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Abstract

The well-known embedding of intuitionistic logic into classical modal logic means that intuitionistic logic
can be viewed as a calculus of labelled deduction on multiple-conclusion sequents, where the labels are the
Kripke worlds of the modal embedding. The corresponding natural deduction system constitutes a type
system for programs using control operators such as letcc that capture the current program continuation,
which has a modal restriction on the use of such continuations that enforces constructive validity. This
allows us to develop a rich dependent type theory incorporating letcc, which is known to be otherwise
highly problematic for computational interpretations of classical logic.

Moreover, we give a novel constructive proof for the soundness of this labelled deduction system, whose
algorithmic content is a non-deterministic translation of programs that eliminates uses of letcc and is fully
compatible with dependent types and therefore with program verification. This proof has been formally
verified on the propositional fragment in the Twelf meta-logical framework.
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1 Introduction

Griffin’s [8] discovery that control operators arise via a propositions-as-types inter-
pretation from classical propositional logic has spawned a number of interesting and
successful investigation into the computational meaning of classical proofs (see, for
example, [15,13,21]).

However, there remain flies in the ointment. One is the inescapable fact that be-
yond certain fragments of arithmetic, classical logic is simply not constructive and
any effort to extract computational witnesses from classical proofs can not succeed
in general. A related observation is that classical logic is difficult to reconcile with
dependent types and leads to degeneracies [9]. Finally, the intuitionistic interpreta-
tions of types in terms of their canonical forms (that is, values) no longer applies.
As a result, we know very little about how to reason about functional programs
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containing control operators except for equational reasoning which is intimately
connected to the rules of computation and more tractable [18,13].

In a separate thread of investigation going back to Godel’s interpretation of
intuitionistic logic in classical modal logic [7], researchers have proposed labelled de-
duction [6] as a means to restrict classical proofs to be intuitionistically (or modally)
sound. Generally, these have been presented in the form of matrix, tableaux, or se-
quent calculi, but natural deduction systems have also been developed [1].

Our starting point is the observation that labelled deductions remain essentially
classical, albeit restricted by the labels to be intuitionistically sound. This means
that when we interpret labelled natural deduction proofs as programs they will
contain control operators, and these control operators retain their familiar opera-
tional meaning. We propose one particular such system, which represents a novel
Curry-Howard isomorphism for intuitionistic proofs that accommodates the letcc
control operator. Moreover, we incorporate universal and existential quantification
in a constructively sound manner, thereby permitting reasoning about programs
via first-order dependent types. We are not aware of a similarly dependent system
for control operators. We conjecture that an extension to full dependent types is
straightforward, given that the equational theory of control operators is relatively
well understood.

This does not yet answer the question on how labelled proofs including letcc
are related to ordinary intuitionistic proofs, which turned out to be a surprisingly
difficult question. Almost all proofs for the soundness of labelled deduction with
respect to intuitionistic logic are essentially model-theoretic and not constructive,
with the exception of Schmitt and Kreitz’s which exhibits a translation between
proofs [20]. Their translation, however, starts from a matrix proofs and goes through
several complex intermediate sequent calculi. The bulk of the technical material in
this paper is devoted to exhibiting an explicit relationship between proofs in the
two natural deduction calculi and showing its correctness. The translation appears
to be inherently non-deterministic and does not preserve the operational semantics.
For example, a function of type A — B in labelled deduction and its image under
translation (of the same type) may carry out very different computations, although
both will return elements of the correct type B, even in the presence of first-order
dependent types. We interpret this as evidence that adding letcc fundamentally
alters the nature of computation, even if we restrict it to be constructively sound.

We have formalized our proof for the propositional fragment in the Twelf [17]
meta-logical framework, which exhibited some interesting issues regarding the in-
teraction of parametric reasoning for labels and ordinary variables. 4

How serious a restriction the label system would be in practice is difficult for
us to assess at present. Clearly, the proof of the excluded middle A V —A is not
possible for completely unknown A, but it can be realized in many special cases.
Approximately, one might say that the label discipline prohibits ‘newer’ data from
being thrown back to ‘older’ continuations. This, however, does not convey the
whole intuition since, for example, closed data are throwable to any continuation
no matter when they were created.

4 The formal proof can be found on-line at
http://www.cs.cmu.edu/~ jcreed/elf/intletcc.tar.gz
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We do not investigate questions of type inference or the operational semantics in
this paper, but it is easy to see that extension by intuitionistic letcc is conservative
over the usual call-by-value operational semantics of the A-calculus. Moreover, it
seems clear that T-string unification [14] can by used to efficiently augment the
usual type inference with label inference.

The remainder of the paper is organized as follows. Sections 2 and 3 describe
the systems of labelled deduction we use, in sequent and natural deduction style,
respectively. Section 4 describes the translation from labelled natural deduction to
intuitionistic logic that eliminates uses of intuitionistcally valid letcc. Section 5 gives
some examples of what programs are and are not possible to write using intuitionistic
letce. Section 6 discusses the formal proof of soundess of our translation. The final
sections discuss related work and conclusions.

2 The Labelled Sequent Calculus

The judgment of the labelled sequent calculus takes the form I' = A where ', A
are both lists of labelled propositions A[p]. The proposition part is, as usual

A,B = P(t1,...,tn) | ANB|AVB|ADB|T|L|Vs.A(s) | 3s.A(s)
and the first-order terms that may appear in propositions are of the form

tu=s| f(t,... 1)

where s is used to denote a variable standing for a first-order term.

Labels (typically written p, q,r,...) are strings over letters a, b, ..., of which we
assume we have a countably infinite supply. We write p < ¢ when p is a prefix of
q, i.e. when ¢ is of the form pr for some string r. These labels intuitively stand for
the worlds in a possible-worlds semantics, and we use the words ‘world’ and ‘label’
interchangeably in the sequel. Each letter in a string is like an edge in a path from
one Kripke world to another directly accessible from it. The prefix relation p < ¢
is then exactly the accessibility relation, expressing that ¢ is accessible from (one
may think of it as being ‘one possible future’ of) p.

The sequent rules for the propositional fragment for the judgment are as follows.
(A similar setup is due to Waaler [?]). We tacitly identify contexts which only
differ in the order of their elements (i.e. exchange as an explicit structural rule
is not required), and for brevity avoid showing in inference rules that decomposed
propositions are also propagated upward in a proof (i.e. contraction as an explicit
structural rule is not required).

mnat
[, Alp] = Alpql, A

', Alpa] = Bipa], A . = Alpq],A  T,Blpq] = A
D a

DL
I'= AD Bp,A I'ADBp|=A
I'= A, A T'=B[p,A APl Blel = A
A A
I'= AABp],A I'AABpl = A
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I' = Alp], B[p], A R I, Alp] = A I',Blp] = A
V
I'= AV Bp,A I'AV Bp| = A

VL

— TR — 1L
I'= Tpl,A I, Lp]= A

Worthy of particular attention are the init rule and the implication right rule.
The first expresses that if we hypothesize A at some world p, and we are able
to conclude A at a future world pq, then the sequent is satisfied. This embodies
the monotonicity property typical of intuitionistic Kripke models. The implication
right rule importantly requires that a is fresh, i.e. does not occur anywhere in the
conclusion of the rule. If we read the implication right rule bottom-up, it adds A
to the current set of hypotheses, and B to the current set of allowed conclusions,
both at the new world pa.

Truly classical proofs would otherwise arise from the interaction between the
hypothesis A and other conclusions found in A. By affixing the fresh a to the world
at which A is hypothesized and B is concluded, the system prevents the hypothesis
A from applying A, and at the same time allows it to be used in concluding B.

For example, consider the sequent

F(AVAD )]

An attempt to prove it,

pa £ p
Alpa] = Alp], L[pa
- Alpl, AD L[p]
‘F(AV(ADL1))p

fails because the hypothesis A that is created is at a world pa that is not ‘before’
the world p at which the conclusion A is.

The sequent rules for the first-order connectives are fairly straightforward, and
can be found in the appendix.

3 Labelled Natural Deduction

We now derive a system of natural deduction from the above sequent calculus. The
differences between it and ordinary proof terms for intuitionistic logic are the con-
structs letccuin M and throw M tow which permit binding and use of continua-
tions, and the presence of world subscripts on the elimination forms case, abort, let,
and on the introduction forms A, A.
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Proof terms are given by the grammar

M,N == x| (M, M) |mM|)|abort, M |inj; M |

(case, M of x1.M; | zo.M3) | Ngz. M| My M, |
letccuin M | throw M tou | Ags.M | M -t |
pack(t, M) | let,(s,z) = Min N

Continuation variables u are a separate syntactic class from proof terms, and there
are no other ways to form continuations other than naming letcc-bound continu-
ation variables. The subscripts on the binders A, A are in fact binding positions;
Aaz.M binds the world-label symbol a (as well as z) in the term M. For all kinds
of bound variables (terms s, proof terms z, continuations u, labels a) we tacitly
apply variables renaming in order to satisfy side conditions or capture-avoiding
substitution according to the usual conventions. The subscript on the elimination
forms is a string over bound world-label symbols, and it serves to indicate at which
world type-checking of the eliminated-type subexpression takes place. For exam-
ple, in case, M of .M, | x.M>, the object M being case-analzed will have to be
well-typed at world gq.

The typing judgment for determining well-formedness of a proof term is >; " -
M : Alp], where ¥ is as before a list of first-order term variables, and I is here given
by

D= |T,z: Alp] | T,u: Alp)

i.e. alist of proof-term variables x and continuation variables u, each with associated
type A and world p. The typing rules are:

T, 2 Alp] F z 2 Alpg|

YT,z : Alpa] F M : Blpa] 5, I'FM;: AD Blp) ;T F M, : Alpq]
ST F Mgz M : A S Blp] >:T F My Ms : Blpq]

ST M :Alp] ST M : Bl S:TFM: A A Asp]
;T F (M, M) : AN B[p] 5T FmM : Ailp)
;T M : Ailp]
ST F ing; M : Ay V Asfp)
5D,y Cilg] = My : Alp]

E;Fl_M201VCQ[q] E;F,xztcg[q]l—MgiA[p]
¥, T+ (casey M of x1. M | x2.Ms) = Alp)
5 THM: L]

T () Tlp] ;T abort, M : Ap]
)
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Y, slpal; T M : A(s)[pal T F M :Vs. Alp Yt term[pg]
;T F Ags. M : Vs.A(s)[p] 5 THM-t: A(t)[pq]

Ykt term[p] T M: A(t)[p]
;T F pack(t, M) : 3s.A(s)[p]
T F My 3s.C(s)[q] Y, s[g; T, x - C(s)[q] F Ma : Alp)
YTk lety(s,z) = My in M, : Alp]
u:Clgl el - M:Clq ¥ D,u: Alp) = M : Alp]
;' throw M tou : Alp] Y;T'Fletccuin M : Alp)
Yk t; : term[p] s:term[p] € ¥
SE f(ty,... t,) : term[p) Y F s term[pg]
This system has the same properties with respect to variable use and function
formation as the sequent calculus had in its init and implication right rules. A
variable can be used at any world later than the world at which it was hypothesized,

and forming a function entails hypothesizing a new world pa (for fresh a) in the
future of the current one p.

The multiple conclusions of the sequent calculus are effectively replaced by letcc
and throw , which make explicit the negotation of which conclusion is actually
satisfied. This relationship between classical sequent calculi and control operators is
quite standard; it is the interaction of the labels that is interesting for our purposes.

Since we have the goal of showing the soundness of the labelled multi-conclusion
sequent calculus in ordinary natural deduction, we claim first that the labelled multi-
conclusion sequent calculus is sound in this labelled natural deduction system:

Theorem 3.1 If = Alp|, then there is an M such that = M : Alp].

Its proof is not difficult, and deferred to the appendix for space reasons.
We can revisit in this setting the example of why a typical classical proof fails.
The term
M = letccuininjy (N xz.throw (inj, z) tou)
would be, in a type theory for classical logic, a proof of AV (A D L), but trying to
typecheck it in the present system fails for the same world mismatch as described
in the sequent calculus above:

pa £ p
u: (AV(ADL))pl,x: Alpa] F z: Alp]
u:(AV(ADL)pl,z:Apa]t-inj;z: AV (A D L)[p]
u:(AV(ADL)[pl,z: Alpa] - throw (inj; x) tow : L[pa]
u: (AV(AD L1))p F Agz.throw (inj, z)tou) : (A D L)[p]
u: (AV(AD L))[p]F injy(Agz.throw (inj; z)tou) : (AV (A D L1))[p]
-k letccuininjy (A z.throw (inj; z) tou) : (AV (A D 1))[p]
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4 Eliminating Intuitionistic Letcc

To show that the two systems described above are conservative over intuitionistic
logic, we show that all uses of letcc are inessential. Writing M for a typical ordinary
natural deduction proof term (whose grammar is just that of M with all world-
subscripts erased and letcc, throw removed from the language) and I' Fyp M : A
for the ordinary natural deduction typing judgment (whose typing rules are similarly
identical to the labelled natural deduction rules except with all labels erased, and
letcc and throw elided), the goal is to show

If = M : Alp], then there exists an M such that Fyp, M : A

We show this by giving an explicit non-deterministic translation that produces
M from M.

4.1 Answers

The translation is implemented in terms of an auxiliary data structure of expressions
called answers. What it amounts to is a strengthening of the induction hypothesis
that makes the overall theorem go through.

We will show how to translate every labelled proof term into an answer, and how
to translate answers into ordinary proof terms. Answers « are built out of ordinary
natural deduction proof terms M by

az=M||[Mp>u| (M?zi.0q | Z2.02) | MY, | (M), 5.20.0)

Answers are something intermediate between labelled and ordinary natural deduc-
tion terms. They possess labels in subscripts, and may throw to continuations (since
the form M > u is essentially throw M to u; see below) and are typed in a labelled
context, but do not themselves feature letcc.

M|, pronounced ‘M done’ marks a proof term which only mentions variables
whose world labels precede a certain p. This is enforced in the typing rules for
answers through a restriction operation I'| <, on contexts defined by

‘ [ Tl<p,z: A if g <p;
Tz - Alg))l<p = {F[<p otherwise.

lep=- @u:Alg)lsp =Tl

and analogously for term variable contexts . If I' is a context for labelled natural
deduction, then I'|<, is a context for ordinary natural deduction, consisting of
exactly those proof term (and first-order term) variables that are in the past of p.
Moreover, all continuation variables are erased. In this way M| will be a well-formed
answer in context I' at world p if M is a well-formed proof-term in the context I'| <.

Each of the remaining answer constructors corresponds to a labelled proof-term
constructor, except that they rely on similar world-access limitations. M > u is
morally “throw Mtowu,” where M cannot refer to any variables except those at
worlds prior to the world of the continuation variable u. The expression M?,x.c; |
x.a is essentially a case,, M!, represents an abort,, and M;, s.z.a is an existential
elimination analogous to “let,(s,z) = Mina”.

7
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Below are the typing rules for answers. The judgment is most generally ;1" F
a : Alp] for a labelled context of variables and continuation variables I'. Again, ¥
is left implicit except in the rule that explicitly manipulates it.
I'<,FM: A Fl<;FM: L I<,FM:B u:Blgl el
C'EM|: Alp] I' =M, : Alp] 'EMpu: Alp)
L2y Cifg] b o 2 Alp]
Fl<gFM:Ci VO T, zg : Colq] g : Alp]
I'E (M?gz1.0q | z2.02) = A[p]
Yl<giTl<gFM:3s. A X,slgl; T,z : Bl a: Alp]
YT F (Mg s.z.a) : Afp]

There are a few further refinements of this definition that are required to make
precise the invariants of the translation. They are separated answers, pre-answers,
and pre-separated answers.

4.1.1 Separated Answers
To define separated answers, fix a world-letter a. It is worth noting that the way
we introduce fresh symbols in all the rules above means that every occurrence of
a given symbol a has a globally unique prefix p that it occurs after. This means
we may freely pass between talking about a and pa without fear that there is some
p' # p such that p’a also occurs.

Some answers have the property that they contain no mention of worlds later
than pa, and in them the set of occurrences of pa in subscripts on 7, !, or ; constructs
have only pa subscripts in their subterms. For example,

M?px.(N1y) | z.(P])

is an answer that fails to have this property, because p appears below pa. We call
answers which have this property a-separated.

Formally the class of a-separated answers (written a®) and the class of a-pure
answers (written o, which have the property that every one of their subscripts is
exactly pa) is given by the following grammar:

Q% z=a® | M>u | M, | (M?2.af | z.03) | (M;s.2.0%)

a® = M| | My | (M?7pz.af | z.05) | (M;p, s.z.0%)

where ¢ here stands for any world such that a ¢ ¢. Note that these are two

parametrized families of grammars, with the parameter being the world letter a.
Every a that appears on the right of each ::= cannot be instantiated by any a
at all (as one might think it could be according to the usual conventions for free
metavariables in grammar rules) but rather only exactly the a appearing on the left.
The answer M > that represents throwing to a continuation goes in the production
for p-separated answers for technical reasons that can be seen from the proof.

8
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4.1.2  Pre-Answers

The translation of terms to answers requires a recursive pass for each proof-term
construct. For this we make use of a notion of pre-answers, syntactic expressions
whose top-level construct is drawn from the language of proof terms, but which
below that have the form of answers. The top-level of the translation takes a term,
recursively translates its component terms into answers, and then begins an inner
recursion to convert the resulting pre-answer into a bona fide answer. Formally,
pre-answers are given by

B = (o, a2) | ma | inj; a | (casegaof z1.a1 | x2.a2)

| Aaz.a” | @1 g | () | abort, a | letccuina | throw atou
Ags.a® | a-t] (o, t) | lety (s, z) = o inas
q

Typing of pre-answers follows exactly the labelled natural deduction rules, except
with every M replaced by a. Note that the binders A\;, A, have bodies that are
a-separated answers. We will return to this point in section 4.2.1.

4.1.8 Pre-Separated Answers

Finally, the algorithm that generates separated answers from answers also has an
inner loop that requires definition of a-pre-separated answers, written 3%. An a-pre-
separated answer has a single pa-subscripted construct at the root of its expression
tree, and is a a-separated answer below that.

B = (M?pgz.af | oF) | (Mipg s.2.0%)

As a-separated answers, a-pure answers, and a-pre-separated answers are all
simply refinements of answers, they are typed by the same answer typing rules.

4.2 Translation

Now we can define the translation itself. It is given by five relations

a— M Answer o maps back to term M

% --+% a®  Pre-separated-answer (3% evaluates to a®

a —al Answer « a-separates to answer a®
0 --+« Pre-answer 3 evaluates to answer «
M — « Labelled term M translates to answer o

The complete rules for these relations are in Appendix A.3. Each of these
relations is total and type-preserving in a sense made explicit in 4.3. If an input
object is well-typed for the source of one relation, then there exists at least one
output object that it is related to, (generally there are many) and every output
object that it is related to is also well-typed. The top-level plan of eliminating the

9
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letcc, throw proof term M to produce M by translating through answers is then
given schematically by

M—a—M

A typical rule for — looks underneath the top-level expression construct of some
proof-term M, and recursively appeals to itself to translate each component of the
expression into an answer. What it is left with is one term constructor applied to
answers in place of terms, that is, a pre-answer. The relation --» serves to perform
an inner recursion to turn this pre-answer into an answer. For example, some of
the rules for pairs are

M1 — 1 M2 — (9 <a1,a2> - Ck/

<M1, M2> — O/

(a, Mlg) --» M, (M>u,a) --» M>u
Using these (and the rules for abort and throw, see Appendix) we can show that
e.g. both
(throw z tou, abort, y) — x> u

(throw z tou, abort, y) — y!,

Here the nondeterminism of the relation «— is evident.

4.2.1 Binders and Separation
The notion of separated answers and the separation relations are used for the binding
constructs A\q, Ag. The relations —¢ and --+¢ are used to produce from any answer
a separated answer of the same type. The remainder of this section is an explanation
of the difficulties of the binding cases, and hints at the role that separated answers
play in solving them, although a full explanation is beyond the scope of this extended
abstract.

Imagine that the X clause of the relation < worked in roughly the same way as
every other construct, by first recursively applying — to the body of the lambda,
and letting --» eliminate the lambda thereafter:

M — « ATt ——>

Ao M — o/

We pose the question, then, of what goes in the ? in A\;z.«v --»7. First we would
certainly split cases on the various possibilities for the answer . If o is M|, then
Agz.(M]) --» (Az.M)| is a reasonable response, for it at least makes --» type-
preserving in that case. For if the pre-answer A,z.(M]) is well-typed, its typing
derivation is of the form of the derivation on the left below:

I<pg,z: A-M:B Il<p,z:AFM:B
[,z : Alpa] = M| : Blpa] Il<pFAzM:B
L' Xz.(M]): AD B[p] 'F (Az.M)|: AD Bl[p]

10
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The respective top lines of these derivations are equivalent, by the freshness side-
condition on a, so if we have the derivation on the left, we can form the derivation
on the right.

Similarly, if the answer underneath the lambda happens to be M!,,, then we
can keep the lambda and change the ! to an abort, yielding A\ z.(Mly,) --»
(Az.abort M)|. We leave it as an exercise to check that this clause is type-
preserving. An apparently similar case is the attempt

Az.(M!y) ==+ (Az.abort M) | (%)

where a ¢ ¢, but in fact this is not type-preserving, and so not a successful strategy.
Here the derivations we have and need are, respectively

(T,z : Alpa])|<g-M: L Dl<p,z: AFM: L
I,z : Alpa] = M, : Blpa] I'<p - Az.abort M : B
I'FXz.(Ml,): AD Blp] I'F (Az.abortM)|: A D B[p]

Here the mismatch between the contexts (I',z : Alpa])|<q and I'|<,,z : A is
irreconcilable. On the left, M may refer to some variables in I'| <, that are no longer
available in I'| <jq = I'[ <4.

Fortunately, the fact that a ¢ ¢ lets us infer something else: that (I',x :
Alpa))|<q = T'|<4, and therefore that z itself cannot appear anywhere in M. We
may therefore let the !, escape the A, yielding Aqz.(M!y) --+» M!,. It is again easy
to check that this is type-preserving.

Summarizing, the correct behavior evaluating a A\,z. when we encountering an
answer M!, depends on the world subscript ¢. Either (I) ¢ is pa, (g is the ‘new’
world introduced by the lambda) and we ‘imitate’ !, with abort,, leaving the X in
place, or (II) ¢ does not contain a, (g is some ‘old’ world) and therefore M doesn’t
contain x, and we let M!, escape the lambda.

However, !, is not the only form of answer by far; more generally we encounter
a tree structure whose internal nodes are 7;s and ;4s. Can we make a similar simple
split between (I) and (IT) in every case? It turns out the answer is no. Consider the
problem of filling in the blank in

AaZ.(Mipg 5.y.M'5, 8"/ (M"])) --»7 (xx)
We can neither (I) globally imitate with the term
Az.(let(s,y) = Minlet(s’,y') = M inM")|

(in which M’ risks being ill-typed just as M in the output of (x) does above) nor
can we (II) drop the lambda as

M;pe 5.y.M'50 8"y ((M"])

because then a and z (which may appear in M) are suddenly no longer in scope.
The essential problem is that some world-subscripts in the expression are new,
and some are old. Strategy (I) only works when the world is new, and strategy

11
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(IT) only works when it is old. The solution to this impasse is selectively applying
strategies (I) and (II) to the appropriate parts of the expression. The answer to the
example () is, in particular

M, 8"y .(Az. let(s,y) = MinM")|

where ;, has escaped, and ;;, has turned into a let.

In the interest of making recursive definition of this mixed strategy feasible, the
purpose of the separation relation —¢ is to take as input an answer «, and output
an a-separated answer a® of the same type, so that all of the answer constructs that
need to escape the lambda are already outermost in a®. The correct < rule for
lambda works by invoking this relation, separating the answer obtained recursively
before invoking --»:

/ / "
M — « o —g o A0 = «

1
A M — o

The --» rules for A-abstraction each permute the abstraction when the world labels
allow it, for example,
aéq Aot —-> o

Aa.(Mjg 5.9.00) ==+ M, s.y.0
or reconstruct the abstraction if the subterm is pure:
a® — M

Aoz ==> (Agz.M)]

4.8 Correctness

We can concisely state the typing and totality properties of all of these relations
with the aid of the following (Hoare-triple-like) abbreviation.

Definition 4.1 When Ji, J2 are judgments and ~~ is a relation, the notation
{N1(X)} X ~Y {LY)}

means that both of the following are true:
e (“Progress”) If J1(X), then there is a Y such that X ~» Y.
* (“Preservation”) For any Y, if J;(X) and X ~» Y, then Jo(Y).

The following theorem is a summary of the progress and preservation properties
of the translation.

Theorem 4.2 Let IV be of the form T, x1 : Ay[pal,...,x, : Aplpal for some a ¢ T,
(and similarly for the associated term context X' = X, s1[pal, ..., sm[pa] where a &
Y ) and put q = pa. All of the following hold:

12



{(Tha®: A} a® — M {Dl,FM:A
{I'Ep2:Algl } B --»¢a® {T'Fa%: Alg]
{T"Fa:Alg) } o =¢a® {T'Fa®: Al
{TEB:App] } B - a {Tka:Ap)
{TFM:Appl } M — a {TI'Fa:Al]p

Proof. To see that progress holds, one needs to check to see that to every well-
formed proof term (or answer, or pre-answer, etc.) there is a clause in the rules
defining each appropriate relation that relates that term (resp. answer, pre-answer)
to some output.

The proof of preservation proceeds by straightforward structural induction on
the relevant typing derivation. m O

The main results we want then follow easily from these.

Corollary 4.3 (Soundness of labelled ND) If+ M : Alp|, then there exists an
M such that Fxp M @ A.

Proof. Choose « such that M < «. It follows that - a : A[p]. Choose a fresh
label b, and derive the b-pure answer o’ from a by changing every label in a to b.
It can easily be seen that, after collapsing all labels to b, we have F o : Alb]. Now
choose M such that a? — M. It follows that Fxp M : A, as required. m O

Corollary 4.4 (Soundness of labelled sequents) If there is a derivation of - =
Alp], then there is M such that Fyp M : A.

Proof. Compose Theorem A.5 and Corollary 4.3 m O

5 Examples

Treating the natural deduction system as a programming language, it is possible
to encode some but not all of the idioms associated with control operators such as
letcc.

By the soundness theorems immediately above, it is not possible to write closed
programs of type AV —A,-—A D A, or (A D B) D A) D A. However, given
the way the typing rules of the case construct work, it is possible to present what
amounts to a classical proof of, say, AV —A for certain particular instantiations of
A, for example bool. If bool is taken to mean T V T, and we make the obvious
definitions of true, false as injections, then the program

M = letccuininj,(A\,x. case, x of
y.throw (inj; false) tou (1)

| y.throw (inj; true) tow)

type-checks perfectly well as - = M : bool+ —bool[p] for any p, despite its similarity
13



REED

to the program ?77hole
M = letccuininj, (A z.throw (inj, =) tou)

which does not type-check, because x : boolpa],u : (bool V =bool)[p] - inj; x :
bool + —bool[pa], while u is in the context only at world p, so the throw cannot
be typed due to label mismatch. ??7hole The example (}) succeeds because in the
case, the single bit of information that reveals which branch is taken does not itself
have a label. The bound variable in each branch of the case does, but these bound
variables are not used. Instead, the true or false values are closed and valid at any
world, and are therefore suitable to be thrown to the continuation u. It is easy to
extend this idea to any finite type, thereby recovering a part of the functionality of
Kameyama'’s type restrictions [10].

This program’s behavior under translation differs from any term not using letcc:
under the algorithm given in the Appendix, it non-deterministically translates to
inj; true or inj; false. Although we make no formal claim about the operational
connection between a program and its translation, intuitively this result can be
taken to mean that the classical proof eventually takes one or the other of these
values once the captured continuation is invoked with a particular boolean.

If we imagine an extension to the system that features recursive functions, then
we can also express typical examples such as short-circuiting list product. In SML-
like notation,

fun prod L = letccuinlet
funpd | =1
| pd (0 :: tl) = throw Otou
| pd (n::tl) =n=pd tl
inpd L end

still satisfies the label discipline, and its translation is simply the same program,
except without the letccuin, and with 0 in place of throw O towu. Although the
translated program in this case happens to also be a correct implementation of
prod, we cannot hope for any such luck in general — we emphasize again that the
translation does not guarantee the operational equivalence of its output with its
input, only that the type is the same. Any invariants of the program that are not
captured by the type may not be preserved. The first example above, for instance,
already shows that a value that is a second injection into a sum can be transformed
into a first injection.

6 Formalization

A proof very similar to the one above has been formalized in the Twelf meta-logical
framework. It differs chiefly in that it does not treat first-order quantifiers, but the
obstacles to formalizing the entire argument seem to be only inconveniences and are
not fundamental to the proof technique.

Another difference is that the formal proof does not feature a translation from

14
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explicitly labelled terms, but rather on unlabelled terms. In the algorithm described
here, there are many choice points that do one thing or another based on whether
a label has some property or not, but in the formal proof these are rephrased in
terms of variable occurrences in unlabelled terms. We believe that approach this
amounts to the formal proof performing a kind of ad hoc label inference each time it
needs to make a decision that is essentially about labels, and that some part of the
formalization could in fact be simplified if it could be made to conform more closely
to the proof described in this paper. The difficulty with this approach is that, since
the proof is to be constructive, one must find a way of representing evidence of
negative concepts such as inaccessibility of one world from another, and inequality
of worlds. Although it is easy enough to say on paper that questions of accessibility
and equality of world-strings are decidable, it was convenient to avoid this in our
first pass at a formal proof. We plan to consider such an alternative approach in
future work, as we extend the formalization to the first-order case.

7 Related Work

The interpretation of intuitionistic propositional logic in classical modal logic goes
back to Godel [7], who gave a translation into the modal logic S4, and claimed
its correctness without proof. One direction, that if an intuitionistic proposition
is provable, then so too is its modal translation, is relatively easy to show. He
conjectured the other direction. A proof was eventually given for the propositional
fragment by Tarski and McKinsey [11], who also provided (and proved correct)
two other similar translations. A proof for the full first-order case can be found in
Fitting’s book [5].

The system of classical modal logic that is the target of this translation, and the
translation itself, can be at once captured by a system of labelled deduction [6,22].
However, except for [20], the proofs for the soundness of the labelled system that
we are aware of are themselves non-constructive, going through some semantics
and associated counter-model or universal model argument. (McKinsey & Tarski’s
uses the topological semantics, while Fitting uses Kripke semantics.) Schmitt and
Kreitz’s proof is very complicated and, while ultimately syntactic, seems very far
from verifiable by formal means and not directly usable for translation from labelled
natural deduction to intuitionistic natural deduction.

The Ap-calculus of Parigot [15,16] is a widely known computational interpreta-
tion of full propositional classical logic. It has been used by several researchers as
the starting point of trying to account for the uses of control operators that remain
constructively valid.

Crolard [3,4] studied a restriction of the Apu-calculus equivalent in power to the
logic of constant-domain Kripke models, a logic that agrees with intuitionistic logic
on the propositional fragment, but admits the non-intuitionistic principle ¥s.(A(s)V
B) D (Vs.A(s)) VB when s ¢ FV(B). Crolard argues that this is still a constructive
logic, for it still satisfies the disjunction and existential properties. In Crolard’s work
there can also be found an elucidation of the connection between the Apu-calculus
and other A-calculi with added control operators [2].

Nakano’s work [12] can be seen as similar to ours except applied to the (unla-
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belled) multiple conclusion formulation of intuitionistic logic. In this presentation,
constructivity is maintained by constraining the conclusion the implication intro-
duction rule to have a single proposition on the right side of the sequent. The
resulting throw and catch primitives are more restrictive than properly labelled
letcc.

Kameyama [10] restricts the types of data thrown to captured continuations to
only allow datatypes such as booleans and lists (and not functional data) to get
around the modal restriction of Nakano’s system, but this does not extend soundly
to dependent types, by Herbelin’s counterexample [9].

Sato [19] proves a similar result to ours, that one language with a control operator
can be translated to one without, but it is hard to tell in this case whether the tag
variables are eliminable in the same sense as world annotations are in our case.
Moreover, his control operator seems weaker than ours, more along the lines of
Nakano’s, and there is no account of first-order or dependent types.

8 Conclusion

We have presented an intuitionistic restriction of a language with classical proof
terms including the control operator letcc via a modal logic of labelled deduction.
We showed that, unlike unrestricted control operators, this extension is compatible
with first-order universal and existential quantification. We also provided a fully
formalized constructive proof for the propositional fragment, relating the labelled
deduction system back to intuitionistic deduction via a non-deterministic proof
translation that gives constructive content to the classic Godel-McKinsey-Tarski
result.

In future work we plan to consider a fully dependent system which requires
some characterization of equational reasoning on programs, perhaps along the lines
of Ong’s elegant system [13].
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A Appendix

A.1 First-Order Labelled Natural Deduction

To give rules for the first-order quantifiers, we add a context > of term variables
to the judgment, so that it becomes >; A = I'. ¥ takes the form of a list of term
variables, each labelled by a world, si[p1],...,sn[ps]. In all the rules above, ¥ is
simply ‘passed along’ unmodified in each case, and in the sequel we often elide X
when its behavior is evident.

3. is, however, manipulated explicitly in connection with first-order terms. The
judgment ¥ F ¢ : term[p|, which asserts the well-formedness of the term ¢ at the
world p in the context of term variables 3, is defined by

Y Fty:term[p]--- X F ¢y, : term[p]
%, s[p] - 5 : term[pq] S F f(t1,...,ty) : term|p]

This judgment is then used to give sequent rules for the quantifiers, as follows:
3, slpal: T = A(s)[pal, A
YT = Vs.A(s)[p], A
17
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Ykt term[pg] ;T = A(t)[pq]
X0, Vs . A(s)[p] = A
Yt ¢ term[p) 5T = A(t)[p] 5

5T = 3s.A(s)[p], A
%, slpliT' = A(s)[p], A

YT, 3s. A(s)[p] = A

VL

S

Note that the right rule for V is parametric in both the term variable s and the
world-label a, while the left rule for 3 is parametric only in a term variable s. In
the other two rules, A(t) stands for the replacement of every free occurrence of s in
the predicate A(s) with the term ¢.

A.2  Soundness of Labelled Sequent Calculus in Labelled Natural Deduction

For every sequent proof, I' = A, there will be a proof term that exhibits a con-
tradiction from proof-term variables with types from I', and continuation variables
with types from A. What we mean by ‘exhibiting a contradiction’ is simply the
following:

Definition A.1 Let I' - M : # (read: ‘M is a proof of contradiction’) abbreviate
the fact that I' = M : A[p] for all A,p.

There are a few basic facts about the natural deduction calculus that are easy to
show by straightforward structural induction. The first is again strongly reminiscent
of the monotonicity properties from the Kripke semantics.

Lemma A.2 (Label Monotonicity) Suppose p < q.
e IfT'H M : Alp|, then T' = M : Alq|.
o If T u:Alp|F M :Clr], then T',u: Alg| - M : C[r].
o IfT\x: AlglF M : C[r], then T,z : Alp| - M : C[r].

In the following substitution lemma, [M/x]N stands for the usual capture-
avoiding substitution of M for xz in N, and [x.M/u]N stands for the replacement
of every throw M’ towu in N with [M'/xz]M. The intuition for the latter is that if

M can produce a contradiction for any x that would have been the data thrown to
u, then the expression M can serve as a replacement for any throw to .

Lemma A.3 (Substitution) Suppose
e IfTx: Alp]F N : Blq] and '+ M : Alp], then T+ ([M/z]N) : B[q].
e IfT\u:Alp]F N :Blq] and ',z : Alp| = M : #, then T' b [x.M/u]N : B[q]

We now have the tools to state and prove the soundness of the labelled sequent
calculus in labelled natural deduction.

Definition A.4 TV is an assignment of variable names to I'; A if T' is of the form
Aqlp1]s .-, Anlpn], A is of the form Bi[q1], ..., Bulgn], and T is of the form

x1: Ailp1l]s .., x1 s Aplpnlsur - Bilgi], - un 2 Bylan]

18
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Theorem A.5 Suppose I' is an assignment of variable names to T, A. If T’ = A,
then there is an M such that TV = M : #.
Proof. By induction on the derivation. For example, in the case of the rule DR,
I, Alpa] = Blpal, A
I'= AD Bp,A

DR®

the induction hypothesis yields a proof term M satisfying I, x : A[pa],u : Blpa] +
M : #. From this we can derive IV, v : A D B[p] I throw (A\,z.letccuin M) tow :
# as required. m a

Corollary A.6 If = Alp|, then there is an M such that = M : Alp).

Proof. By the preceding theorem, let M be such that u : Alp] - M : #. In
particular, u : A[p| = M : Alp]. Tt follows that I letccuin M : A[p]. = O

A.3 Translation

Below is a complete description of the translation from labelled proof terms M
(which may use letcc) to ordinary proof terms M (which do not). For compact
presentation of the algorithm, we frequently use C to stand for a syntactic expression
with a single hole OJ somewhere in it, and C[X] for the replacement of that hole in C

by the expression X. indicates the beginning of the definition of the relation

A.8.1 Mapping Answers to Terms

a— M

M| — M

M!, — abort M

a1 — My ag — Mg

M?pz.aq | .3 — case Mof z.M; | 2.My
a— N

(M;p s.z.a) = let(s,z) = Min N

A.8.2 Separating Answers

/3(1 __50 0

If C is from the list
(M?py.0 | y.a), (M?pey.c | y.0), (Mspa s.y.00)

then the following rules apply:
19
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aéq
CMI] ——»& M1, CMP>u] -2 Mbu

ag¢q  Cloj]-—»gai  Clag] -5 oy

CIM?,z.a] | z.ah] --+2 M?,z.af | z.af
aéq Cla/] --+2 "
C[M;q 5.2.0/] -=2¢ M;, s.2.0"

The remaining rules defining --»¢ are

(M?pay-af [ y.a3) -=»5 (M?pay.af [ y.a3)

(Mg 5.y.0%) ==2¢ (Mspg 5.y.%)

a—2a®

The rules defining —¢ are

Ml M| MISIMD Mou—?Mpbu

a / a /
adq a1 =g Q Qg —g 0

a / !/
M?,z.a1 | .00 =& M?gz.0 | 2.0y

/ / / /
ap —¢ o) g ¢ M?px.af | .0y ¢ «

/ / a
M?pez.0f | .0y —¢

aéq a—=2ad

. a . /
M;q z.a0 =g Mjg z.x

a ./ . a ./
o —¢ o Mipe .00 -=3¢

/
Mipe .00 —¢

A.3.8 FEwaluating Pre-Answers

f-->a

If C is from the following list:
a 0,0 o, (o, O), (O, ), 0, inj, O,

case,Uof x.a; | z.ag,abort, 0,0 ¢, (¢, 0)
let(s,z) = Oina, throw Otou
then the following rules apply:

C[Ml;] --» M, CIM>u] --» M>u
20
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Clos] ~-» af  Claw] - a

CIM?yz.a1 | z.g] - M2z} | 2.0
Cla] --» o

C[M;, s.z.a] --» Mg s.z.a

If C is from the list w;0J, inj, 0,0 - ¢, (¢,0) then the following rule applies:

CM{] --» (CM])|

The remaining rules defining --» are

Mi] Ma| --» (M My)] (M1],Mz]) --» (M1, Mg2) |

throw M| tou --» Mp>u abort,(M]) --» M,

case;(M])of z.a1 | z.ap --» M7z.01 | 2.0

let,(s,z) = (M])ina --» M;; s.z.cx

a¢q
AaT.(Mlg) ==+ MY, AeZ.(M>u) --» Mpu

adq AT ——» ) A0 ——>

Aa.(M?gy.0q | y.ag) == M2y | y.oy

aéq AaZ.00 =3 o

Aa.(Mjg 5.9.00) ==+ M, 5.y.0
a® — M
AaZ.a% ==> (Agz.M)|

adq
)\as'(M!q) -2 M'q )\as‘(M [>u) -——>Mpu

agq  Ags.ap--» Q) NaS.Qi2 =

Aas-(M?gy.cq | y.ag) —-» M?yy.] | y.ah

adq Ags.ac - o

Aas.(Mig 8" y.a) ==» M3y 8" y.d/
af — M

Ags.aP —-» (A\gs.M)|

uF# v

letccuinMp>ov --» Mo

letccuinMpu --» M|

letccuin M!, --» Ml,
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letccuinag --» o letccuinag --» o

letccuin(M?,z.0q | x.a2) --» (M?gz.0] | z.0%)

letccuina --» o/

letccuin(M;g s.z.a) --» (Mg s.2.a)

letccuinM| --» M|

A.3.4 Translating Terms to Answers

M — o

If C is from the following list:
m0, inj; O, abort, 0,0 - ¢, (¢,0),

let(s, z) = Oin o, throw Oto u,letcc uin
then the following rule applies:
M — « Cla] --+ o

CIM] — o

The remaining rules defining — are

T — x|
My — o My — o (a1, az) --» o
<M1,M2> — Oé/

(=0l

M; — «;(Vi € {0,1,2}) case;apof z1.01q | x3.02 -+ &

/
case, My of z1.M; | x9.My — «

M — « a—2ad Aoz.a —-» o
Ao M — o

My — o My — o ap ag ——» o
M1 M2 — Ckl

M — « a—2a Ags.a’ --» o
Ags. M — o
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