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Abstract

We present a sequent calculus for intuitionistic non-commutative linear logic (IN-
CLL), show that it satisfies cut elimination, and investigate its relationship to a
natural deduction system for the logic. We show how normal natural deductions
correspond to cut-free derivations, and arbitrary natural deductions to sequent
derivations with cut. This gives us a syntactic proof of normalization for a rich
system of non-commutative natural deduction and its associated λ-calculus. IN-
CLL conservatively extends linear logic with means to express sequencing, which
has applications in functional programming, logical frameworks, logic programming,
and natural language parsing.

1 Introduction

Linear logic [11] has been described as a logic of state because it views linear
hypotheses as resources which may be consumed in the course of a deduction.
It thereby significantly extends the expressive power of both classical and
intuitionistic logics, yet it does not offer means to express sequencing. This is
possible in non-commutative linear logic [1,5,2] which goes back to the seminal
work by Lambek [16].

In [20] we introduced a system of natural deduction for intuitionistic non-
commutative linear logic (INCLL) which conservatively extends intuitionistic
linear logic. The associated proof term calculus is a λ-calculus with functions
that must use their arguments in a specified order which is useful to capture
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properties of functional programs. This system was constructed from an intu-
itionistic point of view where the notion of a judgment plays the central role
in determining how the logical connectives should behave.

In constructing INCLL we started with a judgment which would distin-
guish three types of hypotheses—ordered, linear, and unrestricted. In the
same manner as linear logic restricts the use of the structural rules of con-
traction and weakening for linear hypotheses, INCLL further restricts the use
of exchange for ordered hypotheses. Thus the non-commutativity of INCLL
is not a priori a property of the logical connectives but rather a property of
the judgment. This is reflected as a restriction on the mobility of hypotheses:
ordered hypotheses must be consumed “in order”, while other hypotheses are
not subject to such a restriction.

We have found several applications for this logic and believe there are
potentially many more. While detailed analysis of these applications is be-
yond the scope of this paper, we list a few to support our claim that IN-
CLL is useful and worthy of more study. One direct application is a logical
explanation for ordering properties of terms in continuation-passing style in-
vestigated by Danvy and the second author in [7]. The ordering inherent
in non-commutative function arguments can be used to internalize stackabil-
ity properties of program evaluation in a fragment of INCLL, which is large
enough to capture the case of terms resulting from the standard CPS trans-
formation. Another application lies in natural language parsing. Since our
logic integrates ordinary, linear, and ordered functions in a consistent man-
ner, we can logically describe more natural language phenomena than can
be done by either linear logic or Lambek calculus [14,16]; in fact we can
smoothly integrate parsing techniques from both logics. Finally, since INCLL
is a conservative extension of intuitionistic linear logic, we can use INCLL as
the foundation for a new logic programming language which conservatively
extends Lolli [15]. The additional expressive power can be used to eliminate
unwanted non-determinism in applications such as parsing, sorting algorithms,
and operational semantics as described in [19].

While natural deduction is appropriate for studying functional languages,
it does not shed much light on the process of proof search. But proof search
is an important aspect of almost every operational use of a logic (e.g., type
inference, theorem proving, or logic programming). We therefore present and
study a sequent calculus as a foundational calculus of proof search. In on-
going related work we are studying further refinements which allow a logic
programming interpretation in the style of uniform derivations [17].

We validate our sequent calculus by showing that it admits cut and by
showing a direct mapping between normal natural deductions and cut-free
sequent derivations. We further use the sequent system as a vehicle for estab-
lishing normalization of the natural deduction system for INCLL by giving a
translation from arbitrary deductions into sequent derivations which may in-
clude cut. This extends the results from [20] where we gave a logical relations
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argument in the style of Kripke to show the existence of canonical forms for
a fragment of INCLL. Here it is easy to treat the full logic, which leads to a
different algorithm for normalization.

2 Natural Deduction

We review the natural deduction formulation of INCLL as given in [20], ex-
tended to include quantifiers. For the sake of brevity we elide proof terms
here, although strictly speaking they are necessary for an unambiguous spec-
ification.

We use Γ, ∆, and Ω to stand for lists of propositions (defined below), where
we use juxtaposition both for list concatenation and appending an element to
a list on either side. “·” denotes the empty list. It will be characteristic for
our calculus that we have three different kinds of hypotheses which, for ease of
notation, are written in different zones as in [3,12,4]. The unrestricted (some-
times called “intuitionistic”) context Γ satisfies contraction, weakening, and
exchange and is propagated unchanged from the conclusion to the premises
of a rule. In contrast, each hypothesis in the linear context ∆ must be dis-
tributed to one premise or the other for the multiplicative rules. When viewed
top-down, the corresponding operation of non-deterministic merge, ∆A ./∆B

allows an arbitrary interleaving of assumptions. So the linear context satisfies
only exchange. Finally, for multiplicative rules, the ordered context Ω must
be split at some intermediate point, where all the hypotheses to the left keep
the same relative order and are propagated to one premise, while the remain-
ing ordered hypotheses are propagated to another premise. We will tacitly
use some trivial properties of non-deterministic merge. We consider here the
following connectives.

Propositions A ::= P atomic propositions
| A1→A2 intuitionistic implication
| A1 −◦A2 linear implication
| A1�A2 ordered right implication
| A1�A2 ordered left implication
| A1 •A2 ordered multiplicative conjunction
| 1 multiplicative truth
| A1 &A2 additive conjunction
| > additive truth
| A1 ⊕A2 additive disjunction
| 0 additive falsehood
| ∀x. A universal quantification
| ∃x. A existential quantification
| ¡A mobility operator
| !A exponential operator

We now present the natural deduction judgments for INCLL omitting the
proof terms and variable labels on hypotheses. The judgment has the form
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Γ; ∆; Ω ` A, where Γ,∆,Ω are lists of propositions and A is a proposition.
Intuitively, Γ is an unrestricted context, ∆ is a linear context, and Ω is an
ordered linear context. We will take care to construct the deduction system
to ensure that the expected structural properties of the contexts hold.

Hypotheses.

ivar
ΓLAΓR; ·; · ` A

lvar
Γ;A; · ` A

ovar
Γ; ·;A ` A

Unrestricted implication.

ΓA; ∆; Ω ` B →I

Γ; ∆; Ω ` A→B

Γ; ∆; Ω ` A→B Γ; ·; · ` A→E

Γ; ∆; Ω ` B

Linear implication.

Γ; ∆A; Ω ` B
−◦I

Γ; ∆; Ω ` A−◦B
Γ; ∆; Ω ` A−◦B Γ; ∆A; · ` A

−◦E
Γ; ∆ ./∆A; Ω ` B

Ordered implications.

Γ; ∆;AΩ ` B �I
Γ; ∆; Ω ` A� B

Γ; ∆; Ω ` A�B Γ; ∆A; ΩA ` A�E
Γ; ∆ ./∆A; ΩAΩ ` B

Γ; ∆; ΩA ` B �I
Γ; ∆; Ω ` A�B

Γ; ∆; Ω ` A�B Γ; ∆A; ΩA ` A�E
Γ; ∆ ./∆A; ΩΩA ` B

Ordered conjunction and unit.

Γ; ∆A; ΩL ` A Γ; ∆B; ΩR ` B •I
Γ; ∆A ./ ∆B; ΩLΩR ` A •B

Γ; ∆; Ω ` A •B Γ; ∆C ; ΩLABΩR ` C •E
Γ; ∆C ./ ∆; ΩLΩΩR ` C

1I
Γ; ·; · ` 1

Γ; ∆; Ω ` 1 Γ; ∆C ; ΩLΩR ` C
1E

Γ; ∆C ./∆; ΩLΩΩR ` C
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Additive conjunction and unit.

Γ; ∆; Ω ` A Γ; ∆; Ω ` B
&I

Γ; ∆; Ω ` A&B

Γ; ∆; Ω ` A&B
&E1

Γ; ∆; Ω ` A
Γ; ∆; Ω ` A&B

&E2
Γ; ∆; Ω ` B

>I
Γ; ∆; Ω ` >

Additive disjunction and unit.

Γ; ∆; Ω ` A
⊕I1

Γ; ∆; Ω ` A⊕B
Γ; ∆; Ω ` B

⊕I2
Γ; ∆; Ω ` A⊕B

Γ; ∆; Ω ` A⊕B Γ; ∆C ; ΩLAΩR ` C Γ; ∆C; ΩLBΩR ` C ⊕E
Γ; ∆C ./ ∆; ΩLΩΩR ` C

Γ; ∆; Ω ` 0
0E

Γ; ∆C ./ ∆; ΩLΩΩR ` C

Universal and existential quantification.

Γ; ∆; Ω ` [a/x]A
∀aI

Γ; ∆; Ω ` ∀x. A
Γ; ∆; Ω ` ∀x. A

∀E
Γ; ∆; Ω ` [t/x]A

Γ; ∆; Ω ` [t/x]A
∃I

Γ; ∆; Ω ` ∃x. A
Γ; ∆; Ω ` ∃x. A Γ; ∆C; ΩL[a/x]AΩR ` C ∃aE

Γ; ∆ ./∆C ; ΩLΩΩR ` C

Mobility operator.

Γ; ∆; · ` A
¡
I

Γ; ∆; · ` ¡A

Γ; ∆; Ω ` ¡A Γ; ∆CA; ΩLΩR ` C ¡
E

Γ; ∆C ./ ∆; ΩLΩΩR ` C

Exponential operator.

Γ; ·; · ` A
!I

Γ; ·; · ` !A

Γ; ∆; Ω ` !A ΓA; ∆C; ΩLΩR ` C
!E

Γ; ∆C ./∆; ΩLΩΩR ` C
The rules ∀aI and ∃aE must obey the usual restrictions on a. Note that the

two forms of ordered implication add their new hypothesis either on the left
or right, and that this difference is reflected in the order of Ω and ΩA in the
conclusion of the elimination rules.
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Lemma 2.1 (Contraction, Weakening, Exchange)

(i) If ΓLAAΓR; ∆; Ω ` C then ΓLAΓR; ∆; Ω ` C.

(ii) If Γ; ∆; Ω ` C then ΓA; ∆; Ω ` C.

(iii) If ΓLABΓR; ∆; Ω ` C then ΓLBAΓR; ∆; Ω ` C.

(iv) If Γ; ∆LAB∆R; Ω ` C then Γ; ∆LBA∆R; Ω ` C.

Proof. By structural induction on the given derivation. Note that this induc-
tion defines a structure preserving translation—only the hypotheses change for
each judgment in a derivation. On proof terms, only contraction has an effect
(the renaming of variables). 2

We also have substitution principles for the logic.

Lemma 2.2 (Substitution)

(i) If ΓAAΓ; ∆; Ω ` C and ΓA; ·; · ` A then ΓAΓ; ∆; Ω ` C.

(ii) If Γ; ∆A; Ω ` C and Γ; ∆A; · ` A then Γ; ∆ ./ ∆A; Ω ` C.

(iii) If Γ; ∆; ΩLAΩR ` C and Γ; ∆A; ΩA ` A then Γ; ∆ ./ ∆A; ΩLΩAΩR ` C.

Proof. By structural induction over the given derivation for C. Again we
have a structure preserving translation where every use of A in the deduction
of C is replaced by the given deduction of A. 2

3 Normal Natural Deduction

We present a refined system of natural deduction for INCLL which only admits
normal deductions. This system is based on separating normal deductions,
characterized by bottom-up reasoning with introduction rules, from atomic
deductions, characterized by top-down reasoning with elimination rules. These
two can meet at any point with a coercion which allows us to view any atomic
deduction as normal. Note that a normal deduction in this sense cannot
contain an introduction rule immediately followed by an elimination of the
same connective (and neither can it contain any so-called maximal segments).
As we will see from the correspondence to the sequent calculus, any normal
derivation has the subformula property.

We have two kinds of judgments:

(i) Γ; ∆; Ω ` A ↑ (A has a normal derivation), and

(ii) Γ; ∆; Ω ` A ↓ (A has an atomic derivation).

The arrow indicates the direction of reasoning allowed.

Here are the judgments for the normal natural deduction system.

Hypotheses.

ivar
ΓLAΓR; ·; · ` A ↓

lvar
Γ;A; · ` A ↓

ovar
Γ; ·;A ` A ↓
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Coercion.

Γ; ∆; Ω ` A ↓
coerce

Γ; ∆; Ω ` A ↑

Unrestricted implication.

ΓA; ∆; Ω ` B ↑ →I

Γ; ∆; Ω ` A→B ↑
Γ; ∆; Ω ` A→B ↓ Γ; ·; · ` A ↑→E

Γ; ∆; Ω ` B ↓

Linear implication.

Γ; ∆A; Ω ` B ↑
−◦I

Γ; ∆; Ω ` A−◦B ↑
Γ; ∆; Ω ` A−◦B ↓ Γ; ∆A; · ` A ↑

−◦E
Γ; ∆ ./∆A; Ω ` B ↓

Ordered implications.

Γ; ∆;AΩ ` B ↑ �I
Γ; ∆; Ω ` A�B ↑

Γ; ∆; Ω ` A� B ↓ Γ; ∆A; ΩA ` A ↑�E
Γ; ∆ ./∆A; ΩAΩ ` B ↓

Γ; ∆; ΩA ` B ↑ �I
Γ; ∆; Ω ` A�B ↑

Γ; ∆; Ω ` A�B ↓ Γ; ∆A; ΩA ` A ↑�E
Γ; ∆ ./∆A; ΩΩA ` B ↓

Ordered conjunction and unit.

Γ; ∆A; ΩL ` A ↑ Γ; ∆B; ΩR ` B ↑ •I
Γ; ∆A ./ ∆B; ΩLΩR ` A •B ↑

Γ; ∆; Ω ` A •B ↓ Γ; ∆C ; ΩLABΩR ` C ↑ •E
Γ; ∆C ./∆; ΩLΩΩR ` C ↑

1I
Γ; ·; · ` 1 ↑

Γ; ∆; Ω ` 1 ↓ Γ; ∆C; ΩLΩR ` C ↑
1E

Γ; ∆C ./∆; ΩLΩΩR ` C ↑

Additive conjunction and unit.

Γ; ∆; Ω ` A ↑ Γ; ∆; Ω ` B ↑
&I

Γ; ∆; Ω ` A&B ↑

Γ; ∆; Ω ` A&B ↓
&E1

Γ; ∆; Ω ` A ↓
Γ; ∆; Ω ` A&B ↓

&E2
Γ; ∆; Ω ` B ↓

>I
Γ; ∆; Ω ` > ↑
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Additive disjunction and unit.

Γ; ∆; Ω ` A ↑
⊕I1

Γ; ∆; Ω ` A⊕B ↑
Γ; ∆; Ω ` B ↑

⊕I2
Γ; ∆; Ω ` A⊕B ↑

Γ; ∆; Ω ` A⊕B ↓ Γ; ∆C; ΩLAΩR ` C ↑ Γ; ∆C; ΩLBΩR ` C ↑ ⊕E
Γ; ∆ ./ ∆C; ΩLΩΩR ` C ↑

Γ; ∆; Ω ` 0 ↓
0E

Γ; ∆C ./∆; ΩLΩΩR ` C ↑

Universal and existential quantification.

Γ; ∆; Ω ` [a/x]A ↑
∀aI

Γ; ∆; Ω ` ∀x. A ↑
Γ; ∆; Ω ` ∀x. A ↓

∀E
Γ; ∆; Ω ` [t/x]A ↓

Γ; ∆; Ω ` [t/x]A ↑
∃I

Γ; ∆; Ω ` ∃x. A ↑
Γ; ∆; Ω ` ∃x. A ↓ Γ; ∆C; ΩL[a/x]AΩR ` C ↑ ∃aE

Γ; ∆ ./ ∆C; ΩLΩΩR ` C ↑

Mobility operator.

Γ; ∆; · ` A ↑
¡
I

Γ; ∆; · ` ¡A ↑
Γ; ∆; Ω ` ¡A ↓ Γ; ∆CA; ΩLΩR ` C ↑ ¡

E
Γ; ∆C ./ ∆; ΩLΩΩR ` C ↑

Exponential operator.

Γ; ·; · ` A ↑
!I

Γ; ·; · ` !A ↑
Γ; ∆; Ω ` !A ↓ ΓA; ∆C; ΩLΩR ` C ↑

!E
Γ; ∆C ./∆; ΩLΩΩR ` C ↑

We remark that this system enjoys the analagous structural properties as
the previous system. Furthermore we have the following substitution prin-
ciples. Notice that only an atomic derivation may be substituted for a hy-
pothesis since the uses of assumptions are considered atomic deductions (the
ovar, lvar, ivar rules).

Lemma 3.1 (Substitution)

(i) If ΓAAΓ; ∆; Ω ` C ↑ and ΓA; ·; · ` A ↓ then ΓAΓ; ∆; Ω ` C ↑.
(ii) If Γ; ∆A; Ω ` C ↑ and Γ; ∆A; · ` A ↓ then Γ; ∆ ./∆A; Ω ` C ↑.
(iii) If Γ; ∆; ΩLAΩR ` C ↑ and Γ; ∆A; ΩA ` A ↓

then Γ; ∆ ./∆A; ΩLΩAΩR ` C ↑.

(iv) If ΓAAΓ; ∆; Ω ` C ↓ and ΓA; ·; · ` A ↓ then ΓAΓ; ∆; Ω ` C ↓.
(v) If Γ; ∆A; Ω ` C ↓ and Γ; ∆A; · ` A ↓ then Γ; ∆ ./∆A; Ω ` C ↓.
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(vi) If Γ; ∆; ΩLAΩR ` C ↓ and Γ; ∆A; ΩA ` A ↓
then Γ; ∆ ./∆A; ΩLΩAΩR ` C ↓.

Proof. By structural induction over the given derivations for C. 2

Since the structure of the rules in the normal system has not changed, we
can easily see that the normal system simply rules out some valid deductions
of the first system. Therefore we have the following soundness theorem.

Theorem 3.2

(i) If Γ; ∆; Ω ` A ↑ then Γ; ∆; Ω ` A
(ii) If Γ; ∆; Ω ` A ↓ then Γ; ∆; Ω ` A

Proof. By simple structural induction. Coercions are simply eliminated. 2

The converse, that every provable proposition has a normal deduction, does
indeed hold and could be proved by a Kripke logical relations argument [9].
The proof for a fragment of the system above is a minor modification of the
proof of the existence of canonical forms given in [20]. Instead, we will prove it
indirectly by going through a sequent calculus presentation of INCLL, taking
advantage of the cut elimination theorem. This will allow us to better focus
on the connection between sequent calculus and natural deduction. It will
also give further validation to our sequent system by showing that it exactly
proves the propositions which have natural deductions.

Before introducing the sequent system, we introduce a third natural de-
duction system for INCLL which is obviously equivalent to the original. This
system is based on the preceding normal system and has two judgments stand-
ing for normal and atomic derivations. However, in order to recover arbitrary
deductions, it also allows an additional coercion from normal to atomic deriva-
tions. We write Γ; ∆; Ω `+ A ↑ and Γ; ∆; Ω `+ A ↓ which is defined by exactly
the same rules as the normal and atomic judgments above, plus the rule

Γ; ∆; Ω `+ A ↑
lemma

Γ; ∆; Ω `+ A ↓

Theorem 3.3

(i) Γ; ∆; Ω `+ A ↑ iff Γ; ∆; Ω ` A
(ii) Γ; ∆; Ω `+ A ↓ iff Γ; ∆; Ω ` A

Proof. In each direction, by simple structural induction on the given deriva-
tion. In the forward direction coercions are simply eliminated by the trans-
lation. In the backwards direction they are introduced if the last inference is
not of the right kind. Note that these translations do not form a bijection
since redundant coercions collapse. 2
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4 Sequent Calculus

We now present a sequent calculus for INCLL. This sequent calculus is a con-
servative extension of both associative Lambek calculus [16] and the sequent
system for non-commutative intuitionistic linear logic given in [5].

Similar to natural deduction judgments, our sequents have the form:

Γ; ∆; Ω −→ A

where Γ,∆,Ω are lists of propositions, and A is a proposition. Again, Γ,∆,Ω
are meant to denote an intuitionistic, linear, and ordered context respectively.
In the sequent setting, one may logically think of the three antecedent con-
texts as one big context where the ordered hypotheses are in a fixed relative
order while the other linear and unrestricted propositions may “float”. The
intuitionistic propositions may also be copied or ignored in the initial sequents.
In a sequent calculus, the logical connectives are characterized by right rules
and left rules which, as we shall see, correspond to the introduction and elim-
ination rules of natural deduction. In addition we have initial sequents and
two structural rules.

Hypotheses.

init
Γ; ·;A −→ A

ΓLAΓR; ∆; ΩLAΩR −→ B
copy

ΓLAΓR; ∆; ΩLΩR −→ B

Γ; ∆L∆R; ΩLAΩR −→ B
place

Γ; ∆LA∆R; ΩLΩR −→ B

Unrestricted implication.

ΓA; ∆; Ω −→ B →R

Γ; ∆; Ω −→ A→B

Γ; ∆; ΩLBΩR −→ C Γ; ·; · −→ A→L

Γ; ∆; ΩL(A→B)ΩR −→ C

Linear implication.

Γ; ∆A; Ω −→ B
−◦R

Γ; ∆; Ω −→ A−◦B
Γ; ∆B ; ΩLBΩR −→ C Γ; ∆A; · −→ A

−◦L
Γ; ∆B ./ ∆A; ΩL(A−◦B)ΩR −→ C

Ordered implications.

Γ; ∆;AΩ −→ B �R
Γ; ∆; Ω −→ A� B

Γ; ∆B; ΩLBΩR −→ C Γ; ∆A; ΩA −→ A�L
Γ; ∆B ./ ∆A; ΩLΩA(A� B)ΩR −→ C

Γ; ∆; ΩA −→ B �R
Γ; ∆; Ω −→ A�B

Γ; ∆B; ΩLBΩR −→ C Γ; ∆A; ΩA −→ A�L
Γ; ∆B ./ ∆A; ΩL(A�B)ΩAΩR −→ C
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Ordered conjunction and unit.

Γ; ∆A; ΩL −→ A Γ; ∆B; ΩR −→ B •R
Γ; ∆A ./∆B; ΩLΩR −→ A •B

Γ; ∆; ΩLABΩR −→ C •L
Γ; ∆; ΩL(A •B)ΩR −→ C

1R
Γ; ·; · −→ 1

Γ; ∆; ΩLΩR −→ C
1L

Γ; ∆; ΩL1ΩR −→ C

Additive conjunction and unit.

Γ; ∆; Ω −→ A Γ; ∆; Ω −→ B
&R

Γ; ∆; Ω −→ A&B

Γ; ∆; ΩLAΩR −→ C
&L1

Γ; ∆; ΩL(A&B)ΩR −→ C

Γ; ∆; ΩLBΩR −→ C
&L2

Γ; ∆; ΩL(A&B)ΩR −→ C

>R
Γ; ∆; Ω −→ >

Additive disjunction and unit.

Γ; ∆; Ω −→ A
⊕R1

Γ; ∆; Ω −→ (A⊕B)

Γ; ∆; Ω −→ B
⊕R2

Γ; ∆; Ω −→ (A⊕B)

Γ; ∆; ΩLAΩR −→ C Γ; ∆; ΩLBΩR −→ C
⊕L

Γ; ∆; ΩL(A⊕B)ΩR −→ C

0L
Γ; ∆; ΩL0ΩR −→ C

Universal and existential quantification.

Γ; ∆; Ω −→ [a/x]A
∀aR

Γ; ∆; Ω −→ ∀x. A
Γ; ∆; ΩL[t/x]AΩR −→ C

∀L
Γ; ∆; ΩL(∀x. A) −→ C

Γ; ∆; Ω −→ [t/x]A
∃R

Γ; ∆; Ω −→ ∃x. A
Γ; ∆; ΩL[a/x]AΩR −→ C

∃aL
Γ; ∆; ΩL(∃x. A)ΩR −→ C

Mobility operator.

Γ; ∆; · −→ A
¡R

Γ; ∆; · −→ ¡A

Γ; ∆A; ΩLΩR −→ C
¡L

Γ; ∆; ΩL(¡A)ΩR −→ C
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Exponential operator.

Γ; ·; · −→ A
!R

Γ; ·; · −→ !A

ΓA; ∆; ΩLΩR −→ C
!L

Γ; ∆; ΩL(!A)ΩR −→ C

We point out a few proof-theoretical aspects of INCLL which are more
difficult to see using natural deduction. First of all, it is clear that this system
has the subformula property: only instances of subformulas of propositions
present in the conclusion can appear in the derivation. Since proof search
based on this form of sequent calculus proceeds bottom-up, this is a critical
property. It is due, of course, to the absence of any explicit cut rule. The
commutative fragment of this logic is identical to intuitionistic linear logic.
To give a feel for how the two ordered implications and the ordered context
work, we note the following: A� (A� B)� B is not provable while A�
(A�B)�B is provable. Symmetrically, A� (A�B)�B is provable while
A�(A�B)�B is not provable. We also remark that there is a fundamental
symmetry to the ordered fragment (as in Lambek calculus) which allows for
all occurrences of � and � in a closed formula to be interchanged without
affecting the provability of the formula.

Further the mobility modality, ¡, was designed to behave like ! with respect
to the ordered hypotheses. Therefore we have that ¡A�B ≡ ¡A�B ≡ A−◦B
and that ¡¡A ≡ ¡A. We also remark that ! subsumes ¡ so that ¡!A ≡ !¡A ≡ !A.
Therefore our logic has exactly two distinct modalities. Here A ≡ B is the
strongest possibly equivalence which requires ordered implications in both
directions.

Our sequent system combines the ideas of a multi-zone presentation due to
Andreoli [3] with implicit structural rules to permit a proof of cut elimination
by structural induction as in [18].

Theorem 4.1 (Admissibility of Cut)

(i) CutΩ: If Γ; ∆C; ΩC −→ C and Γ; ∆; ΩLCΩR −→ A
then Γ; ∆C ./ ∆; ΩLΩCΩR −→ A.

(ii) Cut∆: If Γ; ∆C; · −→ C and Γ; ∆LC∆R; Ω −→ A

then Γ; ∆L ./∆C ./∆R; Ω −→ A.

(iii) CutΓ: If Γ; ·; · −→ C and ΓLCΓR; ∆; Ω −→ A then ΓLΓΓR; ∆; Ω −→ A.

Proof. By induction on the structure of the cut formula, the type of cut where
CutΓ > Cut∆ > CutΩ, and the derivations of the premises. Therefore we
may apply the induction hypothesis in the following cases: 1) the cut formula
gets smaller; 2) the same cut formula but we move from CutΓ to Cut∆ or
CutΩ; 3) the same cut formula but we move from Cut∆ to CutΩ; 4) the
cut formula and type of cut stay the same but one of the derivations of the
induction hypothesis gets smaller.

There are 4 basic cases to consider: init cases where one of the premises
is an init rule, essential cases where the principal formula of both premises is
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cut, commutative cases where the cut formula is a side formula on the first or
second premise. Note that these cases are not mutually exclusive. 2

This lets us define a second sequent system with cut which is equivalent to

the previous system. We write Γ; ∆; Ω
+−→ A to denote a sequent derivation

of A which may contain the three types of cut in addition to all of the previous
sequent rules. Then cut elimination follows directly.

Theorem 4.2 (Cut Elimination) If Γ; ∆; Ω
+−→ A then Γ; ∆; Ω −→ A.

Proof. By structural induction on the given derivation. In the case of a cut we
appeal to the induction hypothesis on both premises and then to admissibility
of cut on the resulting cut-free derivations. 2

We now show a sample derivation which sketches how INCLL can be used
for natural language parsing. Suppose Γ = [np � vp � snt, tv � np �
vp, loves� tv, mary� np, bob� np] where all the words and grammatical
abbreviations are atomic formulas. We may think of the formulas in Γ as
a grammar for simple English sentences. The phrase to be parsed with the
grammar is in the ordered context. The succedent contains the grammatical
pattern with which we are trying to classify the input. Thus to parse the
sentence: mary loves bob, we would prove: Γ; ·; mary loves bob =⇒ snt.

Θ
init

Γ; ·; bob =⇒ bob
�L

Γ; ·; np tv (bob� np) bob =⇒ snt
init

Γ; ·; loves =⇒ loves
�L

Γ; ·; np (loves� tv) loves (bob� np) bob =⇒ snt
init

Γ; ·; mary =⇒ mary
�L

Γ; ·; (mary� np) mary (loves� tv) loves (bob� np) bob =⇒ snt
copy ∗ 3

Γ; ·; mary loves bob =⇒ snt

where Θ =

Ψ
init

Γ; ·; np =⇒ np
�L

Γ; ·; (np� vp� snt) np (np� vp) np =⇒ snt
init

Γ; ·; tv =⇒ tv
�L

Γ; ·; (np� vp� snt) np (tv� np� vp) tv np =⇒ snt
copy ∗ 2

Γ; ·; np tv np =⇒ snt

and Ψ =

init
Γ; ·; snt =⇒ snt

init
Γ; ·; vp =⇒ vp

�L
Γ; ·; (vp� snt) vp =⇒ snt

init
Γ; ·; np =⇒ np

�L
Γ; ·; (np� vp� snt) np vp =⇒ snt

13
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Note that this is not the only way to derive the end-sequent. For instance,
we could have moved all instances of copy and place to the beginning of the
derivation; or we could have applied�L to the formulas in a different order.

5 Correspondences

In this section we will show some correspondences between the systems of
natural deduction and sequent calculus. Our methods extend [10] to cover
INCLL. Our approach differs from [8] and [13] in that we are not developing a
sequent calculus which is in bijective correspondence with natural deductions.
Instead, we have introduced a refined analysis of natural deduction by induc-
tively defining normal derivations. These can now be related to the standard
formulations of sequent calculus.

We first show how the cut-free sequent system corresponds to the normal
natural deduction system. We have already remarked that normal natural
deductions are those where the top-down use of elimination rules meets the
bottom-up use of introduction rules in the middle. In a sequent system we
reason entirely bottom up: the top-down uses of elimination rules are turned
around and become bottom-up uses of the left rules. The right rules corre-
spond directly to the introduction rules. They meet, not in the middle, but
at the initial sequents.

Theorem 5.1 If Γ; ∆; Ω −→ A then Γ; ∆; Ω ` A ↑.

Proof. By structural induction on the given derivation. init rules are mapped
to instances of coerce; place, copy rules are mapped to instances of the
substitution principles; right rules are mapped to introduction rules; and left
rules are mapped to elimination rules using the substitution principles when
necessary. 2

Note that the resulting derivation is normal, despite the use of the sub-
stitution principles, since we use it in the form of Lemma 3.1. In the oppo-
site direction we first need to generalize the induction hypothesis to make the
proper statement about the atomic deduction—otherwise our induction would
break down at the first coercion.

Theorem 5.2

(i) If Γ; ∆; Ω ` A ↑ then Γ; ∆; Ω −→ A.

(ii) If Γ; ∆; Ω ` A ↓ then for any C, ∆C, ΩL and ΩR,
Γ; ∆C ; ΩLAΩR −→ C implies Γ; ∆C ./ ∆; ΩLΩΩR −→ C.

Proof. By structural induction on the given derivations. Instances of coerce
translate to uses of the init rule from the result of the induction hypothesis.
Introduction rules are mapped to right rules. Elimination rules are mapped
to sequent derivations constructed from the corresponding left rule and the
result of an appeal to the induction hypothesis. 2
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Our proofs above are constructive and inherently contain a method for
translation between sequent derivations in INCLL and natural deductions.
This translation could be written out concisely on proof terms (similar to [18]),
but this is beyond the scope of this summary.

Clearly, the correspondence is very close, but it is not a bijection, because
the order in which left rules are applied in a sequent derivation may be irrele-
vant to the resulting natural deduction. If one wants to establish a bijection,
one has to further restrict the sequent rules. This has been investigated by
Herbelin [13] for intuitionistic logic.

We now show that this correspondence extends to arbitrary natural de-

ductions (using the `+ judgments) and arbitrary sequents (using the
+−→

sequents). Specifically, coercing a normal derivation into an atomic derivation
will correspond to using cut in the sequent calculus.

Theorem 5.3 If Γ; ∆; Ω
+−→ A then Γ; ∆; Ω `+ A ↑

Proof. By induction on structure of the given derivation. The proof is exactly
the same as the proof of Theorem 5.1 with three additional cases. The cut rules
are translated into a lemma rule followed by an appeal to the substitution
principles. 2

Theorem 5.4

(i) If Γ; ∆; Ω `+ A ↑ then Γ; ∆; Ω
+−→ A.

(ii) If Γ; ∆; Ω `+ A ↓ then for any C, ∆C , ΩL, and ΩR,

Γ; ∆C ; ΩLAΩR
+−→ C implies Γ; ∆C ./ ∆; ΩLΩΩR

+−→ C.

Proof. By induction on structure of the given derivations. The proof is ex-
actly the same as the proof of Theorem 5.2 with one additional case: from the
lemma coercion we construct a use of the CutΩ rule. 2

These observations also give a syntactic proof of normalization of the nat-
ural deduction system.

Theorem 5.5 (Normalization) Γ; ∆; Ω ` A iff Γ; ∆; Ω ` A ↑.

Proof. Given Γ; ∆; Ω ` A, we know Γ; ∆; Ω `+ A ↑ from Theorem 3.3. Then

Γ; ∆; Ω
+−→ A from Theorem 5.4. Then Γ; ∆; Ω −→ A from Theorem 4.2

(Cut Elimination). Then Γ; ∆; Ω ` A ↑ from Theorem 5.1. The other direction
is the contents of Theorem 3.2. 2

6 Related Work

INCLL was fundamentally designed from intuitionistic principles of natural
deduction with the judgment structure determining the rest of the logic. This
has led to INCLL being fundamentally different from some other presentations
of non-commutative linear logic (classical and intuitionistic). Indeed one could
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argue that INCLL appears on the surface to not express anything about non-
commutativity so much as non-exchangeability. The notion of commutativity
usually concerns binary operators rather than individual properties. However,
as we have previously pointed out, INCLL captures non-commutativity at the
level of hypotheses rather than connectives.

Both Ruet’s intuitionistic non-commutative linear logic [21] and Ruet and
Abrusci’s classical non-commutative linear logic [2] (or cyclic linear logic) have
two context constructors, one of which is commutative. Additionally neither
of these systems directly admits the concept of a mobile hypothesis (although
the latter system may be able to capture it by not constraining a hypothesis
at all in the order variety).

As a result, our system has no way to constrain the ability of the unordered
hypotheses to move around among the hypotheses: either the place of a hy-
pothesis is fixed or completely arbitrary. In other words, there is no scoping of
mobility in INCLL. While this feature can be easily captured in the systems
with a commutative conjunction, INCLL’s notion of mobility cannot (at least
not directly). We believe that both concepts may be useful in a combined
system and plan to investigate how to add a commutative multiplication con-
junction to our system which is more restricted than (¡A) • (¡B). From the
practical point of view, we have not yet found the need to go beyond the
system described here.

7 Conclusions and Future Work

We have presented a sequent calculus which closely corresponds to the system
of natural deduction for INCLL proposed by the authors in [20]. The sequent
calculus presentation gives better access to the mechanics of proof search. The
most important application of refined proof search we have in mind is logic
programming.

Based on the sequent system introduced here we have begun work on
a logic programming language which extends Lolli [15] with the two ordered
implications and the ordered context. We have proved completeness of uniform
derivations for a fragment of INCLL and designed an efficient proof search
mechanism (based on the input/output model of Lolli [6]) to remove the non-
deterministic context splitting in the sequents. With a prototype interpreter
for this language we are currently exploring logic programming with non-
commutative hypotheses. Preliminary results in natural language parsing and
non-deterministic algorithm specification have been promising and may be
found in [19].

Other planned work with INCLL includes exploring ordered functional pro-
gramming and a logical framework based on INCLL. Towards the former we
have begun work on an operational semantics for the term calculus associated
with INCLL. Towards the latter we have already shown that a stackability of
CPS terms can be formalized in a logical framework based on INCLL.
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