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aCITI and Departamento de Informática, FCT Universidade Nova de Lisboa
bComputer Science Department, Carnegie Mellon University

Abstract

We investigate strong normalization, confluence, and behavioral equality in the realm
of session-based concurrency. These interrelated issues underpin advanced correctness
analysis in models of structured communications. The starting point for our study is
an interpretation of linear logic propositions as session types for communicating pro-
cesses, proposed in prior work. Strong normalization and confluence are established
by developing a theory of logical relations. Defined upon a linear type structure, our
logical relations remain remarkably similar to those for functional languages. We also
introduce a natural notion of observational equivalence for session-typed processes.
Strong normalization and confluence come in handy in the associated coinductive rea-
soning: as applications, we prove that all proof conversions induced by the logic in-
terpretation actually express observational equivalences, and explain how type isomor-
phisms resulting from linear logic equivalences are realized by coercions between in-
terface types of session-based concurrent systems.

Keywords: Session Types, Linear Logic, Strong Normalization, Confluence, Logical
Relations, Observational Equivalences

1. Introduction

Modern computing systems rely heavily on the communication between distributed
software artifacts. Hence, to a large extent, guaranteeing system correctness amounts to
ensuring consistent dialogues between such artifacts. This is a challenging task, given
the complex interaction patterns that communicating systems usually feature. Session-
based concurrency provides a foundational approach to communication correctness:
concurrent dialogues are structured into basic units called sessions; descriptions of
the interaction patterns are then abstracted as session types [21, 22, 16], which are
statically checked against specifications. These specifications are usually given in the
π-calculus [30, 41], so we obtain processes interacting on so-called session channels
which connect exactly two subsystems. The discipline of session types ensures pro-
tocols in which actions always occur in dual pairs: when one partner sends, the other
receives; when one partner offers a selection, the other chooses; when a session ter-
minates, no further interaction may occur. New sessions may be dynamically created
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by invoking shared servers. While concurrency arises in the simultaneous execution of
sessions, mobility results from the exchange of session and server names.

The goal of this paper is to investigate strong normalization, confluence, and typed
behavioral equivalences for session-typed, communicating processes. These interre-
lated issues underpin advanced correctness analysis in models of structured communi-
cations. Our study builds upon the interpretation of linear logic propositions as session
types put forward by Caires and Pfenning in [10]. In a concurrent setting, such an inter-
pretation defines a tight propositions-as-types/proofs-as-programs correspondence, in
the style of the Curry-Howard isomorphism for the simply-typed λ-calculus [23]. In the
interpretation, types (linear logic propositions) are assigned to names (communication
channels) and describe their session protocol; typing rules correspond to linear sequent
calculus proof rules and processes correspond to proof objects in logic derivations.
Moreover, process reduction may be simulated by proof conversions and reductions,
and vice versa. As a result, typed processes enjoy strong forms of subject reduction
(type preservation) and global progress (deadlock-freedom). While the former states
that well-typed processes always evolve to well-typed processes (a safety property), the
latter says that well-typed processes will never get into a stuck state (a liveness prop-
erty). These strong correctness properties make the framework in [10] a convenient
basis for our study of strong normalization, confluence, and behavioral equivalences.
Well-studied in sequential settings, these three interrelated issues constitute substantial
challenges for theories of communicating processes, as we motivate next.

In typed functional calculi, strong normalization ensures that well-typed terms do
not have infinite reduction sequences. Types rule out divergent computations; termi-
nation of reduction entails consistency of the corresponding logical systems. In the
realm of communicating processes, reduction captures atomic synchronization; asso-
ciated behavioral types exclude unintended structured interactions. As a result, strong
normalization acquires an enhanced significance in a concurrent setting. In fact, even if
subject reduction and progress are typically regarded as the key correctness guarantees
for processes, requiring strongly normalizing behaviors is also most sensible: while
from a global perspective systems are meant to run forever, at a local level we wish
responsive participants which always react within a finite amount of time, and never
engage into infinite internal behavior. For instance, in server-client applications it is
critical for clients to be sure that running code provided by the server will not cause
them to get stuck indefinitely (as in a denial-of-service attack, or just due to some bug).

Closely related to strong normalization, confluence is another appealing property.
In a communication-based setting, confluence would strengthen correctness guaran-
tees by ensuring predictability of structured interactions. This benefit may be more
concretely appreciated by considering the principle of typed process composition de-
rived from the logic interpretation. In [10], typing judgments specify both the session
behavior that a process offers (or implements) and the set of (unrestricted and linear)
behaviors that it requires to do so. Given this typed interface, each such behavioral de-
pendencies is satisfied by first (i) composing the given process with another one which
realizes the required behavior, and then (ii) restricting the name in which the behavior
is required/offered. As a result, the interactions between the given process and the pro-
cesses implementing its dependencies are unobservable. In this context, the interplay of
confluence with strong normalization would be significant, as it could crucially ensure
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that session behavior as declared by judgments will be always offered, independently
from any arbitrary interleaving of internal reductions from different sources.

Now, in sharp contrast to the normalizing, confluent nature of computation in many
typed functional calculi, process calculi are inherently non-terminating, non-confluent
models of concurrent computation. Hence, unsurprisingly, ensuring strong normaliza-
tion and confluence in calculi for concurrency is a hard problem: in (variants of) the
π-calculus, proofs require heavy constraints on the language and/or its types, often re-
lying on ad-hoc machineries (see [14] for a survey on termination in process calculi).
As a first challenge, we wonder: building upon our linear type structure, directly ob-
tained from the Curry-Howard correspondence in [10], can we establish useful forms
of strong normalization and confluence for session-typed, communicating processes?

While from an operational standpoint strong normalization and confluence are rele-
vant, at a more foundational level they are also related to notions of typed equality. For
instance, in the simply-typed λ-calculus, strong normalization and confluence ensure
that normal forms exist and are unique, and entail decidability of denotational equality.
In our concurrent setting, strong normalization is also related to behavioral equivalence
—arguably the most basic notion in a theory of processes. Behavioral equivalences en-
able us to formally assert when two processes denote the “same behavior”. A first, ba-
sic connection between strong normalization, confluence, and behavioral equivalence
is obtained by means of subject reduction/type preservation: process behavior (as de-
clared by typing judgements) is preserved along arbitrary reduction steps. Building
upon this connection, any notion of behavioral equality over session-typed processes
should be necessarily informed by the correspondence between session types and linear
logic propositions. As detailed in [10], such a correspondence is realized by relating
proof conversions in linear logic with appropriate notions in the process setting. In-
terestingly, by virtue of such proof conversions the correspondence already induces a
notion of typed process equality. As illustration, consider the following process equal-
ities, two instances of proof conversions:

(νx)(P | z〈y〉.(Q | R)) 'c z〈y〉.((νx)(P | Q) | R) (1)
x(y).z(w).P 'c z(w).x(y).P (with x 6= z) (2)

In our framework, while equality (1) results from the interplay of typed constructs for
output and process composition, (2) arises from the typing of two independent sessions
(on names x and z). Crucially, in both cases, the equated processes are syntactically
very different and yet they are associated to the same typing judgment —that is, their
logic-based session interface decrees the same behavior. As a second challenge, we
ask: can we define a notion of typed process equality that is both natural and intuitive,
that enjoys good properties (e.g. congruence), and that captures the notion of equality
that is already induced by the logic interpretation via proof conversions?

A clear understanding of the status of strong normalization, confluence, and pro-
cess equalities would provide a fundamental stepping stone towards a deeper under-
standing on how logic-based session types delineate communications. That is, basic
behavioral equivalences over equally typed processes (in which strong normalization
and confluence are expected to play substantial rôles) may also provide a basis for rea-
soning about the behavior of processes with different types. In fact, given that session
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types represent service interfaces of distributed software artifacts, it is legitimate to ask
whether the logical interpretation enables reasoning techniques at the level of session
types. Such techniques appear very useful from a pragmatic perspective —for instance,
they could enable natural notions of interface compatibility. Reasoning techniques at
the level of types would also be useful from the more foundational standpoint of typed
equality. To illustrate this, let us consider the session-typed interpretation of ⊗ given
in [10], whereby an object of type A⊗B denotes a session that first outputs a channel
of type A and then behaves as B. This intuitive description may suggest an asymmet-
ric interpretation, as opposed to the well-known symmetric nature of ⊗. This apparent
asymmetry is already clarified in [10]: using a suitable typed process, it is shown how
a session of type A⊗B may be coerced into one of type B ⊗A (and viceversa). This
justification, however, leaves open the general issue of equality over session types. In
fact, we wish to understand the formal meaning in our setting of a notion of typed
equality, in such a way that expected logic principles such as

A⊗B ' B ⊗A (3)

are properly justified. A final challenge would be then: building upon typed process
equivalences, can we derive a simple notion of equality over session types that justi-
fies/validates principles such as (3) above but also arbitrary interface transformations?

With the aim of addressing the challenges described above, the present paper offers the
following technical contributions:

(1) We present a simple theory of logical relations for session-typed processes, and use
it to show that well-typed processes are both strongly normalizing and confluent.

The method of logical relations [42, 43] has proved to be extremely productive in
the functional setting; properties such as strong normalization and parametricity
can be established via logical relations. Although the logic interpretation in [10]
assigns types to names (and not to terms, as in the typed λ-calculus), quite remark-
ably, our linear logical relations are truly defined on the structure of types—as in
logical relations for the typed λ-calculus [42, 43]. This allows for simple proofs
of strong normalization and confluence, which follow closely the principles of the
(linear) type system. To our knowledge, ours are the first proofs of their kind in the
context of session-based concurrency.

(2) We investigate a behavioral theory for session-typed processes, defined as a typed
contextual equivalence which follows the principles of the logical interpretation.

Well-studied in the untyped case, behavioral equivalences have been only little
studied for session-typed processes (in fact, the only previous work we are aware
of is [26]). We introduce typed context bisimilarity, a natural notion of observa-
tional equivalence for typed processes. We show how, thanks to the combination
of type preservation, progress, strong normalization, and confluence, typed context
bisimilarity satisfies τ -inertness, as studied by Groote and Sellink [19]. Intuitively,
τ -inertness says that reduction (internal behavior) does not change process behav-
ior. This is most relevant for verification, as it means that our well-typed processes
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can perform arbitrarily many reductions while remaining in the same equivalence
class. In our setting, this guarantee is neatly complemented by strong normaliza-
tion, which ensures finitely many reductions.

(3) By relying on the above results, we then develop two applications, which clarify
further the nature of the logical interpretation of session types put forward in [10]:

− We prove that proof conversions are sound with respect to observational equiva-
lence. This way, processes equalities induced by proof conversions (such as (1)
and (2) above) correspond to typed context bisimilarities. This soundness re-
sult elegantly explains subtle forms of causality that arise in the execution of
concurrent sessions.

− Building upon typed bisimilarity, we offer a characterization of type isomor-
phisms (see, e.g., [17]). Intuitively, such isomorphisms result from linear logic
equivalences which are realized by process coercions. Our characterization al-
lows us to show that principles such as (3) above are indeed isomorphisms.

Our applications thus shed further light on the relationship between linear logic
and structured communications. Strong normalization and confluence properties
are central in the associated coinductive reasoning, intuitively because in the bisim-
ulation game strong transitions are always matched by weak transitions with finite
and confluent internal behavior.

Organization. Next, in Section 2, we present our process model, a synchronous π-
calculus with guarded choice. Section 3 recalls the type system derived from the
logical interpretation and main results from [10]. Section 4 presents proof conver-
sions, describing inference permutability issues derived from the logical interpretation.
Section 5 presents linear logical relations for typed processes, as well as the proof of
strong normalization and confluence. Section 6 introduces typed context bisimilarity
and studies its main properties. Section 7 presents our two applications. Finally, Sec-
tion 8 discusses related work, and Section 9 collects some final remarks. A number of
proofs and technical details have been moved to the Appendix.

This paper is an extended version of the conference paper [33]. In this presentation,
we provide full technical details and include some new material: Section 4, on proof
conversions; Section 5.3, on a proof confluence via linear logical relations; and the
proof of τ -inertness given in Section 6.

2. Process Model: Syntax and Semantics

We introduce the syntax and operational semantics of the synchronous π-calculus [41]
extended with (binary) guarded choice.

Definition 2.1 (Processes). Given an infinite set Λ of names (ranged over x, y, z, u, v),
the set of processes (ranged over P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| [x↔y] | x.inl;P | x.inr;P | x.case(P,Q)
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The operators 0 (inaction), P | Q (parallel composition), and (νy)P (name restric-
tion) comprise the static fragment of the π-calculus. We then have prefixed processes
x〈y〉.P (send name y on x and proceed as P ), x(y).P (receive a name z on x and
proceed as P with parameter y replaced by z), and !x(y).P which denotes replicated
(persistent) input. Following [39], we write x〈y〉as an abbreviation for (νy)x〈y〉. The
forwarding construct [x↔ y] equates names x and y; it is a primitive representation
of a copycat process, akin to the link processes used in internal mobility encodings of
name-passing [5]. As described in Section 3, this construct allows for a simple identity
axiom in the type system [44]. The remaining three operators define a minimal labeled
choice mechanism, comparable to the n-ary branching constructs found in standard
session π-calculi (see, e.g., [22]). Without loss of generality we restrict our model to
binary choice. In restriction (νy)P and input x(y).P the distinguished occurrence of
name y is binding, with scope P .

The set of free names of a process P is denoted fn(P ). A process is closed if it does
not contain free occurrences of names. We identify process up to consistent renaming
of bound names, writing ≡α for this congruence. We write P{x/y} for the capture-
avoiding substitution of x for y in P . While structural congruence expresses basic
identities on the structure of processes, reduction expresses the behavior of processes.

Definition 2.2. Structural congruence (P ≡ Q) is the least congruence relation on
processes such that

P | 0 ≡ P P ≡α Q⇒ P ≡ Q
P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
(νx)0 ≡ 0 x 6∈ fn(P )⇒ P | (νx)Q ≡ (νx)(P | Q)
(νx)(νy)P ≡ (νy)(νx)P [x↔y] ≡ [y↔x]

Definition 2.3. Reduction (P → Q) is the binary relation on processes defined by:

x〈y〉.Q | x(z).P → Q | P{y/z} x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
(νx)([x↔y] | P )→ P{y/x} (x 6= y) Q→ Q′ ⇒ P | Q→ P | Q′
P → Q⇒ (νy)P → (νy)Q P ≡ P ′, P ′ → Q′, Q′ ≡ Q⇒ P → Q
x.inr;P | x.case(Q,R)→ P | R x.inl;P | x.case(Q,R)→ P | Q

By definition, reduction is closed under ≡. It specifies the computations a process
performs on its own. To define the interactions of a process with its environment, we
extend the early transition system for the π-calculus [41] with labels and transition
rules for the choice and forwarding constructs. A transition P α→ Q denotes that P
may evolve to Q by performing the action represented by label α. Labels are given by:

α ::= x(y) | xy | x〈y〉 | x.inl | x.inl | x.inr | x.inr | τ

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-
actions, respectively the free output xy and bound output x〈y〉 actions, and the left/
right selections x.inl and x.inr. The bound output x〈y〉 denotes extrusion of a fresh
name y along x. Internal action is denoted by τ . In general, an action α (α) requires
a matching α (α) in the environment to enable progress, as specified by the transition
rules. For a label α, we define the sets fn(α) and bn(α) of free and bound names,
respectively, as usual. We denote by s(α) the subject of α (e.g., x in x〈y〉).
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Figure 1 π-calculus Labeled Transition System.

(out)

x〈y〉.P xy−→ P

(in)

x(y).P
x(z)−−−→ P{z/y}

(id)
(νx)([x↔y] | P )

τ−→ P{y/x}

(par)
P

α−→ Q

P | R α−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q′

P | Q τ−→ P ′ | Q′

(res)
P

α−→ Q

(νy)P
α−→ (νy)Q

(open)

P
xy−→ Q

(νy)P
x〈y〉−−−→ Q

(close)

P
x〈y〉−−−→ P ′ Q

x(y)−−−→ Q′

P | Q τ−→ (νy)(P ′ | Q′)

(rep)

!x(y).P
x(z)−−−→ P{z/y} | !x(y).P

(lout)

x.inl;P
x.inl−−→ P

(rout)

x.inr;P
x.inr−−−→ P

(lin)

x.case(P,Q)
x.inl−−→ P

(rin)

x.case(P,Q)
x.inr−−−→ Q

Definition 2.4 (Labeled Transition System). The relation labeled transition (P α→ Q)
is defined by the rules in Figure 1, subject to the side conditions: in rule (res), we
require y 6∈ fn(α); in rule (par), we require bn(α) ∩ fn(R) = ∅; in rule (close), we
require y 6∈ fn(Q). We omit the symmetric versions of rules (par), (com), and (close).

We write ρ1ρ2 for the composition of relations ρ1, ρ2. Weak transitions are de-
fined as usual: we write =⇒ for the reflexive, transitive closure of τ−→. Given α 6= τ ,
notation α

=⇒ stands for =⇒ α−→=⇒ and τ
=⇒ stands for =⇒. We recall some basic

facts about reduction, structural congruence, and labeled transition: closure of labeled
transitions under structural congruence, and coincidence of τ -labeled transition and re-
duction [41]: (1) if P ≡ α−→ Q then P α−→≡ Q, and (2) P → Q if and only if P τ−→≡ Q.

3. Session Types as Intutionistic Linear Logic Propositions

As anticipated in the introduction, the type structure coincides with intuitionistic
linear logic [18, 2], omitting atomic formulas and the additive constants > and 0.

Definition 3.1 (Types). Types (A,B,C) are given by

A,B ::= 1 | !A | A⊗B | A(B | A N B | A⊕B

Types are assigned to (session) channels/names, and are interpreted as a form of
session types; an assignment x:A enforces the use of name x according to discipline
A. A⊗B types a channel that first performs an output to its partner (sending a session
channel of type A) before proceeding as specified by B. Similarly, A(B types a
channel that first performs an input from its partner (receiving a session channel of
type A) before proceeding as specified by B. Type 1 represents a terminated session,

7



Figure 2 The Type System πDILL.

(Tid)

Γ;x:A ` [x↔z] :: z:A

(T1L)
Γ; ∆ ` P :: T

Γ; ∆, x:1 ` P :: T

(T1R)

Γ; · ` 0 :: x:1

(T⊗L)
Γ; ∆, y:A, x:B ` P :: T

Γ; ∆, x:A⊗B ` x(y).P :: T

(T⊗R)
Γ; ∆ ` P :: y:A Γ; ∆′ ` Q :: x:B

Γ; ∆,∆′ ` x〈y〉.(P | Q) :: x:A⊗B

(T(L)
Γ; ∆ ` P :: y:A Γ; ∆′, x:B ` Q :: T

Γ; ∆,∆′, x:A(B ` x〈y〉.(P | Q) :: T

(T(R)
Γ; ∆, y:A ` P :: x:B

Γ; ∆ ` x(y).P :: x:A(B

(Tcut)
Γ; ∆ ` P :: x:A Γ; ∆′, x:A ` Q :: T

Γ; ∆,∆′ ` (νx)(P | Q) :: T

(Tcut!)
Γ; · ` P :: y:A Γ, u:A; ∆ ` Q :: T

Γ; ∆ ` (νu)(!u(y).P | Q) :: T

(T!L)
Γ, u:A; ∆ ` P{u/x} :: T

Γ; ∆, x:!A ` P :: T

(Tcopy)
Γ, u:A; ∆, y:A ` P :: T

Γ, u:A; ∆ ` u〈y〉.P :: T

(T!R)
Γ; · ` Q :: y:A

Γ; · ` !x(y).Q :: x:!A

(T⊕L)
Γ; ∆, x:A ` P :: T Γ; ∆, x:B ` Q :: T

Γ; ∆, x:A⊕B ` x.case(P,Q) :: T

(TNR)
Γ; ∆ ` P :: x:A Γ; ∆ ` Q :: x:B

Γ; ∆ ` x.case(P,Q) :: x:ANB

(TNL1)
Γ; ∆, x:A ` P :: T

Γ; ∆, x:ANB ` x.inl;P :: T

(T⊕R1)
Γ; ∆ ` P :: x:A

Γ; ∆ ` x.inl;P :: x:A⊕B

(TNL2)
Γ; ∆, x:B ` P :: T

Γ; ∆, x:ANB ` x.inr;P :: T

(T⊕R2)
Γ; ∆ ` P :: x:B

Γ; ∆ ` x.inr;P :: x:A⊕B

no further interaction will take place on it; names of type 1 may still be passed around
in sessions, as opaque values. ANB types a channel that offers its partner a choice
between an A behavior (“left” choice) and a B behavior (“right” choice). Dually,
A ⊕ B types a session that either selects “left” and then proceeds as specified by A,
or else selects “right”, and then proceeds as specified by B. Type !A types a shared
(non-linear) channel, to be used by a server for spawning an arbitrary number of new
sessions (possibly none), each one conforming to type A.

A type environment is a collection of type assignments of the form x:A, where x is a
name andA a type, the names being pairwise disjoint. Two kinds of type environments
are subject to different structural properties: a linear part ∆ and an unrestricted part Γ,
where weakening and contraction principles hold for Γ but not for ∆. When empty, Γ
and ∆ are denoted by ‘·’. A type judgment is of the form Γ; ∆ ` P :: z:C where name
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declarations in Γ are always propagated unchanged to all premises in the typing rules,
while name declarations in ∆ are handled multiplicatively or additively, depending on
the nature of the type being defined. The domains of Γ,∆ and z:C are required to be
pairwise disjoint. Such a judgment asserts: P is ensured to safely provide a usage of
name z according to the behavior specified by type C, whenever composed with any
process environment providing usages of names according to the behaviors specified
by names in Γ; ∆.

Our type judgment defines an intuitive reading of processes. Given Γ; ∆ ` P ::
z:C, process P represents a system providing behavior C at channel z, building on
“services” declared in Γ and ∆. This way, for instance, a clientQ that relies on external
services and does not provide any would be typed as Γ; ∆ ` Q :: −:1, while a system
typed as Γ; ∆ ` R :: z:!A represents a shared server. Interestingly, the asymmetry
induced by the intuitionistic interpretation of !A enforces locality of shared names but
not of linear (session names), which exactly corresponds to the intended model of
sessions.

The rules of our type system πDILL are given in Figure 2. We use T, S for right-
hand side singleton environments (e.g., z:C). Rule (Tid) defines identity in terms of
the forwarding construct. Since in rule (T⊗R) the sent name is always fresh, our typed
calculus conforms to an internal mobility discipline [5, 39], without loss of expres-
siveness. The composition rules (Tcut/Tcut!) follow the “composition plus hiding”
principle [1], extended to a name-passing setting. Other linear typing rules for parallel
composition (as in, e.g., [25]) are derivable—see [10]. As we consider π-calculus terms
up to structural congruence, typability is closed under ≡ by definition. πDILL enjoys
the usual properties of equivariance, weakening, and contraction in Γ. The coverage
property also holds: if Γ; ∆ ` P :: z:A then fn(P ) ⊆ Γ ∪∆ ∪ {z}. In the presence of
type-annotated restrictions (νx:A)P , as usual in typed π-calculi [41], type-checking is
decidable.

Session type constructors thus correspond directly to intuitionistic linear logic con-
nectives. By erasing processes, typing judgments in πDILL correspond to DILL, a
sequent formulation of Barber’s dual intuitionistic linear logic [2, 12]. Below we in-
formally recall this correspondence; see [10, 11] for details.

DILL is equipped with a faithful proof term assignment: sequents have the form
Γ; ∆ ` D : C, where Γ is the unrestricted context, ∆ the linear context, C a formula
(i.e., a type), andD the proof term that faithfully represents the derivation of Γ; ∆ ` C.
Given the parallel structure of the two systems, if Γ; ∆ ` D : A is derivable in DILL
then there is a process P and a name z such that Γ; ∆ ` P :: z:A is derivable in
πDILL. The converse also holds: if Γ; ∆ ` P :: z:A is derivable in πDILL there is
a derivation D that proves Γ; ∆ ` D : A. This correspondence is made explicit by a
translation from faithful proof terms to processes: given Γ; ∆ ` D : C, we write D̂z

for the translation of D such that Γ; ∆ ` D̂z :: z:C.
More precisely, we have typed extraction: we write Γ; ∆ ` D  P :: z:A, mean-

ing “proof D extracts to P ”, whenever Γ; ∆ ` D : A and Γ; ∆ ` P :: z:A and
P ≡ D̂z . Typed extraction is unique up to structural congruence. As processes are
related by structural and computational rules, namely those involved in the definition
of ≡ and →, derivations in DILL are related by structural and computational rules,
that express certain sound proof transformations that arise in cut-elimination. Reduc-
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tions generally take place when a right rule meets a left rule for the same connective,
and correspond to reduction steps in the process term assignment. Similarly, structural
conversions in DILL correspond to structural equivalences in the π-calculus, since they
just change the order of cuts.

We now recall some results from [10, 11], on subject reduction (type preservation)
and progress (deadlock-freedom) for well-typed processes. For any P , define live(P )
iff P ≡ (νñ)(π.Q | R), for some sequence of names ñ, a process R, and a non-
replicated guarded process π.Q.

Theorem 3.1 (Subject Reduction). If Γ; ∆ ` P :: z:A and P → Q then Γ; ∆ ` Q ::
z:A.

Lemma 3.1. Let Γ; ∆ ` D  P :: z:C. If live(P ) then there is a Q such that either
(1) P → Q, or (2) P α→ Q for α where s(α) ∈ (z,Γ,∆). Moreover, if C = !A for
some A, then s(α) 6= z.

Theorem 3.2 (Progress). If ·; · ` P ::z:1 and live(P ) then exists aQ such that P → Q.

We close this section recalling some other auxiliar results from [10, 11].

Lemma 3.2 (Action Characterization Lemmas, Excerpt). Let Γ; ∆ ` D P :: x:C.
Then we have:

1. If P α→ Q and C = 1 then s(α) 6= x.

2. If P α→ Q and s(α) = x and C = A⊗B then α = x〈y〉.

3. If P α→ Q and s(α) = x and C = A(B then α = x(y).

4. If P α→ Q and s(α) = x and C = ANB then α = x.inl or α = x.inr.

5. If P α→ Q and s(α) = x and C = A⊕B then α = x.inl or α = x.inr.

6. If P α→ Q and s(α) = x and C = !A then α = x(y).

Lemma 3.3 (Preservation Lemma, Output Case). Assume

• Γ; ∆1 ` D  P :: x:A1 ⊗A2 with P
x〈y〉−−−→ P ′; and

• Γ; ∆2, x:A1 ⊗A2 ` E  Q :: z:C with Q
x(y)−−−→Q′.

Then: Γ; ∆1,∆2 ` F  R :: z : C for R ≡ (νy)(νx)(P ′ | Q′).

Lemma 3.4. Assume Γ; ∆ ` D  P :: z:C and not live(P ). Then

1. C = 1 or C = !C ′, for some C ′;

2. (xi : Ai) ∈ ∆ implies Ai = 1 or there is Bj with Ai =!Bj;

3. C = !C ′ implies P ≡ (νx̃)(!z(y).R | R′)
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4. Inference Permutability and Proof Conversions

Derivations in DILL are related by structural and computational rules that express
sound proof transformations that arise in cut-elimination. As mentioned in Section 3
(and detailed in [10]), in our interpretation reductions and structural conversions in
DILL correspond to reductions and structural congruence in the π-calculus. There is,
however, a group of conversions in DILL not considered in [10] and which do not
correspond to neither reduction or structural congruence in the process side. We call
them proof conversions: they induce a congruence on typed processes, denoted 'c.

We illustrate proof conversions and their associated π-calculus processes; Figure 3
presents a sample of process equalities extracted from them. Each equality M 'c N
is associated to appropriate right- and left-hand side typings; this way, e.g., the last
equality in Figure 3—related to two applications of rule (T⊗L) —could be stated as

Γ; ∆, x:A⊗B, z:C ⊗D ` x(y).z(w).P 'c z(w).x(y).P :: T

where Γ and ∆ are environments, A,B,C,D are types, and T is a right-hand side
typing. For the sake of illustration, however, in Figure 3 these typings are elided, as
we would like to stress on the consequences of conversions on the process side. Proof
conversions describe the interplay of two rules in a type-preserving way: regardless
of the order in which the two rules are applied, they lead to typing derivations with
the same right- and left-hand side typings, but with syntactically different processes.
We consider two kinds of proof conversions. The first kind captures the interplay of
left/right rules with Tcut/Tcut! rules; the first twelve rows in Figure 3 (Page 12) are
examples (the first five involve (Tcut), the following seven involve (Tcut!)). The sec-
ond kind captures the interplay of left and right rules with each other; typically they
describe type-preserving transformations which commute actions associated to inde-
pendent (non-interfering) sessions—the last two rows in Figure 3 are examples.

We formally introduce the set of process equalities induced by proof conversions.

Definition 4.1 (Proof Conversions). We define'c as the least congruence on processes
induced by the process equalities in Figures 4, 5, 6, and 7 (Pages 14–17).

This way, process equalities of the first kind are given in Figures 4 and 5, while
Figures 6 and 7 collect equalities of the second kind. As mentioned above, each of the
equalities described by 'c is related to approrpriate left- and right-hand side typings.
We illustrate the rôle of these typings with examples. Consider equality I-6 in Figure 4,
which states the permutability of (T(L) and (Tcut):

Γ; ∆1 ` D :: x:C

Γ; ∆2, x:C ` Ê :: z:A Γ; ∆3, y:B ` F̂ :: T

Γ; ∆2,∆3, x:C, y:A(B ` y〈z〉.(Ê | F̂ ) :: T
(T(L)

Γ; ∆, y:A(B ` (νx)(D̂ | y〈z〉.(Ê | F̂ )) :: T
(Tcut)

where ∆ = ∆1,∆2,∆3. Permutability is justified by the following inference:

Γ; ∆1 ` D̂ :: x:C Γ; ∆2, x:C ` Ê :: z:A

Γ; ∆1,∆2 ` (νx)(D̂ | Ê) :: z:A
(Tcut)

Γ; ∆3, y:B ` F̂ :: T

Γ; ∆, y:A(B ` y〈z〉.((νx)(D̂ | Ê) | F̂ ) :: T
(T(L)
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Figure 3 A sample of process equalities induced by proof conversions (cf. Def. 4.1)

(νx)(D̂ | z〈y〉.(Ê | F̂ )) 'c z〈y〉.((νx)(D̂ | Ê) | F̂ )

(νx)(D̂ | y(z).Ê) 'c y(z).(νx)(D̂ | Ê)

(νx)(D̂ | y.inl; Ê) 'c y.inl; (νx)(D̂ | Ê)

(νx)(D̂ | u〈y〉.Ê) 'c u〈y〉.(νx)(D̂ | Ê)

(νx)(D̂ | y.case(Ê, F̂ )) 'c y.case((νx)(D̂ | Ê), (νx)(D̂ | F̂ ))

(νu)(!u(y).D̂ | 0) 'c 0
(νu)(!u(y).D̂ |x〈z〉.(Ê | F̂ )) 'c x〈z〉.

(
(νu)(!u(y).D̂ | Ê) |(νu)(!u(y).D̂ | F̂ )

)
(νu)((!u(y).D̂) | y(z).Ê) 'c y(z).(νu)((!u(y).D̂) | Ê)

(νu)((!u(z).D̂) | y.inl; Ê) 'c y.inl; (νu)((!u(z).D̂) | Ê)

(νu)(!u(z).D̂ | y.case(Ê, F̂ )) 'c y.case
(
(νu)(!u(z).D̂ | Ê), (νu)(!u(z).D̂ | F̂ )

)
(νu)(!u(y).D̂ | !x(z).Ê) 'c !x(z).(νu)(!u(y).D̂ | Ê)

(νu)(!u(y).D̂ | v〈y〉.Ê) 'c v〈y〉.(νu)(!u(y).D̂ | Ê))

z〈w〉.(R | x〈y〉.(P | Q)) 'c x〈y〉.(P | z〈w〉.(R | Q))

x(y).z(w).P 'c z(w).x(y).P

Process equalities of the first kind can be classified into three subgroups. The first and
second subgroups are associated to permutability with (Tcut)—see Figure 4; the third
subgroup is associated to permutability with (Tcut!)—see Figure 5. More precisely,
the first subgroup, given by process equalities I-1/I-15, includes the interaction of a
process D̂ offering a service C on x, with some process requiring such service; this
process varies according to the particular rule considered. While this first subgroup
covers the interaction of (Tcut) with both left and right rules, the second subgroup,
given by process equalities I-16/I-24, covers the interaction of (Tcut) with left rules
only. This distinction is due to the shape of rule (Tcut); in order to see this, compare
the inferences justifying equality I-6 (given above) with those for equality I-17:

Γ; ∆1 ` D̂ :: z:A Γ; ∆2, y:B ` Ê :: x:C

Γ; ∆1,∆2, y:A(B ` y〈z〉.(D̂ | Ê) :: x:C
(T(L)

Γ; ∆3, x:C ` F̂ :: T

Γ; ∆, y:A(B ` (νx)(y〈z〉.(D̂ | Ê) | F̂ ) :: T
(Tcut)

where ∆ = ∆1,∆2,∆3. Permutability is then justified by the following inference:

Γ; ∆1 ` D̂ :: z:A

Γ; ∆2, y:B ` Ê :: x:C Γ; ∆3, x:C ` F̂ :: T

Γ; ∆2,∆3, y:B ` (νx)(Ê | F̂ ) :: T
(Tcut)

Γ; ∆, y:A(B ` y〈z〉.(D̂ | (νx)(Ê | F̂ )) :: T
(T(L)

Observe how both equalities lead to structurally congruent processes. Finally, the third
subgroup (equalities I-25/I-39) involves the permutability of left and right rules with
(Tcut!).
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The permutability for the process equalities of the second kind, described in Fig-
ures 6 and 7, follows the same principles. Consider, for instance, equality II-20, which
states the permutability of (TNL1) and (T⊗R):

Γ; ∆1, z:C ` P :: y:A Γ; ∆2 ` Q :: x:B

Γ; ∆, z:C ` x〈y〉.(P | Q) :: x:A⊗B
(T⊗R)

Γ; ∆, z:C ND ` z.inl;x〈y〉.(P | Q) :: x:A⊗B
(TNL1)

where ∆ = ∆1,∆2. Permutability is justified by the following inference:

Γ; ∆1, z:C ` P :: z:A

Γ; ∆, z:C ND ` z.inl;P :: y:A
(TNL1)

Γ; ∆2 ` Q :: x:B

Γ; ∆, z:C ND ` x〈y〉.(z.inl;P | Q) :: x:A⊗B
(T⊗R)

Not all permutations are sound nor are possible. In particular, for permutability of
two inference rules to be sound, one of them has to be a left rule; the permutation of
two right rules leads to unsound transformations. Process equalities of the second kind
can also be divided into two subgroups: those involving two left rules (see Figure 6)
and those involving one left and one right rule (see Figure 7). For the sake of space,
we consider only combinations with rule (TNL1); permutations involving (TNL2) are
easily derivable. While there is no rule that can permute with (T1R), rule (T1L) can
permute with all rules without changing the process structure. The situation is similar
for (T!R) and (T!L): the former is incompatible for permutation with all rules, while
the latter can permute with all rules, excepting (T!R). The effect of (T!L) in processes
is a substitution; equated processes only differ in the scope of such a substitution.

5. Linear Logical Relations for Session-Typed Processes

Here we introduce a theory of linear logical relations for session types, and use it
to prove that well-typed processes are strong normalizing and confluent. As customary,
the proof can be summarized into two steps:

(1) Definition of a logical predicate on processes, by induction on the structure of
(session) types. By definition, processes in the predicate are strongly normalizing
(resp. confluent).

(2) Proof that every well-typed process is in the logical predicate.

In some previous works in previous calculi [40, 14], strong normalization is simply
referred to as termination. In what follows, we often use the two terms interchangeably.

5.1. Preliminaries
Definition 5.1 (Termination). A process P terminates, noted P⇓, if there is no infinite
reduction path from P .

We begin by stating an extension to ≡, which will be useful in our developments.

Definition 5.2. We write ≡! for the least congruence relation on processes which re-
sults from extending structural congruence ≡ (Def. 2.2) with axioms (1)–(3) below:

13



Figure 4 Process equalities induced by proof conversions, first kind (first and second
subgroups)

Γ; ∆ ` (νx)(D̂ | z〈y〉.(Ê | F̂ )) 'c z〈y〉.((νx)(D̂ | Ê) | F̂ ) :: z:A⊗B (I-1)

Γ; ∆ ` (νx)(D̂ | z〈y〉.(Ê | F̂ )) 'c z〈y〉.(Ê | (νx)(D̂ | F̂ )) :: z:A⊗B (I-2)

Γ; ∆, y:A⊗B ` (νx)(D̂ | y(z).Ê) 'c y(z).(νx)(D̂ | Ê) :: T (I-3)

Γ; ∆, y:A⊗B ` (νx)(y(z).D̂ | Ê) 'c y(z).(νx)(D̂ | Ê) :: T (I-4)

Γ; ∆ ` (νx)(D̂ | z(y).Ê) 'c z(y).(νx)(D̂ | Ê) :: z:A(B (I-5)

Γ; ∆, y:A(B ` (νx)(D̂ | y〈z〉.(Ê | F̂ )) 'c y〈z〉.((νx)(D̂ | Ê) | F̂ ) :: T (I-6)

Γ; ∆, y:A(B ` (νx)(D̂ | y〈z〉.(Ê | F̂ )) 'c y〈z〉.(Ê | (νx)(D̂ | F̂ )) :: T (I-7)

Γ; ∆, y:A(B ` (νx)(y〈z〉.(Ê | D̂) | F̂ ) 'c y〈z〉.(Ê | (νx)(D̂ | F̂ )) :: T (I-8)

Γ; ∆ ` (νx)(D̂ | z.case(Ê, F̂ )) 'c

z.case((νx)(D̂ | Ê), (νx)(D̂ | F̂ )) :: z:ANB (I-9)

Γ; ∆, y:ANB ` (νx)(D̂ | y.inl; Ê) 'c y.inl; (νx)(D̂ | Ê) :: T (I-10)

Γ; ∆, y:ANB ` (νx)(D̂ | y.inr; F̂ ) 'c y.inr; (νx)(D̂ | F̂ ) :: T (I-11)

Γ; ∆ ` (νx)(D̂ | z.inl; Ê) 'c z.inl; (νx)(D̂ | Ê) :: z:A⊕B (I-12)

Γ; ∆ ` (νx)(D̂ | z.inr; F̂ ) 'c z.inr; (νx)(D̂ | F̂ ) :: z:A⊕B (I-13)

Γ; ∆, y:A⊕B ` (νx)(D̂ | y.case(Ê, F̂ )) 'c

y.case((νx)(D̂ | Ê), (νx)(D̂ | F̂ )) :: T (I-14)

Γ, u:A; ∆ ` (νx)(D̂ | u〈y〉.Ê) 'c u〈y〉.(νx)(D̂ | Ê) :: T (I-15)

Γ; ∆, y:A(B ` (νx)(y(z).D̂ | F̂ ) 'c y(z).(νx)(D̂ | F̂ ) :: T (I-16)

Γ; ∆, y:A(B ` (νx)(y〈z〉.(D̂ | Ê) | F̂ ) 'c y〈z〉.(D̂ | (νx)(Ê | F̂ )) :: T (I-17)

Γ; ∆, y:ANB ` (νx)(y.inl; D̂ | F̂ ) 'c y.inl; (νx)(D̂ | F̂ ) :: T (I-18)

Γ; ∆, y:ANB ` (νx)(y.inr; D̂ | F̂ ) 'c y.inr; (νx)(D̂ | F̂ ) :: T (I-19)

Γ; ∆, y:A⊕B ` (νx)(y.case(D̂, Ê) | F̂ ) 'c

y.case((νx)(D̂ | F̂ ), (νx)(Ê | F̂ )) :: T (I-20)

Γ; ∆ ` (νx)(D̂{y/u} | Ê) 'c (νx)(D̂ | Ê){y/u} :: T (I-21)

Γ; ∆ ` (νx)(D̂ | Ê{y/u}) 'c (νx)(D̂ | Ê){y/u} :: T (I-22)

Γ, u:A; ∆ ` (νx)(u〈y〉.D̂ | F̂ ) 'c u〈y〉.(νx)(D̂ | F̂ ) :: T (I-23)

Γ, u:A; ∆ ` (νx)(D̂ | u〈y〉.F̂ ) 'c u〈y〉.(νx)(D̂ | F̂ ) :: T (I-24)

1. (νu)(!u(z).P | (νy)(Q | R)) ≡! (νy)((νu)(!u(z).P | Q) | (νu)(!u(z).P | R))

2.
(νu)(!u(y).P | (νv)(!v(z).Q | R))

≡! (νv)((!v(z).(νu)(!u(y).P | Q)) | (νu)(!u(y).P | R))

3. (νu)(!u(y).Q | P ) ≡! P if u 6∈ fn(P )

These axioms are called the sharpened replication axioms [41] and are known to
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Figure 5 Process equalities induced by proof conversions, first kind (third subgroup)

Γ; · ` (νu)((!u(y).D̂) | 0) 'c 0 :: −:1 (I-25)

Γ; ∆ ` (νu)((!u(y).D̂) | Ê) 'c (νu)((!u(y).D̂) | Ê) :: T (I-26)

Γ; ∆ ` (νu)((!u(y).D̂) | x〈z〉.(Ê | F̂ )) 'c

x〈z〉.((νu)((!u(y).D̂) | Ê) | (νu)((!u(y).D̂) | F̂ )) :: x:A⊗B (I-27)

Γ; ∆, y:A⊗B ` (νu)((!u(y).D̂) | y(z).Ê) 'c y(z).(νu)((!u(y).D̂) | Ê) :: T (I-28)

Γ; ∆ ` (νu)(!u(y).D̂ | z(y).Ê) 'c z(y).(νu)(!u(y).D̂ | Ê) :: z:A(B (I-29)

Γ; ∆, y:A(B ` (νu)((!u(y).D̂) | y〈z〉.(Ê | F̂ )) 'c

y〈z〉.(((νu)(!u(y).D̂ | Ê) | (νu)((!u(y).D̂) | F̂ ))) :: T (I-30)

Γ; ∆ ` (νu)((!u(y).D̂) | z.case(Ê, F̂ )) 'c

z.case((νu)((!u(y).D̂) | Ê), (νu)((!u(y).D̂) | F̂ ))::z:ANB (I-31)

Γ; ∆, y:ANB ` (νu)(!u(z).D̂ | y.inl; Ê) 'c y.inl; (νu)(!u(z).D̂ | Ê) :: T (I-32)

Γ; ∆, y:ANB ` (νu)(!u(z).D̂ | y.inr; F̂ ) 'c y.inr; (νu)(!u(z).D̂ | F̂ ) :: T (I-33)

Γ; ∆ ` (νu)(!u(y).D̂ | z.inl; Ê) 'c

z.inl; (νu)(!u(y).D̂ | Ê) :: z:A⊕B (I-34)

Γ; ∆ ` (νu)(!u(y).D̂ | z.inr; F̂ ) 'c

z.inr; (νu)(!u(y).D̂ | F̂ ) :: z:A⊕B (I-35)

Γ; ∆, y:A⊕B ` (νu)(!u(z).D̂ | y.case(Ê, F̂ )) 'c

y.case((νu)(!u(z).D̂ | Ê), (νu)(!u(z).D̂ | F̂ )) :: T (I-36)

Γ; ∆ ` (νu)(!u(y).D̂ | !x(z).Ê) 'c!x(z).(νu)(!u(y).D̂ | Ê) :: x:!A (I-37)

Γ; ∆ ` (νu)(!u(y).D̂ | Ê{y/v}) 'c (νu)(!u(y).D̂ | Ê){y/v}::x:T (I-38)

Γ; ∆ ` (νu)(!u(y).D̂ | v〈y〉.Ê) 'c v〈y〉.(νu)(!u(y).D̂ | Ê)) :: T (I-39)

express sound behavioral equivalences up to strong bisimilarity in our typed setting.
Intuitively, (1) and (2) represent principles for the distribution of shared servers among
processes, while (3) formalizes the garbage collection of shared servers which cannot
be invoked by any process. Notice that≡! was defined in [10] (Def 4.3), and noted's.

Proposition 5.1. Let P and Q be well-typed processes.

1. If P −→ P ′ and P ≡! Q then there is Q′ such that Q −→ Q′ and P ′ ≡! Q
′.

2. If P α−→ P ′ and P ≡! Q then there is Q′ such that Q α−→ Q′ and P ′ ≡! Q
′.

Proof. By induction on the derivation of P ≡! Q, then by case analysis on−→ and α−→,
respectively.

Proposition 5.2. If P⇓ and P ≡! Q then Q⇓.
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Figure 6 Process equalities induced by proof conversions, second kind (first subgroup).

Γ; ∆, x:A⊗B, z:C ⊗D ` x(y).z(w).P 'c z(w).x(y).P :: T (II-1)

Γ; ∆, z:D(C, x:A(B ` z〈w〉.(R | x〈y〉.(P | Q)) 'c

x〈y〉.(P | z〈w〉.(R | Q)) :: T (II-2)

Γ; ∆, z:D(C, x:A(B ` z〈w〉.(R | x〈y〉.(P | Q)) 'c

x〈y〉.(z〈w〉.(R | P ) | Q) :: T (II-3)

Γ; ∆, w:C(D,x:A⊗B ` w〈z〉.(Q | x(y).P ) 'c x(y).w〈z〉.(Q | P ) :: T (II-4)

Γ; ∆, w:C(D,x:A⊗B ` w〈z〉.(x(y).P | Q) 'c x(y).w〈z〉.(P | Q) :: T (II-5)

Γ, u:A, v:C; ∆ ` u〈y〉.v〈x〉.P 'c v〈x〉.u〈y〉.P :: T (II-6)

Γ, u:C; ∆, x:A(B ` u〈z〉.x〈y〉.(P | Q) 'c x〈y〉.(u〈z〉.P | Q) :: T (II-7)

Γ, u:C; ∆, x:A(B ` u〈z〉.x〈y〉.(P | Q) 'c x〈y〉.(P | u〈z〉.Q) :: T (II-8)

Γ, u:A; ∆, z:C ⊗D ` u〈y〉.z(w).P 'c z(w).u〈y〉.P :: T (II-9)

Γ; ∆, x:A⊕B, y:C ⊕D ` y.case(x.case(P1, Q1), x.case(P2, Q2)) 'c

x.case(y.case(P1, P2), y.case(Q1, Q2)) :: T (II-10)

Γ, u:C; ∆, x:A⊕B ` u〈z〉.x.case(P,Q) 'c x.case(u〈z〉.P , u〈z〉.Q) :: T (II-11)

Γ; ∆, w:A(E, z:C ND ` z.case(w〈y〉.(P | R1) , w〈y〉.(P | R2)) 'c

w〈y〉.(P | z.case(R1 | R2)) :: T (II-12)

Γ; ∆, z:C ⊕D,x:A⊗B ` z.case(x(y).P, x(y).Q) 'c x(y).z.case(P,Q) :: T (II-13)

Γ; ∆, x:ANB, z:C ND ` x.inl; y.inl;P 'c y.inl;x.inl;P :: T (II-14)

Γ; ∆, x:A⊕B, y:C ND ` x.case(y.inl;P, y.inl;Q) 'c

y.inl;x.case(R,Q) :: T (II-15)

Γ, u:C; ∆, x:ANB ` z.inl;u〈y〉.P 'c u〈y〉.z.inl;P :: T (II-16)

Γ; ∆, z:C ND,x:A(B ` z.inl;x〈y〉.(P | Q) 'c x〈y〉.(z.inl;P | Q) :: T (II-17)

Γ; ∆, z:C ND,x:A(B ` z.inl;x〈y〉.(P | Q) 'c x〈y〉.(P | z.inl;Q) :: T (II-18)

Γ; ∆, z:C ND,x:A⊗B ` z.inl;x(y).P 'c x(y).z.inl;P :: T (II-19)

Proof. Follows by Prop 5.1, by noticing that: (i) axioms (1) and (2) of ≡! do not add
new input-guarded replicated processes and (ii) axiom (3) may add a new input-guarded
replicated process (if read from right to left) which cannot be invoked.

5.2. Logical Relations for Strong Normalization of Well-typed Processes

We now introduce a theory of linear logical relations for session-typed processes,
and use it to prove strong normalization.

First Step: The Logical Predicate and its Closure Properties. We define a logical pred-
icate on well-typed processes and establish a few associated closure properties. More
precisely, we define a sequent-indexed family of sets of processes (process predicates)
so that a set of processes L[Γ; ∆ ` T ] enjoying certain closure properties is assigned
to any sequent Γ; ∆ ` T . The logical predicate is defined by induction on the structure
of sequents. The base case, given below, considers sequents with empty left-hand side
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Figure 7 Process equalities induced by proof conversions, second kind (second sub-
group).

Γ; ∆, z:C ND `z.inl;x〈y〉.(P | Q) 'c x〈y〉.(P | z.inl;Q) :: x:A⊗B (II-20)

Γ; ∆, z:C ND `z.inl;x〈y〉.(P | Q) 'c x〈y〉.(z.inl;P | Q) :: x:A⊗B (II-21)

Γ; ∆, z:D ⊕ E `z.case(x〈y〉.(P1 | Q) , x〈y〉.(P2 | Q)) 'c

x〈y〉.(Q | z.case(P1 , P2)) :: x:A⊗B (II-22)

Γ; ∆, z:D ⊕ E `z.case(x〈y〉.(Q | P1) , x〈y〉.(Q | P2)) 'c

x〈y〉.(z.case(P1 , P2) | Q) :: x:A⊗B (II-23)

Γ, u:C; ∆ `u〈w〉.x〈y〉.(P | Q) 'c x〈y〉.(u〈w〉.P | Q) :: x:A⊗B (II-24)

Γ, u:C; ∆ `u〈w〉.x〈y〉.(P | Q) 'c x〈y〉.(P | u〈w〉.Q) :: x:A⊗B (II-25)

Γ; ∆, w:C(D `w〈z〉.(R | x〈y〉.(P | Q)) 'c

x〈y〉.(P | w〈z〉.(R | Q)) :: x:A⊗B (II-26)

Γ; ∆, x:C(D `z〈y〉.(x〈w〉.(P | Q) | R)

'c x〈w〉.(P | z〈y〉.(R | Q)) :: z:A⊗B (II-27)

Γ; ∆, z:C ⊗D `z(w).x〈y〉.(P | Q) 'c x〈y〉.(z(w).P | Q) :: x:A⊗B (II-28)

Γ; ∆, z:C ⊗D `z(w).x〈y〉.(P | Q) 'c x〈y〉.(P | z(w).Q) :: x:A⊗B (II-29)

Γ; ∆, z:C ND `z.inl;x(y).P 'c x(y).z.inl;P :: x:A(B (II-30)

Γ; ∆, z:C ⊕D `x(y).z.case(P,Q) 'c z.case(x(y).P , x(y).Q) :: x:A(B (II-31)

Γ, u:C; ∆ `u〈w〉.x(y).P 'c x(y).u〈w〉.P :: x:A(B (II-32)

Γ; ∆, w:C(D `w〈z〉.(R | x(y).P )) 'c x(y).w〈z〉.(R | P )) :: x:A(B (II-33)

Γ; ∆, z:C ⊗D `x(y).z(w).P 'c z(w).x(y).P :: x:A(B (II-34)

Γ; ∆, y:C ND `y.inl;x.case(P,Q) 'c x.case(y.inl;P , y.inl;Q) :: x:ANB (II-35)

Γ; ∆, y:C ⊕D `x.case(y.case(P1, Q1), y.case(P2, Q2)) 'c

y.case(x.case(P1, P2), x.case(Q1, Q2)) :: x:ANB (II-36)

Γ;u:A; ∆ `x.case(u〈y〉.P , u〈y〉.Q) 'c u〈y〉.x.case(P,Q) :: x:ANB (II-37)

Γ; ∆, z:C(D `z〈y〉.(R | x.case(P,Q)) 'c

x.case(z〈y〉.(R | P ) , z〈y〉.(R | Q)) :: x:ANB (II-38)

Γ; ∆, x:A⊗B `z.case(x(y).P , x(y).Q) 'c x(y).z.case(P,Q) :: z:C ND (II-39)

Γ; ∆, y:C ND `y.inl;x.inl;P 'c x.inl; y.inl;P :: x:A⊕B (II-40)

Γ; ∆, y:A⊕B `x.inl; y.case(P,Q) 'c y.case(x.inl;P, x.inl;Q) :: x:A⊕B (II-41)

Γ;u:A; ∆ `x.inl;u〈y〉.P 'c u〈y〉.x.inl;P :: x:A⊕B (II-42)

Γ; ∆, z:D(C `z〈y〉.(Q | x.inl;P ) 'c x.inl; z〈y〉.(Q | P ) :: x:A⊕B (II-43)

Γ; ∆, x:A⊗B `x(y).z.inl;P 'c z.inl;x(y).P :: z:C ⊕D (II-44)

Γ; ∆, x:!C `z〈y〉.(P{x/u} | Q) 'c (z〈y〉.(P | Q)){x/u} :: z:A⊗B (II-45)

Γ; ∆, x:!C `z〈y〉.(P | Q{x/u}) 'c (z〈y〉.(P | Q)){x/u} :: z:A⊗B (II-46)

typing, where we abbreviate L[Γ; ∆ ` T ] by L[T ]. We write P 6−→ to mean that P
cannot reduce; it may perform visible actions, though.
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Definition 5.3 (Logical Predicate for Termination, Base case). For any type T = z:A
we inductively define L[T ] as the set of all P such that P⇓ and ·; · ` P :: T and

P ∈ L[z:1] iff ∀P ′.(P =⇒ P ′ ∧ P ′ 6−→)⇒ P ′ ≡! 0

P ∈ L[z:A(B] iff ∀P ′, y.(P z(y)
=⇒ P ′)⇒ ∀Q ∈ L[y:A].(νy)(P ′ | Q) ∈ L[z:B]

P ∈ L[z:A⊗B] iff ∀P ′, y.(P z〈y〉
=⇒ P ′)⇒

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ L[y:A] ∧ P2 ∈ L[z:B])

P ∈ L[z:!A] iff ∀P ′.(P =⇒ P ′)⇒ ∃P1.(P
′ ≡! !z(y).P1 ∧ P1 ∈ L[y:A])

P ∈ L[z:ANB] iff (∀P ′.(P z.inl
=⇒ P ′)⇒ P ′ ∈ L[z:A]) ∧

(∀P ′.(P z.inr
=⇒ P ′)⇒ P ′ ∈ L[z:B])

P ∈ L[z:A⊕B] iff (∀P ′.(P z.inl
=⇒ P ′)⇒ P ′ ∈ L[z:A]) ∧

(∀P ′.(P z.inr
=⇒ P ′)⇒ P ′ ∈ L[z:B])

Some comments are in order. First, observe how the definition of L[T ] relies on
both reductions and weak transitions, and the fact that processes in the logical predicate
are terminating by definition. Also, notice that the use of ≡! in L[z:1] is justified by
the fact that a terminated process may be well the composition of a number of shared
servers with no potential clients. Using suitable processes that “close” the derivative of
the transition, in L[z:A(B] and L[z:A ⊗ B] we adhere to the linear logic interpreta-
tions for input and output types, respectively. In particular, in L[z:A ⊗ B] it is worth
observing how≡! is used to “split” the derivative of the transition, thus preserving con-
sistency with the separate, non-interfering nature of the multiplicative conjunction. The
definition ofL[z:!A] is also rather structural, relying again on the distribution principles
embodied in ≡!. The definitions of L[z:ANB] and L[z:A⊕B] are self-explanatory.

Below, we extend the logical predicate to arbitrary typing environments. Observe
how we adhere to the principles of rules (Tcut) and (Tcut!) for this purpose.

Definition 5.4 (Logical Predicate for Termination, Inductive case). For any sequent
Γ; ∆ ` T with a non-empty left-hand side environment, we define L[Γ; ∆ ` T ] as the
set of processes inductively defined as follows:

P ∈ L[Γ; y:A,∆ ` T ] iff ∀R ∈ L[y:A].(νy)(R | P ) ∈ L[Γ; ∆ ` T ]

P ∈ L[u:A,Γ; ∆ ` T ] iff ∀R ∈ L[y:A].(νu)(!u(y).R | P ) ∈ L[Γ; ∆ ` T ]

We often rely on the following alternative characterization of the sets L[Γ; ∆ ` T ].

Definition 5.5. Let Γ = u1:B1, . . . , uk:Bk, and ∆ = x1:A1, . . . , xn:An be a non-
linear and a linear typing environment, resp. Letting I ={1, . . . , k}, J ={1, . . . , n},
we define the sets of processes CΓ and C∆ as:

CΓ
def
=
{∏
i∈I

!ui(yi).Ri | Ri ∈ L[yi:Bi]
}

C∆
def
=
{∏
j∈J

Qj | Qj ∈ L[xj :Aj ]
}
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Because of the rôle of left-hand side typing environments, processes in CΓ and C∆
are then logical representatives of the behavior specified by Γ and ∆, respectively.

Proposition 5.3. Let Γ and ∆ be a non-linear and a linear typing environment, resp.
Then, for all Q ∈ CΓ and for all R ∈ C∆, we have Q⇓ and R⇓. Moreover, Q 6−→.

Proof. By Definition 5.5, every process in C∆ corresponds to the composition of non-
interfering, terminating processes. Hence, R⇓. The same applies for processes in
CΓ, which, by construction, correspond to the composition of input-guarded replicated
processes. Hence, Q⇓, Q 6−→.

The proof of the following lemma is immediate from Definitions 5.4 and 5.5.

Lemma 5.1. Let P be a process such that Γ; ∆ ` P :: T , with Γ = u1:B1, . . . , uk:Bk
and ∆ = x1:A1, . . . , xn:An. We then have:

P ∈ L[Γ; ∆ ` T ] iff ∀Q ∈ CΓ,∀R ∈ C∆, (νũ, x̃)(P | Q | R) ∈ L[T ].

The following closure properties will be fundamental in the second step of the
proof, when we will show that well-typed processes are in the logical predicate. We
first state closure of L[T ] with respect to substitution and structural congruence:

Proposition 5.4. Let A be a type. If P ∈ L[z:A] then P{x/z} ∈ L[x:A].

Proof. Immediate from Definition 5.3.

Proposition 5.5. Let P,Q be well-typed. If P ∈ L[T ] and P ≡ Q then Q ∈ L[T ].

Proof. By induction the definition of P ≡ Q, using Propositions 5.1 and 5.2, and the
fact that well-typed processes are closed under ≡ by definition.

The next proposition provides a basic liveness guarantee for typed processes.

Proposition 5.6. Let ·; · ` P :: z:T and P⇓, with T ∈ {A⊗B,A(B,A⊕B,ANB}.
Then, there exist α, P ′ such that

(i) P α
=⇒ P ′, and

(ii) if T=A ⊗ B then α = z〈y〉; if T=A(B then α = z(y); if T=A ⊕ B then
α = z.inr or α = z.inl; if T=ANB then α = z.inr or α = z.inl.

Proof. Since T 6∈ {1, !T ′} then, using Lemma 3.4, we know that live(P ) holds.
Hence, Lemma 3.1 can be used to infer that either P −→ P ′ or P α−→ P ′, with
s(α) = z. Termination ensures that such reductions, before or after α, are finite. This
gives us Part (i). Part (ii) on the actual shape of α can be inferred using Lemma 3.2.

We now extend Proposition 5.5 so as to state closure of L[T ] under ≡!.

Proposition 5.7. Let P,Q be well-typed. If P ∈ L[T ] and P ≡! Q then Q ∈ L[T ].

Proof. By induction the definition of P ≡! Q. See Appendix A.1, Page 42.
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We now state forward and backward closure of the logical predicate with respect
to reduction; these are typical ingredients in the method of logical relations.

Proposition 5.8 (Forward Closure). If P ∈ L[T ] and P −→ P ′ then P ′ ∈ L[T ].

Proof. By induction on the structure of type T . In all cases, we must show that: (i)
P ′⇓; (ii) P ′ is well-typed; and (iii) P ′ ∈ L[T ]. First, by assumption and Def. 5.3,
we have that P⇓; then, since P −→ P ′, we have P ′⇓ as well. Well-typedness follows
from Theorem 3.1. Finally, P ′ ∈ L[T ] follows by definition of weak transition.

Proposition 5.9 (Backward Closure). If for all Pi such that P −→ Pi we have Pi ∈
L[T ] then P ∈ L[T ].

Proof. By induction on the structure of type T . In all cases, we must show that: (i)
P⇓; (ii) P is well-typed; and (iii) P ∈ L[T ]. Items (i) and (iii) are immediate from
Definition 5.1 and subject reduction (Theorem 3.1), respectively. Item (iii) follows
by definition of weak transition, noticing that if P ′ α

=⇒ P ′′ and P −→ P ′ then also
P

α
=⇒ P ′′ holds.

The final closure property concerns parallel composition of processes:

Proposition 5.10 (Weakening). Let P,Q be processes such that P ∈ L[T ] and Q ∈
L[−:1]. Then, P | Q ∈ L[T ].

Proof. By induction on the structure of type T . See Appendix A.2, Page 44.

Second Step: Well-typed Processes are in the Logical Predicate. We now prove that
well-typed processes are in the logical predicate. Because of Definition 5.3, termina-
tion of well-typed processes will follow as a consequence.

Lemma 5.2. Let P be a process. If Γ; ∆ ` P :: T then P ∈ L[Γ; ∆ ` T ].

Proof. By induction on the derivation of Γ; ∆ ` P :: T , with a case analysis on the last
typing rule used. We have 18 cases to check; in all of them, we use Lemma 5.1 to show
that every M = (νũ, x̃)(P | G | D) with G ∈ CΓ and D ∈ C∆, is in L[T ]. In case
(Tid), we use Proposition 5.4 (closure wrt substitution) and Proposition 5.9 (backward
closure). In cases (T⊗L), (T(L), (Tcopy), (T⊕L), (TNL1), and (TNL2), we proceed
in two steps: first, using Proposition 5.8 (forward closure) we show that every M ′′

such that M =⇒ M ′′ is in L[T ]; then, we combine this result with Proposition 5.9
(backward closure) to conclude thatM ∈ L[T ]. In cases (T1R), (T⊗R), (T(R), (T!R),
(T⊕R1), and (T⊕R2), we show that M conforms to a specific case of Definition 5.3.
Case (T1L) uses Proposition 5.10 (weakening). Cases (T⊗L), (T(L), (T⊕L), and
(TNL1) use the liveness guarantee given by Proposition 5.6. Cases (Tcopy), (T!L), and
(Tcut!) use Proposition 5.5 (closure under ≡). Cases (Tcut), (T(R), and (T!R) use
Proposition 5.7 (closure under ≡!). See Appendix A.3, Page 42 for details.

We now state our first main result: well-typed processes terminate.

Theorem 5.1 (Well-typed Processes are Terminating). If Γ; ∆ ` P :: T then P⇓.
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Proof. Follows from previously proven facts:

Γ; ∆ ` P :: T [Assumption] (a)
P ∈ L[Γ; ∆ ` T ] [By Lemma 5.2 and (a)] (b)
Pick any G ∈ CΓ, D ∈ C∆:
G⇓, D⇓ [By Prop 5.3] (c)
(νũ, x̃)(P | G | D) ∈ L[T ] [By Lemma 5.1 on (b)] (d)
(νũ, x̃)(P | G | D)⇓ [From (d) and Def 5.3] (e)
P⇓ [Consequence of (c) and (e)]

5.3. Well-typed Processes are Confluent

We now adapt the logical relations and the proof technique of Section 5.2 to the
case of confluence. The required adjustments concern mainly closure properties.

Definition 5.6 (Confluence). A process P is confluent, written P♦, if for any P1, P2

such that P =⇒ P1 and P =⇒ P2, there exists a P ′ such that P1 =⇒ P ′ and
P2 =⇒ P ′.

Proposition 5.11 (Properties of Confluent Processes). Assume well-typed processes
P, P ′, P1, . . . , Pk, Q.

1. Forward closure: If P♦ and P −→ P ′ then P ′♦.

2. Backward closure: If for all Pi such that P −→ Pi we have that Pi♦, then P♦.

3. Closure wrt composition: Let P,Q be such that (i) ·; · ` P :: x:A, (ii) ·;x:A ` Q ::
T , (iii) P♦, and (iv) Q♦. Then (νx)(P | Q)♦.

Proof. See Appendix A.4 (Page 54) for details.

Proposition 5.12. If P♦ and P ≡! Q then Q♦.

Proof. Follows immediately from Proposition 5.1.

First Step: The Logical Predicate and its Closure Properties. The following logical
predicate for confluence is essentially the same as for termination (cf. Definition 5.3).
Hence, subsequent auxiliary definitions and closure properties mirror those in Sec-
tion 5.2.
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Definition 5.7 (Logical Predicate for Confluence, Base case). For any type T = z:A
we inductively define L♦[T ] as the set of all P such that P♦ and ·; · ` P :: T and

P ∈ L♦[z:1] iff ∀P ′.(P =⇒ P ′ ∧ P ′ 6−→)⇒ P ′ ≡! 0

P ∈ L♦[z:A(B] iff ∀P ′y.(P z(y)
=⇒ P ′)⇒ ∀Q ∈ L♦[y:A].(νy)(P ′ | Q) ∈ L♦[z:B]

P ∈ L♦[z:A⊗B] iff ∀P ′y.(P z〈y〉
=⇒ P ′)⇒

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ L♦[y:A] ∧ P2 ∈ L♦[z:B])

P ∈ L♦[z:!A] iff ∀P ′.(P =⇒ P ′)⇒ ∃P1.(P
′ ≡! !z(y).P1 ∧ P1 ∈ L♦[y:A])

P ∈ L♦[z:ANB] iff (∀P ′.(P z.inl
=⇒ P ′)⇒ P ′ ∈ L♦[z:A]) ∧

(∀P ′.(P z.inr
=⇒ P ′)⇒ P ′ ∈ L♦[z:B])

P ∈ L♦[z:A⊕B] iff (∀P ′.(P z.inl
=⇒ P ′)⇒ P ′ ∈ L♦[z:A]) ∧

(∀P ′.(P z.inr
=⇒ P ′)⇒ P ′ ∈ L♦[z:B])

Below, we extend L♦[T ] to arbitrary typing environments.

Definition 5.8 (Logical Predicate - Inductive case). For any sequent Γ; ∆ ` T with
a non-empty left hand side environment, we define L♦[Γ; ∆ ` T ] to be the set of
processes inductively defined as follows:

P ∈ L♦[Γ; y:A,∆ ` T ] if ∀R ∈ L♦[y:A].(νy)(R | P ) ∈ L♦[Γ; ∆ ` T ]

P ∈ L♦[u:A,Γ; ∆ ` T ] if ∀R ∈ L♦[y:A].(νu)(!u(y).R | P ) ∈ L♦[Γ; ∆ ` T ]

We often rely on the following alternative characterization of the sets L♦[Γ; ∆ `
T ].

Definition 5.9. Let Γ = u1:B1, . . . , uk:Bk, and ∆ = x1:A1, . . . , xn:An be a non-
linear and a linear typing environment, resp. Letting I ={1, . . . , k} and J ={1, . . . , n},
we define the sets of processes C♦Γ and C♦∆ as:

C♦Γ
def
=
{∏
i∈I

!ui(yi).Ri | Ri ∈ L♦[yi:Bi]
}

C♦∆
def
=
{∏
j∈J

Qj | Qj ∈ L♦[xj :Aj ]
}

We define sets of processes C♦Γ and C♦∆ as logical representatives of the behavior
specified by Γ and ∆, respectively.

Proposition 5.13. Let Γ and ∆ be a non-linear and a linear typing environment, re-
spectively. Then, for all Q ∈ C♦Γ and for all R ∈ C♦∆, we have Q♦ and R♦. Further-
more, Q 6−→ and R⇓.

Proof. By Definition 5.9, every R ∈ C♦∆ corresponds to the composition of indepen-
dent, confluent processes. Hence, using Proposition 5.11 (3), we have R♦. Also, R
is the composition of well-typed processes, which by Theorem 5.1 are all terminating.
Hence, R⇓. As for Q ∈ C♦Γ , by construction it corresponds to the composition of
input-guarded replicated processes. Hence, Q 6−→.
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Lemma 5.3. Let Γ; ∆ ` P ::T , with Γ=u1:B1, . . . , uk:Bk and ∆=x1:A1, . . . , xn:An.
We have: P ∈ L♦[Γ; ∆ ` T ] iff ∀Q ∈ C♦Γ ,∀R ∈ C

♦
∆, (νũ, x̃)(P | Q | R) ∈ L♦[T ].

Proof. The proof follows from Definitions 5.8 and 5.9, Proposition 5.13, and closure
of confluent processes under composition (Proposition 5.11 (3)).

We now state the closure properties required to show that well-typed processes are
in the logical predicate for confluence.

Proposition 5.14. Let A be a type. If P ∈ L♦[z:A] then P{x/z} ∈ L♦[x:A].

Proof. Immediate from Definition 5.7.

Proposition 5.15. Let P,Q be well-typed. If P ∈ L♦[T ] and P ≡ Q then Q ∈ L♦[T ].

Proof. By induction the definition of P ≡ Q, using Propositions 5.1 and 5.12, and the
fact that well-typed processes are closed under ≡ by definition.

We now extend Proposition 5.15 so as to state closure of L♦[T ] under ≡!.

Proposition 5.16. Let P,Q be well-typed. If P ∈ L♦[T ] and P ≡! Q thenQ ∈ L♦[T ].

Proof. By induction the definition of P ≡! Q, following the lines of the proof of
Proposition 5.7.

We now state forward and backward closure of L♦[T ] with respect to reduction.

Proposition 5.17 (Forward Closure). If P ∈ L♦[T ] and P −→ P ′ then P ′ ∈ L♦[T ].

Proof. By induction on the structure of type T . In all cases, we must show that: (i)
P ′♦; (ii) P ′ is well-typed; and (iii) P ′ ∈ L♦[T ], as in Def. 5.7. First, by Proposi-
tion 5.11 (1) we have that since P♦ and P −→ P ′, then P ′♦ as well. Well-typedness
follows from subject reduction (Theorem 3.1). Finally, P ′ ∈ L♦[T ] follows by defini-
tion of weak transition.

Proposition 5.18 (Backward Closure). If for all Pi such that P −→ Pi we have Pi ∈
L♦[T ] then P ∈ L♦[T ].

Proof. By induction on the structure of type T . In all cases, we must show that: (i)
P♦ (ii) P is well-typed; and (iii) P ∈ L♦[T ], as in Def. 5.7. Items (i) and (ii) follow
by Proposition 5.11 (2) and subject reduction (Theorem 3.1), respectively. Item (iii)
follows by definition of weak transition, noticing that if P ′ α

=⇒ P ′′ and P −→ P ′ then
clearly P α

=⇒ P ′′ holds.

23



Second Step: Well-typed Processes are in the Logical Predicate. We now prove that
well-typed processes are in the logical predicate.

Lemma 5.4. Let P be a process. If Γ; ∆ ` P :: T then P ∈ L♦[Γ; ∆ ` T ].

Proof. By induction on the derivation of Γ; ∆ ` P :: T , with a case analysis on the
last typing rule used. See Appendix A.5 (Page 55) for details.

We now state the desired result: well-typed processes are confluent.

Theorem 5.2 (Well-typed Processes are Confluent). If Γ; ∆ ` P :: T then P♦.

Proof. Follows from previously proven facts. By assumption, we have Γ; ∆ ` P :: T .
Using this and Lemma 5.4 we get P ∈ L♦[Γ; ∆ ` T ]. Pick any G ∈ C♦Γ , D ∈
C♦∆: combining P ∈ L♦[Γ; ∆ ` T ] and Lemma 5.3 gives us (νũ, x̃)(P | G | D) ∈
L♦[T ]. By using this, together with Definition 5.7, we infer (νũ, x̃)(P | G | D)♦.
Since Proposition 5.13 ensures G♦ and D♦, this last result implies P♦.

6. Observational Equivalences for Session-Typed Processes

In this section, we investigate the behavioral theory for session-typed processes. We
introduce typed context bisimilarity (noted ≈), a labelled bisimulation which closely
follows the nature of typing judgments.

6.1. Auxiliary Definitions

We sometimes write ` P :: T to stand for · ; · ` P :: T and Γ; ∆ ` P,Q :: T to
mean that both Γ; ∆ ` P :: T and Γ; ∆ ` Q :: T hold. Below, we use S to range over
sequents of the form Γ; ∆ ` T . We will rely on type-respecting relations, which are
indexed by sequents S. We will use binary relations, so the adjective “binary” will be
always omitted.

Definition 6.1 (Type-respecting relations). A type-respecting relation over processes,
written {RS}S , is defined as a family of relations over processes indexed by S. We
often writeR to refer to the whole family, and use notation Γ; ∆ ` P RQ ::T to mean
both (i) Γ; ∆ ` P,Q :: T and (ii) (P,Q) ∈ RΓ;∆`T .

We useR,R′, . . . to range over type-respecting relations. In the following, we will
often omit the adjective “type-respecting”.

Definition 6.2. A relationR is said to be

− Reflexive, if Γ; ∆ ` P :: T implies Γ; ∆ ` P RP ::T ;

− Symmetric, if Γ; ∆ ` P RQ ::T implies Γ; ∆ ` QRP ::T ;

− Transitive, Γ; ∆ ` P RP ′ ::T and Γ; ∆ ` P ′RQ ::T imply Γ; ∆ ` P RQ ::T .

Moreover,R is said to be an equivalence if it is reflexive, symmetric, and transitive.
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In order to define contextual relations, we introduce a natural notion of (typed)
process contexts. Intuitively, a context is a process that contains one hole, noted •.
Holes are typed: a hole, denoted •Γ;∆`T , can only be filled in with a process matching
its type. We shall use K,K ′, . . . for ranging over properly defined contexts, in the
sense given next. We rely on left- and right-hand side typings for defining contexts and
its properties precisely. We consider contexts with exactly one hole, but our definitions
are easy to generalize.

We rely on a minimal extension of the syntax of processes (Definition 2.1) with •.
We then extend sequents, in the following way:

H; Γ; ∆ ` K :: S

Intuitively, H contains a description of a hole occurring in (context) K: we have that
•Γ;∆`T ; Γ; ∆′ ` K :: S is the type of a context K whose hole is to be substituted by
some process P such that Γ; ∆ ` P :: T . As a result of the substitution, we obtain a
process Γ; ∆′ ` K[P ] :: S. Since we consider at most one hole, H is either empty or
has exactly one element. If H is empty then K is a process and we obtain the usual
typing rules; we write Γ; ∆ ` R :: T rather than ·; Γ; ∆ ` R :: T . The definition of
typed contexts is completed by extending the type system with the following two rules:

(Thole)

•Γ;∆`T ; Γ; ∆ ` • :: T

(Tfill)
Γ; ∆ ` R :: T •Γ;∆`T ; Γ; ∆′ ` K :: S

Γ; ∆′ ` K[R] :: S

Axiom (Thole) allows to introduce holes into typed contexts. In rule (Tfill), R is a
process (it does not have any holes), and K is a context with a hole of type Γ; ∆ ` T .
The substitution of occurrences of • in K with R, noted K[R] is sound as long as the
typings of R coincide with those declared inH for K.

As an example, consider a simple parallel context, (νx)(• | P ) which is filled in
with an appropriately typed process R:

Γ;x:C,∆2 ` R :: T

...
Γ; ∆1 ` P :: x:C •Γ;x:C,∆2`T ; Γ;x:C,∆2 ` • :: T

(Thole)

•Γ;x:C,∆2`T ; Γ; ∆1,∆2 ` (νx)(P | •) :: T
(Tcut)

Γ; ∆1,∆2 ` (νx)(P | R) :: T
(Tfill)

As we have seen, contexts in our setting are hardly arbitrary: only type-compatible
processes are inserted into holes. Based on this observation, and following the typing
rules, we define a notion of contextual relation in our typed setting:

Definition 6.3 (Contextual Relation). A relation R is contextual if it satisfies the con-
ditions in Figure 8 (Page 69).

Some comments to the conditions associated to Definition 6.3 are in order. In all
cases, observe how the typing rules guide the shape of allowed contexts. For instance,
item (1) is easily seen to correspond to rule (T(R) and associated to the input context

•Γ;∆,y:A`x:B ; Γ; ∆ ` x(y).• :: x:A(B
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to be filled in by any P such that Γ; ∆, y:A ` P :: x:B. In fact, premises of each rule
suggest where to place holes; rules with two premises lead to two different contexts.
Observe how item (0) involves the forwarding construct; this could be seen as a form
of closure under substitution, which renames the right-hand side typing of a process.
Items (8)-(13) correspond to closure with respect to parallel contexts, which in our
typed setting also involves closure with respect to restriction, following rules (Tcut)
and (Tcut!). Notice that while closure under arbitrary process composition is not al-
lowed, closure under independent parallel composition (i.e., the parallel composition
of any typed process P with any process Q offering −:1) is permitted (cf. Items (12)
and (13)). This is justified by the derived typing rule (comp) (cf. [10]).

Remark 6.1. Notice that not all the contextuality conditions in Figure 8 apply in the
case R relates processes related under empty left-hand side typing environments. In-
deed, only items (0), (2)-(8), (10)-(13), and (15) apply in that case.

6.2. Typed Context Bisimilarity
We define typed context bisimilarity, a labeled bisimilarity for typed processes. It

is defined contextually, as a binary relation indexed over sequents. Roughly, typed con-
text bisimilarity equates two processes if, once coupled with all of their requirements
(as described by the left-hand side typing), they perform the same actions (as described
by the right-hand side typing). To formalize this intuition, we rely on a combination of
inductive and coinductive arguments. The base case of the definition covers the cases in
which the left-hand side typing environment is empty (i.e., the process requires nothing
from its context to execute): the bisimulation game is then defined by induction on the
structure of the (right-hand side) typing, following the expected behavior in each case.
The inductive case covers the cases in which the left-hand side typing environment is
not empty: the tested processes are put in parallel with processes implementing the
required behaviors (as described in the left-hand side typing).

Definition 6.4 (Typed Context Bisimilarity). A symmetric type-respecting binary rela-
tion over processesR is a typed context bisimulation if
Base Cases
Tau ` P RQ ::T implies that for all P ′ such that P τ−→ P ′, there exists a Q′ such

that Q =⇒ Q′ and ` P ′RQ′ ::T

Input ` P RQ ::x:A(B implies that for all P ′ such that P
x(y)−−−→ P ′, there exists a

Q′ such that Q
x(y)
=⇒ Q′ and for all R such that ` R :: y:A,

` (νy)(R | P ′)R (νy)(R | Q′) ::x:B.

Output ` P RQ ::x:A ⊗ B implies that for all P ′ such that P
x〈y〉−−−→ P ′, there

exists a Q′ such that Q
x〈y〉
=⇒ Q′ and for all R such that ·; y:A ` R :: −:1,

` (νy)(P ′ | R)R (νy)(Q′ | R) ::x:B.

Replication ` P RQ ::x:!A implies that for all P ′ such that P
x(z)−−−→ P ′, there ex-

ists a Q′ such that Q
x(z)
=⇒ Q′ and, for all R such that ·; y:A ` R :: −:1,

` (νz)(P ′ | R)R (νz)(Q′ | R) ::x:!A.
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Choice ` P RQ ::x:ANB implies both:

• If P x.inl−−−→ P ′ then ` P ′RQ′ ::x:A, for some Q′ such that Q x.inl
=⇒ Q′;

and

• If P x.inr−−−→ P ′ then ` P ′RQ′ ::x:B, for some Q′ such that Q x.inr
=⇒ Q′.

Selection ` P RQ ::x:A⊕B implies both:

• If P x.inl−−−→ P ′ then ` P ′RQ′ ::x:A for some Q′ such that Q x.inl
=⇒ Q′; and

• If P x.inr−−−→ P ′ then ` P ′RQ′ ::x:B for some Q′ such that Q x.inr
=⇒ Q′.

Inductive Cases
Linear Names Γ; ∆, y:A ` P RQ ::T implies that

for all R such that ` R :: y:A, then Γ; ∆ ` (νy)(R | P )R (νy)(R | Q) ::T .

Shared Names Γ, u:A; ∆ ` P RQ ::T implies that for all R such that ` R :: z:A,
then Γ; ∆ ` (νu)(!u(z).R | P )R (νu)(!u(z).R | Q) ::T .

We write ≈ for the union of all typed context bisimulations, and call it typed context
bisimilarity.

In all cases, a strong action is matched with a weak transition. In proofs, we shall
exploit the fact that Theorem 5.1 ensures that weak transitions are always finite. In the
base case, the clauses for input, output, and replication decree the closure of the tested
processes with a processR that “complements” the continuation of the tested behavior;
observe the very similar treatment for output and replication (whereR depends on some
behavior), and contrast it with that for input (where R provides the behavior). Also,
notice how all clauses but that for replication are defined coinductively for the tested
processes (in the sense that closed evolutions should be in the relation), but inductively
on the type indexing the relation—the clause for replication may be thus considered as
the only fully coinductive one. Also worth noticing is how the closures defined in such
clauses (and those defined by the clauses in the inductive case) follow closely the spirit
of (Tcut/Tcut!) rules in the type system.

6.3. Properties of Typed Context Bisimilarity

We establish some properties of typed context bisimilarity: equivalence (Proposi-
tion 6.1); closure under independent parallel composition (Proposition 6.2); a simplifi-
cation for the bisimulation proof technique (Proposition 6.3); contextuality/congruence
(Lemma 6.1); and τ -intertness (Lemma 6.2).

Proposition 6.1. ≈ is an equivalence, in the sense of Definition 6.2.

Proof. Reflexivity and symmetry are immediate from the definition of type-respecting
relations. Transitivity is easy by showing a suitable typed context bisimulation.

Intuitively, independent parallel composition refers to the composition of some
given process with another processes typed with −:1.
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Proposition 6.2 (Closure under independent composition). Let P,Q, S be processes
such that Γ; ∆ ` P ≈ Q :: T and Γ; ∆′ ` S :: −:1 hold. Then we have: Γ; ∆,∆′ `
P | S ≈ Q | S :: T

Proof. Straightforward by showing the appropriate bisimulation, using the fact that
composition with arbitrary processes offering type 1 is type preserving, and by noticing
that S cannot interact with P,Q.

Definition 6.4 immediately suggests a proof technique for showing that two pro-
cesses are typed context bisimilar. First, close the processes with parallel representa-
tives of their context, applying repeatedly the inductive cases until the left-hand side
typing is empty. Then, follow the usual co-inductive proof technique, and show a
typed-respecting relation containing the processes obtained in the first step. More pre-
cisely, given a left-hand side typing Γ; ∆, below we define the set KΓ;∆`T of parallel
representatives of Γ,∆. This is a set of parallel process contexts which represent the
closures generated by the inductive case of typed context bisimilarity. These parallel
representatives will be useful to simplify proofs for ≈.

Definition 6.5 (Parallel Representatives). Let Γ and ∆ be typing environments de-
fined as Γ = u1:B1, . . . , un:Bn and ∆ = x1:A1, . . . , xm:Am, respectively, with
I = {1, . . . , n} and J = {1, . . . ,m}. We say that K is a parallel representative in
KΓ;∆`T if

K ≡ (νũ, x̃)(• |
∏
i∈I

!ui(yi).Ri |
∏
j∈J

Sj)

with ` Ri :: yi:Bi and ` Sj :: xj :Aj , for every i ∈ I and j ∈ J .

Clearly, for every left-hand side typing there may be many parallel representatives,
corresponding to different implementations of the required behaviors. It is easy to see
that parallel representatives are well-typed: if K ∈ KΓ;∆`T then •Γ;∆`T ; ·; · ` K :: T .
In fact, filling in a context K ∈ KΓ;∆`T with a process Γ,∆ ` P :: T will lead
to process ` K[P ] :: T , which requires nothing from its environment. This is the
essence of the desired simplification, formalized by the following proposition. It allows
us to convert an (inductive) proof under non-empty typing environments Γ,∆ into a
(coinductive) proof under empty environments, with processes enclosed within parallel
contexts.

Proposition 6.3. Γ; ∆ ` P ≈ Q ::T implies ` K[P ] ≈ K[Q] ::T , where K is any
parallel representative in KΓ;∆`T , as in Definition 6.5.

Proof. See Appendix B.1 (Page 57) for details.

Based on the logical interpretation, we introduce a notion of “continuation rela-
tion” for pairs of typed processes. This will be useful to define and reason about type-
respecting relations. Below, IΓ;∆`T stands for the relation

{(P,Q) : Γ; ∆ ` P,Q :: T }

which collects pairs of processes with identical left- and right-hand side typings.
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Definition 6.6. Using � to range over ⊗,( and � to range over ⊕,N, we define the
type-respecting relationW`x:A by induction on the right-hand side typing, as follows:

W`x:1 = I`x:1 W`x:A�B = I`x:B ∪W`x:B

W`x:!A = I`x:!A W`x:A�B = I`x:A ∪W`x:A ∪ I`x:B ∪W`x:B

This way, e.g., the continuation relation for x:A⊗B is I`x:B∪W`x:B : it contains
all pairs typed by ` x:B (as processes of type x:A ⊗ B are to be typed by x:B after
the output action) as well as those pairs in the continuation relation for x:B.

We now prove that ≈ is a contextual relation. That is, ≈ is a congruence with
respect to the typed contexts associated to Definition 6.3.

Lemma 6.1 (Contextuality of ≈). Typed context bisimilarity is a contextual relation,
in the sense of Definition 6.3.

Proof. The proof proceeds by coinduction, showing a typed context bisimulation for
each of the conditions associated to Def. 6.3. We shall exploit the proof technique
given by Prop. 6.3, which allows to consider ≈ under empty left-hand side contexts,
for pairs of processes enclosed within appropriate parallel representatives. As a result,
it suffices to consider only some of the conditions in Table 8; see Remark 6.1. Most
cases are easy; below we detail one of them: closure with respect to output, Item (2).
(See Appendix B.2, Page 57 for other cases).

We have to show that Γ; ∆ ` P ≈ Q :: y:A implies

Γ; ∆,∆′ ` x〈y〉.(P | S) ≈ x〈y〉.(Q | S) :: x:A⊗B

for any S, x,B,∆′ such that Γ; ∆′ ` S :: x:B. Using Proposition 6.3, this can be
simplified, and it suffices to show that ` K1[P ] ≈ K1[Q] :: y:A implies

` K2[x〈y〉.(K1[P ] | S)] ≈ K2[x〈y〉.(K1[Q] | S)] :: x:A⊗B

where K1 ∈ KΓ;∆`y:A and K2 ∈ K ·;∆′`x:A⊗B .
Let M = K2[x〈y〉.(K1[P ] | S)] and N = K2[x〈y〉.(K1[Q] | S)]. Define

R2 = {(M,N) : ` K1[P ] ≈ K1[Q] :: y:A, K1 ∈ KΓ;∆`y:A, K2 ∈ K ·;∆′`x:A⊗B}
∪ W`x:B

We show that R2 is a typed context bisimulation. Suppose M moves first: M α−−→
M ′. We must find a matching action from N such that N α

=⇒ N ′. There are two
possibilities for α: either α = τ or α = x〈y〉. In the first case, we have M τ−−→
K3[x〈y〉.(K1[P ] | S)] = M ′, where K2

τ−−→ K3. Since K2 occurs identically in N by
construction, this action can be matched and we have N =⇒ K4[x〈y〉.(K1[Q] | S)] =
N ′, whereK2 =⇒ K4. Subject reduction (Theorem 3.1) ensures bothK3 ∈ KΓ;∆`y:A

and K4 ∈ K ·;∆′`x:A⊗B , and so (M ′, N ′) ∈ R2.

In the second case we M
x〈y〉−−−→ K2[K1[P ] | S] = M ′. Process N can match

this action, followed by zero or more reductions: N
x〈y〉
=⇒ K4[K3[Q′] | S′] = N ′,
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where K2 =⇒ K4, K1 =⇒ K3, Q =⇒ Q′, and S =⇒ S′. (Recall that K1 and
K2 are parallel contexts, and so they are able to interact.) Theorem 5.1 ensures that
these reductions are finite. Since ` K1[P ] ≈ K1[Q] :: y:A, and because of τ -
closedness, we have ` K1[P ] ≈ K3[Q′] :: y:A. Subject reduction (Theorem 3.1)
ensures ` S, S′ :: x:B. Following the output clause of ≈, we consider the closure
of M ′ and N ′ with a process L such that y:A ` L :: −:1. Such closures correspond
to K2[(νy)(K1[P ] | L) | S] and K4[(νy)(K3[Q′] | L) | S′], respectively. We verify
that the type of these closures is indeed x:B, as required by the output clause. Since
` K1[P ],K3[Q′] :: y:A, these processes can be composed with L, and we obtain

` (νy)(K1[P ] | L), (νy)(K3[Q′] | L) :: −:1

The desired pair of processes can be obtained via an independent parallel composition
with S, K2, S′, and K4, respectively:

` K2[(νy)(K1[P ] | L) | S],K4[(νy)(K3[Q′] | L) | S′] :: x:B

Hence,
(
K2[(νy)(K1[P ] | L) | S], K4[(νy)(K3[Q′] | L) | S′)]

)
∈ R2 and we are

done. The reasoning when N moves first is completely symmetric.

We now state τ -inertness, a property of transition systems which follows as a direct
consequence of the results of our framework, in particular, confluence (Theorem 5.2)
and the definition of typed context bisimilarity. Following Groote and Sellink [19], this
property may be stated in a general way:

Definition 6.7 (τ -inertness). Let (S,−→) be a transition system, where S is a set of
states and −→⊆ S × S. Also, let ∼ stand for an equivalence relation on the elements
of S. We say that (S,−→) is τ -inert with respect to ∼ if P −→ P ′ implies P ∼ P ′.

τ -inertness is typically defined for labeled transition systems with a designated in-
ternal action τ , hence its name. In our case, since the LTS and the reduction relation
coincide, we can safely work with reductions, and show that the class of well-typed
processes is τ -inert with respect to ≈. Intuitively, τ -inertness says that reduction does
not change the behavior of a process. It is therefore a property relevant for verifica-
tion, as it ensures that well-typed processes can perform arbitrarily many reductions
remaining in the same equivalence class; this is strengthened by the fact that termi-
nation (Theorem 5.1) ensures that these reductions are only finitely many. Adapting
Definition 6.7 to our setting, we have:

Lemma 6.2 (τ -inertness wrt ≈). Let P be a process such that Γ; ∆ ` P :: T . Suppose
P −→ P ′. Then Γ; ∆ ` P ≈ P ′ :: T .

Proof. By coinduction, exhibiting an appropriate typed context bisimulation. Using
Prop. 6.3, we work under an empty left-hand side typing. We thus define a type-
respecting relation containing (K[P ],K[P ′]), for any K ∈ KΓ;∆`T (letting Id to
stand for the identity relation):

R = {(K[P ],K[P ′]) : P −→ P ′ , K ∈ KΓ;∆`T } ∪ Id ∪W`T
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Notice that by assumption, ` K[P ] :: T ; by subject reduction (Theorem 3.1) `
K[P ′] :: T . We show thatR is a typed context bisimilarity. SupposeK[P ] moves first,
i.e., K[P ]

α−−→ M , for some α,M . We must show a matching action K[P ′]
α

=⇒ N .
We distinguish two cases, when α 6= τ and when α = τ :

• If α 6= τ then, necessarily, the action is related to the type T . Appropriate inver-
sion lemmas (Lemma 3.2) can be used to determine the actual label of α. Now,
we know that ` K[P ],K[P ′] :: T and that the only difference between K[P ] and
K[P ′] is an internal action; since α 6= τ , these conditions ensure that K[P ′] can
match the action α and that there exists an N such that K[P ′]

α
=⇒ K ′[P ′′], where

K =⇒ K ′. The analysis concludes by a case analysis on the shape of T ; depending
of T , the definition of ≈ determines the actual shape of the derivatives that should
be found in R. All cases are easy (output, input, and replicated input require suit-
able process closures) and covered by the definition of W`T , which ensures that
(M,N) ∈ W`T .

• If α = τ then there are two subcases: M ≡ K[P ′] (i.e., α is the same τ action
that leads from K[P ] to K[P ′]) and M 6≡ K[P ′] (i.e., α corresponds to a different
τ action from K[P ]). In the first subcase, K[P ′] can trivially match this reduction
with zero reductions, i.e., K[P ′] =⇒ K[P ′] = N . Since the pair (K[P ′],K[P ′])
is in R we are done. In the second subcase, K[P ′] is able to match this τ action
because of confluence (Theorem 5.2). Call τ1 the τ action from K[P ] to K[P ′], and
let α be τ2. That is, K[P ] can exercise both τ1 and τ2. Confluence ensures that if
K[P ] performs τ1 first, then its derivative K[P ′] can still exercise τ2—this internal
action is not discarded. Therefore, if K[P ] challenges K[P ′] with τ2, confluence
ensures thatK[P ′] can perform τ2, possibly preceded and followed by other internal
actions. A matching action K[P ′] =⇒ N , in which the weak transition contains τ2,
thus exists, and it is easy to see that (M,N) ∈ R, and we are done.

Now suppose that K[P ′] moves first, i.e., that K[P ′]
α−−→ N . We must show a match-

ing action K[P ]
α

=⇒ M . Since K[P ′] is a τ -derivative of K[P ], it is easy to show
that K[P ] can always match any action from K[P ′]: K[P ] −→ K[P ′]

α−−→ N , for any
α,N . This can be rewritten as K[P ]

α
=⇒ N and we are done.

7. Applications

In this section, we first establish the soundness of proof conversions with respect
to typed context bisimilarity, and then introduce a behavioral characterization of type
isomorphisms. Besides clarifying further the intrinsic properties of the logical inter-
pretation of session types, these applications illustrate the interplay of typed context
bisimilarity and the properties of the type system (subject reduction, progress, termi-
nation, confluence).

7.1. Soundness of Proof Conversions
Recall that, by Definition 4.1, 'c stands for the congruence on typed processes

induced by proof conversions. We now show soundness of 'c with respect to ≈, that
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is, we show that processes extracted from proof conversions are typed contextually
bisimilar.

Before formally stating and proving this claim, we provide some intuitions on it.
Consider the fifth process equality in Figure 3 (Page 12). It corresponds to the in-
terplay of rules (Tcut) and (T⊕L), under typing assumptions Γ; ∆1 ` D̂ :: x:C,
Γ; ∆2, y:A, x:C ` Ê::T , and Γ; ∆2, y:A, x:C ` F̂ ::T . Letting ∆ = ∆1,∆2, we
have:

Γ; ∆, y:A⊕B ` (νx)(D̂ |y.case(Ê, F̂ ))︸ ︷︷ ︸
(1)

'c y.case((νx)(D̂ | Ê), (νx)(D̂ | F̂ ))︸ ︷︷ ︸
(2)

:: T

with linear environments ∆1,∆2, and non-linear environment Γ, and types T,A,B,C.
Read from (1) to (2), this conversion can be interpreted as the “promotion” of the

choice at y, which causes D̂ to get “delayed” as a result. However, such a delay is seen
to be only apparent once we examine the individual typing of D̂ and the whole typing
derivation. The first typing assumption says that D̂ is able to offer behavior C at x (a
free name in D̂), as long as it is placed in a context in which the behaviors described
by names in Γ,∆1 are available. The left-hand side typing for both processes says that
they can offer some behavior T , as long as the behaviors declared in Γ,∆ and behavior
A⊕B at y are provided. Crucially, since x is private to (1), type T cannot correspond
to x:C. That is, even if D̂ is at the top-level in (1) its behavior is not immediately
available. Also because of the left-hand side typing, we know that (1) and (2) are only
able to interact with some selection at y; only then, D̂ will be able to interact with either
Ê or F̂ , whose behavior depends on the presence of behavior C at x. A conversion of
(1) into (2) could be seen as a “behavioral optimization” if one considers that (2) has
only one available prefix, while (1) has two parallel components.

For all proof conversions, the apparent phenomenon of “prefix promotion” induced
by proof conversions can be explained along the above lines. In our soundness result
(Theorem 7.1 below), the crucial point is capturing the fact that some top-level pro-
cesses may not be able to immediately exercise their behavior (cf. D̂ in (1) above).
Recall that IΓ;∆`T stands for the relation which collects pairs of processes with iden-
tical left- and right-hand side typings. Also, we use the continuation relationsW`x:A

(cf. Definition 6.6).

Theorem 7.1 (Soundness of Proof Conversions). Let P,Q be processes such that (i)
Γ; ∆ ` D  P :: T ; (ii) Γ; ∆ ` E  Q :: T ; (iii) P 'c Q. Then, Γ; ∆ ` P ≈ Q ::T .

Proof. By coinduction, exhibiting appropriate typed context bisimulations for each
proof conversion. In the bisimulation game, we exploit termination of well-typed pro-
cesses (Theorem 5.1) to ensure that actions can be matched with finite weak transitions,
and subject reduction (Theorem 3.1) to ensure type preservation under reductions.

We detail the case for the first proof conversion in Figure 4 —see Appendix C.1
(Page 61) for other cases. This proof conversion corresponds to the interplay of rules
(T⊗R) and (Tcut). We have to show that Γ; ∆ `M ≈ N :: z:A⊗B where

∆ = ∆1,∆2,∆3 Γ; ∆1 ` D̂ :: x:C Γ; ∆2, x:C ` Ê :: y:A Γ; ∆3 ` F̂ :: z:B (4)
M = (νx)(D̂ | z〈y〉.(Ê | F̂ )) N = z〈y〉.((νx)(D̂ | Ê) | F̂ )
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Using Proposition 6.3, we have to show that for everyK ∈ KΓ;∆, we have ` K[M ] ≈
K[N ] :: z:A ⊗ B. In turn, this implies exhibiting a typed context bisimulation R
containing the pair (K[M ],K[N ]). We defineR =W`z:A⊗B ∪ S ∪ S−1, with

S = {(K[M ′],K[N ]) : M =⇒M ′, K ∈ KΓ;∆}

and W`z:A⊗B is as in Definition 6.6. Notice that S is a type-respecting relation in-
dexed by ` z:A ⊗ B. In fact, using the typings in (4)—with Γ = ∆ = ∅—and
exploiting subject reduction (Theorem 3.1), it can be checked that for all (P,Q) ∈ S
both ` P :: z:A⊗B and ` Q :: z:A⊗B can be derived.

We now show that R is a typed context bisimulation. Pick any K ∈ KΓ;∆. Using
Definition 6.5, we can assume K = (νũ, x̃)(KΓ | K∆ | [·]) where

• KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Di, for every ui:Di ∈ Γ;

• K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆.

Clearly, (K[M ],K[N ]) ∈ S, and so it is in R. Now, suppose K[M ] moves first:
K[M ]

α−−→M?
1 . We have to find a matching action α from K[N ], i.e., K[N ]

α
=⇒ N?

1 .
Since ` K[M ] :: z:A⊗B, we have two possible cases for α:

1 Case α = τ . We consider the possibilities for the origin of the reduction:

(a) KΓ
τ−−→ K ′Γ and K[M ]

τ−−→ K ′[M ]. However, this cannot be the case, as
by construction KΓ corresponds to the parallel composition of input-guarded
replicated processes which cannot evolve on their own.

(b) K∆
τ−−→ K ′∆ and K[M ]

τ−−→ K ′[M ]. Then, for some l ∈ J , Sl
τ−−→ S′l :

K[M ]
τ−−→ (νũ, x̃)(KΓ | K ′∆ |M) = K ′[M ] = M?

1

Now, contextK is the same inK[N ]. ThenK∆ occurs identically inK[N ], and
this reduction can be matched by a finite weak transition (Theorem 5.1):

K[N ] =⇒ (νũ, x̃)(KΓ | K ′′∆ | N) = K ′′[N ] = N?
1

By subject reduction (Theorem 3.1), ` S′l :: xl:Cl; hence, K ′,K ′′ are in KΓ;∆.
Hence, the pair (K ′[M ],K ′′[N ]) is in S (as M =⇒M ) and so it is inR.

(c) M τ−−→ M ′ and K[M ]
τ−−→ K[M ′]. Since M = (νx)(D̂ | z〈y〉.(Ê | F̂ )),

the only possibility is that there is a D̂1 such that D̂ τ−−→ D̂1 and M ′ =
(νx)(D̂1 | z〈y〉.(Ê | F̂ )). This way,

K[M ]
τ−−→ (νũ, x̃)(KΓ | K∆ |M ′) = K[M ′] = M?

1

We observe that K[N ] cannot match this action, but K[N ] =⇒ K[N ] is a valid
weak transition. Hence, N?

1 = K[N ]. By subject reduction (Theorem 3.1),
we infer that ` K[M ′] :: z:A ⊗ B. We use this fact to observe that the pair
(K[M ′],K[N ]) is included in S. Hence, it is inR.
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(d) There is an interaction between M and KΓ or between M and K∆: this is only
possible by the interaction of D̂ with KΓ or K∆ on names in ũ, x̃. Again, the
only possible weak transition from K[N ] matching this reduction is K[N ] =⇒
K[N ], and the analysis proceeds as in the previous case.

2 Case α 6= τ . Then the only possibility, starting from K[M ], is an output action of
the form α = z〈y〉. This action can only originate in M :

K[M ]
z〈y〉−−−→ (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | F̂ ))) = M?

1

Process K[N ] can match this action via the following finite weak transition:

K[N ]
z〈y〉
=⇒ (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′) | F̂ ′)) = N?

1

Observe how N?
1 reflects the changes in K[N ] due to the possible reductions before

and after the output action. By definition of ≈ (output case), we consider the com-
position of M?

1 and N?
1 with any V such that y:A ` V :: −:1. Using the typings

in (4) and subject reduction (Theorem 3.1), we infer both

`M?
2 = (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | V | F̂ ))) :: z:B

` N?
2 = (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′ | V ) | F̂ ′)) :: z:B

Hence, the pair (M?
2 , N

?
2 ) is inW`z:A⊗B and so it is inR.

Now suppose thatK[N ] moves first: K[N ]
α−−→ N?

1 . We have to find a matching action
α from K[M ]: K[M ]

α
=⇒M?

1 . Similarly as before, there are two cases: either α = τ
or α = z〈y〉. The former is as detailed before; the only difference is that reductions
fromK[N ] can only be originated inK∆; these are matched byK[M ] with finite weak
transitions originating in both K and in M . We thus obtain pairs of processes in S−1.
The analysis for the case for output mirrors the given above and is omitted.

7.2. A Behavioral Characterization of Type Isomorphisms

In type theory, types A and B are called isomorphic if there are morphisms πA of
B ` A and πB of A ` B which compose to the identity in both ways—see, e.g., [17].
We adapt this notion to our setting, by using proofs as morphisms, and by using typed
context bisimilarity to account for isomorphisms in linear logic. (Below, we write P 〈x̃〉

for a process parametric on a sequence of names x1, . . . , xn.)

Definition 7.1 (Isomorphism). Two types A and B are called isomorphic, noted A '
B, if, for any names x, y, z, there exist processes P 〈x,y〉 and Q〈y,x〉 such that:
(i) · ;x:A ` P 〈x,y〉 :: y:B; (ii) · ; y:B ` Q〈y,x〉 :: x:A;
(iii) · ;x:A ` (νy)(P 〈x,y〉 | Q〈y,z〉) ≈ [x↔z] :: z:A; and
(iv) · ; y:B ` (νx)(Q〈y,x〉 | P 〈x,z〉) ≈ [y↔z] :: z:B.
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Thus, intuitively, if A,B are service specifications then by establishing A ' B
one can claim that having A is as good as having B, because we can build one from
the other using an isomorphism. Isomorphisms in linear logic can then be used to
simplify/transform service interfaces in the π-calculus. They can also help validating
our interpretation with respect to basic linear logic principles. As an example, let us
consider multiplicative conjunction⊗. A basic linear logic principle isA⊗B ` B⊗A.
Our interpretation of A ⊗ B may appear asymmetric as, in general, a channel of type
A⊗ B is not typable by B ⊗ A. Theorem 7.2 below states the symmetric nature of ⊗
as a type isomorphism: symmetry is realized by a process which coerces any session
of type A⊗B to a session of type B ⊗A.

Theorem 7.2. Let A,B, and C be any type, as in Def 3.1. Then the following hold:
(i) A⊗B ' B ⊗A

(ii) (A⊕B)(C ' (A(C) N (B(C)
(iii) !(ANB) ' !A⊗!B

Proof. We give details for the proof of (i) above; see Appendix C.2, Page 67, for
further details.
We check conditions (i)-(iv) of Def. 7.1 for processes P 〈x,y〉, Q〈y,x〉 defined as

P 〈x,y〉 = x(u).y〈n〉.([x↔n] | [u↔y])

Q〈y,x〉 = y(w).x〈m〉.([y↔m] | [w↔x])

Checking (i)-(ii), i.e., · ;x:A⊗B ` P 〈x,y〉::y:B⊗A and · ; y:B⊗A ` Q〈y,x〉::x:A⊗B
is easy; rule (Tid) ensures that both typings hold for anyA,B. We sketch only the proof
of (iii); the proof of (iv) is analogous. Let M = (νy)(P 〈x,y〉 | Q〈y,z〉) and N = [x↔
z]; we need to show · ;x:A⊗B `M ≈N :: z:A⊗B. By Proposition 6.3, we have to
show that for everyK ∈ K · ;x:A⊗B , we have ` K[M ] ≈ K[N ] :: z:A⊗B. In turn, this
implies exhibiting a typed context bisimulation R containing (K[M ],K[N ]). Letting
S = {(R1, R2) : K[M ] =⇒ R1, K[N ] =⇒ R2}, we set R=W`z:A⊗B ∪ S ∪ S−1.
Following expected lines,R can be shown to be a typed context bisimulation.

8. Related Work

Logical Relations in Concurrency. In a concurrent/process calculi setting, logical re-
lations (or closely related techniques) have been investigated by Berger, Honda, and
Yoshida [45, 3, 4], Sangiorgi [40], Caires [8], and Boudol [7]. None of these works
considers session types, and so the logical relations proposed in such works are very
different from ours. Boudol [7] relies on the classical realizability technique (together
with a type and effect system) to establish termination in a higher-order imperative lan-
guage. Caires [8] proposes a semantic approach to proving soundness for type systems
for concurrency, by relying on a spatial logic interpretation of types. More related to
our developments are works by Yoshida, Berger, Honda [45] and by Sangiorgi [40],
which aim at identifying terminating fragments of the π-calculus by using types, rely-
ing on arguments based on logical relations. The logical relations framework developed
in [45] is extended in [3, 4] to the case of a second-order, polymorphic π-calculus. A
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main result in [3, 4] is a proof of termination using the method of reducibility candi-
dates; while [3] reports a relational parametricity result, [4] puts forward a behavioral
theory based on generic transitions and a fully abstract embedding of System F. All
of these works consider typing disciplines different from session types; consequently,
associated semantic interpretations of types are very different from ours, and rely on
constraints on the syntax and the types of processes. In sharp contrast to [45, 40],
which aim at type disciplines that guarantee termination, here we started from a well-
established type discipline for the π-calculus and have used linear logical relations to
show termination and confluence of well-typed processes. We have shown how the
interpretation of intuitionistic linear logic as session types in [10] leads to intuitive log-
ical relations, naturally defined on the structure of types. In this sense, our approach is
more principled than in [45, 40], as it is not an adaptation of the method, but rather an
instantiation of the method on our canonical linear type structure.

Logical Interpretations of Session Types. Dal Lago and Giamberardino [13] introduce
an interpretation of session types as soft linear logic propositions [27]. As a result, the
exponential “!” is treated following a non canonical discipline that uses two different
typing environments. Hence, typing rules and judgements in [13] are rather different
from ours. A bound on the length of reductions starting from well-typed-processes is
obtained; the proof uses techniques from Implicit Computational Complexity. Neither
confluence, observational equivalences, nor issues of inference permutability and type
isomorphisms are addressed in [13]. Although here we do not provide a similar bound,
it is remarkable that our proof of termination follows only the principles and properties
of [10]; in contrast to [13], our proof appeals to well-known technical devices, and
allows us to retain a standard, intuitive treatment of “!”. This is particularly desirable
for extensions/generalizations of our logical interpretation of session types, such as the
proposed in [44, 34].

Loosely related is Mazurak and Zdancewic’s Lolliproc [28], a functional language
with support for concurrency based on control operators. Lolliproc’s operational se-
mantics is based on a runtime process calculus; thread communication is defined in
terms of protocol types which are given a classic linear logic interpretation. As in our
case, type soundness, strong normalization, and confluence results hold for Lolliproc;
however, the details of the associated proof techniques are rather different from ours.

Determinacy and Confluence in Process Calculi. In term rewriting systems such as the
λ-calculus, determinacy and confluence are well-understood issues, and typically rely
on (unlabeled) reduction semantics. For process calculi, a semantics given in terms of
labelled transition systems, is often useful for it describes the interaction of processes
with their environment. As a result, notions of determinacy and confluence for process
calculi typically account for those labels, thus setting a major difference with respect
to traditional notions. It is worth noticing that our notion of confluence (Definition 5.6)
considers only weak transitions based on internal behavior, and so it is closer to classi-
cal definitions of confluence rather than to the definitions used in process calculi. Early
studies of determinacy and confluence for process calculi are due to Milner, in the set-
ting of CCS [29]; his interest was on proper definitions of such notions, focusing on
syntactic conditions on process constructs so as to build determinate, confluent sys-
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tems by construction. There is a close relationship between determinacy, confluence,
τ -inertness and the given notion of equivalence; Groote and Sellink [19] provide a
general study on such a relationship, focusing on the impact of such notions on process
verification. Milner’s approach to confluence was extended to the π-calculus by Walker
and Philippou [35], and by Nestmann [31] who characterizes (forms of) confluence in
terms of so-called port uniqueness for polarized name-passing, which is ensured by
static typing. Most related to our work is [26], which adapts Walker and Philippou’s
techniques to establish session determinacy and confluence for a session-typed asyn-
chronous π-calculus. The above mentioned differences in the definition of determinacy
and confluence prevent detailed comparisons with our confluence result, which relies
on reductions and is shown using logical relations.

Typed Behavioral Equivalences. Previous works on behavioral equivalences for typed
process calculi have considered a number of different typing disciplines. For instance,
behavioral theories for calculi with linear types (e.g., [25]), input/output types (e.g., [6,
36, 15]), subtyping with name matching (e.g., [20]), and polymorphic types (e.g., [37])
have been put forward. Still, the only work on behavioral equivalences for session-
typed processes we are aware of is [26]. It studies the behavioral theory of a π-calculus
with asynchronous, event-based binary session communication. The aim is to capture
the distinction between order-preserving communications (those inside already estab-
lished connections) and non-order-preserving communications (those outside such con-
nections). The behavioral theory in [26] accounts for principles for prefix commutation
that appear similar to those induced by our proof conversions. However, the origin and
the nature of these commutations are quite different. In fact, in [26] prefix commuta-
tion arises from the above-mentioned distinction, whereas commutations in our (syn-
chronous) framework are due to causality relations captured by types. Loosely related
to typed context bisimilarity is [46], where a form of linear bisimilarity is proposed;
following a linear type structure, it treats some visible actions as internal actions, thus
leading to an equivalence larger than standard bisimilarity which is a congruence.

9. Concluding Remarks

In this paper, we have introduced a theory of linear logical relations and a notion of
typed behavioral equivalences for session-typed, concurrent processes. These develop-
ments extend the interpretation of linear logic propositions as session types developed
by Caires and Pfenning in [10].

Our theory of linear logical relations is remarkably similar to that for functional
languages; although in our setting session types are assigned to names (and not to
terms), our linear logical relations are defined on the structure of types, relying both
on process reductions and labeled transitions. A main application of this theory is
a proof that well-typed processes are both strongly normalizing (Theorem 5.1) and
confluent (Theorem 5.2). In practice, certifying termination and confluence of session-
typed programs is important. We believe the extended correctness guarantees given by
our results could be highly beneficial for the increasingly growing number of practical
implementations (libraries, programming language extensions) based on session types
foundations—see, e.g., [24, 32, 38].
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We have also presented a behavioral theory for session-typed processes. We in-
troduced typed context bisimilarity, a novel labeled bisimilarity over typed processes,
and studied its properties. Our definition follows from the intuitive meaning of type
judgments, and is stated in the style of conventional definitions for untyped processes.
In addition to studying its main properties, we have illustrated this typed observational
equivalence in two applications, which strengthen the properties of the logic interpre-
tation established in [10]. On the one hand, we have shown soundness of proof con-
versions with respect to observational equivalence—an issue left open in [10] (Theo-
rem 7.1). On the other hand, we studied type isomorphisms resulting from linear logic
equivalences in our setting (Theorem 7.2). The basic properties of the interpretation—
especially, the combination of subject reduction and termination—were of the essence
in the proofs of both applications.

There are a number of intuitive similarities in the definitions used in formalizing
our theory of linear logical relations and those required for developing our behavioral
theory. In recent work, we have discovered a formal connection between the two top-
ics: in [9] we have generalized the linear logic relations here developed to the case
of parametric polymorphism. In this extended setting, existential and universal quan-
tification over types are interpreted as a form of session type-passing; using logical
relations we have characterized barbed congruence in a sound and complete way. In
future work, we plan to adapt the results here presented to the case of the interpretation
of session types into classical linear logic, as defined in [11].
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Appendix A. Proofs of Section 5 (Logical Relations)

Below, we write P 6−→ to mean that P cannot reduce; it can perform visible actions,
though. Also, we write P −→k P ′ to denote a reduction sequence of length k from P to
P ′. Given a process P⇓, we write mlen(P ) to stand for the length of the longest reduc-
tion sequence originating from P . Given terminating processes P1, . . . , Pn, notation
mlen(P1, . . . , Pn) stands for mlen(P1) + · · ·+ mlen(Pn).

Appendix A.1. Proof of Proposition 5.7

We repeat the statement in Page 19:

Proposition Appendix A.1 (5.7). Let P,Q be well-typed processes. If P ∈ L[T ] and
P ≡! Q then Q ∈ L[T ].

Proof. By induction on the definition of P ≡! Q (Def. 5.2). Given Prop 5.5, it suffices
to consider only the sharpened replication axioms. In each case, we use an auxiliary
induction on the structure of T , which relies on Prop 5.2 and on the operational corre-
spondence between P and Q given by Prop 5.1.

• Axiom (1): Then we have two sub-cases. In the first one, we have

P = (νu)(!u(z).P1 | (νy)(P2 | P3))

Q = (νy)((νu)(!u(z).P1 | P2) | (νu)(!u(z).P1 | P3))

Hence, sub-process !u(z).P1 has been distributed to the unguarded processes P2

and P3. We proceed by induction on the structure of the type T . Each case proceeds
by showing that Q satisfies termination, well-typedness, and operational correspon-
dence requirements stated in Def 5.3. For the latter, we use Prop 5.1(1) and 5.1(2).
We have six cases to check; we detail only some of them as the rest is similar.

Case P ∈ L[z:1]. Then P⇓ and ·; · ` P :: z:1 and for all P ′ such that P =⇒ P ′

and P ′ 6−→ it implies that P ′ ≡! 0. First, by Prop 5.2, we have that Q⇓. Now,
since ·; · ` P :: z:1 it is easy to show that there exists a typing derivation
for ·; · ` Q :: z:1. Finally, by Prop 5.1(1), we know that Q can match any
reduction from P . Therefore, there exists a Q′ such that Q =⇒ Q′ and Q′ 6−→
and P ′ ≡! Q

′. By transitivity of ≡!, we have that Q′ ≡! 0 and so Q ∈ L[z:1],
as desired.

Case P ∈ L[z:A(B]. Then P⇓ and ·; · ` P :: z:A(B. Hence, by Prop 5.6,
P has an input action on z. Moreover, by Def 5.3, for all P ′, y such that

P
z(y)
=⇒ P ′ it implies that ∀R ∈ L[y:A].(νy)(P ′ | R) ∈ L[z:B]. First, by

Prop 5.2, we have that Q⇓. Now, since ·; · ` P :: z:A(B, it is easy to
show that there exists a typing derivation for ·; · ` Q :: z:A(B. Finally,
by Prop 5.1(1) and 5.1(2), we know that Q can match any reduction/transition

from P . Therefore, there exists a Q′ such that Q
z(y)
=⇒ Q′ and P ′ ≡! Q

′. Now,
by induction hypothesis we have that ∀R ∈ L[y:A].(νy)(Q′ | R) ∈ L[z:B],
and so Q ∈ L[z:A(B], as desired.

42



Case P ∈ L[z:A⊗B]. Then P⇓ and ·; · ` P :: z:A ⊗ B. Hence, by Prop 5.6,
P has an output action on z. Moreover, by Def 5.3, for all P ′, y such that

P
(νy)z〈y〉

=⇒ P ′ it implies that there exist P1, P2 such that P ′ ≡! P1 | P2 and
P1 ∈ L[y:A] and P2 ∈ L[z:B]. First, by Prop 5.2, we have that Q⇓. Now,
since ·; · ` P :: z:A⊗B, it is easy to show that there exists a typing derivation
for ·; · ` Q :: z:A ⊗ B. Now, by Prop 5.1(1) and 5.1(2), we know that Q can
match any reduction/transition from P . Therefore, there exists a Q′ such that

Q
(νy)z〈y〉

=⇒ Q′ and P ′ ≡! Q
′. Now, by transitivity we have thatQ′ ≡! P1 | P2,

and so Q ∈ L[z:A⊗B], as desired.
Case P ∈ L[z:!A]. Similar to the case P ∈ L[z:1].

The second sub-case is symmetric to the first one, with P defined as Q and Q de-
fined as P . As such, sub-process !u(z).P1 has been “factorized” from the process
expression. The analysis follows the lines of the first case and is omitted.

• Axiom (2): Then we have two sub-cases. In the first one, we have:

P = (νu)(!u(y).P1 | (νv)(!v(z).P2 | P3))

Q = (νv)((!v(z).(νu)(!u(y).P1 | P2)) | (νu)(!u(y).P1 | P3))

Similarly as before, sub-process !u(y).P1 has been distributed to the unguarded pro-
cess P3 and to the input-guarded replicated process !v(z).P2. We proceed by induc-
tion on the structure of the type T . Each case proceeds by showing that Q satisfies
the requirements stated in Def 5.3. The analysis mirrors the one given above for Ax-
iom (1), using Prop 5.2, observing that typability of P under some type T implies
typability of Q under T , and exploiting the operational correspondence between P
and Q given by Prop 5.1(1) and 5.1(2).

In the second sub-case, P defined as Q and Q defined as P . As such, sub-process
!u(y).P1 has been factorized from the process expression. The analysis follows the
lines of the first sub-case and is omitted.

• Axiom (3): Then we have two sub-cases. In the first one, we have

P = (νu)(!u(y).P1 | P2) with u 6∈ fn(P2) Q = P2

Hence, sub-process !u(y).P1 is discarded, as it cannot be invoked by P2. We proceed
by induction on the structure of the type T . Each case proceeds by showing that Q
satisfies the requirements stated in Def 5.3. The crucial point is to observe that since
u 6∈ fn(P2) then every reduction/transition from P originates in P2, and so they can
be trivially matched by Q. As a consequence, P belongs to L[z:T ], for some z 6= u.
We have six cases to check; we detail two of them, the others are similar:

Case P ∈ L[z:1]. Then P⇓ and ·; · ` P :: z:1 and for all P ′ such that P =⇒ P ′

and P ′ 6−→ it implies that P ′ ≡! 0. First, by Prop 5.2, we have that Q⇓. Now,
since ·; · ` P :: z:1 it is possible to show that ·; · ` Q :: z:1. Notice also that
since u 6∈ fn(P2), none of the reductions from P to P ′ is a synchronization on
u. Hence, every reduction of P originates in P2, and since Q = P2, the thesis
trivially holds.
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Case P ∈ L[z:A(B]. Then P⇓ and ·; · ` P :: z:A(B. Hence, by Prop 5.6, P

has an input action on z. Moreover, by Def 5.3, for all P ′, y such that P
z(y)
=⇒

P ′ it implies that ∀R ∈ L[y:A].(νy)(P ′ | R) ∈ L[z:B]. First, by Prop 5.2,
we have that Q⇓. Now, since ·; · ` P :: z:A(B then it can be shown that
·; · ` Q :: z:A(B. Now, since u 6∈ fn(P2), none of the reductions/transition
from P to P ′ is a synchronization on u. Hence, every reduction and transition
of P originates in P2, and since Q = P2, we immediately infer that Q ∈
L[z:A(B], as desired.

The second sub-case is the symmetric of the first one, with P defined as Q and
Q defined as P . That is, process Q is the extension of P = P2 with a process
!u(y).P1 that it cannot invoke. Notice that we assume well-typed processes, and so
the extended process Q is well-typed as well. The analysis follows the lines of the
first case and is omitted.

Appendix A.2. Proof of Proposition 5.10
We repeat the statement in Page 20:

Proposition Appendix A.2 (5.10 – Weakening). Let P,Q be processes such that
P ∈ L[T ] and Q ∈ L[−:1]. Then, P | Q ∈ L[T ].

Proof. By induction on the structure of the type T . First, it is worth observing that
P ∈ L[T ] and Q ∈ L[−:1] imply ·; · ` P :: T and ·; · ` Q :: −:1, respectively. Hence,
we can derive the typing ·; · ` P | Q :: T (cf. the derived rule (comp)). In fact, the
type of Q indicates it cannot offer any visible action to its environment, and so it is
“independent” from it.

If T=− :1 then P | Q represents the parallel composition of two terminating pro-
cesses that cannot interact with each other. Hence, for all R such that P | Q =⇒ R
and R 6→ we have that R ≡! 0, and so P | Q ∈ L[−:1]. The cases in which T 6=− :1

rely on the fact that if P α
=⇒ P ′ then there exists a process R such that P | Q α

=⇒ R.
The proof is by induction on k = mlen(Q). If k = 0 then Q 6−→ and for every
weak transition P α

=⇒ P ′, we have P | Q α
=⇒ P ′ | Q = R. In the inductive case,

we assume k > 0, and so reductions (or the action α) from P may go interleaved
with reductions from Q. Given P α

=⇒ P ′ then by induction hypothesis there is an
R′ such that P | Q α

=⇒ P ′ | Q′ = R′, with Q reducing to Q′ in k − 1 steps. Then,
if Q′ −→ Q′′ we would have P | Q α

=⇒ P ′ | Q′ −→ P ′ | Q′′ which is equivalent to
write P | Q α

=⇒ R, with R = P ′ | Q′′, and we are done. Finally, we observe that,
given P α

=⇒ P ′, process Q (and its derivatives) pose no difficulties when decompos-
ing P ′ into smaller processes (in the case T = z:A⊗ B, for instance). Hence, we can
conclude that if P ∈ L[T ] then P | Q ∈ L[T ], as desired.

Appendix A.3. Proof of Lemma 5.2
We repeat the statement in Page 20 below. In the proof, we use G,G′, . . . and

D,D′, . . . to range over processes in CΓ and C∆, respectively. Also, by a slight abuse
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of notation we write L[x:A] and !z(y).L[y:A] to denote a process included in L[x:A]
and L[!z:A], respectively.

Lemma Appendix A.1 (5.2). If Γ; ∆ ` P :: T then P ∈ L[Γ; ∆ ` T ].

Proof. By induction on the derivation of Γ; ∆ ` P :: T , with a case analysis on the
last typing rule used.

Thus, we have 18 cases to check. In all of them, we use Lemma 5.1 and show that
every M = (νũ, x̃)(P | G | D) with G ∈ CΓ and D ∈ C∆, is in L[T ]. In case (Tid),
the proof uses Prop 5.4 (closure wrt substitution) and Prop 5.9 (backward closure).
In cases (T⊗L), (T(L), (Tcopy), (T⊕L), (TNL1), and (TNL2), the proof proceeds in
two steps: first, relying on Prop 5.8 (forward closure) we show that everyM ′′ such that
M =⇒M ′′ is in L[T ]; then, we use this result in combination with Prop 5.9 (backward
closure) to conclude that M ∈ L[T ]. In cases (T1R), (T⊗R), (T(R), (T!R), (T⊕R1),
and (T⊕R2), the proof consists in showing that M conforms to some specific case of
Def 5.3. Case (T1L) uses Prop 5.10 (weakening). Cases (T⊗L), (T(L), (T⊕L), and
(TNL1), use the liveness guarantee given by Prop 5.6. Cases (Tcopy), (T!L)and (Tcut!)
use Prop 5.5 (closure under ≡). Cases (Tcut), (T(R), and (T!R) use Prop 5.7 (closure
under ≡!).

0. Case (Tid): Γ;x:A ` [x↔z] :: z:A.

Pick any G ∈ CΓ:
(a) G⇓, G 6−→ [By Prop 5.3]
(b) D ∈ L[x:A]

(c) M = (νũ, x)([x↔z] | G | D) ∈ L[z:A]

The proof of (c) is immediate:
(d) M −→ (νũ)(G{z/x} | D{z/x})

≡! D{z/x} = M ′ [Since x 6∈ fn(G)]
(e) M ′ ∈ L[z:A] [By (b) and Prop 5.4]
(f) M ∈ L[z:A] [By (d), (e), and Prop 5.9]

[x↔z] ∈ L[Γ;x:A ` z:A] [By (c) and Lemma 5.1]

1. Case (T1R): Γ; · ` 0 :: z:1.

Pick any G ∈ CΓ:
(a) G⇓, G 6−→ [By Prop 5.3]
(b) M = (νũ)(0 | G) ∈ L[z:1]

The proof of (b) is immediate:
(c) M 6−→ ∧M ≡! 0 [Using (a)]
(d) M ∈ L[z:1] [By (c) and Def 5.3]

0 ∈ L[Γ; · ` z:1] [By (b) and Lemma 5.1]
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2. Case (T1L): Γ; ∆, z:1 ` P :: T .

(a) Γ; ∆ ` P :: T [Premise of rule (T1L)]
(b) P ∈ L[Γ; ∆ ` T ] [By i.h. on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) M1 = (νũ, x̃)(P | G | D) ∈ L[T ] [By Lemma 5.1 on (b)]
Pick any R ∈ L[z:1] and fix M2 = M1 | R
(d) M2 ∈ L[T ] [By (c) and Prop 5.10]
(e) (νũ, x̃, z)(P | G | D | R) ∈ L[T ] [Expanding (d)]
P ∈ L[Γ; ∆, z:1 ` T ] [By (e) and Lemma 5.1]

3. Case (T⊗L): Γ; ∆, z:A⊗B ` z(y).P :: T

(a) Γ; ∆, y:A, z:B ` P :: T [Premise of rule (T⊗L)]
(b) P ∈ L[Γ; ∆, y:A, z:B ` T ] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, x̃, y, z)(P | G | D | L[y:A] | L[z:B]) ∈ L[T ] [By Lemma 5.1 on (b)]
Pick R ∈ L[z:A⊗B]:
(e) ·; · ` R :: z:A⊗B, R⇓ [By Def 5.3]

(f) R
z〈y〉
=⇒ R′ [By (e) and Prop 5.6]

(g) R′ ≡! R
′
1 | R′2 ∧R′1 ∈ L[y:A] ∧R′2 ∈ L[z:B] [By Def 5.3]

Fix M = (νũ, x̃, z)(z(y).P | G | D | R)

(h) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T ]

We prove (h) by induction on k = mlen(D,R): [Possible by (c) and (e)]
Base case k = 0. Hence, D 6−→, and R 6−→:
M −→ (νũ, x̃, z, y)(P | G | D | R′1 | R′2) = M ′′ [Because of (f)]
M ′′ ∈ L[T ] [Using (d) and (g)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T ] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T ] [By Prop 5.8]

(i) M ∈ L[T ] [By (h) and Prop 5.9]
z(y).P ∈ L[Γ; ∆, z:A⊗B ` T ] [By (i) and Lemma 5.1]
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4. Case (T⊗R): Γ; ∆,∆′ ` z〈y〉.(P | Q) :: z:A⊗B

(a) Γ; ∆ ` P :: y:A [Premise of rule (T⊗R)]
(b) Γ; ∆′ ` Q :: z:B [Premise of rule (T⊗R)]
(c) P ∈ L[Γ; ∆ ` y:A] [By i.h on (a)]
(d) Q ∈ L[Γ; ∆′ ` z:B] [By i.h on (b)]
Pick any G ∈ CΓ, D ∈ C∆, D′ ∈ C∆′ :
(e) G⇓, G 6−→, D⇓, D′⇓ [By Prop 5.3]
(f) (νũ, x̃1)(P | G | D) ∈ L[y:A] [By Lemma 5.1 on (c)]
(g) (νũ, x̃2)(Q | G | D′) ∈ L[z:B] [By Lemma 5.1 on (d)]
Fix x̃ = x̃1 ∪ x̃2:
(h) M = (νũ, x̃)((νy)z〈y〉.(P | Q) | G | D | D′)∈ L[z:A⊗B]

We prove (h) by induction on k = mlen(D,D′): [Possible by (e)]
Base case k = 0. Hence, D 6−→, and D′ 6−→:

(i) M
z〈y〉−−−→ (νũ, x̃)(P | Q | G | D | D′) = M ′

M ′ ≡! (νũ, x̃1)(P | G | D)︸ ︷︷ ︸
M ′

1

| (νũ, x̃2)(Q | G | D′)︸ ︷︷ ︸
M ′

2

(j) M ′1 ∈ L[y:A] [By (f)]
(k) M ′2 ∈ L[z:B] [By (g)]
M ∈ L[z:A⊗B] [By Def 5.3, using (i), (j), and (k)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[z:A⊗B] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[z:A⊗B] [By Prop 5.8]

z〈y〉.(P | Q) ∈ L[Γ; ∆,∆′ ` z:A⊗B] [By (h) and Lemma 5.1]

5. Case (T(L): Γ; ∆,∆′, z:A(B ` z〈y〉.(P | Q) :: T

(a) Γ; ∆ ` P :: y:A [Premise of rule (T(L)]
(b) Γ; ∆′, z:B ` Q :: T [Premise of rule (T(L)]
(c) P ∈ L[Γ; ∆ ` y:A] [By i.h on (a)]
(d) Q ∈ L[Γ; ∆′, z:B ` T ] [By i.h on (b)]
Pick any G ∈ CΓ, D ∈ C∆, D′ ∈ C∆′ :
(e) G⇓, G 6−→, D⇓, D′⇓ [By Prop 5.3]
(f) (νũ, x̃1)(P | G | D) ∈ L[y:A] [By Lemma 5.1 on (c)]
(g) (νũ, x̃2, z)(Q | G | D′ | L[z:B]) ∈ L[T ] [By Lemma 5.1 on (d)]
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Fix x̃ = x̃1 ∪ x̃2 and pick R ∈ L[z:A(B]:
(h) ·; · ` R :: z:A(B, R⇓ [By Def 5.3]

(i) R
z(y)
=⇒ R′ [By (h) and Prop 5.6]

(j) ∀Q ∈ L[y:A].(νy)(R′ | Q) ∈ L[z:B] [By Def 5.3]
Fix M = (νũ, x̃, z)(z〈y〉.(P | Q) | G | D | D′ | R)

(k) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T ]

We prove (k) by induction on k = mlen(D,D′, R): [Possible by (e) and (h)]
Base case k = 0. Hence, D 6−→, D′ 6−→, R 6−→:
M −→ (νũ, x̃, z, y)(P | Q | G | D | D′ | R′) = M ′′ [Because of (i)]
Fix M∗ = (νũ, x̃1)(P | G | D) :

(l) M∗ ∈ L[y:A] [Using (f)]
M ′′ ≡! (νũ, x̃2, z)(Q | G | D′ | (νy)(R′ |M∗)) = M1

(m) (νy)(R′ |M∗) ∈ L[z: B] [Using (j) and (l)]
(n) M1 ∈ L[T ] [Using (g) and (m)]
M ′′ ∈ L[T ] [By Prop 5.7 and (n)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T ] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T ] [By Prop 5.8]

(o) M ∈ L[T ] [By (k) and Prop 5.9]
z〈y〉.(P | Q) ∈ L[Γ; ∆,∆′, z:A(B ` T ] [By (o) and Lemma 5.1]

6. Case (T(R): Γ; ∆ ` z(y).P :: z:A(B

(a) Γ; ∆, y:A ` P :: z:B [Premise of rule (T(R)]
(b) P ∈ L[Γ; ∆, y:A ` z:B] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, x̃, y)(P | G | D | L[y:A]) ∈ L[z:B] [By Lemma 5.1 on (b)]
(e) M = (νũ, x̃)(z(y).P | G | D)∈ L[z:A(B]

We prove (e) by induction on k = mlen(D): [Possible by (c)]
Base case k = 0. Hence, D 6−→:

(f) M
z(y)−−→ (νũ, x̃)(P | G | D) = M1

Pick any R ∈ L[y:A]:
(g) (νũ, x̃, y)(P | G | D | R) ∈ L[z:B] [Using (d)]
M ∈ L[z:A(B] [By Def 5.3, using (f),(g)]
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Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[z:A(B] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[z:A(B] [Prop 5.8]

z(y).P ∈ L[Γ; ∆ ` z:A(B] [By Lemma 5.1 on (e)]

7. Case (Tcut): Γ; ∆,∆′ ` (νz)(P | Q) :: T

(a) Γ; ∆ ` P :: z:A [Premise of rule (Tcut)]
(b) Γ; ∆′, z:A ` Q :: T [Premise of rule (Tcut)]
(c) P ∈ L[Γ; ∆ ` z:A] [By i.h. on (a)]
(d) Q ∈ L[Γ; ∆′, z:A ` T ] [By i.h. on (b)]
Pick any G ∈ CΓ, D ∈ C∆, D′ ∈ C∆′ :
(e) (νũ, x̃1)(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (c)]
(f) (νũ, x̃2, z)(Q | G | D′ | L[z:A]) ∈ L[T ] [By Lemma 5.1 on (d)]
Fix M = (νũ, x̃)((νz)(P | Q) | G | D | D′)
M ≡! (νz)((νũ, x̃2)(Q | G | D′) | (νũ, x̃1)(P | G | D)︸ ︷︷ ︸

M1

) = M ′

(g) M1 ∈ L[z:A] [Using (e)]
(h) M ′ ∈ L[T ] [Combining (g) and (f)]
(i) M ∈ L[T ] [Using (h) and Prop 5.7]
(j) (νũ, x̃)((νz)(P | Q) | G | D | D′) ∈ L[T ] [Expanding (i)]
(νz)(P | Q) ∈ L[Γ; ∆,∆′ ` T ] [By Lemma 5.1 on (j)]

8. Case (Tcut!): Γ; ∆ ` (νz)(!z(y).P | Q) :: T

(a) Γ; · ` P :: y:A [Premise of rule (Tcut!)]

(b) Γ, z:A; ∆ ` Q :: T [Premise of rule (Tcut!)]
(c) P ∈ L[Γ; · ` y:A] [By i.h. on (a)]
(d) Q ∈ L[Γ, z:A; ∆ ` T ] [By i.h. on (b)]
Pick any G ∈ CΓ, D ∈ C∆:
(e) (νũ)(P | G) ∈ L[y:A] [By Lemma 5.1 on (c)]
(f) (νũ, x̃, z)(Q | G | !z(y).L[y:A] | D) ∈ L[T ] [By Lemma 5.1 on (d)]
Fix M = (νũ, z, x̃)(!z(y).P | Q | G | D)

(g) M ∈ L[T ] [Combining (e) and (f)]
M ≡ (νũ, x̃)((νz)(!z(y).P | Q) | G | D) = M ′

(h) M ′ ∈ L[T ] [From (g), using Prop 5.5]
(νz)(!z(y).P | Q) ∈ L[Γ; ∆ ` T ] [By Lemma 5.1 on (h)]
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9. Case (Tcopy): Γ, z:A; ∆ ` z〈y〉.P :: T

(a) Γ, z:A; ∆, y:A ` P :: T [Premise of rule (Tcopy)]
(b) P ∈ L[Γ, z:A; ∆, y:A ` P :: T ] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, z, x̃, y)(P | G | !z(y).L[y:A] | D | L[y:A]) ∈ L[T ] [By Lemma 5.1 on (b)]
Pick R ∈ L[y:A]:
Fix M = (νũ, z, x̃)(z〈y〉.P | G | !z(y).R | D)

(e) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T ]

We prove (e) by induction on k = mlen(D): [Possible by (c)]
Base case k = 0. Hence, D 6−→:
M −→≡ (νũ, z, x̃, y)(P | G | !z(y).R | D | R) = M ′′

M ′′ ∈ L[T ] [Using (d) and Prop 5.5]
Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T ] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T ] [By Prop 5.8]

(f) M ∈ L[T ] [By (e) and Prop 5.9]
z〈y〉.P ∈ L[Γ, z:A; ∆ ` T ] [By (f) and Lemma 5.1]

10. Case (T!L): Γ; ∆, y:!A ` P :: T

(a) Γ, z:A; ∆ ` P{z/y} :: T [Premise of rule (T!L)]
(b) P{z/y} ∈ L[Γ, z:A; ∆ ` T ] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) (νũ, z, x̃)(P{z/y} | G | !z(w).L[w:A] | D) ∈ L[T ] [By Lemma 5.1 on (b)]
(d) (νũ, y, x̃)(P | G | !y(w).L[w:A]︸ ︷︷ ︸

R

| D) ∈ L[T ] [By ≡ (α-conv) on (c)]

(e) R ∈ L[y:!A] [By Def 5.3]
P ∈ L[Γ; ∆, y:!A ` T ] [By (d), (e), Prop 5.5, and Lemma 5.1]

11. Case (T!R): Γ; · `!z(y).P :: z:!A

(a) Γ; · ` P :: y:A [Premise of rule (T!R)]
(b) P ∈ L[Γ; · ` y:A] [By i.h on (a)]
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Pick any G ∈ CΓ:
(c) G⇓, G 6−→ [By Prop 5.3]
(d) (νũ)(P | G) ∈ L[y:A] [By Lemma 5.1 on (b)]
Fix M = (νũ)(!z(y).P | G)

M ≡! !z(y).(νũ)(P | G) = M ′ [By Def 5.2, Axiom (2)]
(e) M ′ ∈ L[z:!A] [By Def 5.3, using (d)]
(f) M ∈ L[z:!A] [By (e) and Prop 5.7]
!z(y).P ∈ L[Γ; · ` z:!A] [By (f) and Lemma 5.1]

12. Case (T⊕L): Γ; ∆, z:A⊕B ` z.case(P,Q) :: T

(a) Γ; ∆, z:A ` P :: T [Premise of rule (T⊕L)]
(b) Γ; ∆, z:B ` Q :: T [Premise of rule (T⊕L)]
(c) P ∈ L[Γ; ∆, z:A ` T ] [By i.h on (a)]
(d) Q ∈ L[Γ; ∆, z:B ` T ] [By i.h on (b)]
Pick any G ∈ CΓ, D ∈ C∆:
(e) G⇓, G 6−→, D⇓ [By Prop 5.3]
(f) (νũ, x̃, z)(P | G | D | L[z:A]) ∈ L[T ] [By Lemma 5.1 on (c)]
(g) (νũ, x̃, z)(Q | G | D | L[z:B]) ∈ L[T ] [By Lemma 5.1 on (d)]
Pick R ∈ L[z:A⊕B]:
(h) ·; · ` R :: z:A⊕B, R⇓ [By Def 5.3]

(i) R z.inl
=⇒ R′ ∨R z.inr

=⇒ R′ [By (h) and Prop 5.6]

(j) R z.inl
=⇒ R′ ⇒ R′ ∈ L[z:A] ∧ R z.inr

=⇒ R′ ⇒ R′ ∈ L[z:B] [By Def 5.3]
Fix M = (νũ, x̃, z)(z.case(P,Q) | G | D | R) :

(k) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T ]

We prove (k) by induction on k = mlen(D,R): [Possible by (e) and (h)]
Base case k = 0. Hence, D 6−→, R 6−→:
M −→M ′′1 ∨M ′′ −→M ′′2 ,where :

M ′′1 = (νũ, x̃, z)(P | G | D | R′) [Because of (i)]
M ′′2 = (νũ, x̃, z)(Q | G | D | R′) [Because of (i)]
M ′′1 ∈ L[T ] [Using (f)]
M ′′2 ∈ L[T ] [Using (g)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T ] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T ] [By Prop 5.8]
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(l) M ∈ L[T ] [By (k) and Prop 5.9]
z.case(P,Q) ∈ L[Γ; ∆, z:A⊕B ` T ] [By (l) and Lemma 5.1]

13. Case (TNL1): Γ; ∆, z:ANB ` z.inl;P :: T

(a) Γ; ∆, z:A ` P :: T [Premise of rule (TNL1)]
(b) P ∈ L[Γ; ∆, z:A ` T ] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, x̃, z)(P | G | D | L[z:A]) ∈ L[T ] [By Lemma 5.1 on (b)]
Pick R ∈ L[z:ANB]:
(e) ·; · ` R :: z:ANB, R⇓ [By Def 5.3]

(f) R z.inl
=⇒ R1 ∨R

z.inr
=⇒ R2 [By (e) and Prop 5.6]

(g) R z.inl
=⇒ R1 ⇒ R1 ∈ L[z:A] ∧ R z.inr

=⇒ R2 ⇒ R2 ∈ L[z:B] [By Def 5.3]
Fix M = (νũ, x̃, z)(z.inl;P | G | D | R) :

(h) ∀M ′′.M =⇒M ′′ ⇒M ′′ ∈ L[T ]

We prove (h) by induction on k = mlen(D,R): [Possible by (c) and (e)]
Base case k = 0. Hence, D 6−→, R 6−→:
M −→ (νũ, x̃, z)(P | G | D | R1) = M ′′

M ′′ ∈ L[T ] [Using (d) and (g)]
Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[T ] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[T ] [By Prop 5.8]

(j) M ∈ L[T ] [By (h) and Prop 5.9]
z.inl;P ∈ L[Γ; ∆, z:ANB ` T ] [By (j) and Lemma 5.1]

14. Case (TNL2): Analogous to case (TNL1).

15. Case (TNR): Γ; ∆ ` z.case(P,Q) :: z:ANB

(a) Γ; ∆ ` P :: z:A [Premise of rule (TNR)]
(b) Γ; ∆ ` Q :: z:B [Premise of rule (TNR)]
(c) P ∈ L[Γ; ∆ ` z:A] [By i.h on (a)]
(d) Q ∈ L[Γ; ∆ ` z:B] [By i.h on (b)]
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Pick any G ∈ CΓ, D ∈ C∆:
(e) G⇓, G 6−→, D⇓ [By Prop 5.3]
(f) (νũ, x̃)(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (c)]
(g) (νũ, x̃)(Q | G | D) ∈ L[z:B] [By Lemma 5.1 on (d)]
(h) M = (νũ, x̃)(z.case(P,Q) | G | D) ∈ L[z:ANB]

We prove (h) by induction on k = mlen(D): [Possible by (e)]
Base case k = 0. Hence, D 6−→:

(i) M z.inl−−→M1 ∧M
z.inr−−−→M2,where :

M1 = (νũ, x̃)(P | G | D)

M2 = (νũ, x̃)(Q | G | D)

(j) M1 ∈ L[z:A] [Using (f)]
(k) M2 ∈ L[z:B] [Using (g)]
M ∈ L[z:ANB] [By Def 5.3, using (i), (j), (k)]

Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[z:ANB] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[z:ANB] [By Prop 5.8]

z.case(P,Q) ∈ L[Γ; ∆ ` z:ANB] [By (h) and Lemma 5.1]

16. Case (T⊕R1): Γ; ∆ ` z.inl;P :: z:A⊕B

(a) Γ; ∆ ` z.inl;P :: z:A⊕B [Premise of rule (T⊕R1)]
(b) P ∈ L[Γ; ∆ ` z:A] [By i.h on (a)]
Pick any G ∈ CΓ, D ∈ C∆:
(c) G⇓, G 6−→, D⇓ [By Prop 5.3]
(d) (νũ, x̃)(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (b)]
(e) M = (νũ, x̃)(z.inl;P | G | D)∈ L[z:A⊕B]

We prove (e) by induction on k = mlen(D): [Possible by (c)]
Base case k = 0. Hence, D 6−→:

(i) M z.inl−−−→ (νũ, x̃)(P | G | D) = M1

(j) M1 ∈ L[z:A] [Using (d)]
M ∈ L[z:A⊕B] [Using (i), (j), and Def 5.3]
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Inductive case k > 0:

Fix the set W = {M ′ | M −→k−1 M ′}
∀M ′ ∈W.M ′ ∈ L[z:A⊕B] [By i.h.]
Fix the set W ′ = {M ′′ | M ′ −→M ′′ ∧M ′ ∈W}
∀M ′′ ∈W ′.M ′′ ∈ L[z:A⊕B] [By Prop 5.8]

z.inl;P ∈ L[Γ; ∆ ` z:A⊕B] [By (e) and Lemma 5.1]

17. Case (T⊕R2): Analogous to case (T⊕R1).

Appendix A.4. Proof of Proposition 5.11

We repeat the statement in Page 21 and present its proof.

Proposition Appendix A.3 (Properties of Confluent Processes). Assume well-typed
processes P, P ′, P1, . . . , Pk, Q. Then we have:

1. Forward closure: If P♦ and P −→ P ′ then P ′♦.

2. Backward closure: If for all Pi such that P −→ Pi we have that Pi♦, then P♦.

3. Closure wrt composition: Let P,Q be such that (i) ·; · ` P :: x:A, (ii) ·;x:A ` Q ::
T , (iii) P♦, and (iv) Q♦. Then (νx)(P | Q)♦.

Proof. 1. By assumption, we have P♦ and P −→ P ′. We have to show that for any
P1, P2 such that P ′ =⇒ P1 and P ′ =⇒ P2, there exists process P3 such that
P1 =⇒ P3 and P2 =⇒ P3. Since P♦, for any R1, R2 such that P =⇒ R1 and
P =⇒ R2, there exists an R′ such that R1 =⇒ R′ and R2 =⇒ R′. This includes
the particular case in which P −→ P ′ =⇒ P1 and P −→ P ′ =⇒ P2. The existence
of a P3 such that P1 =⇒ P3 and P2 =⇒ P3 follows from P♦. Therefore, P ′♦.

2. Given that whenever P −→ Pk, we have Pk♦, we need to “complete the diamond”,
starting from P . Precisely, we have to show that for any Pi, Pj such that P −→ Pi,
P −→ Pj , Pi♦, and Pj♦, and for any R1, R2 such that P −→ Pi =⇒ R1 and
P −→ Pj =⇒ R2, there exists an R′ such that R1 =⇒ R′ and R2 =⇒ R′.

To do so, we rely on the following fact. Let P be a process with two reductions
P −→ P1 and P −→ P2 on private names x and y, respectively. If P −→ P1 then
there is always a P ′2 such that P1 −→ P ′2 via a synchronization on y. Conversely, if
P −→ P2 then there is always a P ′1 such that P2 −→ P ′1 via a synchronization on
x. This can be shown by a case analysis on the different ways in which reductions
can arise (communication, selection, shared server invokation), using linearity, sub-
ject reduction and progress. This fact implies that a reduction P −→ Pi does not
preclude reduction paths reachable if the first reduction is P −→ Pj . Since Pi♦ and
Pj♦, this allows to conclude that P♦, as desired.
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3. There are two cases, depending on whether P and Q can interact. In turn, this de-
pends on their typing. If A=1 then P and Q do not interact and P | Q represents
their independent parallel composition. That is, their reductions proceed indepen-
dently. The fact that (P | Q)♦ holds then follows from P♦ and Q♦.

If A 6=1 then P and Q can interact. Since P,Q are well-typed, such an interaction
occurs exclusively on name x. We consider the following two possibilities:

R =⇒ (νx)(P1 | Q) =⇒ (νx)(P1 | Q1) =⇒ R1

R =⇒ (νx)(P2 | Q) =⇒ (νx)(P2 | Q2) =⇒ R2

where, intuitively, synchronizations on x are included in the last weak transition.
We show that there exists an R′ such that R1 =⇒ R′ and R2 =⇒ R′. Now, since
P♦ there exists a process S1 = (νx)(P3 | Q) such that (νx)(P1 | Q) =⇒ S1 and
(νx)(P2 | Q) =⇒ S1. By Property 1, we know that (νx)(P1 | Q)♦. Hence, there
exists a process S2 such that R1 =⇒ S2 and S1 =⇒ S2. Also by Property 1,
we know that (νx)(P2 | Q)♦. This ensures the existence of the desired R′: since
(νx)(P2 | Q) =⇒ S2 and (νx)(P2 | Q) =⇒ R2, then there exists a processR′ such
that S2 =⇒ R′ and R2 =⇒ R′. The diagram below depicts the weak transitions
just described.

(νx)(P | Q)

u} "*(νx)(P1 | Q)

��

&.

(νx)(P2 | Q)

��

pxS1

��

(νx)(P1 | Q1)

��

(νx)(P2 | Q2)

��
R1

&.

R2

��

S2

 (R′

Appendix A.5. Proof of Lemma 5.4
We repeat the statement in Page 24 and give details of the proof.

Lemma Appendix A.2. Let P be a process. If Γ; ∆ ` P :: T then P ∈ L♦[Γ; ∆ ` T ].

Proof. By induction on the derivation of Γ; ∆ ` P :: T , with a case analysis on the
last typing rule used. We have 18 cases to check; in all cases, we use Lemma 5.3 to
show that every M = (νũ, x̃)(P | G | D) with G ∈ C♦Γ and D ∈ C♦∆, is in L♦[T ].

The proof follows closely the lines of the proof of Lemma 5.2 (Page 44); it exploits
the fact that well-typed processes are always terminating (Theorem 5.1). In case (Tid),
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we use Proposition 5.14 (closure wrt substitution) and Proposition 5.18 (backward clo-
sure). In cases (T⊗L), (T(L), (Tcopy), (T⊕L), (TNL1), and (TNL2), we proceed in
two steps: first, using Proposition 5.17 (forward closure) we show that every M ′′ such
that M =⇒ M ′′ is in L♦[T ]; then, we use this result in combination with Proposi-
tion 5.18 (backward closure) to conclude that M ∈ L♦[T ]. In cases (T1R), (T⊗R),
(T(R), (T!R), (T⊕R1), and (T⊕R2), we show that M conforms to a specific case of
Definition 5.7. Case (T1L) uses Proposition 5.11 (3). Cases (T⊗L), (T(L), (T⊕L),
and (TNL1) use the liveness guarantee given by Proposition 5.6. Cases (Tcopy), (T!L),
and (Tcut!) use Proposition 5.15 (closure under ≡). Cases (Tcut), (T(R), and (T!R)
use Proposition 5.16 (closure under ≡!).

Below, we illustrate a few cases; the rest are essentially as in the proof of Lemma 5.2
(Page 44).

Case (Tid): Γ;x:A ` [x↔z] :: z:A.

Pick any G ∈ C♦Γ :
(a) G♦, G 6−→ [By Prop 5.13]
(b) D ∈ L♦[x:A]

(c) M = (νũ, x)([x↔z] | G | D) ∈ L♦[z:A]

The proof of (c) is immediate:
(d) M −→ (νũ)(G{z/x} | D{z/x})

≡! D{z/x} = M ′ [Since ui 6∈ fn(D)]

(e) M ′ ∈ L♦[z:A] [By (b) and Prop 5.14]

(f) M ∈ L♦[z:A] [By (d), (e), and Prop 5.18]

[x↔z] ∈ L♦[Γ;x:A ` z:A] [By (c) and Lemma 5.3]

Case (T1R): Γ; · ` 0 :: z:1.

Pick any G ∈ C♦Γ :
(a) G♦, G 6−→ [By Prop 5.13]

(b) M = (νũ)(0 | G) ∈ L♦[z:1]

The proof of (b) is immediate:
(c) M♦ ∧M 6−→ ∧M ≡! 0 [Using (a)]

(d) M ∈ L♦[z:1] [By (c) and Def 5.7]

0 ∈ L♦[Γ; · ` z:1] [By (b) and Lemma 5.3]
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Case (T1L): Γ; ∆, z:1 ` P :: T .

(a) Γ; ∆ ` P :: T [Premise of rule (T1L)]

(b) P ∈ L♦[Γ; ∆ ` T ] [By i.h. on (a)]

Pick any G ∈ C♦Γ , D ∈ C♦∆:

(c) M1 = (νũ, x̃)(P | G | D) ∈ L♦[T ] [By Lemma 5.3 on (b)]

Pick any R ∈ L♦[z:1] and fix M2 = M1 | R
(d) M2 ∈ L♦[T ] [By (c) and Prop 5.11 (3)]

(e) (νũ, x̃, z)(P | G | D | R) ∈ L♦[T ] [Expanding (d)]

P ∈ L♦[Γ; ∆, z:1 ` T ] [By (e) and Lemma 5.3]

Appendix B. Proofs from Section 6 (Typed Context Bisimilarity)

Appendix B.1. Proof of Proposition 6.3

We repeat the statement in Page 28, and present its proof.

Proposition Appendix B.1 (6.3). Γ; ∆ ` P ≈ Q ::T implies ` K[P ] ≈ K[Q] ::T ,
where K is any parallel representative in KΓ;∆`T , as in Definition 6.5.

Proof. Let #(Γ), #(∆) denote the cardinality of Γ,∆, respectively. The proof is by
induction on n = #(Γ) + #(∆). The base case is when n = 0: then both typing
environments are empty and so K = •. Hence, K[P ] = P and K[Q] = Q and the
thesis trivially holds. In the inductive case, n > 0, and there are two sub-cases. In the
first one, we have Γ, ui:Gi; ∆ ` P ≈ Q ::T . By definition of ≈, it implies

Γ; ∆ ` (νui)(!ui(yi).S | P ) ≈ (νui)(!ui(yi).S | Q) ::T

for every S such that ` S :: yi:Gi. Now, using the induction hypothesis, the latter
allows us to infer ` K1[(νui)(!ui(yi).S | P )] ≈ K1[(νui)(!ui(yi).S | Q)] ::T , for
every K1 ∈ KΓ,∆`T . We observe that, for any R, K1[(νui)(!ui(yi).S | R)] is the
same as having K0[R], with a context K0 = (νui)(!ui(yi).S | K1[·]). By Definition
6.5, we infer that K0 ∈ KΓ,ui:Gi;∆`T . Therefore, Γ, ui:Gi; ∆ ` P ≈ Q ::T implies

` K[P ] ≈ K[Q] ::T

for any K ∈ KΓ,ui:Gi;∆, as desired. In the second sub-case, we have Γ; ∆, xj :Aj `
P ≈ Q ::T , and the analysis follows the same lines as before.

Appendix B.2. Additional Cases for Proof of Lemma 6.1

We repeat the statement in Page 29, and detail some additional cases, thus comple-
menting the proof given in that page.
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Lemma Appendix B.1 (Contextuality of≈). Typed context bisimilarity is a contextual
relation, in the sense of Definition 6.3.

Proof. The proof proceeds by coinduction, exhibiting a typed context bisimulation for
each of the conditions associated to Definition 6.3. We shall exploit the proof technique
given by Proposition 6.3, which allows us to consider ≈ under empty left-hand side
contexts, for pairs of processes enclosed within appropriate parallel representatives. As
a result, it suffices to consider only some of the conditions in Table 8; see Remark 6.1.
In Page 29 we have detailed the case of closure under output prefix; below we show
the cases for closure under parallel composition and under replicated input (Items (8)
and (15), respectively).

Item (8): We have to show that Γ; ∆1 ` P ≈ Q :: y:A implies

Γ; ∆1,∆2 ` (νy)(P | S) ≈ (νy)(Q | S) :: T

for any S, T,∆2 such that Γ; ∆2, y:A ` S :: T . Using Proposition 6.3, it suffices
to show ` K1[P ] ≈ K1[Q] :: y:A implies

` K2[(νy)(K1[P ] | S)] ≈ K2[(νy)(K1[Q] | S)] :: T

where K1 ∈ KΓ;∆1`y:A and K2 ∈ K ·;∆2`x:T .

Letting M = K2[(νy)(K1[P ] | S)], N = K2[(νy)(K1[Q] | S)] we show that

R8 = {(M,N) : ` K1[P ] ≈ K1[Q] :: y:A, K1 ∈ KΓ;∆1`y:A, K2 ∈ K ·;∆2`x:T }
∪ W`T

is a typed context bisimulation. Suppose that M moves first: M α−→ M ′; we
need to find a matching action N α

=⇒ N ′. Using the typing, we observe that
there are two possibilities for α:

1. α = τ and `M ′ :: T , using subject reduction (Theorem 3.1)
2. α 6= τ , and both α and the type of M ′ depend on the actual shape of type
T

We consider case (1) first, and so we assume that M τ−−→ M ′. We examine the
different possibilities for the origin of the reduction:

1. The reduction originates from K2. More precisely, by Definition 6.5 the
reduction originates in the part of K implementing names in ∆1, as the
part of K2 implementing names in Γ cannot evolve on its own (cf. Def-
inition 6.5). Therefore, for some K4, we have both K2

τ−−→ K4 and
M ′ = K4[(νy)(K1[P ] | S)]. By subject reduction (Theorem 3.1), the type
of K4 is the same than that of K, which in turn implies ` M ′ :: T . Since
K2 occurs identically in M and N , this reduction can be matched by N ,
possibly preceded/followed by zero or more reductions: and so we have
that N =⇒ K5[(νy)(K3[Q′] | S′)] = N ′, with K1 =⇒ K3 K2 =⇒ K5,
Q =⇒ Q′, and S =⇒ S′. Theorem 5.1 ensures that these weak transitions
are finite. Moreover, subject reduction (Theorem 3.1) ensures ` N ′ :: T .
Therefore, the pair (M ′, N ′) is inR8, and we are done.
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2. The reduction originates from K1. The argument proceeds analogously as
in the previous case.

3. The reduction originates from P . Then, for some P ′, we have P τ−−→ P ′

and M ′ = K2[(νy)(K1[P ′] | S)]. By subject reduction (Theorem 3.1),
the type remains unchanged, which in turn implies ` M ′ :: T . Since
` K1[P ] ≈ K1[Q] :: y:A, we infer that N can match this reduction: there
is a Q′ such that Q =⇒ Q′. Again, reductions from Q may be preceded
or followed by reductions from K1, K2, and S. More precisely, there is
a weak transition N =⇒ K5[(νy)(K3[Q′] | S′)] = N ′, with K1 =⇒ K3

K2 =⇒ K5, Q =⇒ Q′, and S =⇒ S′. Theorem 5.1 ensures these weak
transitions are finite. Moreover, subject reduction (Theorem 3.1) ensures
` N ′ :: T . Therefore, the pair (M ′, N ′) is inR8, and we are done.

4. The reduction originates from S. We proceed analogously as in the previ-
ous cases, relying on the fact that S is the same in M and N .

5. The reduction originates from the interaction of P and K1. Therefore,
for some K3, P

′, we have M ′ = K2[(νy)(K3[P ′] | S)]. By subject re-
duction (Theorem 3.1), we can infer that ` M ′ :: T . Since K1 occurs
identically in M and N , and ` K1[P ] ≈ K1[Q] :: y:A, we infer that
this interaction can be matched by N . Hence, there is a weak transition
N =⇒ K5[(νy)(K3[Q′] | S′)] = N ′ with K1 =⇒ K3, K2 =⇒ K5

Q =⇒ Q′, and S =⇒ S′. Theorem 5.1 ensures these weak transitions
are finite. Moreover, subject reduction (Theorem 3.1) ensures ` N ′ :: T .
Therefore, the pair (M ′, N ′) is inR8, and we are done.

6. The reduction originates from the interaction of S and K2. The argument
proceeds analogously as in the previous case.

7. The reduction originates from the interaction of P and S. Therefore,M ′ =
K2[(νy)(K1[P ′] | S′)]. Using the typings of each process, we infer that
this interaction is only possible via a synchronization on y, which offers
(case of P ) and requires (case of S) a behavior described by A. We then
proceed by structural induction on type A. All the cases are covered by
preservation lemmas which formalize the interaction of complementary ac-
tions. We detail only the case A = A1 ⊗ A2; the other cases are similar.

Using Lemma 3.2 we infer P
x〈y〉−−−→ P ′ and S

x(y)−−−→ S′. Using Lemma 3.3
we infer that P ′ is well-typed, and we have ` K2[(νy)(K1[P ′] | S′)] :: T .
Since ` K1[P ] ≈ K1[Q] :: y:A and S is the same in N , we know that
these actions can be matched by N , and that there exist Q′, S′ such that

Q
(νy)x〈y〉

=⇒ Q′ and S
x(y)
=⇒ S′. Hence, there is anN ′ = K5[(νy)(K3[Q′] | S′)]

with K1 =⇒ K3 and K2 =⇒ K5. By virtue of Theorem 5.1 these are all
finite weak transitions. Using again Lemma 3.3 and subject reduction (The-
orem 3.1), one can show thatN ′ is well-typed: ` K5[(νy)(K3[Q′] | S′)] ::
T . Therefore, the pair (M ′, N ′) is inR8 and we are done.

Now we consider case (2), and so we assume M α−−→ M ′, for some α 6= τ .
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The shape of α depends on the structure of type T ; the typing information en-
sures that T can only be provided by S. Therefore, we proceed by induction
on the structure of the type T . We consider only the case T = x:A1 ⊗ A2; the
other cases are similar or simpler. Then, by Lemma 3.2, α = x〈z〉 and M ′ =
K2[(νy)(K1[P ] | S′)]. Since S is the same in N , we know that this action can

be matched by N : indeed we have S
x〈z〉
=⇒ S′ and N ′ = K5[(νy)(K3[Q′] | S′)],

with K1 =⇒ K3, K2 =⇒ K5, Q =⇒ Q′, and S =⇒ S′. Theorem 5.1 en-
sures these weak transitions are finite. Now we follow the definition of ≈ for
output actions. Then, for any R such that ·; z:A1 ` R :: −:1, we verify that
both ` (νz)(M ′ | R) :: x:A2 and ` (νz)(N ′ | R) :: x:A2 hold. Hence, the pair
((νz)(M ′ | R), (νz)(N ′ | R)) is inW`x:A1⊗A2 and we are done.

The case in which N α−→ N ′ moves first is completely symmetric.

Item (15): We have to show that Γ; ∆ ` P ≈ Q :: y:A implies

Γ; ∆ ` !x(y).P ≈ !x(y).Q :: x:!A

Using Proposition 6.3, it suffices to show that ` K[P ] ≈ K[Q] :: y:A implies

` !x(y).K[P ] ≈ !x(y).K[Q] :: x:!A

for any K ∈ KΓ;∆`y:A. Let M = !x(y).K[P ] and N = !x(y).K[Q]. We show
that

R13 = {(M,N) : ` K[P ] ≈ K[Q] :: y:A, K ∈ KΓ;∆`T } ∪W`x:!A

is a typed context bisimulation. Suppose M moves first: M α−−→ M ′. We must
find a matching action from N such that N α

=⇒ N ′. The only possibility is an

input on x and so we haveM
x(z)−−−→ !x(y).K[P ] | K[P ]{z/y} = M ′. ProcessN

can match this action immediately: N
x(z)−−−→ !x(y).K[Q] | K[Q]{z/y} = N ′.

It is easy to show that typing is preserved by substitution, and so ` K[P ] ≈
K[Q] :: y:A allows to infer ` K[P ]{z/y} ≈ K[Q]{z/y} :: z:A.
Following the clause for replicated input of ≈, we consider the closure of M ′

and N ′ with a process L such that z:A ` L :: −:1. Such closures correspond,
respectively, to

(νz)(K[P ]{z/y} | L) | !x(y).K[P ] and (νz)(K[Q]{z/y} | L) | !x(y).K[Q]

We verify the type of these closures is indeed x:!A, as required by the replicated
input clause. Since ` K[P ]{z/y},K[Q]{z/y} :: z:A, these processes can be
composed with L, thus leading to processes of type −:1. It is immediate to
see that ` !x(y).K[P ], !x(y).K[Q] :: x:!A; hence, via an independent parallel
composition the two processes above are of type x:!A, and the pair

( (νz)(K[P ]{z/y} | L) | !x(y).K[P ] , (νz)(K[Q]{z/y} | L) | !x(y).K[Q] )

is inR13, as desired. The reasoning when N moves first is completely symmet-
ric.
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Appendix C. Proofs from Section 7.1 (Applications)

Appendix C.1. Additional Cases for the Proof of Theorem 7.1
We repeat the statement in Page 32, and detail some additional cases, thus comple-

menting the proof given in that page.

Theorem Appendix C.1 (7.1). Let P,Q be processes such that

(i) Γ; ∆ ` D  P :: T ;

(ii) Γ; ∆ ` E  Q :: T ;

(iii) P 'c Q.

Then, Γ; ∆ ` P ≈ Q ::T .

Proof. By coinduction, exhibiting appropriate typed context bisimulations for each
commuting conversion. In the bisimulation game, we exploit termination of well-typed
processes (Theorem 5.1) to ensure that actions can be matched with finite weak transi-
tions, and Theorem 3.1 to ensure preservation of type under reductions. We detail the
cases of proof conversions I-2 and I-4 (cf. Figure 4), and I-36 (cf. Figure 5).

Proof conversion I-2 We then have that

Γ; ∆ ` cutD (x.⊗REx F ) M = (νx)(D̂ | z〈y〉.(Ê | F̂ )) :: z:A⊗B
Γ; ∆ ` ⊗R (cutD (x.Ex))F  N = z〈y〉.((νx)(D̂ | Ê) | F̂ ) :: z:A⊗B

with

Γ; ∆1 ` D̂ :: x:C Γ; ∆2, x:C ` Ê :: y:A Γ; ∆3 ` F̂ :: z:B (C.1)

and ∆ = ∆1,∆2,∆3. We show that M 'c N implies Γ; ∆ ` M ≈ N :: z:A⊗
B.

By virtue of Prop. 6.3, we have to show that for every K ∈ KΓ;∆, we have
·; · ` K[M ] ≈ K[N ] :: z:A⊗B. In turn, this implies exhibiting a typed context
bisimilarityR containing the pair (K[M ],K[N ]). We thus defineR as :

R =W`z:A⊗B ∪ S ∪ S−1 where:
S = {(K1[M ′],K2[N ]) : M =⇒M ′, K1,K2 ∈ KΓ;∆}

and W`z:A⊗B is as in Def 6.6. Notice that S is a type-respecting relation in-
dexed by ` z:A ⊗ B. In fact, using the typings in (C.1)—with Γ = ∆ = ∅—
and exploiting subject reduction (Theorem 3.1), it can be checked that for all
(P,Q) ∈ S both ` P :: z:A⊗B and ` Q :: z:A⊗B can be derived.

We now show thatR is a typed context bisimilarity. Pick any K ∈ KΓ;∆. Using
Def. 6.5, we can assume

K = (νũ, x̃)(• | KΓ | K∆) where:
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• KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Di, for every ui:Di ∈ Γ;

• K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆.

Clearly, (K[M ],K[N ]) ∈ S, and so it is in R. Now, suppose K[M ] moves
first: K[M ]

α−−→ M?
1 . We have to find a matching action α from K[N ], i.e.,

K[N ]
α

=⇒ N?
1 . Since ` K[M ] :: z:A⊗B, we have two possible cases for α:

1. Case α = τ . We consider the possibilities for the origin of the reduction:
(a) KΓ

τ−−→ K ′Γ and K[M ]
τ−−→ K ′[M ]. However, this cannot be the

case, as by constructionKΓ corresponds to the parallel composition of
input-guarded replicated processes which cannot evolve on their own.

(b) K∆
τ−−→ K ′∆ and K[M ]

τ−−→ K ′[M ]. Then, for some l ∈ J , Sl
τ−−→

S′l :
K[M ]

τ−−→ (νũ, x̃)(KΓ | K ′∆ |M) = K ′[M ] = M?
1

Now, context K is the same in K[N ]. Then K∆ occurs identically in
K[N ], and this reduction can be matched by a finite weak transition:

K[N ] =⇒ (νũ, x̃)(KΓ | K ′′∆ | N) = K ′′[N ] = N?
1

By subject reduction (Theorem 3.1), ` S′l :: xl:Cl; hence, K ′,K ′′ are
in KΓ;∆. Hence, the pair (K ′[M ],K ′′[N ]) is in S (as M =⇒M ) and
so it is inR.

(c) M τ−−→M ′ andK[M ]
τ−−→ K[M ′]. SinceM = (νx)(D̂ | z〈y〉.(Ê | F̂ )),

the only possibility is that there is a D̂1 such that D̂ τ−−→ D̂1 and
M ′ = (νx)(D̂1 | z〈y〉.(Ê | F̂ )). This way,

K[M ]
τ−−→ (νũ, x̃)(KΓ | K∆ |M ′) = K[M ′] = M?

1

We observe that K[N ] cannot match this action, but K[N ] =⇒ K[N ]
is a valid weak transition. Hence, N?

1 = K[N ]. By subject reduction
(Theorem 3.1), we infer that ` K[M ′] :: z:A⊗B. We use this fact to
observe that the pair (K[M ′],K[N ]) is included in S. Hence, it is in
R.

(d) There is an interaction between M and KΓ or between M and K∆:
this is only possible by the interaction of D̂ with KΓ or K∆ on names
in ũ, x̃. Again, the only possible weak transition from K[N ] matching
this reduction is K[N ] =⇒ K[N ], and the analysis proceeds as in the
previous case.

2. Case α 6= τ . Then the only possibility, starting from K[M ], is an output
action of the form α = z〈y〉. This action can only originate in M :

K[M ]
z〈y〉−−−→ (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | F̂ ))) = M?

1

Process K[N ] can match this action via the following finite (weak) transi-
tion:

K[N ]
z〈y〉
=⇒ (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′) | F̂ ′)) = N?

1
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Observe how N?
1 reflects the changes in K[N ] due to the possible reduc-

tions before and after α. By definition of ≈ (output case), we consider the
composition of M?

1 and N?
1 with any V such that y:A ` V :: −:1. Using

the typings in (C.1) and subject reduction (Theorem 3.1), we infer

`M?
2 = (νx̃, ũ)(KΓ | K∆ | (νx)(D̂ | (νy)(Ê | V | F̂ ))) :: z:B

` N?
2 = (νx̃, ũ)(K ′Γ | K ′∆ | (νy)((νx)(D̂′ | Ê′ | V ) | F̂ ′)) :: z:B

Hence, the pair (M?
2 , N

?
2 ) is inW`z:A⊗B and so it is inR.

Now, let us suppose that K[N ] moves first: K[N ]
α−−→ N?

1 . We have to find a
matching action α from K[M ]: K[M ]

α
=⇒ M?

1 . Similarly as before, there are
two cases: either α = τ or α = z〈y〉. The former is as detailed before; the only
difference is that reductions from K[N ] can only be originated in K∆; these are
matched by K[M ] with weak transitions originating in both K and in M . We
therefore obtain pairs of processes in S−1.

We now detail the case in which α = z〈y〉. We have:

K[N ]
z〈y〉−−−→ (νx̃, ũ)(KΓ | K∆ | (νy)((νx)(D̂ | Ê) | F̂ )) = N?

1

and this action can be matched by K[M ] with a finite weak transition:

K[M ]
z〈y〉
=⇒ (νx̃, ũ)(K ′Γ | K ′∆ | (νx)(D̂′ | (νy)(Ê′ | F̂ ′))) = M?

1

where M?
1 takes into account the possible reductions before and after α. As

before, we consider the composition of N?
1 and M?

1 with any V such that y:A `
V :: −:1. Using (C.1), we can infer both

` N?
2 = (νx̃, ũ)(KΓ | K∆ | (νy)((νx)(D̂ | Ê | V ) | F̂ )) :: z:B

`M?
2 = (νx̃, ũ)(K ′Γ | K ′∆ | (νx)(D̂′ | (νy)(Ê′ | V | F̂ ′))) :: z:B

Hence, the pair (N?
2 ,M

?
2 ) is inW`z:A⊗B and so it is in R. This concludes the

proof for this case.

Proof conversion I-4 We then have that

Γ; ∆, y:A⊗B ` cutD (x.⊗L y (z.y. Exzy)) M = (νx)(D̂ | y(z).Ê) :: T

Γ; ∆, y:A⊗B ` ⊗L y (z.y. cutD (x.Exzy)) N = y(z).(νx)(D̂ | Ê) :: T

with
Γ; ∆1 ` D̂ :: x:C Γ; ∆2, x:C, z:A, y:B ` Ê :: T (C.2)

and ∆ = ∆1,∆2. We show thatM 'c N implies Γ; ∆, y:A⊗B `M ≈ N ::T .
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By virtue of Prop. 6.3, we have to show that for every K ∈ KΓ;∆,y:A⊗B , we
have ·; · ` K[M ] ≈ K[N ] :: T . In turn, this implies exhibiting a typed context
bisimilarityR containing the pair (K[M ],K[N ]). We thus defineR as

R = I`T ∪W`T

recalling that IΓ;∆`T stands for the relation {(P,Q) : Γ; ∆ ` P :: T, Γ; ∆ `
Q :: T}. We show that R is a typed context bisimilarity. Pick any K ∈
KΓ;∆,y:A⊗B . Using Def. 6.5, we can assume

K = (νũ, x̃, y)(• | KΓ | K∆ | V )

where

• KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Gi, for every ui:Gi ∈ Γ;

• K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆;

• ` V :: y:A⊗B.

Clearly, (K[M ],K[N ]) ∈ LT , and so it is in R. Now, suppose K[M ] moves
first: K[M ]

α−−→ M?
1 . We have to find a matching action α from K[N ], i.e.,

K[N ]
α

=⇒ N?
1 . We consider two possible cases:

1. Case α = τ . We consider the possibilities for the origin of the reduction:

(a) KΓ
τ−−→ K ′Γ: This cannot be the case, as by construction this process

corresponds to the composition of zero or more input-guarded replica-
tions which cannot evolve on their own.

(b) K∆
τ−−→ K ′∆ and K[M ]

τ−−→ (νũ, x̃, y)(KΓ | K ′∆ | V |M) = M?
1 .

Since K∆ occurs identically in both processes, this reduction can be
matched by K[N ] with a finite weak transition:

K[N ] =⇒ (νũ, x̃, y)(KΓ | K ′′∆ | V ′ |M ′) = N?
1

Using subject reduction (Theorem 3.1) it can be shown that K ′,K ′′ ∈
KΓ;∆,y:A⊗B , and that V ′ and M ′ preserve the type of V and M , re-
spectively. Hence, both ` M?

1 :: T and ` N?
1 :: T hold, and the pair

(M?
1 , N

?
1 ) is in LT and so it is inR.

(c) V τ−−→ V ′ and K[M ]
τ−−→ (νũ, x̃, y)(KΓ | K∆ | V ′ |M) = M?

1 .
This case proceeds similarly as the previous one, as V occurs in both
processes.

(d) M τ−−→ M ′ and K[M ]
τ−−→ (νũ, x̃)(KΓ | K∆ | V |M ′) = M?

1 .
Since M = (νx)(D̂ | y(z).Ê), the only possibility is that there is a
D̂1 such that D̂ τ−−→ D̂1 and M ′ = (νx)(D̂1 | y(z).Ê). This way,

K[M ]
τ−−→ (νũ, x̃)(KΓ | K∆ | V |M ′) = K[M ′] = M?

1

We observe that K[N ] cannot match this action, as D̂ is behind a pre-
fix. Nevertheless, K[N ] =⇒ K[N ] is a valid weak transition, and
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so N?
1 = K[N ]. By subject reduction (Theorem 3.1), we infer that

` K[M ′] :: T . Hence, the pair (M?
1 , N

?
1 ) is included in LT , and so it

is inR.
(e) The reduction arises from the interaction of V and M . This can only

correspond to a synchronization on y. We have:

K[M ]
τ−−→ (νũ, x̃)(KΓ | K∆ | (νy)(V ′ | (νx)(D̂ | Êσ))) = M?

1

where σ stands for the substitution derived from the synchronization.
This reduction can be matched by K[N ] via a finite weak transition:

K[N ] =⇒ (νũ, x̃)(KΓ | K ′∆ | (νy)(V ′ | (νx)(D̂′ | Ê′)σ)) = N?
1

where N?
1 captures the fact that internal actions could have occurred

before and after the synchronization on y. By subject reduction (The-
orem 3.1), typing is preserved in both cases, and so (M?

1 , N
?
1 ) ∈ R.

2. Case α 6= τ . Then α corresponds to the execution of some behavior de-
scribed by T , in the right-hand side typing. However, this cannot be the
case since, as specified by the typings in (C.2), the behavior described by
T can only be provided by Ê, which is behind an input prefix on y, both
in K[M ] and K[N ]. Therefore, behavior described by T cannot be exer-
cised until such a prefix is consumed, and we have that, necessarily, α = τ .
Observe that once such prefixes are consumed (via internal actions) the
evolution corresponding to the behavior described by T is still inR, as the
continuation relationW`T is inR.

The analysis when K[N ] moves first follows the same lines and is omitted.

Proof conversion I-36 We then have that

Γ; ∆, y:A⊕B ` cut!D (u.⊕L y (y.Euy) (y. Fuy)) 

M = (νu)((!u(z).D̂) | y.case(Ê, F̂ )) :: T

Γ; ∆, y:A⊕B ` ⊕L y (y. cut!D (u.Euy)) (y. cut!D (u. Fuy)) 

N = y.case((νu)((!u(z).D̂) | Ê), (νu)((!u(z).D̂) | F̂ )) :: T

with

Γ; · ` D̂ :: z:C Γ, u:C; ∆1, y:A ` Ê :: T Γ, u:C; ∆2, y:B ` F̂ :: T (C.3)

and ∆ = ∆1,∆2. We show that M 'c N implies Γ; ∆ `M ≈ N ::T .

By virtue of Prop. 6.3, we have to show that for every K ∈ KΓ;∆,y:A⊕B , we
have ·; · ` K[M ] ≈ K[N ] :: T . In turn, this implies exhibiting a typed context
bisimilarityR containing the pair (K[M ],K[N ]). We thus defineR as

R = I`T ∪W`T
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We now show thatR is a typed context bisimilarity. Pick any K ∈ KΓ;∆,y:A⊕B .
Using Def. 6.5, we can assume

K = (νũ, x̃, y)(• | KΓ | K∆ | V )

where

• KΓ ≡
∏
i∈I !ui(yi).Ri, with ` Ri :: yi:Di, for every ui:Di ∈ Γ;

• K∆ ≡
∏
j∈J Sj , with ` Sj :: xj :Cj , for every xj :Cj ∈ ∆;

• ` V :: y:A⊕B.

Clearly, (K[M ],K[N ]) ∈ R. Now, suppose K[M ] moves first: K[M ]
α−−→

M?
1 . We have to find a matching action α from K[N ], i.e., K[N ]

α
=⇒ N?

1 . The
analysis is similar to the one detailed for the commuting conversion No. I-4. We
consider two possible cases:

1. Case α = τ . We consider the possibilities for the origin of the reduction:

(a) KΓ −→ K ′Γ: This cannot be the case, as by construction this process
corresponds to the composition of zero or more input guarded replica-
tions which cannot evolve on their own.

(b) M −→ M ′: This cannot be the case, as by inspecting the structure of
M we observe that both the input guarded replication on u, and the
selection on y cannot proceed on their own.

(c) K∆ −→ K ′∆ and K[M ] −→ (νũ, x̃)(KΓ | K ′∆ | V |M). This re-
duction can be matched by K[N ] with a finite weak transition, as K∆

occurs identically in both processes. Using subject reduction (Theo-
rem 3.1), it can be shown that the derivatives are still inR.

(d) V −→ V ′ and K[M ] −→ (νũ, x̃)(KΓ | K∆ | V ′ |M) = M?
1 . This

case proceeds similarly, as V occurs identically in both K[M ] and
K[N ].

(e) The reduction arises from a synchronization on y between V and M .

Then we have two subcases. The first one is when V
y.inr−−−→ V ′:

K[M ] −→ (νũ, x̃)(KΓ | K∆ | (νy)(V ′ | (νu)((!u(z).D̂) | Ê))) = M?
1

This reduction can be matched by K[N ] via a finite weak transition:

K[N ] =⇒ (νũ, x̃)(KΓ | K ′∆ | (νy)(V ′′ | (νu)((!u(z).D̂) | Ê′))) = N?
1

where N?
1 reflects the fact that internal actions could have taken place

after the synchronization on y. The typing of the process can be
shown to be preserved by subject reduction (Theorem 3.1), and so

(M?
1 , N

?
1 ) ∈ R. The second subcase is when S

y.inl−−−→ S′; this case is
similar to the first one.
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2. Case α 6= τ : Then α corresponds to the execution of some behavior de-
scribed by T , in the right-hand side typing. However, this cannot be the
case since, as specified by the typings in (C.3), the behavior described by
T can only be provided by Ê or by F̂ , which are behind a selection prefix
on y, both in K[M ] and K[N ]. Therefore, the behavior described by T
cannot be exercised until such a prefix is consumed, and we have that, nec-
essarily, α = τ . Observe that once such prefixes are consumed (via internal
actions) the evolution corresponding to the behavior described by T is still
inR, as the continuation relationW`T is inR.

The analysis when K[N ]
α−−→ N?

1 follows the same lines and is omitted.

Appendix C.2. Proof of Theorem 7.2

We repeat the statement of Theorem 7.2 and present its full proof.

Theorem Appendix C.2 (7.2). LetA,B be any type, as in Def 3.1. Then the following
hold:

(i) A⊗B ' B ⊗A
(ii) (A⊕B)(C ' (A(C) N (B(C)
(iii) !(ANB) ' !A⊗!B

Proof. We detail the proof of (i). We verify conditions (i)-(iv) hold for processes
P 〈x,y〉, Q〈y,x〉 defined as

P 〈x,y〉 = x(u).y〈n〉.([x↔n] | [u↔y])

Q〈y,x〉 = y(w).x〈m〉.([y↔m] | [w↔x])

Checking (i)-(ii), i.e., · ;x:A⊗B ` P 〈x,y〉::y:B⊗A and · ; y:B⊗A ` Q〈y,x〉::x:A⊗B
is easy; for instance, the typing derivation for (i) is as follows:

x:B ` [x↔n] :: n:B
(Tid)

u:A ` [u↔y] :: y:A
(Tid)

u:A, x:B ` y〈n〉.([x↔n] | [u↔y]) :: y:B ⊗A
(T⊗R)

x:A⊗B ` x(u).y〈n〉.([x↔n] | [u↔y]) :: y:B ⊗A
(T⊗L)

Observe how the use of rule (Tid) ensures that typings hold for any A,B. We are
then left to show (iii) and (iv). We sketch only the proof of (iii); the proof of (iv) is
analogous. Let M = (νy)(P 〈x,y〉 | Q〈y,z〉), N = [x↔ z]; we need to show · ;x:A ⊗
B `M ≈ N :: z:A⊗B. By Prop. 6.3, we have to show that for everyK ∈ K · ;x:A⊗B ,
we have ` K[M ] ≈ K[N ] :: z:A⊗B. In turn, this implies exhibiting a typed context
bisimilarityR containing (K[M ],K[N ]).

Letting S = {(R1, R2) : K[M ] =⇒ R1, K[N ] =⇒ R2}, we setR=W`z:A⊗B ∪
S ∪ S−1. We show R is a typed context bisimilarity. Pick any K ∈ K · ;x:A⊗B . Using
Def. 6.5, we can assume K = (νx)(T 〈x〉 | [·]) where ` T 〈x〉 :: x:A ⊗ B. By Lemma

3.2 and Theorem 5.1, there exist l, T 〈x〉1 such that T 〈x〉
(νl)x〈l〉
=⇒ T

〈x〉
1 in a finite transition.
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Clearly, (K[M ],K[N ]) ∈ R. Now, suppose K[N ]
α−−→ N?

1 . We have to find a match-
ing action α fromK[M ], i.e.,K[N ]

α
=⇒M?

1 . K[N ] has only an internal action, which
leads to the renaming of T 〈x〉: K[N ]

τ−→ T 〈z〉 = N?
1 . Using Theorem 5.1, K[M ] can

match this action with a finite weak transition: K[M ] =⇒ (νn)(T
〈n〉
1 | z〈m〉.([l↔

m] | [n↔ z])) = M?
1 . Using Theorem 3.1, we know that (N?

1 ,M
?
1 ) ∈ S−1. Now

suppose N?
1

z〈l〉−−→ T
〈z〉
1 ; M?

1 can match this action with an output followed by a renam-

ing: M?
1

z〈m〉
=⇒ T

〈z〉
1 | [l↔m]. By definition of ≈ (output clause), we take a process

S〈c〉 such that ·; c:A ` S〈c〉 :: −:1, and compose it with N?
1 and M?

1 . We thus ob-
tain N?

2 = (νl)(T
〈z〉
1 | S〈l〉) and M?

2 = (νm)(T
〈z〉
1 | [l↔m] | S〈m〉); it can be easily

checked that (N?
2 ,M

?
2 ) ∈ W`z:A⊗B . When K[M ] moves first, the analysis is similar

and we omit it.

The proof of (ii) uses processes
·;x:A⊕B(C ` P 〈x,y〉 :: (A(C) N (B(C)

·; y:(A(C) N (B(C) ` Q〈y,x〉 :: x:A⊕B(C defined as:

P 〈x,y〉 = y.case(M,N) where M = y(m).x〈n〉.(n.inl; [m↔n] | [x↔y])

N = y(v).x〈w〉.(w.inr; [v↔w] | [x↔y])

Q〈y,x〉 = x(m).m.case(R,S) where R = y.inl; y〈n〉.([m↔n] | [y↔x])

S = y.inr; y〈w〉.([m↔w] | [y↔x])

The proof of (iii) uses processes
·;x:!(ANB) ` P 〈x,y〉 :: y:!A⊗!B
·; y:!A⊗!B ` Q〈y,x〉 :: x:!(ANB) defined as:

P 〈x,y〉 = y〈n〉.(M | N) where M = !n(m).x〈l〉.l.inl; [l↔m]

N = !y(h).x〈k〉.k.inr; [k↔h]

Q〈y,x〉 = y(z).!x(n).n.case(R,S) where R = z〈l〉.[l↔n]

S = y〈k〉.[k↔n]
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Figure 8 Conditions for contextual type-respecting relations (cf. Def. 6.3)
A type-respecting relationR is contextual if

0. Γ; ∆ ` P RQ :: y:A implies Γ; ∆ ` (νy)(P | [y↔z])R (νy)(Q | [y↔z]) :: z:A,
for any z such that Γ; y:A ` [y↔z] :: z:A

1. Γ; ∆, y:A ` P RQ :: x:B implies Γ; ∆ ` x(y).P Rx(y).Q :: x:A(B

2. Γ; ∆ ` P RQ :: y:A implies Γ; ∆,∆′ ` x〈y〉.(P | S)R ax〈y〉.(Q | S) :: x:A⊗B,
for any x, S,B,∆′ such that Γ; ∆′ ` S :: x:B

3. Γ; ∆′ ` P RQ :: x:B implies Γ; ∆,∆′ ` x〈y〉.(S | P )Rx〈y〉.(S | Q) :: x:A⊗B,
for any y, S,A,∆′, such that Γ; ∆ ` S :: y:A

4. Γ; ∆ ` P RQ :: x:A implies Γ; ∆ ` x.case(P, S)Rx.case(Q,S) :: x:ANB,
for any S,B such that Γ; ∆ ` S :: x:B

5. Γ; ∆ ` P RQ :: x:B implies Γ; ∆ ` x.case(S, P )Rx.case(S,Q) :: x:ANB,
for any S,A such that Γ; ∆ ` S :: x:A

6. Γ; ∆ ` P RQ :: x:A implies Γ; ∆ ` x.inl;P Rx.inl;Q :: x:A⊕B, for any B

7. Γ; ∆ ` P RQ :: x:B implies Γ; ∆ ` x.inr;P Rx.inr;Q :: x:A⊕B, for any A

8. Γ; ∆ ` P RQ :: x:A implies Γ; ∆,∆′ ` (νx)(P | S)R (νx)(Q | S) :: T ,
for any S, T,∆′ such that Γ; ∆′, x:A ` S :: T

9. Γ; ∆, x:A ` P RQ :: T implies Γ; ∆,∆′ ` (νx)(S | P )R (νx)(S | Q) :: T ,
for any S,∆′ such that Γ; ∆′ ` S :: x:A

10. Γ; · ` P RQ :: y:A implies Γ; ∆ ` (νu)(!u(y).P | S)R (νu)(!u(y).Q | S) :: T ,
for any u, S, T,∆ such that Γ, u:A; ∆ ` S :: T

11. Γ, u:A; ∆ ` P RQ :: T implies Γ; ∆ ` (νu)(!u(y).S | P )R (νu)(!u(y).S | Q) :: T ,
for any S, y such that Γ; · ` S :: y:A

12. Γ; ∆ ` P RQ :: T implies Γ; ∆,∆′ ` S | P RS | Q :: T , for any S,∆′ such that
Γ; ∆′ ` S :: −:1

13. Γ; ∆ ` P RQ :: −:1 implies Γ; ∆,∆′ ` P | SRQ | S :: T ,
for any S, T,∆′ such that Γ; ∆′ ` S :: T

14. Γ, u:A; ∆ ` P{u/x}RQ{u/x} :: T implies Γ; ∆, x:!A ` P RQ :: T

15. Γ; · ` P RQ :: y:A implies Γ; · `!x(y).P R !x(y).Q :: x:!A, for any x

16. Γ; ∆, y:A, x:B ` P RQ :: T implies Γ; ∆, x:A⊗B ` x(y).P Rx(y).Q :: T

17. Γ; ∆ ` P RQ :: y:A implies Γ; ∆,∆′, x:A(B ` x〈y〉.(P | S)Rx〈y〉.(Q | S) :: T ,
for any x,B, S, T,∆′ such that Γ; ∆′, x:B ` S :: T

18. Γ; ∆, x:B ` PRQ :: T implies Γ; ∆,∆′, x:A(B ` x〈y〉.(P |S)Rx〈y〉.(Q |S) :: T ,
for any y,A, S,∆′ such that Γ; ∆′ ` S :: y:A

19. Γ, u:A; ∆, y:A ` P RQ :: T implies Γ, u:A; ∆ ` u〈y〉.P Ru〈y〉.Q :: T

20. Γ; ∆, x:A ` P RQ :: T implies Γ; ∆, x:A⊕B ` x.case(P, S)Rx.case(Q,S) :: T ,
for any x, S,B such that Γ; ∆, x:B ` S :: T

21. Γ; ∆, x:B ` P RQ :: T implies Γ; ∆, x:A⊕B ` x.case(S, P )Rx.case(S,Q) :: T ,
for any A,S, T such that Γ; ∆, x:A ` S :: T

22. Γ; ∆, x:A ` P RQ :: T implies Γ; ∆, x:ANB ` x.inl;P Rx.inl;Q :: T

23. Γ; ∆, x:B ` P RQ :: T implies Γ; ∆, x:ANB ` x.inr;P Rx.inr;Q :: T
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