
Linear Higher-Order Pre-Unification

Iliano Cervesato and Frank Pfenning∗

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891
{iliano|fp}@cs.cmu.edu

Abstract

We develop an efficient representation and a pre-

This extended abstract has been accepted at the Twelfth Annual Symposium on Logic in Computer Science - LICS’97, Warsaw,
Poland, June 29th – July 2nd 1997.

unification algorithm in the style of Huet for the linear
λ-calculus λ→−◦&> which includes intuitionistic func-
tions (→), linear functions (−◦), additive pairing (&),
and additive unit (>). Applications lie in proof search,
logic programming, and logical frameworks based on lin-
ear type theories. We also show that, surprisingly, a
similar pre-unification algorithm does not exist for cer-
tain sublanguages.

1 Introduction

Linear logic [10] enriches more traditional logical for-
malisms with a notion of consumable resource, which
provides direct means for expressing and reasoning
about mutable state. Attempts at mechanizing this
additional expressive power led to the design of several
logic programming languages based on various frag-
ments of linear logic. The only new aspect in the
operational semantics of most proposals, such as Lolli
[15], Lygon [12] and Forum [22], concerns the man-
agement of linear context formulas [3]. In particular,
the instantiation of logical variables relies on the tra-
ditional unification algorithms, in their first- or higher-
order variants, depending on the language. More re-
cent proposals, such as the language of the linear log-
ical framework LLF [2, 4] and the system RLF [17],
introduce linearity not only at the level of formulas,
but also within terms. Consequently, implementations
of these languages must solve higher-order equations
on linear terms in order to instantiate existential vari-
ables. In this paper we present a complete algorithm

∗ This work was supported by NSF Grant CCR-9303383. The
second author was supported by the Alexander-von-Humboldt-
Stiftung when working on this paper, during a visit to the De-
partment of Mathematics of the Technical University Darmstadt.

for pre-unification in a linear λ-calculus which conser-
vatively extends the ordinary simply-typed λ-calculus
and could be used directly for the above languages.

An example will shed some light on the novel issues
brought in by linearity. A rewrite rule r : t1 =⇒ t2 is
applicable to a term t if there is an instance of t1 in
t; then, applying r has the effect of replacing it with
t2 (assume t1 and t2 ground, for simplicity). This is
often formalized by writing t = t̃[t1], where the rewrit-
ing context t̃ is a term containing a unique occurrence
of a hole ([]) so that replacing the hole with t1 yields
t. We can then express r as the parametric transition
T [t1] =⇒ T [t2], where T is a variable standing for a
rewriting context. The applicability of r to a term t
reduces to the problem of whether t and the higher-
order expression (T t1), where T is viewed as a func-
tional variable, are unifiable. Traditional higher-order
unification does not take into consideration the linear-
ity constraint that exactly one occurrence of t1 must be
abstracted away from t. Indeed, matching (T t1) with
(c t1 t1) has four solutions:

T ←− λx. c t1 t1 T ←− λx. c x t1
T ←− λx. c x x T ←− λx. c t1 x

But the first match in the box does not have any hole
(the variable x) in it while the second contains two.
Linear unification, on the other hand, returns correctly
only the two unboxed solutions. This means also that
the natural encoding of a rewrite system based on
rewriting contexts in the logical framework in LF is
unsound, while it would be adequately represented in
LLF .

The introduction of linear term languages in LLF
and RLF has been motivated by a number of ap-
plications. Linear terms provide a statically check-
able notation for natural deductions [17] or sequent
derivations [4] in substructural logics. In the realm of
programming languages, linear terms naturally model
computations in imperative languages [4] or sequences

Types: A ::= a Terms: M ::= c | x
| A1 → A2 | λx :A.M | M1 M2 (intuitionistic functions)

| A1−◦A2 | λ̂x :A.M | M1ˆM2 (linear functions)
| A1 &A2 | 〈M1,M2〉 | fstM | sndM (additive pairs)
| > | 〈〉 (additive unit)

Signatures: Σ ::= · | Σ, c : A

Contexts: Γ ::= · | Γ, x : A

Figure 1. Syntax of λ→−◦&>

of moves in games [2]. When we want to specify, manip-
ulate, or reason about such objects (which is common
in logic and the theory of programming languages),
then internal linearity constraints are critical in prac-
tice (see, for example, the first formalizations of cut-
elimination in linear logic and type preservation for
Mini-ML with references [4]).

Differently from the first-order case, higher-order
unification in Church’s simply typed λ-calculus λ→ is
undecidable and does not admit most general unifiers
[11]. Nevertheless sound and complete (although possi-
bly non-terminating) procedures have been proposed in
order to enumerate solutions [18]. In particular, Huet’s
pre-unification algorithm [16] computes unifiers in a
non-redundant manner as constraints and has there-
fore been adopted in the implementation of higher-
order logic programming languages [23]. Fragments of
λ→ of practical relevance for which unification is de-
cidable and yields most general unifiers have also been
discovered. An example are Miller’s higher-order pat-
terns [21], that have been implemented in the higher-
order constraint logic programming language Elf [25].
Unification in the context of linear λ-calculi has re-
ceived limited attention in the literature and, to our
knowledge, only a restricted fragment of a multiplica-
tive language has been treated [19]. Unification in λ→

with linear restrictions on existential variables has been
studied in [26].

In this extended abstract, we investigate the unifi-
cation problem in the linear simply-typed λ-calculus
λ→−◦&>. We give a pre-unification procedure in the
style of Huet and discuss the new sources of non-
determinism due to linearity. Moreover, we show that
no such algorithm can be devised for linear sublan-
guages deprived of > and of the corresponding con-
structor. λ→−◦&> corresponds, via a natural extension
of the Curry-Howard isomorphism, to the fragment of
intuitionistic linear logic freely generated from the con-
nectives →, −◦, & and >, which constitutes the propo-
sitional core of Lolli [15] and LLF [4]. λ→−◦&> is also

the simply-typed variant of the term language of LLF
and shares similarities with the calculus proposed in
[1]. Its theoretical relevance derives from the fact that
it is the largest linear λ-calculus that admits unique
long βη-normal forms.

The principal contributions of this work are: (1)
a first solution to the problem of linear higher-order
unification, currently a major obstacle to the imple-
mentation of logical frameworks and logic program-
ming languages relying on a linear higher-order term
language; (2) the definition of a new representation
technique for generic λ-calculi that permits both sim-
ple meta-reasoning and efficient implementations; (3)
the elegant and precise presentation of an extension of
Huet’s pre-unification procedure as a system of infer-
ence rules. More details on the topics covered in this
extended abstract can be found in the technical reports
[6] and [5].

Our presentation is organized as follows. In Sec-
tion 2, we define λ→−◦&> and give an equivalent
formulation better suited for our purposes. The
pre-unification algorithm is the subject of Section 3.
We study the unification problem in sublanguages of
λ→−◦&> and hint at the possibility of a practical im-
plementation in Section 4. In order to facilitate our
description in the available space, we must assume the
reader familiar with traditional higher-order unifica-
tion [16] and linear logic [10].

2 A Linear Simply-Typed λ-Calculus

This section defines the simply-typed linear λ-
calculus λ→−◦&> (Section 2.1) and presents an equiva-
lent formulation, S→−◦&> (Section 2.2), which is more
convenient for describing and implementing unifica-
tion.

2

λ con

Γ; · `Σ,c:A c : A
λ lvar

Γ;x :A `Σ x : A
λ ivar

Γ, x :A; · `Σ x : A

λ unit

Γ; ∆ `Σ 〈〉 : >
(No elimination rule for >)

Γ; ∆ `Σ M : A Γ; ∆ `Σ N : B
λ pair

Γ; ∆ `Σ 〈M,N〉 : A&B

Γ; ∆ `Σ M : A&B
λ fst

Γ; ∆ `Σ fstM : A

Γ; ∆ `Σ M : A&B
λ snd

Γ; ∆ `Σ sndM : B

Γ; ∆, x :A `Σ M : B
λ llam

Γ; ∆ `Σ λ̂x :A.M : A−◦B

Γ; ∆′ `Σ M : A−◦B Γ; ∆′′ `Σ N : A
λ lapp

Γ; ∆′,∆′′ `Σ MˆN : B

Γ, x :A; ∆ `Σ M : B
λ ilam

Γ; ∆ `Σ λx :A.M : A→ B

Γ; ∆ `Σ M : A→ B Γ; · `Σ N : A
λ iapp

Γ; ∆ `Σ M N : B

Figure 2. Typing in λ→−◦&>

2.1 Basic Formulation

The linear simply-typed λ-calculus λ→−◦&> extends
Church’s λ→ with the three type constructors −◦ (mul-
tiplicative arrow), & (additive product) and > (additive
unit), derived from the identically denoted connectives
of linear logic. The language of terms is augmented ac-
cordingly with constructors and destructors, devised
from the natural deduction style inference rules for
these connectives. Although not strictly necessary at
this level of the description, the inclusion of intuition-
istic constants will be convenient in the development of
the discussion. Figure 1 presents the resulting gram-
mar in a tabular format that relate each type construc-
tor (left) to the corresponding term operators (center),
with constructors preceding destructors. As usual, we
rely on signatures and contexts to assign types to con-
stants and free variables, respectively. Here x, c and
a range over variables, constants and base types, re-
spectively. In addition to the names displayed above,
we will often use N , B and ∆ for objects, types and
contexts, respectively.

The notions of free and bound variables are adapted
from λ→. As usual, we identify terms that differ only
in the name of their bound variables and write [M/x]N
for the capture-avoiding substitution of M for x in the
term N . Contexts and signatures are treated as mul-
tisets; we promote “,” to denote their union and omit
writing “·” when unnecessary. Finally, we require vari-
ables and constants to be declared at most once in a
context and in a signature, respectively.

The typing judgment for λ→−◦&> has the form

Γ; ∆ `Σ M : A

where Γ and ∆ are called the intuitionistic and the
linear context, respectively. The inference rules for

this judgment are displayed in Figure 2. Deleting the
terms that appear in them results in the usual rules for
the (→ −◦&>) fragment of intuitionistic linear logic,
ILL→−◦&> [15], in a natural deduction style formula-
tion. λ→−◦&> and ILL→−◦&> are related by a form of
the Curry-Howard isomorphism. Note that the inter-
actions of rules λ unit and λ lapp can flatten distinct
proofs to the same λ→−◦&> term.

The reduction semantics of λ→−◦&> is given by the
transitive and reflexive closure of the congruence rela-
tion built on the following β-reduction rules:

fst 〈M,N〉 −→ M
snd 〈M,N〉 −→ N

(λ̂x :A.M)ˆN −→ [N/x]M
(λx :A.M)N −→ [N/x]M

Similarly to λ→, λ→−◦&> enjoys a number of highly
desirable properties [2]. In particular, since every ex-
tension (for example with ⊗ and multiplicative pairs)
introduces commutative conversions, it is the largest
linear λ-calculus for which strong normalization holds
and yields unique normal forms. We write Can(M)
for the canonical form of the term M , defined as the
η-expansion of its β-normal form. For reasons of effi-
ciency, we will often refer to the weak head-normal form
of a term M , written M , that differs from Can(M) by
the possible presence of redices in the arguments of
applications. Notice that x corresponds to the η-long
form of the variable x. In the following, we will insist
in dealing always with fully η-expanded terms. We call
a term of base type atomic.

2.2 The Spine Calculus

Unification algorithms base a number of choices on
the nature of the heads of the terms to be unified. The
head is immediately available in the first-order case,

3

and still discernible in λ→ since every η-long normal
term has the form

λx1 :A1. . . . λxn :An. t M1 . . .Mm

where the head t is a constant or a variable and
(t M1 . . .Mm) has base type. The usual parentheses
saving conventions hide the fact that t is indeed deeply
buried in the sequence of application and therefore not
immediately accessible. A similar notational trick fails
in λ→−◦&> since on the one hand a non-atomic term
can have several heads (e.g. c1 and c2 in 〈c1, c2〉), pos-
sibly none (e.g. 〈〉), and on the other hand destructors
can be interleaved arbitrarily in an atomic term (e.g.
fst ((snd c)ˆx y)).

The spine calculus S→−◦&> [6] permits recovering
both efficient head accesses and notational convenience.
Every atomic term M of λ→−◦&> is written in this
presentation as a root H · S, where H corresponds
to the head of M and the spine S collects the se-
quence of destructors applied to it. For example,
M = (t M1 . . .Mm) is written U = t · (U1; . . .Um; nil)
in this language, where “;” represents application, nil

identifies the end of the spine, and Ui is the translation
of Mi. Application and “;” have opposite associativ-
ity so that M1 is the innermost subterm of M while
U1 is outermost in the spine of U . This approach was
suggested by an empirical study of higher-order logic
programs based on λ→ terms [20] and is reminiscent
of the notion of abstract Böhm trees [14]; its practi-
cal merits in our setting are currently assessed in an
experimental implementation. The following grammar
describes the syntax of S→−◦&>: we write construc-
tors as in λ→−◦&>, but use new symbols to distinguish
a spine operator from the corresponding term destruc-
tor.

Terms: U ::= H · S Spines: S ::= nil

| λx :A.U | U ;S

| λ̂x :A.U | U ;̂S
| 〈U1, U2〉 | π1S | π2S
| 〈〉

Heads: H ::= c | x | U
We adopt the same syntactic conventions as in λ→−◦&>

and often write V for terms in S→−◦&>. Terms are al-
lowed as heads in order to construct β-redices. Indeed,
normal terms have either a constant or a variable as
their heads. The typing judgments for terms and spines
are denoted Γ; ∆ `Σ U : A and Γ; ∆ `Σ S : A > B
respectively, where the latter expresses the fact that
given a head H of type A, the root H · S has type B.
For reasons of space, we omit the typing rules for these
judgments [6], although they will indirectly appear in
the inference system for pre-unification.

There exists a structural translation of terms in

λ→−◦&> to terms in S→−◦&>, and vice versa [6]. Space
constraints do not allow presenting this mapping and
the proofs of soundness and completeness for the re-
spective typing derivations. We instead describe it by
means of examples by giving the translation of the β-
reduction rules of λ→−◦&> into S→−◦&>:

〈U, V 〉 · (π1S) −→S U · S
〈U, V 〉 · (π2S) −→S V · S

(λ̂x :A.U) · (V ;̂S) −→S [V/x]U · S
(λx :A.U) · (V ;S) −→S [V/x]U · S

The trailing spine in the reductions for S→−◦&> is a
consequence of the fact that this language reverses the
nesting order of λ→−◦&> destructors. The structure of
roots in the spine calculus makes one more β-reduction
rule necessary, namely:

(H · S) · nil −→S H · S
As for λ→−◦&>, we insist on terms being in η-long

form. Consequently, roots have always base type and so
do the target types in the spine typing judgment. The
β-reduction rules above preserve long forms so that η-
expansion steps never need to be performed [6]. We
write Can(U) and U , respectively, for the canonical
form and the weak head-normal form of the term U
with respect to these reductions.

3 Linear Higher-Order Unification

In this section, we define the unification problem
for S→−◦&> (Section 3.1), show a few examples (Sec-
tion 3.2), describe a pre-unification algorithm à la Huet
for it (Section 3.3), and discuss new sources of non-
determinism introduced by linearity (Section 3.4).

3.1 The Unification Problem

Two S→−◦&> terms U1 and U2 are equal if they
can be β-reduced to a common term V . By strong
normalization and the Church-Rosser theorem [6], it
suffices to compute Can(U1) and Can(U2) and check
whether they are syntactically equal (modulo renaming
of bound variables). We have the following equality
judgments for terms and spines, respectively:

Γ; ∆ `Σ U1 = U2 : A Γ; ∆ `Σ S1 = S2 : A > a

The types can be omitted altogether if we assume the
two objects in every equation we start from to have
the same type. We do not show the deduction rules
for these judgments. The interested reader can extract
them from the non-flexible cases in Figures 4 or con-
sult [5].

Equality checking becomes a unification problem
as soon as we admit objects containing logical vari-

4

Equation systems: Ξ ::= · | Ξ, (Γ; ∆ ` U1 = U2 : A) | Ξ, (Γ; ∆ ` S1 = S2 : A > a)

Flex-flex systems: Ξff ::= · | Ξff , (Γ; ∆ ` F1 · S1 = F2 · S2 : a)

Substitutions: Θ ::= · | Θ, U/F

Pools: Φ ::= · | Φ, F :A

Figure 3. Syntax of Equations

ables (sometimes called existential variables or meta-
variables), standing for unknown terms. The equalities
above, called equations in this setting, are unifiable
if there exists a substitution for the logical variables
which makes the two sides equal. These substitutions
are called unifiers. The task of a unification procedure
is to determine whether equations are solvable and,
if so, report their unifiers. As for λ→, it is undecid-
able whether two S→−◦&> terms can be unified, since
its equational theory is a conservative extension of the
equational theory for the simply-typed λ-calculus.

Logical variables stand for heads and cannot replace
spines or generic terms. Therefore, the alterations to
the definition of S→−◦&> required for unification are
limited to enriching the syntax of heads with logical
variables, that we denote F , G and H possibly sub-
scripted. We continue to write U , V and S for terms
and spines in this extended language. In order to avoid
confusion we will call the proper variables of S→−◦&>

parameters in the remainder of the paper.

The machinery required in order to state a unifica-
tion problem is summarized in Figure 3. We will in
general solve systems of equations that share the same
signature and a common set of logical variables. A so-
lution to a unification problem is a substitution that,
when applied to it, yields a system of flex-flex equa-
tions that is known to be solvable. This notion sub-
sumes unifiers as a particular case. Finally, we record
the types of the logical variables in use in a pool.

We assume that variables appear at most once in a
pool and in the domain of a substitution. Similarly to
contexts, we treat equation systems and pools as multi-
sets. We write ξ for individual equations. The context
Γ; ∆ in an equation ξ enumerates the parameters that
the substitutions for logical variables appearing in ξ are
not allowed to mention directly. Therefore, legal sub-
stitution terms U for a variable F :A must be typable
in the empty context, i.e. ·; · `Σ,Φ U : A should be
derivable where Φ includes the logical variables appear-
ing in U . This is sometimes emphasized by denoting
an equation system Ξ as ∀Σ. ∃Φ. ∀(Ξ), where the inner
expression means that the context Γ; ∆ of every equa-
tion ξ is universally quantified in front of it. A term

or spine equation ξ can be interpreted as an equality
judgment with signature Σ,Φ, where again Φ includes
the logical variables appearing in ξ. In the following,
we will occasionally view an equation system Ξ as the
multiset of the equality judgments corresponding to its
equations. Finally, we write dom Θ for the domain of
the substitution Θ and Θ ◦ Θ′ for the composition of
substitutions Θ and Θ′, defined as usual.

3.2 Examples

The example given in the introduction clearly shows
how linearity restricts the set of solutions found by tra-
ditional higher-order unification in the absence of linear
constructs. We can indeed rewrite this example in the
syntax of λ→−◦&> (chosen over S→−◦&> for the sake of
clarity) as the following equation

·; · ` F ˆM = cˆMˆM : a.

As we saw, only two of the four independent solutions
returned by traditional higher-order unification on the
corresponding λ→ problem are linearly valid.

More complex situations rule out the simple minded
strategy of keeping only the linearly valid solutions re-
turned by a traditional unification procedure on a lin-
ear problem. Consider the following equation, written
again in the syntax of λ→−◦&> for simplicity,

x :A, y :B; · ` F ˆxˆy = c (̂G1 x y) (̂G2 x y) : a.

The parameters x and y are intuitionistic, but F uses
them as linear objects. We must instantiate F to a
term of the form λ̂x′ :A. λ̂y′ :B. cˆM1ˆM2 where each
of the linear parameters x′ and y′ must appear either
in M1 or in M2, but not in both. Indeed, the following
four incomparable substitutions are generated:

F ←− λ̂x′ :A. λ̂y′ :B. c ˆ (F1ˆx′ˆy′) ˆ F2

F ←− λ̂x′ :A. λ̂y′ :B. c ˆ (F1ˆx′) ˆ (F2ˆy′)

F ←− λ̂x′ :A. λ̂y′ :B. c ˆ (F1ˆy′) ˆ (F2ˆx′)

F ←− λ̂x′ :A. λ̂y′ :B. c ˆ F1 ˆ (F2ˆx′ˆy′)

Traditional unification on the analogous λ→ equation
is unitary and would return the single substitution

F ←− λx′ :A. λy′ :B. c (F1 x
′ y′) (F2 x

′ y′).

5

which is not linearly valid. This example also illus-
trates one reason why linear term languages and unifi-
cation are useful. Linearity constraints rule out certain
unifiers when compared to the simply-typed formula-
tion of the same expression, which can be used to elim-
inate ill-formed terms early.

3.3 A Pre-Unification Algorithm

Our adaptation of Huet’s pre-unification procedure
to S→−◦&> is summarized in Figures 4–6. We adopt
a structured operational semantics presentation as a
system of inference rules, which isolates and makes
every step of the algorithm explicit. Although more
verbose than the usual formulations, it is, at least in
this setting, more understandable and closer to an ac-
tual implementation. In this subsection, we describe
the general structure of the algorithm. We will dis-
cuss the specific aspects brought in by linearity in the
Section 3.4.

On the basis of the above definitions, a unification
problem is expressed by the following judgment:

Ξ \Ξff ,Θ

where, for the sake of readability, we keep the signa-
ture Σ and the current variable pool Φ implicit. The
procedure we describe accepts Σ, Φ and Ξ as input
arguments and attempts to construct a derivation X
of Ξ \Ξff ,Θ for some Θ and Ξff . This could terminate
successfully (in which case Θ is a unifier if Ξff is empty,
and only a pre-unifier otherwise). It might also fail (in
which case there are no unifiers) or not terminate (in
which case we have no information).

Given a system of weak head-normal equations Ξ to
be solved with respect to a signature Σ and a logical
variables pool Φ, the procedure selects an equation ξ
from Ξ and attempts to apply in a bottom up fashion
one of the rules in Figure 4. If several rules are appli-
cable, the procedure succeeds if one of them yields a
solution. If none applies, we have a local failure. The
procedure terminates when all equations in Ξ are flex-
flex, as described below.

Well-typed equations in weak head-normal form
have a very disciplined structure. In particular, both
sides must either be roots, or have the same top-most
term or spine constructor. Spine equations and non-
atomic term equations are therefore decomposed until
problems of base type are produced, as shown in the
uppermost and lowermost parts of Figure 4, respec-
tively.

Following the standard terminology, we call an
atomic term H · S rigid if H is a constant or a pa-
rameter, and flexible if it is a logical variable. Since

the sides of a canonical equation ξ of base type can be
only either rigid or flexible, we have four possibilities:

Rigid-Rigid If the head of both sides of ξ is the same
constant or parameter, we unify the spines.

Rigid-Flex We reduce this case to the next by swap-
ping the sides of the equation.

Flex-Rigid Consider first the equation Γ; ∆ `
F · S1 = c · S2 : a where the head c is a constant.
Solving this equation requires instantiating F to
a term V that, relatively to spine S1, has c as its
head; the resulting spines are then unified as in
the rigid-rigid case. We can construct V in two
manners: the first, imitation, puts c in the proper
position in V and rearranges the terms appearing
in S1 in order to match the type of c. The second,
projection, looks for some subterm that might be
instantiated, via β-reduction, to c inside S1 and in-
stalls it as the appropriate head of V , again reshuf-
fling S1 to match its type. Once V has been pro-
duced, it is substituted for every occurrence of F
in the equation system and weak head-reduction is
performed. The pair V/F is added to the current
substitution. Flex-rigid equations with a parame-
ter as their rigid head are treated similarly except
that imitation cannot be applied since parameters
are bound within the scope of logical variables.

Given an equation Γ; ∆ ` F · S1 = c · S2 : a,
the construction of the instantiating term V in the
case of imitation is described in the upper part of
Figure 5. The judgment

Γ′; ∆′ ` cB · S2 /A ⇑ι S1 ↪→ V

builds the constructors layer of V on the basis of
the type A of F and of the spine S2. Here, B
is the type of c. As V is constructed, the lo-
cal parameters bound by linear and intuitionis-
tic λ-abstraction (rules fri llam and fri ilam) are
stored in the accumulators Γ′ and ∆′ respectively.
When A has the form A1 &A2 (rules fri pair1
and fri pair2), V must be a pair 〈V1, V2〉 and S2

must start with a projection. The subterm Vi that
is projected away can be arbitrary as long as it has
type Ai and uses up all local parameters in Γ′; ∆′;
this is achieved by means of the variable raising
judgment discussed below. When a base type is
eventually reached (rule fri con), the right-hand
side c · S2 of the original equation is accessed, the
constant c is installed as the head of V and its
spine S is constructed by reshuffling the arguments
present in S2 and inserting the local parameters
accumulated in Γ′; ∆′. The spine S is built by the
judgment

6

Term traversal

Ξ \Ξff ,Θ
pu unit

Ξ, (Γ; ∆ ` 〈〉 = 〈〉 : >) \Ξff ,Θ

Ξ, (Γ; ∆ ` U1 = V1 : A), (Γ; ∆ ` U2 = V2 : B) \Ξff ,Θ
pu pair

Ξ, (Γ; ∆ ` 〈U1, U2〉 = 〈V1, V2〉 : A&B) \Ξff ,Θ

Ξ, (Γ; ∆, x :A ` U = V : B) \Ξff ,Θ
pu llam

Ξ, (Γ; ∆ ` λ̂x :A.U = λ̂x :A.V : A−◦B) \Ξff ,Θ

Ξ, (Γ, x :A; ∆ ` U = V : B) \Ξff ,Θ
pu ilam

Ξ, (Γ; ∆ ` λx :A.U = λx :A.V : A→ B) \Ξff ,Θ
. .
Rigid−Rigid

c :A in Σ Ξ, (Γ; ∆ ` S1 = S2 : A > a) \Ξff ,Θ
pu rr con

Ξ, (Γ; ∆ ` c · S1 = c · S2 : a) \Ξff ,Θ

Ξ, (Γ; ∆ ` S1 = S2 : A > a) \Ξff ,Θ
pu rr lvar

Ξ, (Γ; ∆, x :A ` x · S1 = x · S2 : a) \Ξff ,Θ

Ξ, (Γ, x :A; ∆ ` S1 = S2 : A > a) \Ξff ,Θ
pu rr ivar

Ξ, (Γ, x :A; ∆ ` x · S1 = x · S2 : a) \Ξff ,Θ
. .
Rigid−Flex

Ξ, (Γ; ∆ ` F · S2 = c · S1 : a) \Ξff ,Θ
pu rf con

Ξ, (Γ; ∆ ` c · S1 = F · S2 : a) \Ξff ,Θ

Ξ, (Γ; ∆ ` F · S2 = x · S1 : a) \Ξff ,Θ
pu rf var

Ξ, (Γ; ∆ ` x · S1 = F · S2 : a) \Ξff ,Θ
. .
Flex−Rigid

F :A in Φ c :B in Σ ·; · ` cB · S2 /A ⇑ι S1 ↪→ V [V/F](Ξ, (Γ; ∆ ` F · S1 = c · S2 : a)) \Ξff ,Θ
pu fr con imit

Ξ, (Γ; ∆ ` F · S1 = c · S2 : a) \Ξff , (Θ, V/F)

F :A in Φ c :B in Σ ·; · ` A ⇑π S1 ↪→ V [V/F](Ξ, (Γ; ∆ ` F · S1 = c · S2 : a)) \Ξff ,Θ
pu fr con proj

Ξ, (Γ; ∆ ` F · S1 = c · S2 : a) \Ξff , (Θ, V/F)

F :A in Φ ·; · ` A ⇑π S1 ↪→ V [V/F](Ξ, (Γ; ∆, x :B ` F · S1 = x · S2 : a)) \Ξff ,Θ
pu fr lvar proj

Ξ, (Γ; ∆, x :B ` F · S1 = x · S2 : a) \Ξff , (Θ, V/F)

F :A in Φ ·; · ` A ⇑π S1 ↪→ V [V/F](Ξ, (Γ, x :B;∆ ` F · S1 = x · S2 : a)) \Ξff ,Θ
pu fr ivar proj

Ξ, (Γ, x :B; ∆ ` F · S1 = x · S2 : a) \Ξff , (Θ, V/F)
. .
Flex−Flex

pu ff

Ξff \Ξff , ·
Spine traversal

Ξ \Ξff ,Θ
pu nil

Ξ, (Γ; · ` nil = nil : a > a) \Ξff ,Θ

Ξ, (Γ; ∆ ` S1 = S2 : A1 > a) \Ξff ,Θ
pu fst

Ξ, (Γ; ∆ ` π1S1 = π1S2 : A1 &A2 > a) \Ξff ,Θ

Ξ, (Γ; ∆ ` S1 = S2 : A2 > a) \Ξff ,Θ
pu snd

Ξ, (Γ; ∆ ` π2S1 = π2S2 : A1 &A2 > a) \Ξff ,Θ

Ξ, (Γ; ∆′ ` U1 = U2 : A1), (Γ; ∆′′ ` S1 = S2 : A2 > a) \Ξff ,Θ
pu lapp

Ξ, (Γ; ∆′,∆′′ ` U1 ;̂S1 = U2 ;̂S2 : A1−◦A2 > a) \Ξff ,Θ

Ξ, (Γ; · ` U1 = U2 : A1), (Γ; ∆ ` S1 = S2 : A2 > a) \Ξff ,Θ
pu iapp

Ξ, (Γ; ∆ ` U1;S1 = U2;S2 : A1 → A2 > a) \Ξff ,Θ

Figure 4. Pre-Unification in S→−◦&>, Equation Manipulation

Γ′; ∆′ ` B ↓ι S2 ↪→ S

by mimicking the structure of S2. Notice the use
of the variable raising judgment in rules fri lapp

and fri iapp to construct appropriate η-long argu-
ments with new logical variables as heads applied
to the parameters in Γ′; ∆′.

7

Imitation−term construction

Γ; ∆ ` A ↓ι S′ ↪→ S
fri con

Γ; ∆ ` cA · S′ / a ⇑ι nil ↪→ c · S

Γ; ∆ ` u /A1 ⇑ι S ↪→ V1 Γ; ∆ ` A2 ↪→ V2
fri pair2

Γ; ∆ ` u /A1 &A2 ⇑ι π1S ↪→ 〈V1, V2〉

Γ; ∆ ` u/A2 ⇑ι S ↪→ V2 Γ; ∆ ` A1 ↪→ V1
fri pair2

Γ; ∆ ` u /A1 &A2 ⇑ι π2S ↪→ 〈V1, V2〉

Γ; ∆, x :A ` u/B ⇑ι S ↪→ V
fri llam

Γ; ∆ ` u/A−◦B ⇑ι U ;̂S ↪→ λ̂x :A.V

Γ, x :A; ∆ ` u/B ⇑ι S ↪→ V
fri ilam

Γ; ∆ ` u/A→ B ⇑ι U ;S ↪→ λx :A.V
. .
Imitation−spine construction

fri nil

Γ; · ` a ↓ι nil ↪→ nil

Γ; ∆ ` A1 ↓ι S′ ↪→ S
fri fst

Γ; ∆ ` A1 &A2 ↓ι π1S
′ ↪→ π1S

Γ; ∆ ` A2 ↓ι S′ ↪→ S
fri snd

Γ; ∆ ` A1 &A2 ↓ι π2S
′ ↪→ π2S

Γ; ∆′ ` B ↓ι S′ ↪→ S Γ; ∆′′ ` A ↪→ V
fri lapp

Γ; ∆′,∆′′ ` A−◦B ↓ι U ;̂S′ ↪→ V ;̂S

Γ; ∆ ` B ↓ι S′ ↪→ S Γ; · ` A ↪→ V
fri iapp

Γ; ∆ ` A→ B ↓ι U ;S′ ↪→ V ;S

Projection−term construction

Γ; ∆ ` A ↓π a ↪→ S
frp lvar

Γ; ∆, x :A ` a ⇑π nil ↪→ x · S

Γ, x :A; ∆ ` A ↓π a ↪→ S
frp ivar

Γ, x :A; ∆ ` a ⇑π nil ↪→ x · S

Γ; ∆ ` A1 ⇑π S ↪→ V1 Γ; ∆ ` A2 ↪→ V2
frp pair1

Γ; ∆ ` A1 &A2 ⇑π π1S ↪→ 〈V1, V2〉

Γ; ∆ ` A2 ⇑π S ↪→ V2 Γ; ∆ ` A1 ↪→ V1
frp pair2

Γ; ∆ ` A1 &A2 ⇑π π2S ↪→ 〈V1, V2〉

Γ; ∆, x :A ` B ⇑π S ↪→ V
frp llam

Γ; ∆ ` A−◦B ⇑π U ;̂S ↪→ λ̂x :A.V

Γ, x :A; ∆ ` B ⇑π S ↪→ V
frp ilam

Γ; ∆ ` A→ B ⇑π U ; S ↪→ λx :A. V
. .
Projection−spine construction

frp nil

Γ; · ` a ↓π a ↪→ nil

Γ; ∆ ` A1 ↓π a ↪→ S
frp fst

Γ; ∆ ` A1 &A2 ↓π a ↪→ π1S

Γ; ∆ ` A2 ↓π a ↪→ S
frp snd

Γ; ∆ ` A1 &A2 ↓π a ↪→ π2S

Γ; ∆′ ` B ↓π a ↪→ S Γ; ∆′′ ` A ↪→ V
frp lapp

Γ; ∆′,∆′′ ` A−◦B ↓π a ↪→ V ;̂S

Γ; ∆ ` B ↓π a ↪→ S Γ; · ` A ↪→ V
frp iapp

Γ; ∆ ` A→ B ↓π a ↪→ V ;S

Figure 5. Pre-Unification in S→−◦&>, Generation of Substitutions

The construction of V in the case of projection,
displayed in the lower part of Figure 5, is simi-
lar except that its spine S is built on the basis
of the type A of the projected parameter (rules
frp lvar and frp ivar). This leads to a form of
non-determinism for product types not present in
the case of imitation (rules frp fst and frp snd).

The purpose of the variable raising judgment

Γ′; ∆′ ` A ↪→ V ,

displayed in Figure 6, is to produce an η-long
term V of type A with new logical variables as its

heads (rule raise root) and the parameters ac-
cumulated in Γ′; ∆′ in the corresponding spines.
Notice that functional types yield new local pa-
rameters (rules raise llam and raise ilam). The
spines themselves are constructed by means of the
judgment

Γ′; ∆′ ` a ↪→ S,A

which builds a spine S mapping heads of type
A to roots of type a by rearranging non-
deterministically the parameters present in Γ′; ∆′.

Flex-Flex Similarly to λ→, a system composed
uniquely of flex-flex equations is always solvable

8

Constructors

Γ; ∆ ` a ↪→ S,A
raise root

Γ; ∆ ` a ↪→ F · S

raise unit

Γ; ∆ ` > ↪→ 〈〉

Γ; ∆ ` A1 ↪→ V1 Γ; ∆ ` A2 ↪→ V2
raise pair

Γ; ∆ ` A1 &A2 ↪→ 〈V1, V2〉

Γ; ∆, x :A ` B ↪→ V
raise llam

Γ; ∆ ` A−◦B ↪→ λ̂x :A.V

Γ, x :A; ∆ ` B ↪→ V
raise ilam

Γ; ∆ ` A→ B ↪→ λx :A.V
. .
Spines

raise nil

·; · ` a ↪→ nil, a

Γ; ∆ ` a ↪→ S, B
raise lapp

Γ; ∆, x :A ` a ↪→ (x ;̂S), A−◦B

Γ; ∆ ` a ↪→ S,B
raise iapp

Γ, x :A;∆ ` a ↪→ (x;S), A→ B

Figure 6. Pre-Unification in S→−◦&>, Raising Variables

in S→−◦&>. Indeed, every logical variable F in it
can be instantiated to a term VF consisting of a
layer of constructors as dictated by the type of
F , but with every root set to Ha · 〈〉 ;̂ nil (i.e.
Ha 〈̂〉 in λ→−◦&>), where Ha is a common new
logical variable of type >−◦ a, for each base type
a. Then, after normalization, every equation ξ
reduces to Γξ; ∆ξ ` Ha · 〈〉 ;̂ nil = Ha · 〈〉 ;̂ nil : a
which is linearly valid, although extensionally solv-
able only if a ground substitution term for each
needed Ha can indeed be constructed. When this
situation is encountered, the procedure terminates
with success, but without instantiating the logical
variables appearing in it. The substitution con-
structed up to this point, called a pre-unifier, is
returned.

The possibility of achieving an algorithms à la
Huet depend crucially on flex-flex equations being
always solvable. If this property does not hold, as
in some sublanguages of S→−◦&> we will discuss
shortly, these equations must be analyzed with
techniques similar to [18] or [21].

The procedure we just described is not guaranteed
to terminate for generic equation systems since flex-
rigid steps can produce arbitrarily complex new equa-
tions. However, it is sound in the sense that if a unifier
or pre-unifier is returned the system is solvable (where
free variables are allowed in the second case). It is also
non-deterministically complete, i.e., every solution to
the original system is an instance of a unifier or pre-
unifier which can be found with our procedure. These
properties are expressed by the theorems below. De-
tailed proofs can be found in [5]. We write D :: J if

D is a derivation of the judgment J , and [Θ]Ξ for the
result of applying the substitution Θ to each equation
in Ξ.

Theorem 3.1 (Soundness of linear pre-unification)

If X :: Ξ \Ξff ,Θ and there is a substitution Θff such
that the multiset of equality judgments [Θff]Ξff has a
derivation, then [Θff ◦Θ]Ξ is derivable.

Proof: By induction on the structure of X . 2

Note that it is not difficult to generalize this pro-
cedure to full unification (as, for example, in [27]), al-
though we fail to see its practical value.

Theorem 3.2 (Completeness of linear pre-unification)

Given a system of equations Ξ and a substitution Θ
such that [Θ]Ξ has a derivation, there are substitutions
Θff and Θ′, and a system of flex-flex equations Ξff such
that Θ = (Θff ◦Θ′)| domΘ, and [Θff]Ξff and Ξ \Ξff ,Θ

′

are derivable.

Proof: By induction on the structure of a multiset of
derivations ~E for [Θ]Ξ excluding flex-flex equations, and
on an appropriate measure on the image of the substi-
tution Θ. 2

3.4 Non-Determinism

Huet’s pre-unification algorithm for λ→ is inher-
ently non-deterministic since unification problems in
this language usually do not admit most general uni-
fiers. Indeed, when solving flex-rigid equations, we may
have to choose between imitation and projection steps
and, in the latter case, we might be able to project on

9

different arguments. The presence in S→−◦&> of a lin-
ear context and of constructs that operate on it gives
rise to a number of new phenomena not present in λ→

unification.
First of all, the manner equations are rewritten in

Figure 4 is constrained by the usual context man-
agement policy of linear logic. In particular, linear
heads in rigid-rigid equations are removed from the
context prior to unifying their spines (rule pu rr lvar).
Moreover, when simplifying equations among pairs,
the linear context is copied to the two subproblems
(pu pair), and equations involving 〈〉 can always be
elided (pu unit). Finally, when solving spine equa-
tions, the linear context must be distributed among
the linear operands (pu lapp) so that it is empty
when the end of the spine is reached (pu nil). As
expected, equations among intuitionistic operands are
created with an empty linear context (pu iapp). Con-
text splitting in rule pu lapp represents a new form
of non-determinism not present in Huet’s algorithm.
Standard techniques of lazy context management [3]
can however be used in order to handle it efficiently
and deterministically in an actual implementation.

A new inherent form of non-determinism arises in
the generation of the spine of substitution terms. Re-
call that such a term V is constructed in two phases:
first, we build its constructor layer, recording local in-
tuitionistic and linear parameters in two accumulators
Γ′ and ∆′, respectively, as λ-abstractions are intro-
duced (first and third parts of Figure 5). Then, we
construct a spine on the basis of the available type
informations (second and fourth quarter of Figure 5),
installing a fresh logical variable as the head of ev-
ery operand. The contents of Γ′ and ∆′ must then
be distributed as if they were contexts. In particu-
lar, we must split ∆′ among the linear operands (rules
fri llam and frp llam) so that, when the end of spine
is generated, no linear parameter is left (rules fri nil
and frp nil). Lazy strategies are not viable in gen-
eral this time because the heads of these operands are
logical variables. Therefore, we must be prepared to
non-deterministically consider all possible splits.

This situation is illustrated by the equation

x :A, y :B; · ` F ˆx ŷ = c (̂G1 x y) (̂G2 x y) : a.

discussed in Section 3.2. An imitation step instanti-
ates F to a term of the form λ̂x′ :A. λ̂y′ :B. cˆM1ˆM2

where each of the linear parameters x′ and y′ must
appear either in M1 or in M2, but not in both. This
produces the four solutions presented in Section 3.2.
An actual implementation would avoid this additional
non-determinism by postponing the choices between
the four imitations. A detailed treatment of the nec-
essary constraints between variables occurrences is be-

yond the scope of this paper (see Section 4.2 for further
discussion; a similar technique is used in [13]).

4 Discussion

In this section, we consider various sublanguages of
S→−◦&> (or equivalently λ→−◦&>) obtained by elid-
ing some of the type operators and the corresponding
term constructors and destructors (Section 4.1). We
also discuss problems and sketch solutions towards the
efficient implementation of a unification procedure for
λ→−◦&> (Section 4.2).

4.1 Sublanguages

The omission of one or more of the type operators
→, −◦, & and > and of the corresponding term con-
structs from λ→−◦&> (or S→−◦&>) results in a number
of λ-calculi with different properties.

First of all, the elision of −◦, & and > reduces
λ→−◦&> to λ→. The few applicable rules in Figures
4–5 constitute then a new presentation of Huet’s pro-
cedure. The combined use of inference rules and of
a spine calculus results in an elegant formulation that
can be translated almost immediately into an efficient
implementation.

Since linear objects in λ→−◦&> are created and con-
sumed by linear abstraction and application, respec-
tively, every sublanguage not containing −◦ is purely
intuitionistic. In particular, λ→& coincides with the
simply-typed λ-calculus with pairs while λ→&> cor-
responds to its extension with a unit type and unit
element. Unification in the restricted setting of higher-
order patterns has been studied for these two languages
in [8] and [9], respectively. The appropriate restric-
tions of the rules in Figures 4–6 implement a general
pre-unification procedure for these calculi.

The languages λ→−◦& and λ→−◦ are particularly
interesting since the natural restriction of our pre-
unification procedure is unsound for them in the fol-
lowing sense: We cannot apply our success criterion
since not all flex-flex equations are solvable in this set-
ting. Consider, for example,

x :A, y :B; · ` F ˆx = G ŷ : a.

This equation has no solution since F must be instan-
tiated with a term that, after β-reduction, will use ex-
plicitly x, and G to a term that must mention y. Fur-
thermore, whether a flex-flex equation has a solution
in λ→−◦& or λ→−◦ is in general undecidable, since, for
example, F ˆM1 = F ˆM2 is equivalent to the generic
unification problem M1 = M2. The situation is clearly
different in λ→−◦&> where 〈〉 is always available as an

10

information sink in order to eliminate unused linear
parameters. However, the usual assumption that there
exist closed terms of every type may not be reasonable
in λ→−◦&>, and care must be taken in each applica-
tion regarding the treatment of logical variables which
may have no valid ground instances. In conclusion,
pre-unification procedures in the sense of Huet are not
achievable in the calculi with −◦ but without >.

Finally, a restricted form of unification in the purely
linear calculus λ−◦ has been studied in [19]. The above
counterexamples clearly apply also in this setting, but
we have no result about the decidability of higher-order
unification in this fragment.

4.2 Towards a Practical Implementation

Huet’s algorithm for pre-unification in λ→ has been
implemented in general proof search engines such as
Isabelle [24] and logic programming languages such as
λProlog [23] and shown itself to be reasonably efficient
in practice. However, the non-determinism it intro-
duces remains a problem, especially in logic program-
ming. This issue is exacerbated in λ→−◦&> due to its
additional resource non-determinism during imitation
and projections.

For λ→, this problem has been addressed by Miller’s
language of higher-order patterns Lλ [21], which allows
occurrences of logical variables to be applied to distinct
parameters only. This syntactic restriction guarantees
decidability and most general unifiers. An algorithm
that solves equations in the pattern fragment but post-
pones as constraints any non Lλ constraint has been
successfully implemented in the higher-order logic pro-
gramming language Elf [25]. Unfortunately, an anal-
ogous restriction for λ→−◦&> which would cover the
situations arising in practice does not admit most gen-
eral unifiers. A simple example illustrating this is

x :a; · ` F ˆx = c (̂F1ˆx) (̂F2ˆx) : a.

which has the two most general solutions

F ←− λ̂x′ :a. c (̂F1ˆx′) (̂H2 〈̂〉), F2←− λ̂x′′ :a.H2 〈̂〉
F ←− λ̂x′ :a. c (̂H1 〈̂〉) (̂F2 x̂′), F1←− λ̂x′′ :a.H1 〈̂〉
neither of which is an instance of the other. This situ-
ation is common and occurs in several of our case stud-
ies. For certain flex-flex pattern equations, the set of
most general unifiers cannot even be described finitely
in the language of patterns, as illustrated by

x :a, y :a; · ` F 〈̂x, y〉 = Gˆx ŷ : a.

for which the generic solution

F ←− λ̂w :a&a.H 〈̂H1 (̂fst w) 〈̂〉, H2 (̂snd w) 〈̂〉〉
G←− λ̂u :a. λ̂v :a.H 〈̂H1 û 〈̂〉, H2ˆv 〈̂〉〉
yields one pattern substitution for each possible instan-
tiation of the new logical variable H.

Despite these difficulties, the natural generalization
of the notion of higher-order pattern introduced by [8]
and [9] for products to the linear case, leads to a decid-
able unification problem for λ→−◦&>. On this fragment
(whose description is beyond the scope of the present
paper), termination of the pre-unification algorithm in
Section 3 is assured if we also incorporate an appropri-
ate occurs-check as in the simply-typed case. Branch-
ing can furthermore be avoided by maintaining linear
flex-flex equations as constraints and by using addi-
tional constraints between occurrences of parameters.
In the first example above, the solution would be

F ←− λ̂x′ :a. c (̂F1ˆx′) (̂F2ˆx′)

with the additional constraint that if x′ occurs in F1ˆx′

then it must be absorbed (by 〈〉) in F2ˆx′ and vice versa
[13]. The second equation above would simply be post-
poned as a solvable equational constraint. Based on
our experience with constraint simplification in Elf [25]
and preliminary experiments, we believe that this will
be a practical solution. In particular, the use of explicit
substitutions, investigated in [7] relatively to Elf, seems
to provide a hook for the required linearity constraints.

5 Conclusion and Future Work

In this extended abstract, we have studied the prob-
lem of higher-order unification in the context of the lin-
ear simply typed λ-calculus λ→−◦&>. A pre-unification
algorithm in the style of Huet has been presented
for the equivalent spine calculus S→−◦&> and new
sources of inherent non-determinism due to linearity
were pointed out. Moreover, sublanguages of λ→−◦&>

were analyzed and it was shown that pre-unification
procedures are not achievable for some of them.

We are currently investigating the computational
properties of the natural adaptation of Miller’s higher-
order patterns to λ→−◦&>. Preliminary examples show
that many common unifiable equations do not have
most general unifiers due to non-trivial interferences
among −◦, & and >. However, we believe that these
problems can be solved through constraint simplifica-
tion and propagation techniques in a calculus of explicit
substitutions.

References

[1] A. Barber. Dual intuitionistic linear logic. Techni-
cal Report ECS-LFCS-96-347, Laboratory for Founda-
tions of Computer Sciences, University if Edinburgh,
Sept. 1996.

[2] I. Cervesato. A Linear Logical Framework. PhD the-
sis, Dipartimento di Informatica, Università di Torino,
Feb. 1996.

11

[3] I. Cervesato, J. S. Hodas, and F. Pfenning. Efficient
resource management for linear logic proof search. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, ed-
itors, Proceedings of the 5th International Workshop
on Extensions of Logic Programming, pages 67–81,
Leipzig, Germany, Mar. 1996. Springer-Verlag LNAI
1050.

[4] I. Cervesato and F. Pfenning. A linear logical frame-
work. In E. Clarke, editor, Proceedings of the Eleventh
Annual Symposium on Logic in Computer Science,
pages 264–275, New Brunswick, New Jersey, July
1996. IEEE Computer Society Press.

[5] I. Cervesato and F. Pfenning. Linear higher-order pre-
unification, 1997.

[6] I. Cervesato and F. Pfenning. A linear spine calcu-
lus. Technical Report CMU-CS-97-125, Department of
Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, Apr. 1997.

[7] G. Dowek, T. Hardin, C. Kirchner, and F. Pfenning.
Unification via explicit substitutions: The case of
higher-order patterns. In M. Maher, editor, Proceed-
ings of the Joint International Conference and Sym-
posium on Logic Programming, pages 259–273, Bonn,
Germany, Sept. 1996. MIT Press.

[8] D. Duggan. Unification with extended patterns. Tech-
nical Report CS-93-37, University of Waterloo, Water-
loo, Ontario, Canada, July 1993. Revised March 1994
and September 1994.

[9] R. Fettig and B. Löchner. Unification of higher-order
patterns in a simply typed lambda-calculus with finite
products and terminal type. In H. Ganzinger, editor,
Proceedings of the Seventh International Conference
on Rewriting Techniques and Applications, pages 347–
361, New Brunswick, New Jersey, July 1996. Springer-
Verlag LNCS 1103.

[10] J.-Y. Girard. Linear logic. Theoretical Computer Sci-
ence, 50:1–102, 1987.

[11] W. D. Goldfarb. The undecidability of the second-
order unification problem. Theoretical Computer Sci-
ence, 13:225–230, 1981.

[12] J. Harland and D. Pym. A uniform proof-theoretic
investigation of linear logic programming. Journal of
Logic and Computation, 4(2):175–207, Apr. 1994.

[13] J. Harland and D. Pym. Resource distribution via
boolean constraints. In W. McCune, editor, Proceed-
ings of the Fourteenth International Conference on
Automated Deduction — CADE-14, Townsville, Aus-
tralia, July 1997. To appear.

[14] H. Herbelin. Séquents qu’on calcule: de l’interpréta-
tion du calcul des séquents comme calcul de lambda-
termes et comme calcul de stratégies gagnantes. PhD
thesis, Université Paris 7, 1995.

[15] J. Hodas and D. Miller. Logic programming in a frag-
ment of intuitionistic linear logic. Information and
Computation, 110(2):327–365, 1994. A preliminary
version appeared in the Proceedings of the Sixth An-
nual IEEE Symposium on Logic in Computer Science,
pages 32–42, Amsterdam, The Netherlands, July 1991.

[16] G. Huet. A unification algorithm for typed λ-calculus.
Theoretical Computer Science, 1:27–57, 1975.

[17] S. Ishtiaq and D. Pym. A relevant analysis of natural
deduction, Dec. 1996. Manuscript.

[18] D. C. Jensen and T. Pietrzykowski. Mechanizing ω-
order type theory through unification. Theoretical
Computer Science, 3:123–171, 1976.

[19] J. Levy. Linear second-order unification. In
H. Ganzinger, editor, Proceedings of the Seventh Inter-
national Conference on Rewriting Techniques and Ap-
plications, pages 332–346, New Brunswick, New Jer-
sey, July 1996. Springer-Verlag LNCS 1103.

[20] S. Michaylov and F. Pfenning. An empirical study of
the runtime behavior of higher-order logic programs.
In D. Miller, editor, Proceedings of the Workshop on
the λProlog Programming Language, pages 257–271,
Philadelphia, Pennsylvania, July 1992. University of
Pennsylvania. Available as Technical Report MS-CIS-
92-86.

[21] D. Miller. A logic programming language with
lambda-abstraction, function variables, and simple
unification. In P. Schroeder-Heister, editor, Proceed-
ings of the International Workshop on Extensions of
Logic Programming, pages 253–281, Tübingen, Ger-
many, 1989. Springer-Verlag LNAI 475.

[22] D. Miller. A multiple-conclusion specification logic.
Theoretical Computer Science, 165(1):201–232, 1996.

[23] G. Nadathur and D. Miller. An overview of λProlog. In
K. A. Bowen and R. A. Kowalski, editors, Fifth Inter-
national Logic Programming Conference, pages 810–
827, Seattle, Washington, Aug. 1988. MIT Press.

[24] T. Nipkow and L. C. Paulson. Isabelle-91. In
D. Kapur, editor, Proceedings of the 11th International
Conference on Automated Deduction, pages 673–676,
Saratoga Springs, NY, 1992. Springer-Verlag LNAI
607. System abstract.

[25] F. Pfenning. Logic programming in the LF logical
framework. In G. Huet and G. Plotkin, editors, Logi-
cal Frameworks, pages 149–181. Cambridge University
Press, 1991.

[26] C. Prehofer. Solving Higher-Order Equations: From
Logic to Programming. PhD thesis, Technische Uni-
versität München, Mar. 1995.

[27] W. Snyder and J. H. Gallier. Higher order unification
revisited: Complete sets of transformations. Journal
of Symbolic Computation, 8(1-2):101–140, 1989.

12

