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Abstract

We present a type-based approach to eliminating array bound
checking and list tag checking by conservatively extending

Standard ML with a restricted form of dependent types.

This enables the programmer to capture more invariants

through types while type-checking remains decidable in the-

ory and can still be performed efficiently in practice. We il-

lustrate our approach through concrete examples and present
the result of our preliminary experiments which support sup-

port the feasibility and effectiveness of our approach.

1 Introduction

The absence of run-time array bound checks is an infamous
source of fatal errors for programs in languages such as C.
Nonetheless, compilers offer the option to omit array bound
checks, since they can turn out to be expensive in prac-
tice (Chow 1983; Gupta 1994). In statically typed languages
such as ML, one would like to provide strong guarantees
about the safety of all operations, so array bound checks
cannot be omitted in general. The same is true for Java
bytecode interpreters or compilers (Sun Microsystems 1995)
and proof-carrying code (Necula 1997), which are aimed at
providing safety when transmitting code across a network
to be executed at a remote site.

Tag checking in functional languages is similar to array
bound checking. For example, we can more efficiently ac-
cess the tail of a list if we know that the list is non-empty.
This kind of situation arises frequently in dynamically typed
languages such as Scheme, but it also arises from the com-
pilation of pattern matches in ML.!

Traditional compiler optimizations do not fare well in the
task of eliminating redundant array bound checks, so some
special-purpose methods have been developed for automated
analysis (see, for example, (Markstein and Markstein 1982;
Gupta 1994)). With some notable exceptions (see below)
these methods try to infer redundant checks without pro-
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grammer annotations and are thus limited by their ability
to synthesize loop invariants—a problem that is in theory
undecidable and in practice very difficult (Susuki and Ishi-
hata 1977). In contrast, we pursue a type-based approach
within a language already statically typed, namely ML. We
rely on the programmer to supply some additional type in-
formation, which is then used by the compiler to reduce
static array bound checking to constraint satisfiability. The
constraints consists of linear inequalities and can be solved
efficiently in practice.

This approach leads to several language design and im-
plementation questions, to which this paper provides a pos-
sible answer. We have validated our ideas through a proto-
type implementation for a fragment of ML large enough to
encompass several standard programs, taken from existing
library code. Our experiments demonstrate that

e the required extended type annotations are small com-
pared to the size of the program,

e the constraints which arise during extended type check-
ing can be solved efficiently in practice, and

e the compiled code can be significantly faster.

Moreover, with one exception (where we had to replace on
occurrence of < by <) we did not have to modify the existing
code, only extend it with some annotations.

Our approach is based on the notion of dependent type
(Martin-Lof 1980) which allows types to be indezed by terms.
For example, in ML we have a type of integer lists int list.
Using dependent types we can express the more precise type
of integer lists of length 2 as int 1ist(2). In this example,
2 is the index object. An function for appending two inte-
ger lists would have type int list(n) -> int list(m) ->
int list (n+ m) for any n and m. Unfortunately, with-
out any restrictions on the form of index objects, automatic
type-checking in a language with dependent types is unde-
cidable and impractical. We avoid such problems through
the combination of several important ideas:

o We separate the language of type indices from the lan-
guage of terms. Among other things, this separation
avoids the question of the meaning of effects in type
indices and permits a clear phase distinction between
type-checking and evaluation.

1We are not aware of any empirical study regarding its practical
significance.



assert length <| {n:nat} ’a array(n) -> int(n)
and sub <| {n:nat} {i:nat | i < n} ’a array(n) * int(i) -> ’a

fun dotprod(vi, v2) =
let
fun loop(i, n, sum) =
if i = n then sum

else loop(i+l, n, sum + sub(vl, i) * sub(v2, i))

where loop <| {n:nat} {i:nat | i <= n} int(i) * int(n) * int

in
loop(0, length vi, 0)
end

-> int

where dotprod <| {p:nat} {q:nat | p <= q } int array(p) * int array(q) -> int

Figure 1: The dot product function

e We employ singleton types (Hayashi 1991) to allow the
necessary interaction between the index and term lan-
guages.

e We only consider programs which are already well-
typed in ML. This allows our extension to be con-
servative, that is, without the use of dependent types,
programs will elaborate and evaluate exactly as in ML.

e We use bi-directional type analysis to generate linear
inequality constraints with a minimum of annotations.

e The resulting constraints can be solved efficiently in
practice with a variant of Fourier’s method (Pugh and
Wonnacott 1992).

Besides the fact that programs run faster (which tends
to be a strong motivator for programmers), our system en-
hances many of the benefits one derives from static typing.
The dependent types help the programmer to think about
the properties he expects to hold, and many (often trivial)
errors can be detected early, during dependent type checking
rather than at run-time. The dependent type annotations
serve as formal and machine-checked documentation of pro-
gram invariants which greatly aids maintainability through-
out the software life-cycle. Dependent types allow program
invariants and properties to be communicated and checked
across module boundaries if they are included in signatures.?

Most closely related to our work is the work on shape
checking by Jay and Sekanina (Jay and Sekanina 1996).
They also pursue a language-based approach with a restricted
form of dependent types. However, their language and pro-
grams are rather restricted and different from the kind of
programs typically written in ML (including, for example,
explicit shape conditionals). This allows them to perform
shape analysis through a process of partial evaluation rather
than constraint simplification, but it does not seem to in-
teract well with general recursion. We believe that their
approach is well-suited for languages such as NESL (Blel-
loch 1993), but that it is too restrictive to be practical for
ML.

Dependent types also form the basis of general theorem
proving and verified program development environments such

as Coq (Dowek, Felty, Herbelin, Huet, Murthy, Parent, Paulin-

Mohring, and Werner 1993), Nuprl (Constable et al. 1986),
or PVS (Owre, Rajan, Rushby, Shankar, and Srivas 1996).

2We have not not yet explored this possibility in our prototype
implementation, which is restricted to the core language.

Our work can be seen as an attempt to narrow the gap be-
tween full verification, which often only works for unrealis-
tically small languages or is too time-consuming for practic-
ing programmers, and static type systems for programming
languages, which allow only a very restricted set of pro-
gram properties to be expressed and checked. In this way,
our work is also related to work on refinement types (Free-
man 1994; Davies 1997) in which ML types are refined into
finitely many inductively defined sorts.

This work is part of a larger effort to introduce depen-
dent types over tractable constraint domains into ML (Xi
1998). In particular, the basic language architecture and
the elaboration algorithm which generates index constraints
do not depend on particular properties of linear arithmetic
and can be used to capture other program invariants.

2 Preliminaries

In this section we sketch our type system and give some
illustrative examples. Please see (Xi 1998) for a formal de-
scription.

2.1 An introductory example

The code in Figure 1 is an implementation of the dot prod-
uct on integer arrays. Even automatic methods are able
to eliminate array bounds checks for this example—we use
it here to introduce the language, not to illustrate its full
expressive power.

This example should be read as follows.

e int(n) is a built-in singleton type which contains only
the integer n. The type int used later is the type of
all integers.

e ’a array(n) is a built-in polymorphic type of arrays
of size n whose elements are of type ’a.

e length <| {n:nat} ’a array(n) -> int(n) expresses
that length is a function which, when given an array
of size n yields an integer of type int(n) (which must
therefore be equal to n). In a full language implemen-
tation, this would be a pervasive declaration; here, we
assert it explicitly.

e sub <| {n:nat} {i:nat | i < n}
’a array(n) * int(i) -> ’a
means that sub can only be applied to an array of size
n and an integer ¢ such that ¢ < n holds. It always
yields a a value of type ’a.



We use {n:nat} as an explicit universal quantifier or
dependent function type constructor. Conditions may be
attached, so they can be used to describe certain forms
of subset types, such as {n:nat | i < n} in the example.
The two “where” clauses are present in the code for type-
checking purposes, giving the dependent type of the local
tail-recursive function loop and the function dotprod itself.
After type-checking the code, we are sure that the array ac-
cesses through sub cannot result in array bound violations,
and therefore there is no need for inserting array bound
checks when we compile the code. Similarly, if we use an
array update function update with the following type,

update <| {n:nat} {i:nat | i < n}
’a array(n) * int(i) * ’a -> unit

then no array bound checks are needed at run-time.
Notice that we can also index lists (and not just arrays)
by their lengths and declare

nth <| {l:nat} {n:nat | n < 1}
’a 1list(1l) * int(n) -> ’a

thereby eliminating the need for list tag checks. Because of
the similarity of our approach to eliminating array bound
checks and list tag checks, we shall focus on the former in
this paper.

2.2 The language of types

Type indices may be integer or boolean expressions of the
form defined below. We use a to range over index variables.

Integer index 4,7 == al|i+j|i—J|ix7]|div(s,J)
| min(i, 5) | maz(i, j)

| abs(i) | sgn(i) | mod(i, j)

a | false | true

li<jli<j
li=j]i>5]i>]
‘ﬁb‘bl/\ b2|b1\/ b
Index d == i|b

Boolean index b

We also use certain transparent abbreviations, such as 0 <
1 < n which stands for 0 <7 A7 <n.

A system of dependent types allows types to be indexed
by terms. For the purpose of this paper, indices are re-
stricted to the integer and boolean expressions given above,
with the additional constraint of linearity. We have consid-
ered a more general language schema in (Xi 1998). We use ¢
for base types or basic type families, either built-in (such as
int or array) or user-declared. « stands for type variables
as usual.

index sort -~y int | bool | {a:~|b}
types T ou= al|(T,...,m)d(d1, ..., dk)
[ T1 k- kT | 1 — T2
| Ma:v.7 | Za: .1

When a type constructor has no arguments or no indices,
we omit the empty parentheses on the left or right or the
constructor, respectively; when a product has no compo-
nents we write unit.

The sort {a : v | b} stands for those elements of v satisfy-
ing the boolean constraint b. We use nat as an abbreviation
for {a : int | a > 0}. Also notice that a is universally quan-
tified in Ila : 7.7 and existentially quantified in ¥a : v.7.

In the concrete syntax, we use {a:g} t for Ila : y.7 and
[a:g] t for Xa: v.7. We can combine several quantifiers by
separating the quantified variables by commas and directly

attach a condition to the quantifier. So la : {a : 7 | b}.7
can be written as {a:g | b} t. We took advantage of these
shorthands in the dot product example above.

Our language extension is intended to encompass all of
Standard ML. Our current prototype implementation in-
cludes recursion, higher-order functions, polymorphism (with
a value restriction), datatypes, pattern matching, and ar-
rays, but at present no exceptions or module-level constructs,
which are left to future work. We believe that only the ex-
tension to modules involves non-trivial language design is-
sues.

2.3 Built-in type families

We have built-in type families for integers, booleans and
arrays.

e For every integer n, int(n) is a singleton type which
only contains n.

e For false and true, bool(false) and bool(true) are
singleton types which only contain false and true,
respectively.

e For a natural number n, ’a array(n) is the type of
arrays of size n whose elements are of type ’a.

Indices may be omitted in types, in which case they are
interpreted existentially. For example, the type int array
stands for ¥n : nat.int array(n), that is, an integer array
of some unknown size n.

2.4 Refinement of datatypes

Besides the built-in type families int, bool, and array, any
user-defined data type may refined by explicit declarations.
An an example, consider the declaration of a list:

datatype ’a list =
nil
| :: of ’a * ’a list

After this declaration, the constructor nil has type ’a list
and :: isof type ’a * ’a list -> ’a list. The following
declaration indexes the type of a list by a natural number
representing its length.

typeref ’a list of nat
with nil <| ’a 1list(0)
| :: <| {n:nat} ’a * ’a list(n) -> ’a list(n+1)

The structure of the dependent types for the constructors
nil and :: must match the corresponding ML types.

Figure 2 displays an implementation of the reverse func-
tion on lists. Notice that the type of reverse ensures that
this function always returns a list of length n when given
one of length n.

This illustrates the need for giving explicit types to lo-
cal functions (rev, in this case), since they are often more
general than the externally visible type (for reverse in this
case) and cannot be synthesized automatically in general.
However, no types need to be given for bound variables.

The next example illustrates the need for existentially
quantified dependent types. The filter function removes all
the elements in a list [ which do not satisfy a given prop-
erty p. Clearly, the length of the resulting list cannot be ex-
pressed as a type index since it depends on arbitrary compu-
tation, which is not permitted in type indices. Nonetheless,
we know that the resulting list will be of the length less than



fun reverse(l) =

where rev <| {m:nat} {n:nat} ’a list(m) * ’a list(mn) -> ’a list(m+n)

let
fun rev(nil, ys) = ys
| rev(x::xs, ys) = rev(xs, x::ys)
in
rev(l, nil)
end

where reverse <| {n:nat} ’a list(n) -> ’a list(n)

Figure 2: The reverse function for lists

or equal to that of the original list. This information can be
incorporated into the type of the filter function through
existentially quantified dependent types.

fun filter p nil = nil
| filter p (x::xs) =
if p(x) then x::(filter p xs)
else filter p xs
where filter <| {m: nat}
(’a => bool) -> ’a list(m) ->
[n:nat | n <= m] ’a list(n)

The result of this function has type [n:nat | n <= m]
’a list(n) which is concrete syntax for ¥n : {n : nat | n <
m}.alist(n).

Existential types can also be used to express subset types
(note that this is different from subset sorts ascribed to in-
dex variables). For instance, we can use [i:int | 0 <= i+1
] int (i) to represent the type for integers which are greater
than or equal to —1. This feature is exploited to eliminate
array bound checks in the implementation of Knuth-Morris-
Pratt string matching algorithm shown in Appendix A. A
detailed description of the algorithm can be found in (Cor-
man, Leiserson, and Rivest 1989). Notice that several array
bounds checks in the body of computePrefixFunction can-
not be eliminated. Elimination of these checks would require
a representation of deep invariants of the algorithm which
are not expressible in our type system.

Existential types are also used to interpret indexed types
such as int, when used without an index. For example,
int is interpreted as Xi : sn¢.int(é) (or [i:int] int(i),in
concrete syntax). Thus existential types provide a smooth
boundary between annotated and unannotated programs in
the context of a larger implementation. For larger and more
interesting examples, we refer the reader to (Xi 1997).

3 Elaboration

The elaboration process transforms a program written
in the source language into an expression in an explicitly
typed internal language, performing type-checking along the
way. Since it is beyond the scope of the paper to present a
detailed treatment of this process, we shall highlight a few
major features through examples.

One can think of elaboration as a two-phase process. In
the first phase, we ignore dependent type annotations and
simply perform the type inference of ML. If the term is
well-typed, we traverse it again in the second phase and col-
lect constraints from the index expressions occurring in type
families. Constraints are boolean index expressions b en-
riched with explicit quantifiers and implication. The latter
is necessary for type-checking pattern matching expressions.

The syntax for the constraints is given as follows.

Constraints ¢ == bl g1 Ag2|bD ¢
|Ja:v.¢|Va:v.¢

3.1 Generating constraints

The following is the auxiliary tail-recursive function in the
implementation of the reverse function in Figure 2.

fun rev(nil, ys) = ys
| rev(x::xs, ys) = rev(xs, x::ys)
where rev <| {m:nat} {n:nat}
’a list(m) * ’a list(m) —->
’a list(m+n)

Let us elaborate the clause rev(nil, ys) = ys. Accord-
ing to the form of the type assigned to rev, we introduce
two index variables M and N, and check nil against type
’a list(M) and ys against type *a list(N).

This generates two constraints M = 0 and N = n, where
ys is assumed to be of type ’a list(n). Then we check
the type of the right hand side of the clause, ys against ’a
list (M+N), the result type specified for rev. This yields
the constraint M + N = n.

Thus analyzing the first clause in the definition of rev
generates the constraint

Vn : nat.3M : nat.3N :nat. (M =0AN =n D M+ N =n).

We then eliminate existential variables, simplifying the con-
straint to
Vn:nat0+n=n

which is entered into a constraint store and later easily ver-
ified.

Note that we have been able to eliminate all the existen-
tial variables in the above constraint. This is true in all our
examples, but, unfortunately, we have not yet found a clear
theoretical explanation why this is so. In practice, it is cru-
cial that we eliminate all existential variables in constraints
before passing them to a constraint solver. Otherwise, we
would have to deal with arbitrary formulas in Presburger
arithmetic, which is decidable, but for which there are no
practically efficient decision procedures available.

For the second clause in the definition of reverse

rev(x::xs, ys) = rev(xs, x::ys),
we obtain the constraint

VYm : nat.Vn:nat.(m+1) +n=m+ (n+1)

following the same procedure, where xs and ys are assumed
to be of type ’a list(m) and ’a list(n),respectively. Note
that m and n are universally quantified, and the constraint
can be solved easily.



fun(’a){size:nat}
bsearch cmp (key, arr) = let
fun look(lo, hi) =
if hi >= lo then
let
lo + (hi - lo) div 2
sub(arr, m)

val m
val x

in
case cmp(key, x) of
LESS => look(lo, m-1)
| EQUAL => (SOME(m, x))
| GREATER => look(m+1, hi)
end
else NONE
where look <| {l:nat | 0 <= 1 <= size} {h:int | 0 <= h+l <= size}
int (1) * int(h) -> ’a answer

in
look (0, length arr - 1)
end

where bsearch <| (’a * ’a -> order) -> ’a * ’a array(size) -> ’a answer

Figure 3: The binary search function

Vh : int.Vl : nat.Vsize : nat.(0 < h+ 1 < size A
Vh : int.Vl : nat.Vsize : nat.(0 < h+ 1 < size A
Vh : itV : nat.Vsize : nat.(0 < h+ 1 < size A
Vh : itV : nat.Vsize : nat.(0 < h+ 1 < size A
Vh : itV : nat.Vsize : nat.(0 < h+ 1 < size A

ININININIA

<sizeAh>1)D I+ (h—=1)/2) < size
<sizeAh>1)D0<I+(h—-1)/2—-1+1
<sizeAh>1)Dl+ (h=1)/2—-14+1 < size
<sizeAh>1)D0<I+(h-1)/2+1
<size AR >1)Dl+(h—=1)/2+1 < size

Figure 4: Sample constraints

In the standard basis we have refined the types of many
common functions on integers such as addition, subtraction,
multiplication, division, and the modulo operation. For in-
stance,

+ <| {m:int} {n:int} int(m) * int(n) -> int(m+n)
is declared in the system. The code in Figure 3 is an imple-
mentation of binary search through an array. As before, we
assume

sub <| {n:nat} {i:nat | i < n}
’a array(n) * int(i) -> ’a

The explicit type parameter ’a is a recent feature of
Standard ML to allow explicit scoping of type variables.
We extend this notation to encompass type index variables,
{size:nat} in this case.

We list some sample constraints generated from type-
checking the above code in Figure 4. All of these can be
solved easily.

Note that if we program binary search in C, the array
bound check cannot be hoisted out of loops using the algo-
rithm presented in (Gupta 1994) since it is neither increasing
nor decreasing in terms of the definition given there. On the
other hand, the method in (Susuki and Ishihata 1977) could
eliminate this array bound check by synthesizing an induc-
tion hypothesis similar to our annotated type for look. Un-
fortunately, synthesizing induction hypotheses is often pro-
hibitively expensive in practice. In future work we plan in
investigate extensions of the type-checker which could in-
fer certain classes of generalizations, thereby relieving the
programmer from the need for certain kinds of “obvious”
annotations.

3.2 Solving constraints

When all existential variables have been eliminated and the
resulting constraints collected, we check them for linearity.
We currently reject non-linear constraints rather than post-
poning them as hard constraints (Michaylov 1992), which is
planned for future work. If the constraints are linear, we
negate them and test for unsatisfiability. Our technique for
solving linear constraints is mainly based on Fourier vari-
able elimination, but there are many other methods avail-
able for this purpose such as the SUP-INF method (Shostak
1977) and the well-known simplex method. We have chosen
Fourier’s method mainly for its simplicity.

We now briefly explain this method. We use x for in-
teger variables, a for integers, and [ for linear expressions.
Given a set of inequalities S, we would like to show that S
is unsatisfiable. We fix a variable z and transform all the
linear inequalities into one of the forms | < ax or ax < I
for a > 0. For every pair l; < aiz and asxz < lz, where
ai,a2 > 0, we introduce a new inequality a2li < ailz into
S, and then remove all the inequalities involving = from S.
Clearly, this is a sound but incomplete procedure. If z were
a real variable, then the elimination would also be complete.

In order to handle modular arithmetic, we also perform
another operation to rule out non-integer solutions: we trans-
form an inequality of form

a1x1+ -+ anzn < a

into
!
a1x1+ -+ anzn < a,

where o’ is the largest integer such that o' < a and the



constraints type annotations
Program number | SML of NJ | MLWorks | total number | total lines | code size
bcopy 187 | 0.59/1.17 | 0.72/1.37 13 50 | 281 lines
binary search 13 | 0.07/0.02 | 0.10/0.04 2 2 | 33 lines
bubble sort 15 | 0.08/0.03 | 0.11/0.06 3 3| 37 lines
matrix mult 18 | 0.10/0.04 | 0.16/0.06 5 10 | 50 lines
queen 18 [ 0.11/0.03 | 0.14/0.04 9 9 | 81 lines
quick sort 135 | 0.29/0.58 | 0.37/0.68 16 40 | 200 lines
hanoi towers 29 | 0.10/0.09 | 0.13/0.13 4 10 | 45 lines
list access 4| 0.07/0.01 | 0.08/0.01 2 3| 18 lines

Table 1: Constraint generation/solution, time in secs

greatest common divisor of ai,...,a, divides a’. This is
used in type-checking an optimized byte copy function.
The above elimination method can be extended to be
both sound and complete while remaining practical (see, for
example, (Pugh and Wonnacott 1992; Pugh and Wonnacott
1994)). We hope to use such more sophisticated methods
which appear to be practical, although we have not yet found
the need to do so in the context of our current experiments.

4 Experiments

We have performed some experiments on a small set of pro-
grams. Note that three of them (bcopy, binary search, and
quicksort) were written by others and just annotated, pro-
viding evidence that a natural ML programming style is
amenable to our type refinements.

The first set of experiments were done on a Dec Alpha
3000/600 using SML of New Jersey version 109.32. The
second set of experiments were done on a Sun Sparc 20 using
MLWorks version 1.0. Sources of the programs can be found
in (Xi 1997).

Table 1 summarizes some characteristics of the programs.
We show the number of constraints generated during type-
checking and the time taken for generating and solving them
using SML of New Jersey and MLWorks. Also we indicate
the number of total type annotations in the code, the num-
ber lines they occupy, and the code size. Note that some of
the type annotations are already present in non-dependent
form in ML, depending on programming style and module
interface to the code. A brief description of the programs is
given below.

bcopy This is an optimized implementation of the byte
copy function used in the Fox project. We used this
function to copy 1M bytes of data 10 times in a byte-
by-byte style.

binary search This is the usual binary search function on
an integer array. We used this function to look for 22°
randomly generated numbers in a randomly generated
array of size 2%°.

bubble sort This is the usual bubble sort function on an
integer array. We used this function to sort a randomly
generated array of size 2*°.

matrix mult This is a direct implementation of the ma-
trix multiplication function on two-dimensional inte-
ger arrays. We applied this function to two randomly
generated arrays of size 256 x 256.

queen This is a variant of the well-known eight queens
problem which requires positioning eight queens on a
8 X 8 chessboard without one being captured by an-
other. We used a chessboard of size 12 x 12 in our
experiment.

quick sort This implementation of the quick sort algorithm
on arrays is copied from the SML of New Jersey library.

We sorted a randomly generated integer array of size
220,

hanoi towers This is a variant of the original problem which
requires moving 64 disks from one pole to another
without stacking a larger disk onto a smaller one given
the availability of a third pole. We used 24 disks in our
experiments.

list access We accessed the first sixteen elements in a ran-
domly generated list at total of 2%° times.

We used the standard, safe versions of sub and update
for array access when compiling the programs into the code
with array bound checks. These versions always perform
run-time array bound checks according to the semantics of
Standard ML. We used unsafe versions of sub and update
for array access when generating the code containing no
array bound checks. These functions can be found in the
structure Unsafe.Array (in SML of New Jersey), and in
MLWorks.Internal.Value (in MLWorks). Our unsafe ver-
sion of the nth function used cast for list access without
tag checking.

Notice that unsafe versions of sub, update and nth can
be used in our implementation only if they are assigned the
corresponding types mentioned in Section 2.1.

In Table 2 and Table 3, we present the effects of eliminat-
ing array bound checks and list tag checks. Note that the
difference between the number of eliminated array bound
checks in Table 2 and Table 3 reflects the difference between
randomly generated arrays used in two experiments.

It is clear that the gain is significant in all cases, re-
warding the work of writing type annotations. In addition,
type annotations can be very helpful for finding and fixing
bugs, and for maintaining a software system since they pro-
vide the user with informative documentation. We feel that
these factors yield a strong justification for our approach.

5 Related work

From the point of view of language design, our work falls in
between full program verification, either in type theory (Con-
stable et al. 1986; Dowek, Felty, Herbelin, Huet, Murthy,



Program with checks | without checks | gain | checks eliminated
bcopy 6.52 4.40 | 32% 20,971,520
binary search 40.40 30.10 | 25% 19,072,212
bubble sort 58.90 34.25 | 42% 134,429,940
matrix mult 30.62 16.79 | 45% 33,619,968
queen 15.85 11.06 | 30% 77,392,496
quick sort 29.85 25.32 | 15% 64,167,588
hanoi towers 11.34 8.28 | 2% 50,331,669
list access 2.24 1.24 | 45% 1,048,576

Table 2: Dec Alpha 3000/600 using SML of NJ working version 109.32, time unit = sec.

Program with checks | without checks | gain | checks eliminated
bcopy 9.75 2.01 | 79% 20,971,520
binary search 31.78 25.00 | 21% 19,074,429
bubble sort 46.78 25.84 | 45% 134,654,868
matrix mult 60.43 51.27 | 15% 33,619,968
queen 29.81 14.81 | 50% 77,392,496
quick sort 79.95 70.28 | 12% 63,035,841
hanoi towers 9.59 7.20 | 25% 50,331,669
list access 1.58 0.77 | 51% 1,048,576

Table 3: Sun Sparc 20 using MLWorks version 1.0, time unit = sec.

Parent, Paulin-Mohring, and Werner 1993) or systems such
as PVS (Owre, Rajan, Rushby, Shankar, and Srivas 1996),
and traditional type systems for programming languages.
When compared to verification, our system is less expres-
sive but more automatic, when compared to traditional pro-
gramming languages our system is more expressive, but also
more verbose. Since we extend ML conservatively, depen-
dent types can be used sparingly, and existing ML programs
will work as before if there is no keyword conflict.

Hayashi proposed a type system ATTT (Hayashi 1991),
which allows a notion of refinement types as in (Freeman
and Pfenning 1991), plus union and singleton types. He
demonstrated the value of singleton, union and intersection
types in extracting realistic programs, which is similar to
our use of the corresponding logical operators on constraints.
However, his language does not have effects and he does not
address the practical problem of type checking or partial
inference.

We have already compared some of the work on array
bound checking for other languages (Markstein and Mark-
stein 1982; Gupta 1994; Susuki and Ishihata 1977), most of
which is based on automated analysis or inference, and thus
more limited while requiring no annotations. In many cases
a considerable number of array bound checks remain, which
limits the efficiency gains. Furthermore, these methods pro-
vide no feedback to the programmer regarding the correct-
ness of his code, which is an important component of our
solution. We also deal with advanced features of ML such
as higher-order functions and polymorphism. The work by
Jay and Sekanina (Jay and Sekanina 1996) which includes
these features and has similar goals and approach to ours is
more restrictive in the design and seems more promising for
languages based on iteration schemas rather than general
recursion.

Also related is the work on a certifying compiler by Nec-
ula and Lee, which introduces precondition annotations for
a type-safe subset of C in order to eliminate array bound

checks (Necula and Lee 1998) and generate proof-carrying
code (Necula 1997). Their language is significantly simpler
(for example, it does not include higher-order functions or
polymorphism), which allows them to formulate their exten-
sions without constructing a full type system. They also do
not include existential types, which we found necessary in a
number of our examples.

6 Conclusion and future work

We have demonstrated the practicality of the use of depen-
dent types in a statically typed functional language to elim-
inate dynamic array bound and tag checks. The required
additional type annotations are concise, intuitive and aid
the programmer in writing correct and in many cases sig-
nificantly more efficient programs. The necessary constraint
simplification, though theoretically intractable, has proved
practically feasible, even with a simple-minded implementa-
tion and currently incomplete algorithm.

Our immediate goal is to extend our system to accom-
modate full Standard ML which involves treating exceptions
and module-level constructs. We would also like to incorpo-
rate the ideas and observations from (Pugh and Wonnacott
1994) into our constraint solver and improve its efficiency.

We also plan to pursue using our language as a front-end
for a certifying compiler for ML along the lines of work by
Necula and Lee (Necula and Lee 1998) for a safe subset of
C. We can propagate program properties (including array
bound information) through a compiler where they can be
used for optimizations or safety certificates in proof-carrying
code (Necula 1997).

This work arose from a larger effort to incorporate a more
general form of dependent types into ML (Xi 1998). Our ex-
tended type checking algorithm is robust (in the sense that
it can collect constraints independently of their domain),
because we separated the language of indices and programs.
This allows other program invariants or properties to be



expressed, propagated, and checked, and we plan to investi-
gate the use of other constraint domains and simplification
procedures.

At present, unsolved constraints generated during type-
checking may provide some hints on where type errors origi-
nate, but they are often inaccurate and obscure. Therefore,
we plan to investigate how to generate more informative
error messages should dependent type-checking fail. In con-
trast, many other approaches to eliminating array bound
checking could give the user little or no feedback when an
error is found.
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A Knuth-Morris-Pratt string matching

The following is an implementation of the Knuth-Morris-
Pratt string matching algorithm using dependent types to
eliminate most array bound checks.



assert length <| {n:nat} ’a array(n) -> int(n)

and sub <| {size:int, i:int | 0 <= i < size} ’a array(size) * int(i) -> ’a
(* sub requires NO bound checking *)

and subCK <| ’a array * int -> ’a (* subCK requires bound checking *)
type intPrefix = [i:int| O <= i+1] int(i) (* notice the use of existential types *)
assert arrayPrefix <| {size:natl} int(size) * intPrefix -> intPrefix array(size)

and subPrefix <| {size:int, i:int | 0 <= i < size} intPrefix array(size) * int(i) -> intPrefix
(* subPrefix requires NO bound checking *)

and subPrefixCK <| intPrefix array * int -> intPrefix (* subPrefixCK requires bound checking *)

and updatePrefix <| {size:int, i:int | 0 <= i < size}
intPrefix array(size) * int(i) * intPrefix -> unit
(* updatePrefix requires NO bound checking *)

(* computePrefixFunction generates the prefix function table for the pattern pat *)
fun computePrefixFunction(pat) = let

val plen = length(pat)

val prefixArray = arrayPrefix(plen, ~1)

fun loop(i, j) = (* calculate the prefix array *)
if (j >= plen) then ()
else

if sub(pat, j) <> subCK(pat, i+1) then
if (i >= 0) then loop(subPrefixCK(prefixArray, i), j)
else loop(~1, j+1)
else (updatePrefix(prefixArray, j, i+1); loop(subPrefix(prefixArray, j), j+1))
where loop <| {j:nat} intPrefix * int(j) -> unit
in
(loop(~1, 1); prefixArray)
end
where computePrefixFunction <| {p:nat} int array(p) -> intPrefix array(p)

fun kmpMatch(str, pat) = let
val strLen = length(str)
and patLen = length(pat)

val prefixArray = computePrefixFunction(pat)

fun loop(s, p) =
if s < strLen then
if p < patLen then
if sub(str, s) = sub(pat, p) then loop(s+1l, p+1)
else
if (p = 0) then loop(s+1l, p)
else loop(s, subPrefix(prefixArray, p-1)+1)
else (s - patLen)

else "1
where loop <| {s:nat, p:nat} int(s) * int(p) -> int
in
loop(0, 0)
end

where kmpMatch <| {s:nat, p:nat} int array(s) * int array(p) -> int

Figure 5: An Implementation of Knuth-Morris-Pratt String Matching Alogirithm



