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Abstract

Type refinements combine the compositionality of typechecking with the expressivity of program logics, offering a synergistic
approach to program verification. In this paper we apply dependent type refinements to SAX, a futures-based process
calculus that arises from the Curry-Howard interpretation of the intuitionistic semi-axiomatic sequent calculus and includes
unrestricted recursion both at the level of types and processes. With our type refinement system, we can reason about the
partial correctness of SAX programs, complementing prior work on sized type refinements that supports reasoning about
termination. Our design regime synthesizes the infinitary proof theory of SAX with that of bidirectional typing and Hoare
logic, deriving some standard reasoning principles for data and (co)recursion while enabling information hiding for codata. We
prove syntactic type soundness, which entails a notion of partial correctness that respects codata encapsulation. We illustrate
our language through a few simple examples.
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1 Introduction

Type refinements internalize assertions into the type structure of functional programs, combining the com-
positionality of typechecking with the expressivity of program logics. While having comparable verification
capabilities to “traditional” dependent type theories [71], dependent type refinements can also have their
assertion logics extended for domain-specific verification [73]. This line of work has also revealed close
connections between the proof theory of Hoare logic and that of static type refinement discipline—some
correspondences include path-sensitive elimination rules to the conditional rule, substitution to composi-
tion, and subsumption to consequence.

Recent work on dependent session types [63] have begun to transport related results to process cal-
culi, yet are limited by the need to carefully interface the linearity inherent in session types with type
dependency. Solutions tending towards traditional type theory marry a separate dependently-typed proof
language with a session-typed process calculus [67], whereas those in the space of type refinements are
typically limited to an index language incapable of expressing the complete nuances of process dynamics
[65]. This raises the question: is it possible to stake out a middle ground and adapt expressive dependent
type refinements to a process calculus? In this article, we develop such type refinements within SAX,
a futures-based process calculus that arises from the Curry-Howard interpretation of the intuitionistic
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semi-axiomatic sequent calculus [22]. Thus, we are not bound by the constraints of linearity. However,
two major questions generate the design space:

(i) What is a suitable program logic and to what extent should/can it account for process dynamics,
including higher-order (co)data?

(ii) How do types internalize assertions and how should the type system be presented?

A core desideratum typically forces certain answers to these questions—for example, to ensure decidable
typechecking, liquid types [54] are designed around the following answers:

(i) Assertions are quantifier-free, with quantifiers encoded as dependent types [71, Section 3]. Functions
and their extensional equality are encoded by first-order approximation [71, Sections 4 and 5] and
typeclasses [68], respectively, in contrast to higher-order program logics [53].

(ii) Refined types are distinguished type constructors and typing is bidirectional [51,23].

Our guiding principle is to follow the proof theory of the semi-axiomatic sequent calculus, answering these
questions as follows:

(i) We develop a first-order theory of SAX values, function applications, and lazy record projections. In
particular, we avoid directly reifying processes into the assertion logic.

(ii) We use bidirectional typing from a verificationist [43] point of view not to effect algorithmic type-
checking, but to determine the shape of types and their associated typing rules. In particular, we
synthesize the semi-axiomatic sequent calculus with Hoare logic, viewing the former as an interme-
diate point between (bidirectional) natural deduction and the (unidirectional) sequent calculus, with
the right/introduction rules guiding the definition of types. While we recover the expected proper-
ties for positive (data) types, curiously, refinements nested under a negative (codata) type may hide
information from assertions attached to said type, providing a facility for codata encapsulation.

Considering recursion both at the level of types and processes, our type system establishes partial
correctness, complementing sized type refinements used to guarantee termination in SAX [59]. Fol-
lowing op. cit., we view (sub)typing derivations for equirecursive types [36] and recursive programs,
respectively, as infinite proofs [9,20] generated bymixed inductive-coinductive inference systems [3,14].
Standard assume-guarantee reasoning for recursive programs that arises from typing derivation cir-
cularity, when combined with subsumption, uniformly admits reasoning with induction, coinduction,
and mixed induction and coinduction within the language.

In summary, our primary contribution is Dependent Refined SAX (DRSAX): a dependent type refinement
system for SAX (Section 2) with a corresponding type soundness result entailing observable partial cor-
rectness (Section 3). Essentially, we show that assertions about objects that are not encapsulated hold
directly. Our secondary contribution is the design regime listed above, which leads us to a novel derivation
of codata encapsulation and a uniform consideration of induction, coinduction, and mixed induction and
coinduction within DRSAX.

2 DRSAX: Semi-Axiomatic Type Theory Meets Hoare Logic

In this section, we develop DRSAX by first commenting on the judgmental structure of the semi-axiomatic
sequent extended for our purposes. After quickly reviewing some ancillary definitions, we examine the
relevant typing rules with examples.

2.1 Judgmental Structure

In short, the semi-axiomatic sequent calculus replaces the typical right and left rules for positive and neg-
ative types (i.e., the non-invertible ones), respectively, with axioms. The corresponding typing judgment
for processes takes on the following form:

Γ︷ ︸︸ ︷
x : A, . . . , y : B ⊢ P (x, . . . , y, z)÷ (z : C)
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The process P may perform blocking reads from source addresses x, . . . , y of futures and must perform a
non-blocking write exactly once to the future addressed by the destination z according to types A, . . . , B
and C, respectively, corresponding to asynchronous communication with futures [26]. Data addressed are
values and process continuations of positive and negative type, respectively, recalling the binary term and
type distinction of call-by-push-value [41]. To make the jump to Hoare logic, we attach preconditions to
the antecedents and a postcondition to the succedent with refined types: the judgment becomes x : A
where A has the form A | λx. ϕ(x). ϕ, ψ, χ, . . . are assertions from the external logical theory described in
the next sub-section. As shorthand, we write x : A | ϕ(x) to conflate the antecedent or succedent variable
with that bound in ϕ or ϕ(·) when the x need not be mentioned.

x : A, . . . , y : B(x, . . .) ⊢ P (x, . . . , y, z)÷ (z : C(x, . . . , y))

We encounter questions immediately—for example, considering disjunction as a labelled sum type ⊕{ℓ :
Aℓ}ℓ∈S , which of the following is a more appropriate right axiom? Note that any non-refined type A is
canonically the refined type A | ⊤.

⊕R, k ∈ S

Γ, x : Ak ⊢ . . .÷ (y : ⊕{ℓ : Aℓ}ℓ∈S | y ≡ k · x) vs.
⊕R, k ∈ S

Γ, x : Ak | ϕ(k · x) ⊢ . . .÷ (y : ⊕{ℓ : Aℓ}ℓ∈S | ϕ(y))

The framework for bidirectional typing in [24,23] tells us which: the principal judgment’s data in a positive
introduction rule are always inputs. Thus, the second rule is clearly canonical, as ⊕{ℓ : Aℓ}ℓ∈S and ϕ(y)
are inputs unlike in the first rule. Peculiarly, Ak and ϕ(k ·x) are outputs, indicating that type information
flows from right to left, like in backwards bidirectional typing [74,23]. In particular, this rule simulates
bottom-up flow in natural deduction:

⊕I, k ∈ S

Γ ⊢ . . . : Ak

Γ ⊢ . . . : ⊕{ℓ : Aℓ}ℓ∈S

Dually, left axioms for negative types flow from left to right, corresponding to the top-to-bottom flow for
negative eliminations in natural deduction. Consider the following example of negative conjunction as a
lazy record type (omitting refinements in the axiom for the moment).

&E, k ∈ S

Γ ⊢ . . . : &{ℓ : Aℓ}ℓ∈S
Γ ⊢ . . . : Ak

⇝
&L, k ∈ S

Γ, y : &{ℓ : Aℓ}ℓ∈S ⊢ . . .÷ (x : Ak)

Taking a step back and thinking of a (non-semi-axiomatic) sequent calculus as an algorithmic type system,
the resulting hypothetical judgment would appear as follows:

x⇒ A, . . . , y ⇒ B ⊢ P (x, . . . , y, z)÷ (z ⇐ C)

where the arrows ⇒ and ⇐ distinguish between antecedent and succedent judgments, respectively, all of
which are inputs. Thus, we would have unidirectional process typing from the bottom up. As we have seen
however, the semi-axiomatic sequent inherits some bidirectionality from natural deduction, in which both
antecedents and the succedent may be outputs. Thus, we must allow ⇐ and ⇒ judgments to respectively
appear in Γ and the succedent as outputs. We call the resulting hypothetical judgment(s) process typing,
defined in Figure 1 along with ancillary judgments (wellformedness judgments are standard and omitted).

2.2 Syntax

We briefly comment on the syntax for addresses, types, and processes in Figure 2.

• We distinguish between address variables introduced in the previous subsection and runtime addresses
which only appear in Section 3.
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judgments J := (x⇐ A | ϕ(x)) | (x⇒ B | ϕ(x))
contexts Γ := · | Γ, J
assertion sequent Γ ⊢ ϕ
subtyping Γ ⊢ A ≤ B
process typing Γ ⊢ P ÷ J

Fig. 1. Judgments

A := A+ | A−

| X recursive type (X = A)

A := (A | λx. ϕ(x)) refined type

A+ := 1 (positive) unit

| (x : A)⊗B(x) dependent eager pairs

| ⊕{ℓ : Aℓ}ℓ∈S eager sums

A− := (x : A)→ B(x) dependent functions

| &{ℓ : Aℓ}ℓ∈S lazy records

(a) Types

s, t := x, y, z, . . . address variables

| a, b, c, . . . runtime addresses

V := ⟨⟩ (1R)

| ⟨s, t⟩ (⊗R,→L)

| ℓ · t (⊕R,&L)

K := ⟨⟩ ⇒ P (1L)

| ⟨x, y⟩ ⇒ P (x, y) (⊗L,→R)

| {ℓ · x⇒ Pℓ(x)}ℓ∈S (⊕L,&R)

(b) Values and Continuations

P,Q := t← s copy contents of s to t (identity)

| x← P (x);Q(x) spawn P writing to x, (cut)

proceed concurrently as Q

| t.V write V to t, or (positive right/negative left rule)

pass V to continuation in t

| case tK pass value in t to K or, (negative right/positive left rule)

write K to t

| (x : A) in P refined type annotation (annoL/R)

| f(s, t) definition call (f(x : A, y : C(x)) = P (x, y))

(c) Processes

Fig. 2. Syntax

• In addition to labelled sum and lazy record types, we have dependent eager pair, unit, and function
types that seem asymmetrically presented—we elaborate on this later.

• With the exception of type annotation and definition calls, which belong to an ambient signature of
typed mutually recursive definitions, each process corresponds to a judgmental or logical rule in the semi-
axiomatic sequent calculus. Note that x : A is a telescope [18], i.e., a context where each subsequent
binding may refer to previously bound variables.

Now, the following sub-sections elaborate on the language, starting with the assertion logic, judgmental
rules, logical rules, and ending with recursive definitions.
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2.3 Assertion Logic

Assertions, given by the grammar below, are drawn from the (classical) first-order theory of equality with
uninterpreted functions. The ellipsis indicates the potential for extension to effect richer verification—for
example, including the theory of arithmetic enables termination checking [59].

ϕ, ψ := ⊥ | ⊤ |M ≡ N | isk(M) | ϕ ∧ ψ | ϕ ⊃ ψ | ∀x. ϕ(x) | . . .
M,N := s | ⟨⟩︸︷︷︸

1R

| ⟨M,N⟩︸ ︷︷ ︸
⊗R

|M ‘N︸ ︷︷ ︸
→L

| k ·M︸ ︷︷ ︸
⊕R

|M.k︸︷︷︸
&L

We approximate process dynamics by a careful definition of first-order terms M,N . First, the indirection
introduced by addresses is collapsed by treating address variables as term variables and runtime addresses
as nullary function symbols (not constants, since unequal addresses do not necessarily have unequal refer-
ents). Thus, an address s pointing to SAX (co)data denoted by M is represented by the assertion s ≡M .
Finally, each axiom is assigned an uninterpreted function:

• Positive right axioms: ⟨⟩ is a unit value, ⟨M,N⟩ is a pair of values M and N , and k ·M is a k-tagged
value M . These function symbols are additionally subject to the first-order theory of non-cyclic data
structures [50]. Note that even with recursive types, values cannot be cyclic, because a non-allocating
process cannot write to and read from the same address. For convenience, we assume the availability of
the assertion isk(M) that is true when M is a k-tagged value.

• Negative left axioms: M ‘N represents an application of the SAX function denoted byM to argument N
andM.k is the kth projection of the record denoted byM . Note our use of the phrase “the [continuation]
denoted by M”—we do not directly encode function bodies into the assertion logic, as that could
reveal information hidden by negative type refinements discussed in Sections 2.6 and 2.7. Instead, a
continuation addressed by s is abstractly described by assertions about s‘N orM.k—similar to copattern
matching [1].

2.4 Phase Change: Subsumption and Type Annotation

Analogous to natural deduction, changes of phase between inputs and outputs are mediated by subsumption
(≤R/L) and type annotation (AnnoR/L). The judgmental distinction between the left- and right-hand
sides of the sequent require two rules each [39].

≤R

Γ ⊢ P ÷ (y ⇒ A) Γ ⊢ A ≤ B

Γ ⊢ P ÷ (y ⇐ B)

≤L

Γ, x⇐ B ⊢ P ÷ (z ⇐ C) Γ ⊢ A ≤ B

Γ, x⇒ A ⊢ P ÷ (z ⇐ C)
annoR

Γ ⊢ P ÷ (y ⇐ A)

Γ ⊢ (y : A) in P ÷ (y ⇒ A)

annoL
Γ, x⇒ A ⊢ P ÷ (z ⇐ C)

Γ, x⇐ A ⊢ (x : A) in P ÷ (z ⇐ C)

Subsumption combines covariant succedent and contravariant antecedent subtyping with postcondition
strengthening and precondition weakening, analogous to the consequence rule in Hoare logic [31]. The
subtyping rules in Figure 3 generalize polarized subtyping (which includes width and depth subtyping for
sums and records [36]) to internalize type dependency [2]. In particular:

• Introducing the auxiliary judgment Γ ⊢ A ≤ B, ≤Pred corresponds to the standard predicate subtyping
[55] rule at the core of type refinement systems [31].

• The ∞ sign surrounding the premises of ≤RecR/L indicates a coinductive occurrence of the subtyp-
ing judgment (with all other ones being inductive) [13,14]; ops. cit. themselves build on coinductive
axiomatizations of subtyping [8]. That is, a subtyping derivation is a (potentially) infinitely deep tree
where every infinite branch passes through an instance of this rule infinitely many times, representing
the unfolding of a recursive type. See Example 6 in [36] for one such derivation.
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≤Pred

Γ ⊢ A ≤ B Γ, x⇒ A | ϕ(x) ⊢ ψ(x)
Γ ⊢ (A | ϕ(·)) ≤ (B | ψ(·))

X = A ∞(Γ ⊢ A ≤ B)

Γ ⊢ X ≤ B
X = A ∞(Γ ⊢ B ≤ A)

Γ ⊢ B ≤ X
≤→
Γ ⊢ A ≤ A′ Γ, x⇒ A ⊢ B(x) ≤ B′(x)

Γ ⊢ (x : A′)→ B(x) ≤ (x : A)→ B′(x)

≤1

Γ ⊢ 1 ≤ 1

≤⊗
Γ ⊢ A ≤ A′ Γ, x⇒ A ⊢ C(x) ≤ D(x)

Γ ⊢ (x : A)⊗ C(x) ≤ (x : A′)⊗D(x)
≤⊕
S ⊆ T {Γ ⊢ Aℓ ≤ Bℓ}ℓ∈S

Γ ⊢ ⊕{ℓ : Aℓ}ℓ∈S ≤ ⊕{ℓ : Bk}k∈T

≤&

T ⊆ S {Γ ⊢ Ak ≤ Bk}k∈T
Γ ⊢ &{ℓ : Aℓ}ℓ∈S ≤ &{ℓ : Bk}k∈T

Fig. 3. Subtyping

To finish, we verify that the subtyping relation is indeed reflexive and transitive via mixed induction and
coinduction.

Remark 2.1 (Mixed Induction and Coinduction) Proofs by “mixed induction and coinduction” over
the structure of (sub)typing derivations involve a lexicographic guarded coinduction to prove judgments
marked ∞ prioritized over a structural induction on (smaller) subderivations (i.e., when guardedness does
not change). Refer to [13] for further examples.

Lemma 2.2 (Reflexivity and Transitivity of Subtyping)

• Reflexivity: Γ ⊢ A ≤ A
• Transitivity: if Γ ⊢ A ≤ B and Γ ⊢ B ≤ C, then Γ ⊢ A ≤ C

Proof. The first part is by a lexicographic combination of guarded coinduction to prove any instances
of the ∞-marked subtyping judgment prioritized over structural induction on A, and the second is a
straightforward mixed induction and coinduction on the first derivation and then inversion on the second.2

2.5 Cut, Snips, and Identity

The process behind the cut rule forms the core of computation with futures in (DR)SAX: x← P (x);Q(x)
spawns P to perform a non-blocking write to a newly allocated future addressed by x while concurrently
proceeding as Q, which may perform a blocking read from x. We give two forms of the cut rule depending
on which premise outputs the cut “formula” A. Thinking of A as a midcondition, cuts are analogous to
the composition rule in Hoare logic.

snip+

Γ ⊢ P (x)÷ (x⇐ A) Γ, x⇐ A ⊢ Q(x)÷ (z ⇐ C)

Γ ⊢ x← P (x);Q(x)÷ (z ⇐ C)

snip–

Γ ⊢ P (x)÷ (x⇒ A) Γ, x⇒ A ⊢ Q(x)÷ (z ⇐ C)

Γ ⊢ x← P (x);Q(x)÷ (z ⇐ C)

In the absence of annotations, these rules actually correspond to snips in SAX: analytic cuts [58] where A
is a subformula of an axiom’s principal formula (hence the rule names). Likewise, the identity rule y ← x,
which copies the contents of x to y, comes in two forms depending on where the principal “formula” A is
outputted:

id+

Γ, x⇐ A ⊢ y ← x÷ (y ⇐ A)

id–

Γ, x⇒ A ⊢ y ← x÷ (y ⇒ A)
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2.6 Labelled Sums and Lazy Records

Let us pick up where we left off with labelled sums and lazy records in Section 2.1. Recalling our ver-
ificationist point of view and with our new judgmental structure explicitly indicating the flow of type
information, the right/introduction rule for ⊕{ℓ : Aℓ}ℓ∈S corresponds to the following right axiom.

⊕R/I, k ∈ S

Γ ⊢ x⇐ Ak

Γ ⊢ y ⇐ ⊕{ℓ : Aℓ}ℓ∈S
⇝

⊕R, k ∈ S

Γ, x⇐ Ak | ϕ(k · x) ⊢ y.k · x÷ (y ⇐ ⊕{ℓ : Aℓ}ℓ∈S | ϕ(y))

The process y.k · x writes the tagged value k · x to the future addressed by y. As a result, this rule can be
viewed as an instance of the assignment rule in Hoare logic. Indeed, the postcondition flows from right to
left, becoming a precondition by a suitable substitution. Thus, the type itself need not embed any type
refinements. Now, the corresponding left rule is inherited from the sequent calculus:

⊕L

{Γ, x⇒ Ak, y ⇒ ⊕{ℓ : Aℓ}ℓ∈S ⊢ (z ⇐ C)}k∈S
Γ, y ⇒ ⊕{ℓ : Aℓ}ℓ∈S ⊢ (z ⇐ C)

⇝

⊕L

{Γ, x⇒ Ak | ϕ(k · x), y ⇒ ⊕{ℓ : Aℓ}ℓ∈S | ϕ(y) ∧ y ≡ k · x ⊢ Pk(x)÷ (z ⇐ C)}k∈S
Γ, y ⇒ ⊕{ℓ : Aℓ}ℓ∈S | ϕ(y) ⊢ case y {ℓ · x⇒ Pℓ(x)}ℓ∈S ÷ (z ⇐ C)

The process case y {ℓ · x ⇒ Pℓ(x)}ℓ∈S proceeds by cases of the tagged address stored in y. Adding
refinements requires some care: the antecedent x inherits ϕ(k ·x) to be in harmony [61] with the right rule
above. Thus, y is additionally subject to y ≡ k · x to indicate its relationship to x when typing each case
branch Pk(x). This strong form of path sensitivity is necessary to complete the following example.

Example 2.3 (Negation) Letting bool = ⊕{true : 1, false : 1}, we can define Boolean negation of x,

storing the result in y, as P ≜ casex {true·x′ ⇒ y.false·x′, false·x′ ⇒ y.true·x′}. Then, the judgment x⇒
bool ⊢ P ÷ (y ⇐ bool | ϕ(x, y)) is derivable where ϕ(x, y) ≜ (istrue(x) ⊃ isfalse(y)) ∧ (isfalse(x) ⊃ istrue(y)).
In the first branch, for example, the critical point is when x′ ⇒ bool meets x′ ⇐ bool | ϕ(x, false · x′) via
subsumption—the assumption that x⇒ bool | x ≡ true · x′ is essential.

To develop the lazy record type &{ℓ : Aℓ}ℓ∈S , we again refine its ordinary right/introduction rule:

&R/I

{Γ ⊢ x⇐ Aℓ}ℓ∈S
Γ ⊢ y ⇐ &{ℓ : Aℓ}ℓ∈S

⇝

&R

{Γ ⊢ Pℓ(x)÷ (x⇐ Aℓ | ϕℓ(x))}ℓ∈S Γ, y ⇒ . . . |
∧
ℓ∈S

ϕℓ(y.ℓ) ⊢ ψ(y)

Γ ⊢ case y {ℓ · x⇒ Pℓ(x)}ℓ∈S ÷ (y ⇐ &{ℓ : Aℓ | ϕℓ(·)}ℓ∈S | ψ(y))

In this case, the process case y {ℓ · x⇒ Pℓ(x)}ℓ∈S writes a destination-passing lazy record to y, where its
ℓth projection writes to the x provided. Destination-passing style is key to our asynchronous operational
semantics, as a client of y should be able to refer to x even if it has not yet been populated by Pℓ(x).
Now, since the succedents of the premises are inputs in the original rule, they must each be handed a new
postcondition; hence each Aℓ becomes Aℓ | ϕℓ(·). The twist is that ψ(y) is verified directly by assuming
that there is some y subject to ϕℓ(y.ℓ) for each ℓ (the ellipsis repeats the record type). As we mentioned in
Section 2.3, this respects encapsulation of the record by not reifying its contents into the assertion logic.
In particular, intensional properties about the record cannot be verified if ϕℓ hides them, i.e., does not
mention them. Let us work through a small example to demonstrate.

Example 2.4 (Record Encapsulation) Let P ≜ case y {fst · x ⇒ z ← z.⟨⟩;x.true · z}. Then the
judgment · ⊢ (y ⇐ &{fst : bool | istrue} | istrue(y.fst)) is derivable, but · ⊢ (y ⇐ &{fst : bool} | istrue(y.fst))
is not.
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Now, we produce the corresponding refined left axiom below, following our preliminary development in
Section 2.1. We type the process y.k · x, which allows the kth projection of y to populate x.

&E, k ∈ S

Γ ⊢ y ⇒ &{ℓ : Aℓ}ℓ∈S
Γ ⊢ x⇒ Ak

⇝
&L, k ∈ S

Γ, y ⇒ &{ℓ : Aℓ}ℓ∈S | ϕ(y) ⊢ y.k · x÷ (x⇒ Ak)

While it is tempting to let x also be subject to x ≡ y.k as an analogously strong form of path sensitivity,
it would not be type-sound, because that relationship is not made explicit in the typing of the right rule
(only in the verification of ψ(y)). As a result, we produce the following non-example.

Example 2.5 (Failure of Swap) We define the following process P that swaps the components of a

record p and stores the result in q: P ≜ case q {fst · x⇒ p.snd · x, snd · y ⇒ p.fst · y}. Then, the following
judgment is not derivable:

p⇒ &{fst : A, snd : B} ⊢ P ÷ (q ⇐ {fst : B | λx. x ≡ p.fst, snd : A | λy. y ≡ p.snd})

Given that we are already working in the presence of non-termination, a larger set of effects occurring at
negative type [41] may invalidate this kind of equality anyways.

2.7 Dependent Types

We now turn our attention to dependent eager pair (x : A) ⊗ B(x) and function (x : A) → B(x) types.
Following our development of the labelled sum type, we convert the right/introduction rule to a right
axiom. We once again observe that flowing type information bottom up corresponds to a right-to-left flow.

⊗R/I

Γ ⊢ x⇐ A Γ ⊢ y ⇐ B(x)

Γ ⊢ z ⇐ (x : A)⊗B(x)
⇝

⊗R

Γ, x⇐ A, y ⇐ B(x) | ψ(⟨x, y⟩) ⊢ z.⟨x, y⟩ ÷ (z ⇐ (x : A)⊗B(x) | ψ(z))

The process z.⟨x, y⟩ writes the pair of x and y to z. Sensing that this rule too resembles an instance of
the assignment rule in Hoare logic, we can now explain the asymmetry between both conjuncts: while ϕ
flows to the pair’s first component x, its second component y inherits ψ by substitution of ⟨x, y⟩ for z.
Like sums, the left rule ⊗L follows from harmony with its right axiom. Refer to Figure 4 for this rule as
well as those for the unit type. Path sensitivity enables the following example, which was unavailable for
lazy records. Note that we use the usual shorthand A⊗B for non-dependent pairs.

Example 2.6 (Swap) Let P ≜ case z {⟨x, y⟩ ⇒ w.⟨y, x⟩} be a process that swaps a (non-dependent) pair
addressed by z and writes it to w. Then, the following judgment is derivable:

z ⇒ A⊗B ⊢ P ÷ (w ⇐ B ⊗A | ∀x, y. z ≡ ⟨x, y⟩ ⊃ w ≡ ⟨y, x⟩)

Following our approach for lazy records, the refined right rule for the dependent function type is as follows.

→R
Γ, x⇒ A | ϕ(x) ⊢ P (x, y)÷ (y ⇐ B(x) | ψ(x, y)) Γ, z ⇒ . . . | ∀x. ϕ(x) ⊃ ψ(x, z‘x) ⊢ χ(z)

Γ ⊢ case z (⟨x, y⟩ ⇒ P (x, y))÷ (z ⇐ (x : A | ϕ(x))→ (B(x) | ψ(x, ·)) | χ(z))

Like that for lazy records, the process case z (⟨x, y⟩ ⇒ P (x, y)) writes a destination-passing function to z
whose body is P (x, y) where x refers to the argument source and y the result destination. Since x and y
take assertions as inputs in the premise, function types include a precondition ϕ on x and a postcondition
ψ on y. As with lazy records, the postcondition χ on z is verified directly from ϕ and ψ, leaving the
function body encapsulated (again, the ellipsis repeats the function type). Let us look at an example to
interrogate abstraction boundaries.

8
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Example 2.7 (Left Unit of Addition) Let nat = ⊕{zero : 1, succ : nat}. In Example 2.9, we define
add(x : nat, y : nat, z : nat | x + y ≡ z) by induction on x, assuming that the uninterpreted function (+)
is subject to the appropriate axioms. Now, we package this definition into a process P writing to w with a
pair of arguments p and result z:

P ≜ casew (⟨p, z⟩ ⇒ case p (⟨x, y⟩ ⇒ add(x, y, z)))

Then, the following judgment is derivable, which asserts that the left unit of addition is zero by applications
to w. Note that proving zero as the right unit of addition would require a separate induction on x.

· ⊢ P ÷ (w ⇐ (p : nat⊗nat)→ (nat | λz. ∀x, y. p ≡ ⟨x, y⟩ ⊃ z ≡ x+ y) | ∀x, y. iszero(x) ⊃ w‘⟨x, y⟩ ≡ y)

However, the following judgment is not derivable, because the action of addition is hidden by the function’s
output refined type.

· ⊢ P ÷ (w ⇐ (p : nat⊗nat)→ (nat | λz. ∀x, y. p ≡ ⟨x, y⟩ ⊃ iszero(x) ⊃ y ≡ z) | ∀x, y. w‘⟨x, y⟩ ≡ x+ y)

Note that these functions are uncurried to avoid having to refine each intermediate function type with the
necessary information to prove the final postcondition.

Finally, it remains to convert the dependent elimination rule to a left axiom. The former outputs both A
and B from top down, forcing the second premise to take A as an input. Likewise in the latter, A flows
to the same side (left) of the sequent, but B flows to the right.

→E
Γ ⊢ z ⇒ (x : A)→ B(x) Γ ⊢ x⇐ A

Γ ⊢ y ⇒ B(x)
⇝

→L

Γ, z ⇒ (x : A)→ B(x) | ϕ(z), x⇐ A ⊢ z.⟨x, y⟩ ÷ (y ⇒ B(x))

In this case, the process z.⟨x, y⟩ passes the argument x and result destination z to the function addressed
by z. Like lazy records, this left rule also omits strong path sensitivity, recalling our discussion of type
soundness and a further integration of effects.

2.8 Recursion: Assume-Guarantee Reasoning and Recursion Invariants

Following Lakhani et al. [36], a definition call outputs its ascribed type signature when the definition body
checks against the same signature. To type recursive definitions, we take a mixed inductive-coinductive
view of the typing judgment as we did with subtyping with the rule below.

call

f(x : A, y : C(x)) = P (x, y) ∞(x⇒ A ⊢ P (x, y)÷ (y ⇐ C(x)))

x⇐ A ⊢ f(x, y)÷ (y ⇒ C(x))

Thus, when a recursive definition is checked against its type signature, recursive calls coinductively produce
the typing derivation computed so far, corresponding to assume-guarantee reasoning that is standard for
both program logics and typing recursion [9,20,31]. In particular, it seems to be the syntactic reflection
of coinductively-defined partial correctness (on which we elaborate in the next section); this connection
has been explored by Bell and Chlipala [6]. We reproduce Example 22 in [59] below to show the exact
mechanics of this process.

Example 2.8 (Typing Derivation Circularity) Recalling nat = ⊕{zero : 1, succ : nat}, the following
process definition performs a trivial induction on a natural number and returns unit:

eat(x : nat, y : 1) = casex {zero · x′ ⇒ y ← x′, succ · x′ ⇒ eat(x′, y)}

9
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The typing derivation for its body is as follows (process terms are omitted for space) where † denotes a
circular edge and W stands for antecedent weakening.

⊕L

≤L

id+

. . . , x′ ⇐ 1 ⊢ y ⇐ 1

x′ ⇒ 1, x⇒ nat | x ≡ zero · x′ ⊢ y ⇐ 1
≤R,≤L,W

call
∞(x′ ⇒ nat ⊢ y ⇐ 1) †

x′ ⇐ nat ⊢ y ⇒ 1

x′ ⇒ nat, x⇒ nat | x ≡ succ · x′ ⊢ y ⇐ 1

x⇒ nat ⊢ y ⇐ 1 †

Notice above that because definition calls output, there is a mandatory change of phase between checking
the body and the call, which may strengthen the postcondition and weaken the preconditions. This is
analogous to checking whether the loop invariant implies the postcondition in the loop rule in Hoare
logic. As demonstrated in the examples below, our formulation treats induction, coinduction, and mixed
induction and coinduction uniformly.

Example 2.9 (Addition) Recall from Example 2.7 that we will define addition where nat = ⊕{zero :
1, succ : nat} and (+) is subject to the axioms ∀x, y. zero · x+ y ≡ y and ∀x, y. succ · x+ y ≡ succ · (x+ y).

add(x : nat, y : nat, z : nat | z ≡ x+ y) =

casex {zero · x′ ⇒ z ← y, succ · x′ ⇒ z′ ← add(x′, y, z′); z.succ · z′}

Of significance is checking the snip in the succ branch: add(x′, y, z′) flows z′ ⇒ nat | z′ = x′ + y (the
induction hypothesis from typing circularity) to the right but z.succ · z′ flows z′ ⇐ nat | succ · z′ ≡ x + y
to the left (the induction step). Path sensitivity gives us x ⇒ nat | x ≡ succ · x′, resolving the tension by
subsumption.

Example 2.10 (Nonzero Lazy Streams) In type refinement systems, (co)inductive invariants are typ-
ically folded into refinements [44] in lieu of being defined as separate (co)predicates [45,38]. For example, if
str = &{head : nat, tail : str} classifies natural number streams, then sstr = &{head : nat | issucc, tail : sstr}
classifies those that are pointwise nonzero. We can check the following definition, which shows that a cer-
tain increasing stream starting from a nonzero number is pointwise nonzero.

up(x : nat | issucc, y : sstr) = case y {head · h⇒ h← x, tail · t⇒ x′ ← x′.succ · x; up(x′, t)}

Considering the body of up as the coinduction step, the coinduction hypothesis (i.e., that the tail is
pointwise nonzero) is implicitly part of sstr as outputted by the recursive call to populate t.

Example 2.11 (Left-Fair Streams) We can extend the technique from the previous example to operate
on mixed inductive-coinductive data structures. For example, consider the type below of left-fair streams [3]
where, assuming termination, consecutive elements of type A are interspersed with finitely many timeout
(later) labels.

lfair = ⊕{now : &{head : A, tail : lfair}, later : lfair}
We will define a projection operation that is guaranteed to clear these labels, producing the underlying
stream. For the sake of this example, we define (later-less) streams as the following recursively refined
record:

str = &{fst : ⊕{now : &{head : A, tail : str}, later : str} | isnow}
In the definition below, the desired invariant is implicitly checked by coinduction to construct the stream
prioritized over induction to vacate the later labels.

proj(x : lfair, y : str) = case y {fst · l⇒
casex {now · s⇒ s′ ← case s′ { head · h⇒ s.head · h,

tail · y′ ⇒ x′ ← s.tail · x′; proj(x′, y′)}; l.now · s′,
later · x′ ⇒ proj(x′, y)}}

10
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Since this process definition is complex, we turn the reader’s attention specifically to l.now ·s′ which outputs
s′ ⇐ &{. . .} | isnow(now · s′). Checking s′ using &R on the left-hand side of the cut then directly verifies
isnow(now · s′), as desired. Finally, the second recursive call trivially preserves the invariant.

We finish this subsection by commenting on the seemingly dangerous interaction between non-termination
and type soundness.

Remark 2.12 (Non-Termination) In a cut, non-termination on the left allows the assumption of ⊥
on the right. Thus, unrestricted lazy evaluation would be incompatible with type soundness, because an
unused non-terminating computation can be discarded, exposing a potentially unsafe computation checked
against ⊥ [70]. This is not an issue in DRSAX, as the futures-based (as opposed to speculations-based
[27, Chapter 38]) operational semantics defined in the next section does not discard computations.

2.9 Summary

The process typing rules reviewed in the previous subsections are collected into Figure 4.

3 Operational Semantics, Type Soundness, and Observable Partial Correctness

In this section, we define typing and reduction for configurations of DRSAX processes and the future cells
with which they communicate. Then, we prove syntactic type soundness. As we alluded in the introduction,
this entails observable partial correctness, in which hereditarily non-encapsulated sub-configurations (of
purely positive type) satisfy their associated postconditions directly.

3.1 Configuration Reduction and Typing

Definition 3.1 (Configuration) Configurations are multisets of process and cell objects defined by the
following grammar.

C := · empty configuration

| proc aP process P writing to cell addressed by a

| !cell aS persistent cell addressed by a with contents S := V | K
| C, C join of two configurations

That is, the join and empty rules form a commutative monoid. A configuration F is final when it only
consists of cells.

Configuration reduction ( 7→) is defined by multiset rewriting rules [10] in Figure 5, which replace any
subset of a configuration matching the left-hand side with the right-hand side. ! indicates objects that
persist across reductions. Now, because bidirectional typing would complicate configuration typing, we
first define the corresponding non-bidirectional process typing below.

Definition 3.2 (Non-bidirectional Typing) Let x : A, . . . , y : B(x, . . .) ⊢ P ÷ (z : A(x, . . . , y)) be
generated by rules identical to those in Figure 4, but with ⇒ and ⇐ replaced by (:) and AnnoL/R
removed.

As usual, we must verify that the bidirectional process typing is sound and complete with respect to the
above.

Lemma 3.3 (Soundness and Completeness of Bidirectional Typing) Let |P | erase type annota-
tions in P and |J | turn ⇒ and ⇐ to (:). Extending |·| to Γ in the obvious way, Γ ⊢ P ÷J iff |Γ| ⊢ |P |÷|J |.

Proof. Both are a routine mixed induction and coinduction on the typing derivation; going forwards
erases AnnoL/R and going backwards essentially inserts AnnoL/R as dictated by P . 2

From now, Γ and ∆ refer to contexts associating runtime addresses to refined types. Thus, as a slight
abuse of notation, we allow runtime addresses to stand in place of address variables in process typing.
Finally, the configuration typing judgment Γ ⊢ C ÷ ∆ is inductively generated by the rules in Figure 6,
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≤R

Γ ⊢ P ÷ (y ⇒ A) Γ ⊢ A ≤ B

Γ ⊢ P ÷ (y ⇐ B)

≤L

Γ, x⇐ B ⊢ P ÷ (z ⇐ C) Γ ⊢ A ≤ B

Γ, x⇒ A ⊢ P ÷ (z ⇐ C)
annoR

Γ ⊢ P ÷ (y ⇐ A)

Γ ⊢ (y : A) in P ÷ (y ⇒ A)

annoL
Γ, x⇒ A ⊢ P ÷ (z ⇐ C)

Γ, x⇐ A ⊢ (x : A) in P ÷ (z ⇐ C)

snip+

Γ ⊢ P (x)÷ (x⇐ A) Γ, x⇐ A ⊢ Q(x)÷ (z ⇐ C)

Γ ⊢ x← P (x);Q(x)÷ (z ⇐ C)
snip–

Γ ⊢ P (x)÷ (x⇒ A) Γ, x⇒ A ⊢ Q(x)÷ (z ⇐ C)

Γ ⊢ x← P (x);Q(x)÷ (z ⇐ C)

id+

Γ, x⇐ A ⊢ y ← x÷ (y ⇐ A)

id–

Γ, x⇒ A ⊢ y ← x÷ (y ⇒ A)

1R
Γ ⊢ ϕ(⟨⟩)

Γ ⊢ x.⟨⟩ ÷ (x⇐ 1 | ϕ(x))

1L
Γ, x⇒ 1 | ϕ(x) ∧ x ≡ ⟨⟩ ⊢ P ÷ (z ⇐ H)

Γ, x⇒ 1 | ϕ(x) ⊢ casex (⟨⟩ ⇒ P )÷ (z ⇐ H)
⊗R

Γ, x⇐ A, y ⇐ B(x) | ψ(⟨x, y⟩) ⊢ z.⟨x, y⟩ ÷ (z ⇐ (x : A)⊗B(x) | ψ(z))
⊗L

Γ, x⇒ A, y ⇒ B(x) | ψ(⟨x, y⟩), z ⇒ (x : A)⊗B(x) | z ≡ ⟨x, y⟩ ⊢ P (x, y)÷ (w ⇐ C)

Γ, z ⇒ (x : A)⊗B(x) | ψ(z) ⊢ case z (⟨x, y⟩ ⇒ P (x, y))÷ (w ⇐ C)
→R
Γ, x⇒ A | ϕ(x) ⊢ P (x, y)÷ (y ⇐ B(x) | ψ(x, y)) Γ, z ⇒ . . . | ∀x. ϕ(x) ⊃ ψ(x, z‘x) ⊢ χ(z)

Γ ⊢ case z (⟨x, y⟩ ⇒ P (x, y))÷ (z ⇐ (x : A | ϕ(x))→ (B(x) | ψ(x, ·)) | χ(z))
→L

Γ, z ⇒ (x : A)→ B(x) | ϕ(z), x⇐ A ⊢ z.⟨x, y⟩ ÷ (y ⇒ B(x))
⊕R, k ∈ S

Γ, x⇐ Ak | ϕ(k · x) ⊢ y.k · x÷ (y ⇐ ⊕{ℓ : Aℓ}ℓ∈S | ϕ(y))
⊕L

{Γ, x⇒ Ak | ϕ(k · x), y ⇒ ⊕{ℓ : Aℓ}ℓ∈S | ϕ(y) ∧ y ≡ k · x ⊢ Pk(x)÷ (z ⇐ C)}k∈S
Γ, y ⇒ ⊕{ℓ : Aℓ}ℓ∈S | ϕ(y) ⊢ case y {ℓ · x⇒ Pℓ(x)}ℓ∈S ÷ (z ⇐ C)

&R

{Γ ⊢ Pℓ(x)÷ (x⇐ Aℓ | ϕℓ(x))}ℓ∈S Γ, y ⇒ . . . |
∧
ℓ∈S

ϕℓ(y.ℓ) ⊢ ψ(y)

Γ ⊢ case y {ℓ · x⇒ Pℓ(x)}ℓ∈S ÷ (y ⇐ &{ℓ : Aℓ | ϕℓ(·)}ℓ∈S | ψ(y))
&L, k ∈ S

Γ, y ⇒ &{ℓ : Aℓ}ℓ∈S | ϕ(y) ⊢ y.k · x÷ (x⇒ Ak)

call

f(x : A, y : C(x)) = P (x, y) ∞(x⇒ A ⊢ P (x, y)÷ (y ⇐ C(x)))

x⇐ A ⊢ f(x, y)÷ (y ⇒ C(x))

Fig. 4. Process Typing
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!cell aW,proc b (b← a) 7→ !cell bW

proc c (x← P (x);Q(x)) 7→
proc a (P (a)),proc c (Q(a)) where a is fresh

!cell aK,proc c (a.V ) 7→ proc c (V ▷ K)

!cell a V, proc c (case aK) 7→ proc c (V ▷ K)

proc a (a← f b) 7→ proc a (Pf (b, a))

proc a (a.V ) 7→ !cell a V

proc a (case aK) 7→ !cell aK

⟨⟩ ▷ ⟨⟩ ⇒ P = P

⟨a, b⟩ ▷ (⟨x, y⟩ ⇒ P (x, y)) = P (a, b)

k · a ▷ {ℓ · x⇒ Pℓ(x)}ℓ∈S = Pk(a)

Fig. 5. Configuration Reduction

proc
∆ ≤ Γ Γ ⊢ P ÷ (a : A) Γ ⊢ A ≤ B

∆ ⊢ proc aP ÷ (∆, a : B)

cellV
Γ ⊢ proc a (a.V )÷∆

Γ ⊢ !cell a V ÷∆

cellK
Γ ⊢ proc a (case aK)÷∆

Γ ⊢ !cell aK ÷∆

empty

Γ ⊢ · ÷ Γ

join
Γ ⊢ C ÷ Γ′ Γ′ ⊢ C′ ÷∆

Γ ⊢ C, C′ ÷∆

Fig. 6. Configuration Typing

which types the objects in C where sources are in Γ and destinations in ∆. The rules are designed to admit
the following conveniences.

Remark 3.4 (Proof Principles) The theorems in the next subsection use the following proof principles.

• Right-to-left induction: a configuration typing derivation D can be viewed as a list of process typing
derivations where readers of an address appear to the right of its writer. Thus, induction on D isolates
the rightmost derivation and applies the induction hypothesis to the sub-configuration on the left.

• Inversion modulo subtyping: following [16], the Proc rule contains subtyping “slack” premises on
both sides of the sequent. Thus, inversion on its subderivation may use a quick induction to absorb
consecutive instances of ≤R/L into the slack using Lemma 2.2. As a result, it suffices to only consider
the non-subtyping process typing rules. Note that the premise ∆ ≤ Γ is defined by viewing ∆ and Γ as
iterated dependent pair types.

3.2 Syntactic Type Soundness and Observable Partial Correctness

Now that we have reviewed configuration reduction and typing, we prove syntactic type soundness by a
standard appeal to progress and preservation. Then, we define and prove observable partial correctness.

Theorem 3.5 (Progress) If · ⊢ C ÷∆ then either C is final or C 7→ C′ for some C′.

Proof. By right-to-left induction on the configuration typing derivation.

(i) If C = C1, !cell aS, then by the induction hypothesis, either C1 is final, in which case C is final, or
C1 7→ C′1, in which case C 7→ C′1, !cell aS.

(ii) If C = C1, proc c P , then by the induction hypothesis, either C1 7→ C′1, in which case C 7→ C′1,proc aP .
Otherwise, C1 is final. If P is a cut, definition call, or writes, then C steps by P alone. Otherwise,
inversion modulo subtyping on the appropriate subderivation in that for C1 reveals a cell of the right
shape that P reads from, letting C step.

2

Theorem 3.6 (Preservation) If Γ ⊢ C ÷∆ and C 7→ C′, then Γ ⊢ C ÷∆′ for some ∆′ ⊇ ∆.
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Proof. We proceed by induction on the reduction step and then by inversion modulo subtyping on the
typing derivationD. The cases where a single process steps—cuts, definition calls, and writes—are straight-
forward. The identity rule and projection/application of a continuation are also straightforward by copying
the derivation of the object read to that of the destination. However, pattern matching on a value is non-
trivial due to path sensitivity. For example, when ⊕R meets ⊕L at address b subject to ϕ(b), the kth

premise of ⊕L requires the type of b to be strengthened with the equality b ≡ k · a where a is somewhere
to the left in D. In updating the derivation for b locally, a would be flowed ϕ(k · a) ∧ k · a ≡ k · a, which
is subsumed by ϕ(k · a) via ≤L. Thus, the readers of a see the same type ascription as before. To ensure
that all readers of b except for the scrutinized instance of ⊕L see the same type ascription as before, we
inductively update their left “slack” premises noting that ϕ(b) ∧ b ≡ k · a implies ϕ(b). 2

For an alternate proof strategy of type preservation that grapples with this strong form of path sensitiv-
ity in a functional setting, see [52, Lemme 13.8.7 and Théorème 13.8.8]. Now, to prove observable partial
correctness, we follow DeYoung et. al. [22] and refer to addresses occurring in values as observable with
all else being hidden. As a result, final configurations of purely positive type are completely observable.

Lemma 3.7 (Final Configurations of Purely Positive Type [22, Corollary 12]) Purely positive
refined types A++ are those that only contain positive type constructors. Extending this definition to
Γ in the obvious way, if · ⊢ F ÷ Γ++, then F only contains objects of the form !cell a V (whose addresses
are observable).

Proof. By inversion on the configuration typing derivation. 2

By taking care of the indirection that observable addresses introduce, we can determine when such a final
configuration satisfies all of its postconditions.

Theorem 3.8 (Observable Satisfaction) F ⊨ Γ++ is inductively generated by the rules below.

· ⊨ ·
F ⊨ Γ++ Γ ⊢ ϕ(V )

F , !cell a V ⊨ Γ++, a : A | ϕ(·)

Now, if · ⊢ F ÷ Γ++, then F ⊨ Γ++.

Proof. By right-to-left induction on the configuration typing derivation, we have F = F1, !cell a V and
Γ++ = Γ++

1 , a : A | ϕ(·) where F1 ⊨ Γ++
1 . Thus, it suffices to prove Γ++

1 ⊢ ϕ(V ). By Lemma 3.7,
said derivation ends in an instance of cellV exposing a process typing derivation. By inversion modulo
subtyping, it suffices to only consider right axioms, in which case ϕ(V ) is already assumed in Γ++

1 or is
proved directly. For example, ⊕R assumes ϕ(k ·b) to type a.k ·b, whereas 1R proves Γ++

1 ⊢ ϕ(⟨⟩) for a.⟨⟩.2

Thus, a well-typed configuration is observably partially correct—it either does not terminate or ter-
minates at a final configuration where all of its purely positive subconfigurations observably satisfy their
associated postconditions. We formalize this by the following corollary, which combines a coinductive
characterization of type soundness [40] and partial correctness [11,25,46].

Corollary 3.9 (Type Soundness and Observable Partial Correctness) Let F be Γ-safe iff for all
Γ++ ⊆ Γ, there exists F ′ ⊆ F such that F ′ ⊨ Γ++. Then, let C be Γ-safe iff, coinductively, C 7→ C′ and C′
is Γ-safe. Thus, if · ⊢ C ÷ Γ, then C is Γ-safe.

We finish by commenting on the generality of our partial correctness result—because hidden addresses can
be made observable by projecting or applying the continuations that hide them, we do not lose power by
restricting our attention to observability.

4 Related Work

We view DRSAX on a spectrum between languages that model concurrency and/or parallelism without
native support for them at one end and process calculi with dependent (session) types of varying expres-
sivity at the other. Before we elaborate on this dichotomy, we note that our treatment of codata seems
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to be related to logical approaches to object encapsulation in the presence of mutable state [29,30,49].
Moreover, refer to [4,3,5] for reasoning about terminating mixed inductive-coinductive programs.

4.1 Language-Based Verification, Concurrency, and Parallelism

Projects like SteelCore [60] and FCSL [47] implement a variation of concurrent separation logic [48,32]
in a metalanguage—in these cases, F∗ or Coq—from which various shared memory and message-passing
constructs can be modeled. Similar efforts that do not use separation logic include that in Dafny [37]
and Why3 [56]. Our interest is “one level up”—determining a core language that could, in theory, be
embedded in the languages discussed via the constructs that they model, intersecting with our discussion
of embedded session types below. One exception to this thread is Liquid Effects [33], in which dependent
type refinements are retrofitted directly onto a parallel dialect of C.

4.2 Dependent and Embedded Session Types

Toninho et al. [63] initiated the line of work on dependent session types by presenting a session-typed
process calculus in Curry-Howard correspondence with first-order intuitionistic linear logic over a domain
of non-linear proof terms. In particular, proof terms are not allowed to refer to the channels with which
processes communicate in the linear layer. In their retrospective paper ten years later [65], they note that
many subsequent developments [66,62,17] have similar restrictions precisely because non-linear dependence
on linear objects is problematic. As somewhat of an exception to the rule, Toninho and Yoshida [67] allow
proof terms to depend on quoted processes by way of a contextual monad [64], related to that of dependent
linear/non-linear logic [35]. The relaxation of the restriction on type dependency comes at the cost of
process/term-level duplication, since functional terms can be embedded faithfully into processes—DRSAX
need not make this distinction.

Another line of work seeks to embed session type systems into existing dependent type theories,
allowing meta-level reasoning about processes and the exploitation of existing language infrastructure
[7,72,19,57,28,42]. Embedded implementation is certainly not opposed by DRSAX nor the line of work
above, but moving the burden of proof to the meta level requires explicit reasoning about the typing and
operational semantics of programs to an extent determined by the embedding depth.

5 Conclusion and Future Work

In this paper, we have developed DRSAX, a sound integration of expressive dependent type refinements
into SAX, a futures-based process calculus, by adhering to its proof-theoretic discipline. The distinction
between data and codata is navigated through the design of the language as well as the metatheory, which
begins with typing rules respecting codata encapsulation and culminates in observable partial correctness
as a result of type soundness. Moreover, our mixed inductive-coinductive view of (sub)typing gives a
uniform treatment of induction, coinduction, and mixed induction and coinduction within the language.
There are multiple avenues of future work:

(i) Types: we are interested in extending the type structure of DRSAX primarily by abstraction both
over types [15] and refinements [69].

(ii) Effects: whether there is a proof-theoretic interpretation of various concurrent effects is still an open
question. Non-mutable memory reuse can be interpreted with snips [21], thus raising the question of
how mutability could be introduced. In the setting of session types, hypersequents have been used to
introduce races in linear logic [34].

(iii) Implementation: the presence of quantifiers in the assertion logic and our mixed inductive-coinductive
view of (sub)typing jeopardizes decidable typechecking. With an eye towards implementation, we
aim to investigate various quantifier instantiation strategies as well as a restriction to circular [12]
(sub)typing derivations which are finitely-representable and thus may admit terminating search [17].
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