terms of abstractions such as pairs, records,
restriction gives rise to a natural notionadjacencyWe show that and objects, which have well-defined semantics but whose realiza-
a language based on ordered types can use this property to give ations in terms of the underlying concrete machine are left unspeci-

exact account of the layout of data in memory. The fuse constructor fied and unobservable.

from ordered logic describes adjacency of values in memory, and
the mobility modal describes pointers into the heap. \Weose

a particular allocation model based on a common implementation
scheme for copying garbage collection and show how this permits
us to separate out the allocation and initialization of memory lo-

cations in such a way as to account for optimizations such as the
coalescing of multiple calls to the allocator.

Sometimes, it is necessary to program without these abstractions.

e A programmer may need to interact with an operating system
or a network or another programming language in such a way
asto require exact knowledge of, and control over, the manner
in which data is laid out in memory.

e A compiler must choose a concrete implementation for
the high-level abstractions provided by the source level
language—such as the actual layout of data in memory and
the manner in which such memory gets allocated and initial-
ized.

Categories and Subject Descriptors

D.3.1 [Programming Language$: Formal Definitions and The-
ory; D.3.3 Programming Language§: Language Constructs and
Features; D.3.4Hrogramming Language$: Processors-Som-
pilers, Memory management

Traditionally, both of these needs have been addressed in an un-
typed, or a weakly typed fashion. Languages such as C give pro-
grammers relatively precise control over data layout aitliza-

tion at the expense of type and memory safety. Traditional compil-
ers represent programs internally using un-typed languages, relying
on the correctness of the compiler to preserve any safety properties
enjoyed by the source program.

General Terms
Languages, Theory

Recently, research in the areas of typed compilation and certified
code [12, 21, 11] has focused on providing type systems for low-
level languages in which abstractions such as control flow and data
layoutare made explicit. These ideas have been used in a number of
compilers [12, 21, 9, 2, 19, 6]. However, some of the mechanisms
that have been invented to describe low-level operations are fairly
*This material is based on work supported in part by NSF grants ad hocand do not yet have an interpretation in standard type the-
CCR-9984812 and CCR-0121633. Any opinions, findings, and ory. For example, in the typed assembly language formalism[11],
conclusions or recommendations in this publication are those of the allocation and initialization can be separated, but at the expense of
authors and do not reflect the views of this agency. having to annotate each type with a flag indicating whether or not
the value it classifies has been initialized. This kind of low-level
technique seems unlikely to integrate well with a high-level pro-
gramming language.
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In this paper, we attempt to give a type theoretic account of data
layout that provides a foundation for defining how high-level con-
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tion of a copying garbage collector and show that we can separate
out the process of allocating a block of memory from the process
of initializing the individual memory words. Our system is flex-



. - 3 4 5 cally adjacentbytes in memory and which data is to be represented
via anindirectioninto another portion of memory. This is the first
notion that we shall attempt to capture in our type system.

2.1 Allocation

Once the layout of data in memory has been made explicit, it be-

3 4 > comes possible to consider the process by which new memory is
created and initialized. Weuggest that it is useful to think of this
in terms of three stages, regardless of the mechanism employed.
3 ——=1 3|45 - . o
Reservation is the process by which a new block of uninitialized

Figure 1. Three possible layouts for the term(3, (4,5)) memory is created.

Initialization is the process by which values get written into the
reserved memory, potentially changingits type. Itis important

ible enough to permit nitiple allocation calls to be coalesced so for type safety that either the memory be treated linearly in

that memory for multiple source level objects can be allocated si- this stage, or else that the initialization operations be such that
multaneously, while ensuring that calls to the allocator can never they onlyrefinethe type [3].
invalidate assumptions made about the state of partiatialimed Allocation is the process by which a section of reserved (and pre-
data. sumably initialized) memory is made available as an ordinary
unrestricted object.
An important contribution of this work is that it remains completely ) )
within the framework of a lambda calculus which enjoys the stan- Different memory-management systems combine these stages in
dard meta-theoretic properties. In this way, we reconcile the very different ways. For example, in the TAL framework [11], reser-
low-level notion of allocated memory with the substitution proper- Vvation and allocation are done atomically, and hendlization
ties expected of a high-level programming language. This is of par- iS very restricted in how it can change the type.
ticular interest because it suggests the palityilthat these ideas
could be made available to programmers, so that even programsT he concrete memory management system that we choose to model
requiring detailed control of memory layout could betten in a is one commonly used in practice by copying garbage collectors
typed, high-level language. and hence is of particular interest. This choice is not essential—
other systems can be expressed using similar techniques to those
. we present here.
2 Data layout and allocation
In a copying garbage collector, the available memory can be divided
Specifying the layout of data in memory is an essential part of real- into two adjacent contiguous sections: a heap containing data that
izing a high-level program as a concrete collection of machine in- has been allocated since the last garbage collection (or perhaps just
structions and data, but one which is usually not of direct interest to the youngest generation thereof), and a possibly empty freespace
programmers. The programmer cares about tli#¢yatm construct containing memory that has not yet been allocated. The allocator
objects, but most of the time cares about the layoutin memory only maintains amllocation pointer(or freespace pointgrwhich points
insofar as it affects the performance of operations on an object.  to the end of the allocated data and the start of the free memory, and
aheap-limit pointey which points to the end of the free memory.
How terms should be laid out in memory is therefore a matter of
policy for the compiler writer. For example, the lambda calculus To create a new heap object requiringytes, the program first
term(3,(4,5)) of typeint x (int x int) defines a pair whose first ~ compares the allocation pointer to the heap-limit pointer to ensure
elementis3 and whose second element is a pair contaidiagd5. that there are at leastbytes available in the freespace. If not, it
Figure 1 shows several possible representations for this term. Onecalls the garbage collector to free up enough space. This step cor-
compiler might choose to represent this as a pointer to a pair, whoseresponds to the reservation phase discussed above. Once sufficient
elements are an integer and a pointer to another pair. However,memory has been found—either in the existing freespace or by call-
another might choose to add an indirection to integers, or to attempting the garbage collector—the program may assumeithgtes of
to flatten the whole term into three adjacent cells in memory. free space exist in front of the allocation pointer. We refer to this
initialized area as thiontier.
The high level notion of pairing captures certain operational proper-
ties that are useful to the programmer, but does not uniquely specifyOnce space has been reserved on the frontier, values can be written
an implementation strategy. Commonly, a compiler simply chooses into the individual cells of memory via offsets from the allocation
to interpret the pair type as meaning one particular strategy. For thepointer. This corresponds to thetialization phase.
purposes of giving a general account of data layout, this is clearly
unsatisfactory as it does not permit us to break the high-level con- At any point, the program may “move” a prefix of the frontier into
ceptinto its constituent concepts. the heap. The value of the allocation pointer becomes the pointer to
the new heap value, and the allocation pointer is advanced past the
A first step to a more general type theory for data layout is to ob- allocated space. This corresponds to the allocation phase.
serve that there seem to be two key concepts used by the different
interpretations of pairing given in figure 1: adjacency and indirec- Figure 2 gives an example of this process. The first line shows a
tion. Each of the different choices of representation corresponds to schematic diagram of the heap and the freespace, where a.p. stands
a different choice as to which data is to be representephygi- for the allocation pointer and l.p. stands for the limit pointer. The
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Figure 2. Reservation, initialization, and allocation of(3,(4,5))

ragged boundary of the freespace indicates that we have no infor-This corresponds to a kind of destructive effect: the state of the
mation about its extent—it may potentially be exhausted. frontier cannot be assumed to be preserved across the evaluation
of any term that could potentially call the allocator. The type sys-
The second line of the figure shows the result of reserving four tem must therefore ensure that no assumptions about the state of
words of space—sufficient for allocating the te(8)(4,5)) using the frontier can persist across the evaluation of any term that might
the first layout strategy from Figure 1. We refer to the individual reserve or allocate memory.
cells of the frontier by the namesb,c andd. Note that this step
may have invoked the garbage collector to free up more memory if
the freespace from the previously line was in fact exhausted.

3 Ordered linear type theory

Ordered (or non-commutative) linear logic is a variant of standard
linear logic in which hypotheses must not only be used exactly
once, but must also be used in order [17, 16, 18, 15]. The corre-
sponding proof terms make up an ordered lambda calculus that is
characterized by the lack of an exchange property for the ordered
context in addition to the usual linearity restrictions. We present
a small fragment of the ordered lambda calculus by way of intro-

As this example shows, we do not require that the entire frontier be duction to the these ideas. The presentation here is simpler than

allocated as a single object. The program may choose to reservd?revious work, in that it omits the linear context, retaining only the
space for several objects at once and then initialize and allocateOrdered and unrestricted contexts. The modal therefore moves di-

them individually. This optimization avoids multiple checks against "€Ctly from the ordered terms to unresricted terms.
the heap-limit pointer.

To create the paif4,5) we assigrt to a, 5 to b, and then allocate

a andb into the heap getting back a heap pointars shown on the
third line of the figure. We can then initialize the top-level pair by
writing 3 to ¢ andx to d. A final allocation step gives us a pointer
y which refers to a heap allocated structure of the form pictured in
the first line of Figure 1.

Typing rules for the ordered lambda calculus have the for -

))\/I :1, indicating that theM has typet under the variable assump-
tions declared in the unrestricted conté€xand the ordered con-
text Q. We distinguish syntactically between ordered varialles
which must be used linearly and in order, and unrestricted variables
x which may be used arbitrarily often.

There are two constraints on this process that must be captured b
our type system to ensure safety.

Firstly, the mannerin which we “move” objects into the heap means
that objects cannot be allocated from the middle or end of the fron-
tier. Only prefixes of the frontier—that is, contiguous blocks of
memory adjacent to the allocation pointe—may be allocated.

Matka:t rxtlM Fxt

Secondly, reserved space in the frontier cannot persist across suc-
cessive reservations nor across function calls. When the garbageynlike standard linear type theory, the ordered comma operator
collector is called it will copy the live data to a new heap and change Q1,Q5 is interpreted as simple list concatenation and does not per-

the allocation pointer to point to this new location. Any partially  mit the intermingling of hypotheses. Where unambiguous, we write
initialized data that was previously in the frontier will be lostinthe a1 instead ofa:t, - for singleton contexts.

process.
def (OF} if Q1=-
(Q1,0Q2) = { ar,(Q),Qp) if Q1 =art,Q)



3. The! modality takes an ordered term whose location is fixed

to |7 Tlf: T :Jnrtllregsetrriscted arrow and moves it into _the unrestricted context, where its location
| TieT2 ordered multiplicative become indeterminate.
|t modal type Based on these observations, we propose the following three intu-
o _ |a1.0 ordered contexts itions as the basis for our system.
r = -|xt,l unrestricted contexts 1. Anordered context may be thought of as describing a particu-
lar region of memory under consideration. Ordered variables
M = a ordered variables correspond to locations, or offsets into the region. Adjacent
X unrestricted variables variables in the context correspond to physically adjacent lo-
n integer literals cations, with extents given by the types of the variables.
MeM fuse intro . .
letajeay=MinM fuse elim 2. Th_e fuse constructag e T describesterms that are physically
A(xT).E lambda intro adjacentin memory. The fact that we cannot reorder ordered
MM lambda elim terms corresponds naturally to the fact that we cannot reorder
'M modal intro bytes in memory.
let!X=MinM modal elim 3. The! modality! T corresponds to an indirection out of the re-
gion of memory described by the ordered context into another
Figure 3. Standard ordered lambda calculus syntax (unspecified) part of the heap.

The standard ordered lambda calculus does not entirely justify these
eintuitions. Ordered terms preserve theler of sub-components,

but they do not in general preserve thadjacency The essence of

this problem can be seen in the derived ordered substitution princi-

This definition means that concatenation of contexts preserves th
order of the entries in the contexts.

The multiplicative onnective (fuse) demonstrates a use of this con- ple.
catenation Operator. r’ QFM:T r’ lea:LQZ EM T
MQiEM1:T1 Qo Mo:iTo rQ,Q,0,Fleta=MinM 7
MQ1,QFMieMo:T1eT) Notice that the portion of the ordered context that is passed to the

o o term being bound is replaced with the variable itself when type-
The elimination rule for fuse splits it into cqronents and places  checking the rest of the body. Our intention is that operations such
them in the ordered context. Notice that the variables representingas this should be done in-place on the memory described by the or-
the components d¥l; go into the ordered context in place@f dered context. However, the following term demonstrates that this

does not hold in the general ordered lambda calculus.
MQFMi:T1eTy [M5;Qp,a1:T1,a2:T2,QrE M2 T

. s . . oot
[QL.Q.0rF letaeap — MyinMy:T IM-F3:int M;Q,&int, QoM :T

rQ1,-,Qo k- leta=3inM': 7

Finally, the mobility modal permits terms that are orderedly closed The problem is that we are able to insert unrestricted terms into the
to be moved to the unrestricted context. ordered terms in arbitrary places. While this does not violate our
) . . ) - J notion that ordered variables correspond to locations, it does mean
r-FM:t MQFEM: It FLxT,QL,QrFM:T that these locations are not fixed. Operationally, it would seem that
FFIM:IT FQL,Q OrF let!x=MinM T we would be forced to shift all @, over in memory to make room
for the new term in the context.

3.1 Size preservation and adjacency An alternative way of looking at this is that the general ordered
lambda calculus is naize preserving the sub-derivatior -

There are three interesting observations that we can make abou: int produces a term of size one from a context of size zero.

ordered lambda calculus terms that motivate the application of or- If we interpret the ordered context as describing a region of mem-

dered type theory to data layout. ory, then the above term inserts a word-sized value into an empty
region of memory! In order to prevent such problematic terms, it
1. Because ordered variables may not exchangiigosn the is necessary to carefully restrict the calculus in such a way as to

context, we may think of ordered variables as simply standing ensure that operations on memory preserve size.

for locationsin the ordered context.

The notion of size preservation is the last insight necessary to for-

mulate a lambda calculus in which we can give a full account for

data layout. We will use the fuse type to describe adjacency and

the modal type to describe indirection, while restricting the terms

in such a way as to enforce various key size preservation properties.
let ajead, —ain ayedy The allocation model describedin section 2 will be accounted for by

using an ordered context to describe the frontier. Ordered variables
Viewed as a linear (rather than ordered) term, this code would then become offsets into the frontier, and reservation, initialization,
be well-typed. and allocation become operations on ordered terms. The linearity of

2. We may break ordered terms down into their components and
re-form them, but we may not change their order. In particu-
lar, the term that splits apart an ordered pair and reforms it in
the opposite order is not well-typed.



resent functions. Under closure conversion, lambdas become ex-

k Treg | Th . . s
B . istentially quantified records allocated on the heap, and hence are
! Hint[t—T2|TeT2 [IT[NS represented by a pointer of unit size. We assume that the actual
Q = al+|QeQ code for the function will be statically allocated.
— n . 1
\,\2 _ :;" ;1: ||Q|| ;\/(;(\:)|é(|)(|;[/)E v Ordered context§) map ordered variables to typest, and are
E — retM|MM|letx:T=E in E used to describe regions of memory (in particular, the frontier). The
| reservenas ain E | alloc Q as Xin E notion of sizing for types extends naturally to ordered contexts.
|Q:=M as ain E af [ O ifo—=.
i 191: a:8 in E |let aea=Q in E Q] = { +|Q] ifQ=at,Q
et *x=0Q in
|let! (xex)=M in E|let IX=M in E As before, exchanging, discarding, or duplicating variables in the
ordered context is not permitted.
r = |xT1,T
Q = -|arQ Unrestricted contexts map ordinary variablesto their types. The
() = |JamV,0 well-formedness judgement for unrestricted contexts checks that all
unrestricted variables have unit-sized types—that is, types whose
Figure 4. Syntax kind is T, Ordinary variables correspond to registers or stack slots

in the underlying machine, and so are restricted to have word size

via this kinding mechanism. This is a key point about the orderly
the ordered context will permit destructive operations on the fron- lambda calculus: all large objects are required to be explicitly allo-
tier (such as initialization), and the size preservation property will cated and initialized.

ensure that all operations on the frontier may be done in-place. . . .
The term level ofA° is split into four separate syntactic classes:

coercion term®), heap value¥, termsM andexpression&. The
main typing judgements are described in figure 5, along with com-
ments about the size properties which they enjoy. Complete defini-
tions of the typing rules can be found in appendix A.

4 The orderly lambda calculus

We now have all of the ideas that we need to define a language for
data layout and allocation, which we shall call tirelerly lambda
calculus or A for short. For the sake of brevity, this paper will

e Making allocation explicit introduces a kind of effect into the lan-
focus on a small core language that captures the essential ideas.

guage. Reserving and allocating memory is an effectful operation,
L g and as we saw in the previous section these effects may interfere.
The syntax of the core language is given in figure 4. We use the |, orger to control these effects and their interaction we introduce
notationt” for ann-ary fuse oft. a distinction between term¥l and expressionk in the style of

© - 1 Pfenning and Davies [14], but without an explicit modal type for
computations. (The computation type does not seem useful in our
setting since we do not have the inclusion of expressions into terms,
instead taking the partial arrow as primitive).
For data layout purposes, we only require a few new types from
the ordered lambda calculus: the fuse constructor which models The syntactic form we impose is not overly restrictive: it is actually
adjacency; the modal constructor, which models indirection; and related to, but more permissive than, the A-normal or CPS forms
the multiplicative unit. Other types include a base type of integers that many compilers typically use.
and the type of unrestricted functions. T (nonsense) type is
the type of a single un-initialized word of memory. 4.1 Terms

Tn+l — Tet"

Itis important for our purposes to distinguish between types which TermsM correspond to values that do not reserve or allocate in
are of unit size and hence can be kept in registers or on the stackinhe course of their evaluation, but that may contain free references
and other types that must be heap allocated. This is accomplishedq ordered variables (that is, to the frontier). In this presentation,
by a kinding distinctiort- T:k. The kindT,, classifies the types g terms are values—but it is straightforward and useful to include
of val_u_es which may be loaded into registers, wh_ereas thekind  other primitive operations that do not allocate (such as integer oper-
classifies types that may be heap-allocated (a strict super-set of theytions) at this level. The typing judgement for terms is of the form
former). I Q kM 1. The termM may refer to variables il arbitrarily

. . . . often, butmustrefer to each variable i@ exactly once, and in an
An important property of this language is that types uniquely deter- grqered fashion.

mine the size of the data they classify.

The typing rules for terms are for the most part unsurprising. For
the A-abstraction case, the body of the function is checked as an
expression, with the argument placed in the unrestricted context.

0 ft=1
[T1]+ 12| fT=T10T2
1 if t=11—Tp, int,NSor! T

def
It =

S !
For simplicity, the smallest unit of size we consider is a single ma- FXTQ R BT
chine word. The multiplicative unit type has size zero, since it is FOF ANXT).E'To1
inhabited by a single value which therefore does not need to be rep- 12 Fm ACXT)-E:
resented. We view the function type as having unit size, since we Notice that we permit free references to the frontier in functions.
expect that a practical implementation would use closures to rep- Since function application lies in the category of expressions, we




Judgement | Size properties Meaning

FQ Q is a well-formed ordered context.

T vxerl,[F(x)=1 I is a well-formed unrestricted context.

F1:k if k=T, then|t] =1 | Tis a well-formed type.

QF.,.Q:T Q=11 Q coercef to look likeT .

MOk M:T| 1]=1 M is a non-allocating/non-reserving term of type
MQF,EiT | 1=1 E is a well typed expression of tygewhich consume®.
FaV:T V] =1 V is a closed value of type

Fw:Q Q] =[] wis a well-typed frontier for the ordered conteéXt

Figure 5. Typing judgements forA°

will defer discussion of the elimination form to Section 4.4. All to have a different representation frdif8,4),5).
other terms must be closed with respect to the ordered context.

This associativity is just one example of values which have different
The most non-standard term li¥/. This term corresponds to a  types but the same representations. Other examples include values
pointer into the heap to a location occupied by the heap walue involving the ordered units. Since we do not choose to represent
and is the canonical form for terms of type this value, we expect that the representation3 ©f, « e 3, and3

will all be the same at runtime.

FaV:T
_— Coercion terms exist to provide a mechanism by which to convert

M bmVilT between such values which have different typing structure but the

An interesting facet of our presentation is that we account for heap same underlying representation.

allocation without requiring an explicit heap (for example in the .

style of Morrisett and Harper [10]). In a heap semantics, a pointer 4.3~ Coercions

to a valueV is represented by a lab&lwith ¢ bound toV in an ex-

plicit heap data-structure. Since sharing is not observable in our The level of coercion terms in this fragment of the language is ex-
simple calculus, we avoid this extra complexity by representing tremely simple, consisting only of variablasthe ordered unit,

such values directly ald/, denoting a pointer to a location occu- and fuseQs e Q. Coercion binding and elimination forms are pro-
pied byV. We stress that this is purely a technical convenience—it Vvided at the expression level (Section 4.4).

is straightforward to give a heap semantics in which the sharing is

made explicit in the usual fashion. Intuitively, coercion terms package up the frontier into new forms
without changing the underlying representation. For example, the
term a; e ap takes the section of the frontier describeddyyand

the section described b3y and combines them into a single fuse

) . which could then be bound at a new name using the expression
Heap values/ represent terms that may occur in memory. Itis |eye| coercioriet. The orderedness of the terms ensures that the
therefore essential that they be closed. An open heap term wouldy, sections were already adjacent, and hence combining them into
require that a new copy be _|mp|_|C|tIy _allo_cated every time d_n‘fer- afuse does not change their representation.

ent values were substituted into it, which is contrary to the aims of

MY The typing judgement for heap valués, V : T, enforces this The typing judgement for coercion terms is of the fam. Q:T,

property. signifying thatQ re-associate® to have the fornt. The coercive

. o . nature of the terms is exhibited in the size preservation property that
The primary motivation for having heap values comes from the op- 11545 of this judgement: thé@| = ||.

erational semantics of the language. However, it is not intended

4.2 Heap Values

that they should play the role of so-called “semantic objects” that QiFe Q11 Qobuc QT2
are only permitted to be irdduced in the course of evaluation. It is
perfectly reasonable for a programmer to write heap values in the athkg.a:t Q1,05 Q10Q2:T1 0T

source program. Doing so corresponds precisely to the notion of . . .
statically allocated data—that is, data that is present in the heap at! N€ unit term is well-typed in the empty context.

the start of the program.
B S
The important difference between heap values and terms is that
heap values may be of arbitrary size. This is reflected in the syn- .
tax by the valud/; e\, denoting a contiguous block of memoryin 4.4  EXpressions
whichVy is laid out adjacent to the valie.
So far we have only seen the value forms that occupy or coerce

The fact that fused terms are adjacent means thas thenstruc- memory, but that do not modify it. The memory operations—
tor is associative in the sense that the t&m(4 ¢ 5) has the same  reservation, allocation, and initialization—are @dine at the level
representation in memory as the te(Bw 4) ¢ 5. Both terms de- of expressions.

scribe three successive words of memory, occupied by the integers
3, 4, and 5 respectively. This is a fundamental difference from ordi- The well-formedness judgement for expressions is given by
nary lambda calculus pairing, in whig¢B, (4,5)) is almost certain Q. E:T. The ordered contex? in the typing judgement de-



scribes the current state of the frontier. Because of the destructivethat the value form for expressions:¢ M) is well-typed only in an
nature of the reserve and allocate operations, the interpretation isempty ordered context. Therefore, if the ordered con@eid not
that the frontier isconsumedy the expressioft. That is, any empty, therE; must explicitly destroy or allocate all of the memory

space thatis on the frontier must either be allocateH foyr explic- described byQ before it reaches a value. Since this value will be
itly destroyed. orderedly closed, it is safe to substitute it freely for the unrestricted
variablex.

As we saw in section 2, memory operations are effectful, and so
the type system for expressions must be carefully designed to en-Memory expressions
sure that these effects do not interfere. This is enforced by always
passing the entire ordered context (and hence the entire frontier) t0The most interesting and non-standard expressions are those deal-
each sutexpressioriout not subterm). In this way, we ensure that  jng directly with the frontier. Recall that there are three operations
every possibly allocating/reserving expression has a correct view of of interest: reserving space on the frontier, initializingqgs of the
the entire frontier when it is evaluated. frontier, and allocating prefixes of the frontier into the heap. These
. . . . three operations are captured directly as primitives. As we shall see
Th(—; expressions can be conceptually divided into four basic cate-|ater, this is not entirely necessary—by extending the type system
gories. somewhat we can give types to these primitives as constants. For
simplicity however, we first present them as primitive notions.
Ordinary expressions
The first operation, reservation, discards any resources that were
The inclusion of values into expressions is given by the expression previously mentioned in the ordered context, and introdutes

retM. words of nonsense into the frontier.
M FmMT M aNs ke, BT
M- FepretM:T I Qlke,reservenas ainE:1

This is the only value form for expressions, and consumes no re- This corresponds exactly to the reservation operation described in
sources. Itis unsound to permit the tekrto contain ordered vari- Section 2.1, which destroys any existing data on the frontier and
ables, since it may be substituted for an unrestricted variable by theprovides a block of “new” uninitialized se.
primitive let form discussed below.
Memory must be written using assignment.
Function application is an expression, since the evaluation of the ] ]
body of the function may engender memory effects. Applications ) Q '}m Q_'T '_ ,T'Treg -
are syntactically restricted to permit only application of a term to HEmMT TQL,aT,QrEepE T

another term. MQL,Q,0r e, Q:=MasainE: 1’
MormM1iTi =T I-FmM2iT1 The ordered tern@ gives the location in the ordered context to
- - which the value should be Wtten. This location is then referred
M QFepMiM2:T2 to by ain the body of the expression. The linearity of the ordered

context is important here, since we are destructively changing the

The term being applied is permitted to refer to ordered variables, .
pe of a memory location.

but the argument must be closed since unrestricted functions mayty
duplicate or drop their arguments. Application allows us to define

a term-levelLet construct with the following derived typing rule. At any point, space can be allocated from the left side of the frontier

with thealloc construct.

. . S -
r,-l—mM.‘[ F,X.T,Q '_expE-T QL Fcch:T r,X:!T;QR '_expE:T/
M Qb letxT=MinE: T

MQ1,QrbepallocQasxinE: T

The coercion tern@ describes a section of the frontier to be pack-
aged up as a boxed heap value. The splitting of the ordered context
ensures that the term to be allocated is a prefix of the frontier. The
new heap value is given a pointer type and permitted to be used
unrestrictedly for the rest of the program.

Thislet is not fully general, since there is no way to bind the result
of an application to a variable. Therefore, we introduce a primitive
let form to bind expressions to variables.

MOF BTy X1y FepEoiTo

M QlgpletxTy =E1inEy:Ty Coercion expressions

Notice that we pass the entire ordered context to the first sub- 1,0 memory expressions manipulate the frontier using ordered

expression. This is a crucial poin; may have memory effects \aiaples, which stand for offsets into the frontier. Coercions are
that could invalidate any previous assumptions about the state of the

; . - used to manipulate ordered variables, combining them into bigger
frontier thatE, might make. Therefords, cannot assume anything terms or breaking them into smaller pieces.
at all about the state of the frontier—that is, it must be well-typed
in an empty ordered context. The simplest coercion expression is the elimination form for unit.
Somewhat surprisingly, it is safe to perriii to have free refer- QFyeQ:1 QL QRbeET
ences to the ordered context. This is reasonable because expres-
sionsconsumeesources, but do nabntainthem. By this we mean MQL,Q,0rFeplet* =QinE:T




MobmMIIT FTi]iTey TXT[;QFepEiT2 e Tai] if T=TyeT2 and|Ty| > i
where 1[i] = (¢ T2li—[11]] ft=T11eT2and|Ty| <i
M Qkqpload; Xx=M][i] in E: T2 T if Tis notafuse and=0

let! X{eXo =M in

loads, X— x4[i] in E if t=T1etpand[ty| >1i

. def .
load; X=MJi] in E = let! XX =M in _— .
loady, X=Xl — [11] in E if T=T1e12and[1y| <i
let IX=M in E if |1| =1andtis nota fuse

Figure 6. An example of a direct-load defined in terms of split

Since the unit term is considered to have zero size, we may elimi- the interior of objects (sometimes called locatives) in order to be
nate it freely from the ordered context without changing the size or implemented efficiently. While not completely out of the question,

adjacency properties of the terms in the frontier. interior pointers can be quite problematic for copying garbage col-
lectors (at least when implemented as direct pointers into the inte-

The elimination form for fuse is also a coercion expression. rior of heap objects).
Qbg. Q:TreTy [Q71,81:T1,82:T2,Q2 Fep BT More importantly however, this construct does not permit constant

- time access to fields of a heap-allocated record. For example, to

Q10,07 Fepletareaz = QinE T access the last element ofiary tuple in right-associated form re-
The intuition is that since; e T, describes two adjacent blocks of ~ guiresn computations before we arrive at a term that can be loaded
memory, we are free to view the single block of memory described directly. This is clearly impractical.

by Q as two adjacent blocks at offsets name nday. o . - .
yQ j dhynday We choose to use this “Bfj operation as the primitive notion be-

The last coercion operation is the simple ordered let form, which C2use it provides a simple and natural elimination form. In practice

permits ordered terms to be packaged up or renamed. however, it is likely that this term would be eliminated in favor of
one of a number of direct-load constructs that are definable in terms
Qb Q:T T;Qp,a1,Q2 e, E: T of split (figure 6). By taking such a direct-load as primitive and giv-
ing it a direct implementation, the need for the interior pointers is
rQ1,Q,Qp Fepleta=QinE: T eliminated and fields of records can be loaded in constant time.
Load expressions 4.5 Frontier semantics

In order to make the connection between the orderly lambda calcu-
lus and the frontier model of allocation clear, the semantics keeps
an explicit frontier. This means that the reduction relation is defined

not just on expressions, but rather on a frontier and an expression

The memory operations account for the creation of heap objects.
Equally important is the ability to load values out of the heap. Once

an object is in the heap, we must have some way of accessing its
components. Pointers to “small” objects can be de-referenced di-

rectly. together.
Mo b MiIT] F 1Ty TXT1 Qe BT Frontier termsw (as defined in figure 4) map ordered variables (that
is, offsets) to value¥. From the standpoint of the operational se-
M Qlgplet!x=MinE:1 mantics, the frontier plays a role very similar to an explicit substi-

oo o tution. The typing judgement for the frontiet,w: Q, asserts that
The kinding restriction ensures that the only values that can be the grdered contex® describes a frontier that looks like
loaded with this operation are those that will fit into a register.

FaV:iT Fw:Q (a¢Q)

To access the fields of larger objects, we provide a composite elim- - —
ination construct that takes a pointer to a large object, and produces F. F(a—V,0):(a1,Q)
two pointers to the immediate subcomponents of the object.

FiFam M2 1(Ty 0 T2) The evaluation relation for the orderly lambda calculus is given in
X 10,0 1 T2, Q o B0 T terms of frontier/expression pairs.
Qg let!(X ox2) =MinE:T FwiQ QlgE:T
Notice that the variables are bound not to the componentd of F(w,E):T

themselves, but rather fmintersto the components d¥l. Using

this expression we may successively iterate over large compositeThe relation(w,E) — (w/,E’) indicates that in frontiew, the ex-

objects until we arrive at a pointer to a small object which can be pressiorE reduces in a single step to the expres&bnwith new

loaded directly. frontier «¥. The complete definition of this relation is given in Ap-
pendix B.

This construct is somewhat disturbing from a practical standpoint

for two reasons. In the first place, it seems to require pointers into It is straightforward to show that reduction preserves typing, and



that well-typed terms that are not values may always be reducedthat our chosen representation of unit is as a pointer to a zero-word

further. object. This corresponds precisely to the standard implementation
. of values of type unit as a distinguished pointer to nothing (e.g. the
Theorem 1 (Progress & Preservation) null pointer).

If+ (w,E):1 then

An analogous translation is defined at the term level. The interest-
ing case is the translation of pairing, since pairs are the only terms
requiring allocation. We begin by defining\&“ functionpair.

1. Either(w,E)— (w/,E’) orE is a value.
2. if (w,E) —~ (o, E’) thent (/,E’) 1T

- def
PROOFE The proof proceeds by induction on the derivation of pair it =12 = (11 e12) =

- Q o E 1T, with the help of several substitution lemmas and some A(X1:T1) A (X2 T2).
auxiliary lemmas proving properties of ordered contexts and fron- reserve; as a (1)
ters. L1 in letajeap, =a 2)
4.6 Size properties inletayea, =2 )
in letx =a, 4)
An important property of the orderly lambda calculus is that types in aj ;= X1 as a’l (5)
uniquely determine the size of the data that they represent. We have in @ =X a. ®)
. . .. . D . 2as dy
informally mentioned a number of sizing properties of the calcu- ] ;L
lus: in particular that coercion terms preserve size, and that terms in alloc(ay e ap)as X 7
and expressions are always of unit size (so that they can be keptin in ret X 8)
registers).
sgisters) The first line of the function reserves the space on the frontier from
These properties can be formalized as follows. which the pair will be created. This binds a single ordered variable
a which points to the beginning of this space. Line 2 gives the
Theorem 2 (Size) namesa; anday, respectively to the first and second words of the
1. IfFT:Te,thenlt| =1 newly allocated space. From the typing rule fefserve we can
see that the second location has an extra zero-byte value of type
2. If-1:T, then3i such thaft| =i unit attached, so lines 3 and 4 serve to split out and eliminate this.
Lines 5 and 6 initialize the two locations, renaming therajt@nd
3. IfQ . Q:1 then|Q| =1 a,. Finally, line 7 allocates the initialized space into the heap and
names the result, which becomes the return value of the function
4. Ifb4V:TthenV| = 1| in line 8.
5 Ifr;QbFmM:Tthen|t| =1 This definition demonstrates how the various operations interact to
permit low-level code to be written in a relatively high-level man-
6. IfT;QF,,E:Tthen|t|=1 ner. In particular, there is no mention of offsets at all: everything
is done in terms of standard alpha-varying variables. It may seem
7. If- 0:Q then|Q| = |w|. that this code is somewhat verbose, but it is simple to define syn-

tactic abbreviations and composite terms that eliminate much of the
PrRoOOF For each clause we proceed separately by induction on verbosity. For example, in the common case for initialization terms

typing derivations. [ where the coercion teri is a variable, we may take advantage of
alpha-conversion to simply re-use the old variable name, yielding a
5 Representing the lambda calculus more standard looking assignment syntax.
. . def . .
One of the intended uses¥f? is as a target language for translation a:’=MinE = a;:=Mas ajinE

from higher-level languages. To show how this can be done, and to
provide some intuition into how therguage is used, we present
in this section a translation from the simply typed lambda calculus
with products and unit into the orderly lambda calculus.

It is also trivial to define a composite reserve operation that pre-
computes the offset variables.
Ia1:Ns,...,an NS, E:T

We begin by defining a translationt™ that maps each ordinary [QF.,reservenas(ay,...,an inE T
lambda calculus type toX™ type. e B

Working out the definition of this term is left as an exercise to the

Tint7 = int . - . .
reader, but using these abbreviations, we can writeptie con-

it = tructor quite succinctl

M =T =1 =1y structor quite succinctly.

MixT' = ("o 127) : def

. . . . pair i 11 = T2 — (t1012) =
The product case is unsurprising: we represent a pair as a pointer A(xe: T1) A - T2).
to a heap-allocated record containing the sub-components. As dis- reserve; as[aj,ay)]
cussed in section 2, other representations are possible. in a;:=x1

. . ) in ay =X

We represent the ordinary lambda calculus unit as a pointer to the in alloc(ag eap)as X

orderly lambda calculus unit. Recall tHat= 0in A°“. This means in ret X



The elimination forms for pairs can be given succinct definitions
using the direct load defined in Figure 6.

fst:l(T1eT2)—T1 o Ax:1(T1012))
loady,er, X1 = X[0]
in ret Xg
ef

Ax:1(T1012))
loady,er, X2 = X[1]
in ret Xo

snd: !(T1eT2) =12

The remainder of the translation of the simply typed lambda calcu-
lus is straightforward. All variables introduced by the translation
are assumed to be fresh.

def
X7 = ret X

¥ ret A
I’()‘!

A (xT).€?
I—el e2_|

def ret !x
% et A(xTT7).Me”
def
=let x1="¢"
in let Xop ="y
in X1 X2
r il d_ef —r al
(e1,2)7 = let Xy ="e1
in let Xop ="y
in let X% = pairxg
in let X=X X2
in ret X
me’ def letx="e’
in fstx
"Toe’ def letx="e’
in sndx

5.1 Coalescing reservation

Translating simply typed lambda calculus terms into the orderly

lambda calculus breaks the high level memory abstractions and ex-
poses a finer grain of detail. Exposing these details can enable op
timizations not expressible at the more abstract level. A simple ex-

ample of this is the ability to coalesce multiple calls to the allocator.
For example, consider the result of translating the t€3n(4,5))
under the above translation (with some minor simplifications).

7(3,(4,5))" = letx = reservep as[ag,ay]

in a; ;= 4as &
in ap :=5as a
in alloc(ajed,)as X
in ret X

in reservep as[ag,ay]

in a3:=3as &

in ay:=Xxas &,

in alloc(ajea))as X

in ret X

number of calls to the allocator.

opt
7(3,(4,5))" = reserveq aslaj,ap,as,as]
in a; = 4as @
in ap:=5as &
. ’
in alloc(aloa/z) as X
in ag:=3as a3
in a4 =X as aﬁl
. o5
in alloc(agea))as X
in ret X

This kind of optimization is commonly done in untyped compilers,
but here we can easily express it in a typed setting.

A further step to consider s to try to coalesce the two allocation op-
erations, in addition to coalescing the reservations. Unfortunately,
this is not in general possible in our setting. The problem is that
we currently cannot express pointers into the frontier—such point-
ers would be difficult to typecheck since the types of locations in

the frontier can change. Therefore we are unable to initialize the
second field of the top level pair until we have moved the other pair
into the heap.

6 Extensions and future work

This paper has given a detailed presentation of the core of the or-
derly lambda calculus, developing a high-level framework for dis-
cussing issues of allocation and data-layout. The full language in-
cludes an account of sums and recursive types that permits sum al-
location and tagging to be done using only the memory mechanisms
already described. In addition, we have extended the coercion level
to include ordered functions and application forms and shown that
a rich language of coercions is definable in thigisg. Finally, we

have shown how theeserve, alloc, andwrite primitives can

be replaced by typed constants, eliminating the need to incorporate
special memory-management primitives into the language. The full
language is described in a separate technical report [13].

The mostimportant question that we have not yet addressed is how
to give an account of the allocation of objects with dynamic extent.
The system we have developed so far is predicated on the ability to
statically predict the size of an object based on its type. For objects
such as arrays however, this is clearly not true.

‘While an ad-hoc treatment of arrays can be fairly easily integrated

into the language, this is unsatisfactory since the intention is to
make all allocation explicit through the same mechanism. A more
interesting possibility is to use a dependenttype formalism [23] or a
type analysis formalism [4] to introduce a notion of dynamic extent

into the type system. We intend to explore this avenue further in the
future.

Another important area for future research is to attempt to account
for pointers into the frontier itself. As we saw in Section 5 we are
forced to allocate an object into the heap before we can initialize
other objects with a pointer to it, which prevents some useful opti-
mizations such as thdestination passing stylgptimization [8].

7 Related work

Ordered logic and ordered type theory have been explored exten-
sively by Pfenning and Polakow [16, 15].

This code fragment makes two separate calls to the allocator, each
reserving two words of space. It is easy to see that the second re-There is a significant amount of previous work applying ordinary

serve operation can bealescedvith the first, reducing the total

linear type theory to memory management [1, 22, 5, 7], but none



of it addresses (nor is intended to address) the question of separatf12] George C. Necula and Peter Lee. The design and implemen-
ing out allocation and initialization, and of giving aundational
account of data layout.

The work that most closely addressesthe issuesthat we discuss here
is the alias type formalism of Smith, Walker, and Morrisett [20]).
Alias types allow aliasing information to be tracked exactly in the
type system. A quasi-linear type system allows memory locations

to be destructively updated. Since aliasing is tracked exactly, an ex-

plicit “free” operation is provided which de-allocates space. Some
very useful optimizations such as the destination passing style op-[14]
timization can be encoded fairly easily in this language. The alias
type formalism does not seem to provide for the explicit coalesc-
ing of allocator calls, nor does it provide an explicit type theory for

describing data layout in the manner that we have attempted to do.
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A Static semantics

Definitions
0 .
T = 1 d_ef Qz if Ql =.
M — Ter (Q1,02) = { at,(Q,Qz) if Q1 =at,Q
Well-formed contexts and frontier ML EQ, FwQ)
F1:Te, FI  (X¢I) FQ (a¢Q) FaV:iT Fw:Q (a¢Q)
F- FxT,l F- Fart,Q e Fa—V,w:artQ
Register and heap types FT:T,, FT:T,
FT1:T, FT1iTey FT12:Teg FT1:T, FT12:T, FTiTeg
Fint T F NS:T Ll S FT1—= 12Ty F1:T, FT1eT2:T, FT1:T,

Coercion terms

QiFeeQ1iTy QolecQo:iT2

athk a:t hge kil Q1,0 Qr1eQ2:T10T2
Terms Mok, .M:1
rxy=t Fa VT FTiTe MXTQFE:T
[ b XiT I FmN:int I Fmns:NS M Fm!Vilt MQEmAXT).E:T—T
Values FaViT
FaV:T FTiTey XTj FepE:T FaViiTt FaVo:iTo
o N:int F. ns:NS FalVilt FaA(XT).E:T—>T Foa*:1 FaVieVo:TieTo
Expressions Q. ,E:T
M -FmM:T MQAFmM1:T1—=>T M- FmM2:T1 MOkFapE1iTy X1 FeEaiTo
M- FepretM:T Qg MM T2 M QkepletxTy =E1inEy: 1o
MaNs"k,,E:T Qe QT IMLx!TQR l—expE:r’
I Qle,reservenas ainE:1 MQ1,QrbepallocQasxinE: T
Qb QT FTiTe [bmM:T TQLaT,QrbeE: T’ Qb Qi1 T;QL,QrbepE:T

MQL,Q,QrFep Q:=MasainE: 1" MQL,Q,QrFepletx =QinE:T
p p



QF.Q:T IMQ,at1,Qp ko E v QF,Q:TreTy I;Q7,81:T1,a0:T2,Q0 Fo, ET

r01,9,QbF,leta=QinE: T M01,Q,07 o, letayeay =QinE:T

MM (T10T2) Xt T2, %0 12, Q Fo BT M FmMiITy FT1iTey XT1,QF0ET2

M Qkeplet!Xpoxp =MinE:T MQkgplet!X=MinE: 1o

B Dynamic semantics

Definitions
VO — def [y if oy = - +[] N
Nl _ n (01, 00) = { o ajar V| =V
VL = VeV AV, (0, p) if e =am V.6 (QreQ)[wr,wp] = Qafovg]eQqwy)]
Expressions ‘ (w,E) — (o, E) ‘
(0, (A(xT).E) My) — (w,E[My/X])
(w,Ey) = (o, Eq)
(w,1etxT =E1inEp) — (o, letxT = E] inEp) (-, letxXT=retMyinE) — (-,E[My/X])
Qv =V
(w,reservejasainE) — (a+— ns"|E) ((tn,wp),allocQyasxinE — (wp,E[!'V/X])

((w,a— V,up),a:= Myas@ inE) — ((wg,@ — My, wp),E)

(wleta=QyinE) — (w,E[Qy/a))

(w,letazeay =Q10QrinE) — (w,E[Q1,Q2/a1,a2])

((g,a— VieVs,0np),letas eay = ainE) — ((wy,a1 — Vi,a2 — Vo, ), E)

(w,let* = *inE) — (w,E) ((tg,a— x,0p),let* =ainE) — ((wy,wy),E)

(w,1et!x;ex2 =1(V10Vo)inE) — (w,E['V1,!Va/X1,X2]) (w,let!Xx=1!VinE) ¥~ (0,EV/X)



