A Formalization of the Proof-Carrying Code Architecture in a
Linear Logical Framework

Mark Plesko and Frank Pfenning
Department of Computer Science
Carnegie Mellon University

mp5f@andrew. cmu.edu and fp@cs.cmu.edu

Draft of April 16, 1999

1 Introduction

One of the major challenges in the design of modular and extensible operating systems is to guaran-
tee safety in the presence of untrusted code. A similar problem arises in the domain of mobile code.
One solution, adopted, for example, in the Java Virtual Machine [LY97], is to perform extensive
safety checks at run time. In the alternative paradigm of proof-carrying code (PCC) proposed by
Necula and Lee [NL96, Nec97], the code producer attaches a safety proof to mobile code which
can be independently verified by the code consumer before execution. This eliminates the need for
run-time checks and leads to a small trusted computing base.

A difficulty with PCC is the complexity of proving the correctness of the architecture itself. In
particular, we would like to ensure that a program which passes the safety check before execution
will indeed run safely. While this can be quite difficult, it has to be done only once for each machine
architecture and safety policy. For example, Necula [Nec98] has given a mathematical proof for the
correctness of his safety policy. Unfortunately, minor changes or additions to a policy may require
substantial changes in its correctness proof.

In this paper we formalize the PCC safety architecture in a logical framework, which constitutes
an important first step towards an environment for experimentation and formal verification of
properties of safety policies and their implementations in the PCC architecture. Our main tool is
LLF [CP96], a logical framework based on linear logic [Gir87]. Linear logic provides natural means
of describing programming languages and their semantics, especially those of an imperative nature.
LLF permits us to give a high-level description of assembly code, safety policies, and safety proofs
within the same language.

In future work we plan to formally verify safety policies based on their encoding in LLF. We
also hope to introduce linearity to the PCC architecture itself in order to reduce the size of safety
proofs.

We will first further describe the PCC infrastructure in Section 2 followed by a brief sketch of
our meta-language, the linear logical framework in Section 3. In order to implement portions of
the PCC system, we must choose a language for our simulated agent. We follow [Nec98| and use
Safe Assembly Language (SAL), a generic RISC architecture. SAL is described in Section 4. Two
execution models, one without and one with run-time safety checks, are described in Section 5. A
formal connection between these two models is provided in Section 6, where we specify safety as a

property of traces of unsafe execution. An implementation of the Verification Condition Generator
(VCGen), an integral trusted component of the PCC infrastructure, is presented in Section 7. Some
conclusions and ideas for further research are given in Section 8.

2 PCC Architecture

This section serves as an informal introduction to the components of proof-carrying code and the
role that certifying compilation plays in PCC. For more detail the reader is encouraged to consult
Necula [Nec97, Nec98] and Necula and Lee [NL96, NL9I8a, NLI8b].

One important distinction to make among the different components of the PCC system is which
components are trusted by the code consumer. This trusted infrastructure is kept simple in order
to ensure correctness; it is also kept efficient since it must be executed by the code consumer. The
complicated and difficult portions of PCC are saved for the code producer and proof producer,
which may or may not be the same.

The first step must be taken by the code consumer; it must establish a safety policy. The safety
policy has three parts which are part of the PCC infrastructure. First, a logic must be chosen to
describe allowable agent actions, code annotations, verification conditions, and proofs (these are
explained below). In this case we choose an extended first-order predicate logic, which is not to be
confused with the linear logic that we are using in our method of formalization, though in future
work we will explore the benefits of using linear logic in these components of the infrastructure.
Second, function specifications must be formed. These are preconditions and postconditions that
we will be able to assume on function invocation and return, respectively. Lastly, we must be
able to determine what actions the agent code may take based on the state. This is done by the
verification-condition generator (VCGen). The wverification condition is a predicate in the logic
that is provable only if the agent code is safe.

Once this preliminary step is completed, we can trace the actual operations of a PCC system.
First the agent code must be annotated for use later in the system. These annotations must be
sufficiently strong to ensure safety, yet weak enough so we can prove them. For the simple examples
that were used as test cases in our implementation, these annotation were supplied by hand;
however, in a production system, this task would be automated by a certifying compiler [NL98a).
The annotation process is the responsibility of the code producer and need not be trusted.

The code receiver then inspects the annotated code and produces a verification condition. A
proof of this verification condition in the logic signifies that the agent code satisfies the safety
policy. VCGen produces the condition by scanning through the code in one pass. VCGen requires
annotations in the form of function specifications and loop invariants in order to simplify the
process. These annotations are not trusted and result in additional components of the verification
condition, but they make it possible to prove safety by showing which intermediate properties need
to be shown. The VCGen is a trusted component.

The code consumer then sends the verification condition to the proof producer. A complex,
proof-generating theorem-prover is used to produce the proof, which is then returned to the code
consumer. It is possible that instead of producing proofs in real-time, the proof producer may
have proofs on hand that correspond to several standard VCGen implementations, or even attaches
them directly to the mobile code. This distinction is irrelevant for our purposes here as the proof
producer is not trusted.

The final step prior to code execution is verification of the proof. This is a quick, simple process
completed by the code consumer and obviously must be trusted.

3 Linear Logical Framework

A formalization of the essential components of the PCC architecture is a complex task. A logical
framework appropriate to carry out this task must simultaneously provide means to specify logics
and formal proofs, assembly language, machine computations, safety properties, and the verification
condition generator. Ideally, we should also be able to express and prove meta-theoretic properties
of these components in the framework.

A first candidate is the LF logical framework which is already used in Necula and Lee’s im-
plementation of PCC and the Touchstone certifying compiler [Nec98]. Unfortunately, encoding
assembly language and the low-level machine is cumbersome due to the pervasively imperative
nature of computation. This brings to mind linear logic [Gir87] which has been described as a
“logic of state”. Forum [Mil94] is a fragment of linear logic whose proof-theoretic properties make
it particularly suitable as a specification language. Chirimar [Chi95] has demonstrated that a ma-
chine with a pipelined architecture can be effectively encoded in Forum. However, Forum lacks an
internal notion of proof, which is essential for proof-carrying code. We therefore chose the linear
logical framework (LLF) [CP96] which extends LF with connectives from linear logic. On the one
hand, this immediately allows the encoding of logics and proofs as in the present PCC implemen-
tation. On the other hand, the linear connectives permit a high-level encoding of safe assembly
language. Moreover, LLF is based on a type theory and has internal proof terms which can be used
to encode and reason about computations themselves. We use this important feature, for example,
to explicitly define safety conditions on computations.

The language of LLF is a linear type theory with types Ilz:A;. Ay (dependent functions),
A — B (linear functions), A & B (additive products) and T (additive unit). We also abbreviate
Ilz:A;. Ay as A; — Ay if & does not occur in As. Under the Curry-Howard isomorphism between
propositions and types, Il can be seen as universal quantification, — as implication, —o as linear
implication, & as conjunction, and T as truth. We will freely switch between these different views,
depending on the situation.

The type theory is defined by a judgment I'; A+ M : A where I' = u; : Aj,...,u, : A, declares
types for unrestricted variables, A = z1 : Ay,...,xy, : By, declares linear variables, M is a term,
and A the type of M. The proof terms M are drawn from a A-calculus—details are elided here for
the sake of brevity. We adopt the customary view of I" as consisting of logical assumptions (which
may be used arbitrarily often in the derivation of A) and A consisting of resources (which must be
used exactly once in the derivation of A). It is often helpful to think of A as a goal to achieve with
resources in A according to the laws in I', rather than as a proposition to be proven.

The LLF type theory has the usual properties which make it suitable as the basis for a logical
framework. In particular, canonical forms exist, and type-checking is decidable. The existence of
canonical forms is tantamount to the completeness of uniform derivations [MNPS91]. This means
that we can endow LF with an operational semantics in the style of Prolog which is sound and
non-deterministically complete. Under this view, the logical assumptions I' constitute a program,
the resources A describe the current state, and the type A represents a goal. The proof term M : A
is generated by a successful search. This view of LLF as a logic programming language is important
for our application, since it allows us to execute various specifications, including execution of the
machine, verification of the safety property, and the actual generation of the verification condition
from an assembly language program. We will return to these points below.

4 Safe Assembly Language

SAL [Nec98] is the generic assembly language that we use in our implementation of the PCC system.
SAL assumes a machine with a RISC architecture that includes a set of registers including a special
register ra for storing the return address of a function and another special register sp with dedicated
instructions for the manipulation of the stack. SAL provides instructions for memory usage and
function calls, and its syntax is presented in Figure 1. The operations “EOP” and “condCOP”
are meant to be an arbitrary arithmetic operation and a conditional jump instruction, respectively.
In our implementations, we have instantiated “EOP” as addition and “COP” as a comparison
with zero. The addresses specified in this branching instruction and the jump instruction are both
relative. The pair call and ret are simple, with the former not storing a return address and
the latter relying on the ra register. By restricting call to only designated functions and not
dynamically calculated addresses, we lose the possibilities of higher-order functions and dynamic
method lookup. There are separate instructions for normal memory manipulation as well as stack
access. Annot provides a way for annotations to be added to a SAL program but are ignored during
execution. They communicate information that is useful to the PCC infrastructure, for example,
to the Verification Condition Generator (see Section 7).

Registers: r = r;|ra i=1,...,R
Instructions: I == r<« 7’ Move

T4 M Initialize

r < r’" EOP r” Arithmetic/Logical operations

jump n Jump

condCOP(r), n Conditional branch
ra < pc + n Compute return address

call F Function call F a function
r < MIr'] Memory read
Mr'| < Memory write

sp « sp + n Advance the stack pointer
r < M[sp + n| Stack read

\

\

\

\

\

\

| ret Function return
|

\

\

\

| M[sp + n] < r Stack write
\

\

Annot Annotations discussed later
End Program termination added for these
implementations

Numerals: n €7

Figure 1: SAL Syntax — Taken from Necula [Nec98|, Figure 3.1

We will be using the move (r < ') and memory read (r < M|[r]) instructions as examples
throughout the paper. We show here some of the declarations which are used to represent SAL
programs. In LLF, both type and term constants are declared in a signature. For now, we may
think of a signature as simply of list of declarations of the form a : type for a type constant a and
¢ : A for an object constant ¢ of type A. We assume a type exp has already been declared which
contains the values which can be held by a register and which may be the arguments to arithmetic
operations. First, we declare the registers available in the machine as a type rname.

rname : type.
ra : rname.
rl : rname.
r2 : rname.

We have the ability to create a machine with an arbitrary number of general purpose registers by
simply adding more names for them in the form rn : rname. The different SAL instructions take
varying numbers and types of parameters. The move and memory read instructions, our running
examples, both require two registers for their operation. For of r < r’ we write mov r 7/, while
r < M]|r'] is represented as memr r r’.

instr : type.
mov : rname -> rname —> instr.
memr : rname -> rname —> instr.

All the other instructions of the machine are encoded in a similar manner. The state of the
machine consists of a program counter and the current values of the registers, stack pointer, and
memory cells. They are represented by propositions of the form

reg r v register r contains value v ,
sp a stack pointer contains address a,
mem ¢ v memory at address a contains value v.

In LLF, propositions are coded as types, so reg, for example, is represented as a type family indexed
by a register name r and a value v. This leads to the following declarations.

reg : rname -> exp —> type.
Sp : exp —-> type.
mem : exp -> exp -> type.

Note that we allow not only types, but also type families to be declared in a signature.

5 SAL Execution

In this section we will concurrently develop two execution models of the SAL language. One is a
standard execution model that lacks safety checks. This is the execution that would occur after
code has passed through the PCC system. We will later be able to check properties of this type of
execution. The other model includes the safety checks and corresponds to run-time verification.
The state of the SAL machine during execution is defined as a triple of values (i, p, H), where
1 is the program counter, p is the state of the registers including sp and a pseudoregister mem that
contains the contents of memory, and H is a sequence of register states that represents the call
history of the program. The call history H is only required in the safe execution model as it is
required to perform some of the safety checks. In the framework these values will be stored in the
linear context, represented by A. The stack pointer is stored separately from the other registers
simply to exert more control over it, i.e., so that general register operations do not apply to it.
The state of the machine also includes parameters that do not change such as the program, the
amount of memory in the machine, and so on. The unrestricted context, represented by I', contains
only these general properties. The construct maxmem value specifies the amount of memory in the

machine. Each instruction of a program is stored as prog n command. The n is used as a line
numbering scheme, though its real meaning would be the memory address at which the instruction
is stored. We should note here that:

1. The code region is assumed to be completely separate from other regions of memory. In
particular, it is a write-protected region.

2. Every instruction is assumed to consume one such address location.

It would not be difficult to relax both of these restrictions in the execution models; however, other
components of this PCC system presently require these restrictions.

Two important definitions of type families for execution are shown below. The former, run,
corresponds to the execution of a program from a certain program counter. The latter is used in
implementing the operational semantics of each instruction.

run : exp —> exp —-> type.
exec : instr -> exp -> exp —> type.

The main judgment we shall consider is
I'NAkexecI X ©

which should be interpreted as in linear type theory, except that we have omitted the proof term
M for the sake of brevity. The intended meaning is that with the assembly program and machine
characteristics stored in I' and with the register and memory state stored in current state A, the
program can be run beginning with the program counter at X, which points to instruction I, to
termination, with © being the final value of register r1. This register was chosen in an arbitrary
manner; in fact, this is not necessary for the computation to succeed but allows the program to
output a value.

We will now continue the specific examples that we started in the last section. Some of the
notation that is used below is of the form

14+ The address of the instruction after that of i.
For our implementations this will be ¢ + 1, but this is not the case in general.
p(r) The value of register r under register state p.
plr <= v] The register state p with the value of register r updated to be v.
p(mem) The current memory state.

Mathematically represented as a function from addresses to values

For the mov instruction, execution in state (i, p, H) produces the state (i++, p[r < p(r')], H).
There are two stages that the framework must go through in order to simulate this. First is the
lookup of the value of the register r’ from the linear context. Because we usually do not want to
permanently destroy this resource as the register should still exist with the same value, we define
a lookup predicate, rlook, and connect it additively with the rest of the program. We would like
it to satisfy

I'; Aymem M V Fmlook M V

However, linear logic requires the resources in A to be used, so we use the additive unit T which
consumes an arbitrary set of resources. The encoding then reads:

A FregRV T;ART
A" AFrlook RV

rlookl

These judgments are meant to be read in a bottom-up fashion. Thus, in this case, the proof
search for rlook R V splits the linear context and attempts two sub-derivations. This also means
that LLF code not only provides a specification of SAL execution but can also be used to simulate
the running of SAL code. We can then easily see then that A’ must be reg R V for the left subgoal
to succeed and that I'; A,reg RV I rlook RV is a derived rule of inference.

The code in LLF for this as as follows, where <T> denotes T:

rlook : rname -> exp —> type.
rlookl : reg RV -o <T> -o rlook R V.

This is a direct transcription of the given rule with very little notational overhead. We think
of the inference rule rlookl as a linear function from derivations of the premises to a derivation
of the conclusion. This simple technique works for most of our implementation and attest to the
appropriateness of the linear logical framework. The arithmetic operations are the only exception.
This is because the framework does not have a built-in understanding of integers, which we therefore
explicitly programmed in binary form.

The second phase of the mov command is to write this value to register r. Since all of the
instructions that update state follow the model of doing preliminary calculations, updating one part
of the state, incrementing the program counter, and continuing, it is useful to define an auxiliary
judgment to combine the last three steps of the four. Therefore, we will let upr1 RV X © be that
judgment. The register being updated is R with the new value V. The code address and output
variable are X and ©, as usual. runnext does as its name suggests; it continues execution at the
next address.

I'; Ayreg RV F runnext X ©
I'’AjregRVoFupri RV X ©

uprla

The code is the following:

uprla : (reg R V -o runnext X Theta)
-o (reg R V2 -0 uprl R V X Theta).

Note how the linear function type constructor in both premise and conclusion is used to model the
consumption (conclusion) and introduction (premise) of a resource.

We continue similarly for memory. With these two assisting predicates in place, it is a simple
matter to finish the mov command. The judgment and code are listed here, with & being the
additive conjunction in the logic. This means that both premises obtain a complete copy of the
resources A. There are no safety concerns with the mov command, so this is identicial in the unsafe
and safe execution models.

AR rlook Ry Vo T Abupri R Vo X ©
I'; A+ exec (mov Ry Ry) X ©

ETMOV

exmov : (rlook R2 V2 & uprl R1 V2 X Theta)
-0 exec (mov R1 R2) X Theta.

The memr command is quite similar. The operational semantics shows that from initial state
(i, p, ") the command memr r 7’ produces state (i++, p[r < p(mem)(p(r’))],). This requires use
of mlook, rlook, and uprl, and that is all that we must do for the unsafe execution model. There
is a safety check that we must do on memory reads, however. It is represented by the predicate
safeRd a. safeRd represents an unspecified predicate defining memory read safety. It may check
for memory alignment as well as ensuring that memory functions do not operate on the stack.
safeRd uses the current state to determine whether it is safe to read from address a. The relevant
judgment and definitions follow:

I'AFrlook Ro M T;Ab safeRd M T;AbFmlook MV Ti;Abupri RV X O
I'; A+ exec (memr Ry Ry) X ©

exrmemr

safeRd : exp -> type.
exmemr : (rlook R2 M & safeRd M & mlook M V & uprl R1 V X Theta)
-0 exec (memr R1 R2) X Theta.

We move to functions at this point as they require significant changes between the unsafe
and safe execution models. In the unsafe model, there is no difficulty with functions. The call
command must simply jump to the address that marks the function beginning. The ret command
looks up the current value of register ra and jumps to that address. There are two important parts
to the safety checks that must be done here. One half, the checking of the state against annotated
function preconditions and postconditions, is very similar to the addition of the safeRd predicate
above. The other half involves ensuring that the values in certain registers and stack locations are
held constant across function calls. To do this we must manipulate the call history, which has been
denoted by H previously. We have chosen to do this by annotating register and memory values also
with their function depth. Then on function invocation we can copy the state to the next deeper
level, and on function return we can compare the two adjacent depths before reducing the current
depth. This requires the following addition and changes to our type families,

depth : exp —-> type.
reg : exp —> rname -> exp -> type.
mem i exp —> exp —-> exp —> type.

where the first parameter to reg and mem now correspond to the function depth. We store depth d
in the linear context A so that we can recall the current depth at any point without needing to
change many of the definitions.

We would like to reemphasize that the encoding of all the operations of the machine are of a
similarly direct nature as the examples shown in this section. In addition to providing a high-level
specification, the two LLF signatures can also be viewed as a logic program to execute SAL code, in
safe or unsafe mode, respectively. In the current LLF implementation which is closely related to the
implementation of Twelf [PS99], this is efficient enough to write a simple iterative SAL programs
and run them.

6 Properties of Computations

The safe execution model from the last section represents a run-time safety verification mechanism.
In this section we will explore an alternative approach to specifying safety. The safety checks in
the run-time checker apply to single instructions. Here we will consider safety as a property of a

complete computation. The specification of safety will also provide a means for checking whether
or not any given completed execution from the unsafe model was, indeed, safe, using the logic
programming interpretation of LLF signatures.

A major advantage of this method of checking safety is an increase in modularity of the different
components of safe execution. With the safety checks built in to the SAL interpreter, a change
in safety policy requires the SAL interpreter itself to be modified. When we consider safety as a
property of a computation, we can separate the interpreter and the safety checker into two distinct
components. First, this separate interpreter is a more realistic execution. Second, a change in
safety policy will leave the interpreter untouched while changes occur in the safety checker.

We formally specify safety of a computation by exploiting the proof terms that the framework
provides. When we run a SAL execution in LLF, the rules as described in the previous sections are
used to generate a proof that corresponds to our execution query. Because we have been careful
in providing these rules, there is only one possible rule to use for each SAL command and in each
auxiliary situation. Therefore there is exactly one ordering of rules that corresponds to a successful
execution and it is not difficult for the framework to find it. If the execution should fail for some
reason, for example by calling a function that does not exist, then there is no such ordering of rules
and the proof fails. In the case that the proof succeeds, we would like more information than simply
that the proof succeeded; we would like to see the proof itself. Hence, we label the rules that we
provided above, and the proof term that is returned by LLF in a successful proof is constructed
with these labels as well as constructs in the logic. Since proof terms are an integral part of the
LLF type theory, we can write LLF programs to manipulate them and that is how we will check
safety after-the-fact on executions in the unsafe model.

These proof terms contain complete records of SAL executions; they can be viewed as execution
traces. As we traverse a proof term we are continuing along the execution and can check safety
properties where necessary. Unfortunately, proofs terms do not explicitly carry enough information
to make this completely trivial; the proof term does not directly contain any information about
the state of the machine at specific points in the computation. It does provide enough information
to construct this as we go, however, and this means that we need to, in essence, re-execute the
program in order to keep the appropriate state data. We do not need to make decisions regarding
flow control, as the proof term dictates the exact execution; we simply need to know the state (via
watching of the update register clause for example) so that when the proof term signals, say, a
function return, we can extract the appropriate information in order to do the safety check.

Since there are no safety checks on the mov instruction, it is an uninteresting case. Recall the
unsafe version of the implementation of the memr command.

exmemr : (rlook R2 M & mlook M V & uprl R1 V X Theta)
-0 exec (memr R1 R2) X Theta.

Here, exmemr is a constructor for proof terms, which is applied to a triple representing the
proofs of the three premises. In the notation of LLF":

exmemr -~ (RL , ML , U) : exec (memr R1 R2) X Theta

where ~ denotes application of a linear function and

RL : rlook R2 M
ML : mlook M V
U : uprl R1 V X Theta

Next we define our predicates on proof terms. These are once again represented as type families,
following the methodology of the the logical framework. The two that are part of the memr example
are shown here

okexec : exec I X Theta -> type.
okuprl : uprl R V X Theta -> type.

For the actual rule, we note that all we need to do is check that the safeRd predicate is satisfied
with the address that is used. The linear argument to exmemr, a subproof in the term, contains
sub-derivations of the three clauses in the above memr execution rule. Braces, {}, are the LLF
concrete syntax for universal quantification. Therefore, we can discover the address that is being
read from by looking at the type of ML. We then continue traversing the proof term with the call
to okuprl.

okexmemr : {ML:mlook M _}
(safeRd M & okuprl U) -o okexec (exmemr ~ (_, ML, U))

Several safety policies have been implemented in the checker. More can be added, and it is
very simple to do so with checks that deal with a small number of commands (i.e. a small number
of rules of the implementation). First, of course, are the standard SAL safety checks, the original
motivation for the checker. We have also added, as options, several smaller safety properties. For
example, we have implemented a check that disallows backwards jumps. This is a requirement in
the Berkeley Packet Filter (BPF) [MJ93]. This is an interesting example to examine because a
concrete check is done rather than calling an abstract safety predicate.

The code for the jump instruction is presented first. The reason for having a separate execjmp
predicate is so that other instructions, for example condCOP, may make use of it.

exec : instr -> exp -> exp -> type.

execjmp : exp —> exp -> exp —> type.

exjmp : execjmp V X Theta -o exec (jmp V) X Theta.
execjmpl: run X2 Theta -o bplus V X X2 -> execjmp V X Theta.

New here is the use of unrestricted implication -> to indicate a premise which does not require
access to the current machine state. In this case, it is bplus v & x2 which will hold if and only if
V4T = x9.

Since all jumps will use the execjmp predicate, placing the safety check there will enforce the no
backward jumping safety condition on all of these instructions instead of just the jmp instruction.
The key then is to verify that the value of V' in the above code is positive. Therefore, the code for
checking the first part of the proof term is trivial.

okexjmp : okexecjmp E -o okexec (exjmp ~ E).

To extract the relative jump value, we examine the proof term for the second premise of the
execjmpl rule from above. The predicate ble v; ve is provable if and only if v < ve.

okexecjmpl : {B:bplus V _ _}
okrun R -o ble 1 V -> okexecjmp (execjmpl ~ R B).

We also have a simple check that disallows function calls. The last policy actually addresses a
minor deficiency in the implementation. It is difficult to express the idea of bounded numbers in

10

the framework, so registers may take on unbounded values. This is not a faithful representation,
and could lead to a loophole if an overflow value causes a safety problem. However, it is easy to
add an inequality check to ensure that the register values never go beyond some bound. We should
note that the bounds check could also be built into the actual register updating procedure so that
overflow could be simulated, but that it could not easily be built into the actual expression type.

7 VCGen

Generation of the verification condition (VC) follows the same pattern as execution but with a
few differences. First, we will also instantiate register and memory location values as variables or
expressions involving variables. Second, we will only reach any given line of code (except annota-
tions) at most once due to care in handling loops and function calls. Last, because of the first two
differences, we will usually not have explicit values in register and therefore may not know at what
address a memory read or write occurs. Thus, we must deal with memory as one entity instead of
many different locations as done in the execution models. The judgments for VCGen are therefore
similar to those for execution but reflect these differences. The VC that we generate does not have
any linear components.

To handle these new requirements for the memory implementation, we define a new memory
state expression stexp as well as two important functions for use on variables of type stexp,

stexp ! type.

sel : stexp -> exp —> exp.

upd : stexp -> exp —> exp —-> stexp.
mem : stexp -> type.

mlook : stexp -> type.

with the following usage

selsa the value at address a in memory state s
upd s a v the memory state equivalent to s but with the value at address a set to v.

and mem and mlook being a means of storing the entire memory state in the linear context.

Many of the predicates correspond exactly to their execution counterparts, with the output
value (O in past judgments) replaced by the VC, an object of type pred. These are a few of the
relevant definitions, where /\ is defined to be an infix conjunction operator.

true : pred.

/\ : pred -> pred -> pred.

saferd : stexp -> exp -> pred.

exec : instr -> exp —-> pred -> type.

The main judgment in this case is
Ak execI X VC

which, as before, should be interpreted as in linear type theory. The proof term M is again omitted.
The program and machine characteristics are stored in the unrestricted context, I'. Register values,
the new memory mechanism, and the current depth are stored in the linear context, A. The
intended meaning is that under this state, examination of the assembly program from instruction
I at address X results in verification condition V C.

In the case of a memory read, we perform the read and register update as in normal execution,
and we also add a saferd component to the VC.

11

exmemr (rlook R2 M & mlook MEM & uprl R1 (sel MEM M) X VC)
-0 exec (memr R1 R2) X ((saferd MEM M) /\ VC).

We generally will not know the outcome of a conditional operation; therefore, we must take both
routes when we encounter a condCOP statement. We want to guarantee termination; moreover,
we would prefer that running time be proportional to the amount of code instead of the actual
running time of the program. Both of these are treated by careful handling of functions and loops.

To deal with functions, we require that every function be annotated with sets of preconditions
and postconditions. We then generate a separate VC for each function in the program and build
the overall VC by forming the conjunction of these smaller statements. To examine a function by
itself, we need to initialize the relevant components of the state. We wish to show that the function
is safe beginning from any state that satisfies the given preconditions, so we introduce variables for
values and modify the VC to assume that these variables satisfy certain conditions related to the
function preconditions. Thus we have created half of an implication that will be completed by the
remainder of the function.

Upon reaching the end of the function, we close the implication by adding a final set of conditions
that requires the final state to conform to the function’s postconditions. The annotation for a
function also includes a set of registers (the callee-save register set that are guaranteed to be
preserved across the function call. Statements enforcing this preservation are also added at this
time.

On a function call within the function currently being analyzed, we do not want to transfer con-
trol to the called function — this is the reason that we have required preconditions, postconditions,
and the callee-save register set. We simply add conditions requiring the current state to conform
to the function’s preconditions. Then we introduce new variables as values for any location that is
not contained in the callee-save register set and then assume that the postconditions hold on this
new state, again writing half of an implication into the VC, exactly as done at the beginning of the
function.

Loops require much of the same machinery. We require that the destination of any backward
jump instruction to be a loop annotation. This annotation contains a loop invariant as well as
a set of registers that may be modified by the loop. Anytime we reach a loop annotation, we
always add to the VC statements enforcing the state to conform to the invariant. On reaching the
invariant for the first time, we introduce variables for any location that may be changed by the loop
corresponding to the invariant and continue. On subsequent visits to the invariant, we check that
only the allowable registers have been modified and then end VC construction. This will usually
be the branch of a condCOP statement that continues the loop, with the other branch continuing
towards the end of the function.

8 Conclusion and Future Work

We have implemented two execution models for safe assembly language, a post-execution safety
checker, a verification condition generator and the inference rules of the predicate calculus in the
logical framework. The framework itself already provides the proof checker. This completes a
specification of the key trusted component of the PCC architecture.

The specification in the framework has a number of attractive features: it is concise and at
a high-level of abstraction. It can be executed using the logic programming interpretation of the
linear logical framework. The features of the framework which made this natural encoding possible
include the linear operators for machine state, and the dependent types and proof terms for the

12

external safety check.

However, there are also some shortcomings of the framework. The absence of arithmetic means
binary numbers have to be painfully coded. Furthermore, the current LLF implementation provides
no tracing or other debugging tools which makes it difficult to find and correct errors in a speci-
fication. Finally, the absence of a module system requires a lot of programming by cut-and-paste
which should not be necessary. To give in idea of the size of the implementation: the unsafe SAL
specification occupies about 250 lines, safe SAL execution about 300. The external safety checker
consist of about 200 lines, while the VCGen implementation is about 500 lines long.

The next step will be to formalize the meta-theoretic proofs of correctness for the architectures.
In particular, we would like to verify that the unsafe execution of a program whose verification
condition has been proven satisfies the explicit safety check. We would also like to investigate
other uses of linearity in the PCC system. For example, it may be possible to use linearity in the
verification condition itself, which could be one way of reducing proof size.

References

[Chi95] Jawahar Lal Chirimar. Proof Theoretic Approach to Specification Languages. PhD
thesis, University of Pennsylvania, May 1995.

[CP96] Iliano Cervesato and Frank Pfenning. A linear logical framework. In E. Clarke, editor,
Proceedings of the FEleventh Annual Symposium on Logic in Computer Science, pages
264-275, New Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

[LY97] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java
Series. Addison-Wesley, Reading, MA, January 1997.

[Mil94] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, Ninth Annual
IEEE Symposium on Logic in Computer Science, pages 272-281, Paris, France, July
1994.

[MJ93] Steven McCanne and Van Jacobsen. The BSD packet filter: A new architecture for
user-level packet capture. In The Winter 1993 USENIX Conference, pages 259-269.
USENIX Association, January 1993.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125-157,
1991.

[Nec97] George C. Necula. Proof-carrying code. In Neil D. Jones, editor, Conference Record
of the 24th Symposium on Principles of Programming Languages (POPL’97), pages
106-119, Paris, France, January 1997. ACM Press.

[Nec98| George C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
October 1998. Available as Technical Report CMU-CS-98-154.

[NL96] George C. Necula and Peter Lee. Safe kernel extensions without run-time checking. In
Proceedings of the Second Symposium on Operating System Design and Implementation

(OSDI’96), pages 229-243, Seattle, Washington, October 1996.

13

[NL98a

[NL98D]

[PS99]

George C. Necula and Peter Lee. The design and implementation of a certifying com-
piler. In Keith D. Cooper, editor, Proceedings of the 1998 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 333-344, Mon-
treal, Canada, June 1998. ACM Press.

George C. Necula and Peter Lee. Efficient representation and validation of logical proofs.
In Proceedings of the 13th Annual Symposium on Logic in Computer Science (LICS’98),
pages 93-104, Indianapolis, Indiana, June 1998. IEEE Computer Society Press.

Frank Pfenning and Carsten Schiirmann. System description: Twelf — a meta-logical
framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th In-
ternational Conference on Automated Deduction (CADE-16), Trento, Italy, June 1999.
Springer-Verlag LNCS. To appear.

14

