
A Linear Logical Framework

Iliano Cervesato and Frank Pfenning∗

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891
{iliano|fp}@cs.cmu.edu

Abstract

We present the linear type theory LLF as the for-

This extended abstract will appear on the proceedings of the Eleventh Annual IEEE Symposium on Logic in Computer Science —
LICS’96, New Brunswick, NJ, July 27–30 1996.

mal basis for a conservative extension of the LF logical
framework. LLF combines the expressive power of de-
pendent types with linear logic to permit the natural and
concise representation of a whole new class of deductive
systems, namely those dealing with state. As an exam-
ple we encode a version of Mini-ML with references in-
cluding its type system, its operational semantics, and
a proof of type preservation. Another example is the
encoding of a sequent calculus for classical linear logic
and its cut elimination theorem. LLF can also be given
an operational interpretation as a logic programming
language under which the representations above can be
used for type inference, evaluation and cut-elimination.

1 Introduction

A logical framework is a formal system designed to
provide effective representations of deductive systems
and their properties. Proposals based on intuitionistic
logic and intuitionistic type theory, such as the logical
framework LF [9], have been widely used to study log-
ical formalisms [19] and programming languages [11].
Unfortunately, many constructs and concepts needed in
common programming practice cannot be represented
in a satisfactory way in these meta-languages. In par-
ticular, constructs based on the notion of state as found
in imperative languages often escape an elegant formal-
ization by means of these tools. Similarly, logical sys-
tems that, by definition (e.g. substructural logics) or
by presentation (e.g. Dyckhoff’s contraction-free intu-
itionistic sequent calculus [5]), rely on destructive con-
text reductions require awkward encodings in an in-

∗This work was supported by NSF Grant CCR-9303383. The
second author was supported by the Alexander-von-Humboldt-
Stiftung when this paper was completed, during a visit to the De-
partment of Mathematics of the Technical University Darmstadt.

tuitionistic framework. Consequently the adequacy of
the representation is difficult to prove and the formal
meta-theory quickly becomes intractable.

Linear logic [7] provides a view of context formulas
as resources, which can be exploited to model the no-
tion of state, as described for example in [4, 10, 12, 22].
The current proposals put the emphasis on the issue of
representing imperative constructs and resource-based
logics, but appear inadequate for reasoning effectively
about these representations. On the other hand, intu-
itionistic type-theoretic frameworks such as LF make
the representation of meta-reasoning easy, but do not
have any notion of linearity built in.

As a concrete example, consider the problem of rep-
resenting a cut-elimination procedure for linear logic.
Given the derivation D for a linear sequent ∆ −→ Θ,
this procedure produces an equivalent cut-free deriva-
tion D′. Since it operates linearly on the formulas ap-
pearing in it, D would be adequately represented by
a term pDq in a linear λ-calculus; the same holds for
D′. This problem was encoded in LF by representing
sequents as types and derivations as proof terms [18].
LF is intuitionistic and therefore the linearity of pDq
needed to be checked explicitly as a property of pDq,
complicating the meta-theory to the extent that it be-
came infeasible and only the cut-elimination algorithm
without the linearity check was implemented. On the
other hand, encoding the same problem in Miller’s lin-
ear meta-logic Forum [12] would map linear sequent
derivations to linear derivations in the meta-language.
But since Forum lacks proof terms, no internal nota-
tion for those entities is provided and cut-elimination
cannot be implemented in this manner.

In this paper, we propose a conservative extension
of the logical framework LF that permits representing
linear objects and reasoning about them. This formal-
ism, that we call Linear LF, or LLF for short, is a
type theory featuring linear function types (−◦), ad-
ditive pairing (&), unit type (>), and intuitionistic
dependent function types (Π). LLF extends the ob-

jects of LF with linear functional abstraction, additive
pairs and unit, the corresponding destructors, and their
equational theory. In order to keep the system simple
we restrict the indices of type families to be linearly
closed so that a type can depend only on intuitionis-
tic assumptions, but not on linear variables. While at
first this may appear to be a strong restriction, the re-
sulting system is surprisingly expressive, allowing the
faithful implementation of cut elimination for classical
linear logic, translations between linear natural deduc-
tion and sequent calculus, and properties of imperative
languages such as type preservation.

LLF also maintains the computational nature of LF
and is amenable to an efficient implementation as a
logic programming language in the style of Elf [15, 17].
The experience gained with linearity in the language
Lolli [10, 2] applies directly to our formalism.

The principal contributions of this work are: (1) the
definition of a uniform type theory admitting linear en-
tities in conjunction with dependent types; (2) the use
of this system as a logical framework to represent and
reason about problems that are not handled well by
previous formalisms, either linear or intuitionistic; (3)
the description of an operational system which consti-
tutes the first step towards an implementation of this
formalism as a linear constraint logic programming lan-
guage. To our knowledge, this is the first linear type
theory that goes beyond simple types. Our work was
inspired by ideas in [14].

The paper is organized as follows. Section 2 de-
scribes LLF and presents major results in its meta-
theory, such as the decidability of type-checking. Sec-
tion 3 indicates that efficient proof search in the style
of logic programming can be achieved in LLF . Sec-
tion 4 illustrates the expressiveness of LLF on an ex-
ample featuring imperative computations. Section 5
presents cut-elimination for classical linear logic as an-
other example. Finally, Section 6 assesses the results
and outlines future work.

2 The Linear Logical Framework LLF

In order to facilitate the description of LLF in the
available space, we must assume that the reader is fa-
miliar with both the logical framework LF [9] and var-
ious presentations of linear logic [7, 8]. We will also
sparingly take advantage of the natural extension of the
Curry-Howard isomorphism to linear logic by viewing
types as formulas.

LLF extends the logical framework LF with three
connectives from linear logic, seen in this context as
type constructors, namely multiplicative implication
(−◦), additive conjunction (&) and additive truth (>).

The language of objects is augmented accordingly with
the respective constructors and destructors. Linear
types operate on linear assumptions which we repre-
sent as distinguished declarations of the form x :̂A in
the context; we write x :A for context elements à la LF
and call them intuitionistic assumptions. The syntax
of LLF is given by the following grammar (constructs
not present in LF are separated by a double bar ||):

Objects: M ::= c | x | λx :A.M | M1 M2

|| 〈〉 | 〈M1,M2〉 | fstM | sndM

| λ̂x :A.M | M1ˆM2

Families: P ::= a | P M

Types: A ::= P | Πx :A1. A2

|| > | A1 &A2 | A1−◦A2

Kinds: K ::= type | Πx :A.K

Contexts: Ψ ::= · | Ψ, x :A || Ψ, x :̂A

Signatures: Σ ::= · | Σ, a :K | Σ, c :A

Here x, c and a range over object-level variables, object
constants and type family constants, respectively. In
addition to the names displayed above, we will often
use N and B to range over objects and types respec-
tively. Moreover, we denote generic terms, i.e. objects,
types or kinds, with the letters U and V , possibly sub-
scripted. As usual, we write A → U for Πx : A.U
whenever x does not occur in the type or kind U .

The notions of free and bound variables are adapted
from LF (notice the presence of a new binding con-
struct: linear λ-abstraction). As usual, we identify
terms that differ only in the name of their bound vari-
ables and write [M/x]U for the capture-avoiding sub-
stitution of M for x in the term U . Finally we require
variables and constants to be declared at most once in
a context and in a signature, respectively.

Below we will often need to access the intuitionistic
part of a context. Therefore, we introduce the function
Ψ defined as follows:

· = ·
Ψ, x :A = Ψ, x :A
Ψ, x :̂A = Ψ

We overload this notation and use Ψ to express the
fact that the linear portion of the denoted context is
constrained to be empty (e.g. in the all rules for type
families in Figure 1).

The meaning of the syntactic entities of LLF can
be presented in various forms. Figures 1 and 2 show
a version of the type system for LLF that we call
pre-canonical and that is particularly well-suited for
proving meta-theoretic properties about this formal-
ism. The system relies on the following seven judg-
ments:
` Σ ⇑– Sig (Σ is a pre-canonical signature)
`Σ Ψ ⇑– Ctx (Ψ is a pre-canonical context)

2

Signatures

s dot

` · ⇑– Sig

` Σ ⇑– Sig · `Σ A ⇑– type

s obj

` Σ, c :A ⇑– Sig

` Σ ⇑– Sig · `Σ K ⇑– Kind
s fam

` Σ, a :K ⇑– Sig

Contexts

` Σ ⇑– Sig
c dot

`Σ · ⇑– Ctx

`Σ Ψ ⇑– Ctx Ψ `Σ A ⇑– type

c int

`Σ Ψ, x :A ⇑– Ctx

`Σ Ψ ⇑– Ctx Ψ `Σ A ⇑– type

c lin

`Σ Ψ, x :̂A ⇑– Ctx

Kinds
`Σ Ψ ⇑– Ctx

kc type

Ψ `Σ type ⇑– Kind

Ψ, x :A `Σ K ⇑– Kind
kc dep

Ψ `Σ Πx :A.K ⇑– Kind

Types/type families

Ψ `Σ P ↓– type

fc a

Ψ `Σ P ⇑– type

`Σ Ψ ⇑– Ctx
fc top

Ψ `Σ > ⇑– type

Ψ `Σ A ⇑– type Ψ `Σ B ⇑– type

fc with

Ψ `Σ A&B ⇑– type

Ψ `Σ A ⇑– type Ψ `Σ B ⇑– type

fc limp

Ψ `Σ A−◦B ⇑– type

Ψ, x :A `Σ B ⇑– type

fc dep

Ψ `Σ Πx :A.B ⇑– type

. .

(No fc eq, no fa c)
Ψ `Σ A ↓– K K ≡ K ′ Ψ `Σ K ′ ⇑– Kind

fa eq

Ψ `Σ A ↓– K ′

`Σ,a:K,Σ′ Ψ ⇑– Ctx
fa con

Ψ `Σ,a:K,Σ′ a ↓– K

Ψ `Σ P ↓– Πx :A.K Ψ `Σ N ⇑– A
fa iapp

Ψ `Σ P N ↓– [N/x]K

Figure 1. A Pre-canonical Deduction System for LLF, kinds and types

Ψ `Σ K ⇑– Kind (K is a pre-canonical kind)
Ψ `Σ A ⇑– type (A is a pre-canonical type)
Ψ `Σ A ↓– K (A is a pre-atomic family of kind K)
Ψ `Σ M ⇑– A (M is a pre-canonical obj. of type A)
Ψ `Σ M ↓– A (M is a pre-atomic object of type A)

plus the three judgments for definitional equality

U ≡ V (U is definitionally equal to V)

and a judgment for non-deterministically splitting (or
merging, depending on the point of view) the context

Ψ = Ψ′ 1 Ψ′′ (Ψ splits into Ψ′ and Ψ′′).

Whenever a property holds uniformly for the five judg-
ments concerning objects, types and kinds above, we
take the liberty of writing Ψ `Σ U ⇑–↓– V and then re-
ferring to the generic terms U and V .

A few remarks on these judgments are in order prior
to describing the rules in Figures 1–2. The notion of
definitional equality that we consider is the equivalence
constructed on the congruence relation built out of the
following β-reduction rules:

βfst : fst 〈M,N〉 −→M
βsnd : snd 〈M,N〉 −→N

βlapp : (λ̂x :A.M)ˆN −→ [N/x]M
βiapp : (λx :A.M)N −→ [N/x]M.

The omission of the rules for η-expansion is justified by

the fact that the interplay of the rules for pre-canonical
and pre-atomic objects in Figure 2 guarantees that a
pre-canonical object is always in η-long form. More-
over, it is easy to show that this property is hereditarily
maintained when substituting a pre-canonical object
in a pre-canonical type or kind, and by β-reduction.
Therefore, all terms satisfying the judgments above
are in η-long form, although they might contain β-
redices, and therefore are not necessarily in normal
form. Distinguishing two object-level forms of judg-
ments instead of just defining one typing judgment is
essential in order to achieve this property. It has the
practical effects of avoiding the meta-theoretic com-
plications introduced by explicitly considering the η-
conversion rules. Moreover, it lays the basis for an
efficient implementation strategy in which η-expansion
takes place in a preprocessing phase but is not required
during the execution. Normalization is then simply β-
reduction. Instead, a direct extension of the current
implementation techniques for LF [17] would require
carrying types around in order to handle properly ob-
jects of type >. To our knowledge, this is the first
formulation of a type theory that focuses uniquely on
long forms. It was inspired by Felty’s canonical LF [6].

Traditional presentations of linear logic define the

3

Context splitting/merging

s dot

· = · 1 ·
Ψ = Ψ′ 1 Ψ′′

s lin1

(Ψ, x :̂A) = (Ψ′, x :̂A) 1 Ψ′′

Ψ = Ψ′ 1 Ψ′′
s int

(Ψ, x :A) = (Ψ′, x :A) 1 (Ψ′′, x :A)

Ψ = Ψ′ 1 Ψ′′
s lin2

(Ψ, x :̂A) = Ψ′ 1 (Ψ′′, x :̂A)

Objects
Ψ `Σ M ↓– P

oc a

Ψ `Σ M ⇑– P

Ψ `Σ M ⇑– B A ≡ B Ψ `Σ A ⇑– type

oc eq

Ψ `Σ M ⇑– A

`Σ Ψ ⇑– Ctx
oc unit

Ψ `Σ 〈〉 ⇑– >

Ψ `Σ M ⇑– A Ψ `Σ N ⇑– B
oc pair

Ψ `Σ 〈M,N〉 ⇑– A&B

Ψ, x :̂A `Σ M ⇑– B
oc llam

Ψ `Σ λ̂x :A.M ⇑– A−◦B

Ψ, x :A `Σ M ⇑– B
oc ilam

Ψ `Σ λx :A.M ⇑– Πx :A.B
. .

Ψ `Σ M ⇑– A
oa c

Ψ `Σ M ↓– A

Ψ `Σ M ↓– B A ≡ B Ψ `Σ A ⇑– type

oa eq

Ψ `Σ M ↓– A

`Σ,c:A,Σ′ Ψ ⇑– Ctx
oa con

Ψ `Σ,c:A,Σ′ c ↓– A

`Σ Ψ, x :̂A,Ψ′ ⇑– Ctx
oa lvar

Ψ, x :̂A,Ψ′ `Σ x ↓– A

`Σ Ψ, x :A,Ψ′ ⇑– Ctx
oa ivar

Ψ, x :A,Ψ′ `Σ x ↓– A

(No rule for >)
Ψ `Σ M ↓– A&B

oa fst

Ψ `Σ fstM ↓– A

Ψ `Σ M ↓– A&B
oa snd

Ψ `Σ sndM ↓– B

Ψ′ `Σ M ↓– A−◦B Ψ′′ `Σ N ⇑– A Ψ = Ψ′ 1 Ψ′′

oa lapp

Ψ `Σ MˆN ↓– B

Ψ `Σ M ↓– Πx :A.B Ψ `Σ N ⇑– A
oa iapp

Ψ `Σ M N ↓– [N/x]B

Figure 2. A Pre-canonical Deduction System for LLF, objects

context ∆ of an intuitionistic sequent ∆ −→ A as
a multiset of linear formulas. More recent works
[8, 10, 18] prefer to refine it as a pair Γ; ∆ of multi-
sets so that the sequent Γ; ∆ −→ A is equi-provable
with (!Γ,∆) −→ A in the traditional formulation. The
two components of Γ; ∆ are called the intuitionistic
and the linear context, respectively. Our presentation
adopts the latter strategy by distinguishing intuitionis-
tic (x :A) and linear (x :̂A) variable declarations. How-
ever, in LLF as in LF, an assumption can depend on
previous declarations; their order is therefore critical
and we must adopt sequences as the representation for
contexts.

The constraints on the structure of an LLF con-
text lead to small notational complications. The axiom
rules of linear logic, which close a proof tree, are ap-
plicable only if the linear context is empty, or if it only
consists of the formula to be proved. The correspond-
ing LLF rules (oa con, oa lvar and oa ivar) rely on
the notation · · · to express the same conditions. An-
other complication arises when it comes to representing
context splitting for multiplicative connectives. Lack-

ing the commutativity properties of multisets, we use a
separate judgment in rule oa lapp to specify that the
linear context in the conclusion should be split among
the premisses of this rule. The rules in the upper part
of Figure 2 define it.

The rules concerning linear objects in Figure 2 define
the behavior of linear types. If we ignore the objects
and the distinction between the two judgments, they
correspond to the specification of the familiar rules for
the linear connectives >, & and −◦, presented in a nat-
ural deduction style. It is easy to prove the equivalence
to the usual sequent formulation. The objects that ap-
pear on the left of these types record the structure of
a natural deduction proof for the corresponding linear
formulas.

The dependent function type Πx : A.B that LLF
inherits from LF generalizes both intuitionistic impli-
cation A → B (customarily defined as !A−◦B) and
the universal quantifier ∀x. B, where A plays the role
of the type of the (intuitionistic) variable x.

With the interpretation above, LLF makes available
all the connectives and quantifiers of the freely gener-

4

ated fragment of the language of linear hereditary Har-
rop formulas, on which the programming language Lolli
is based [10]. Additionally, LLF offers the character-
istic features of a type theory: higher-order functions,
proof terms, and type families indexed by arbitrary ob-
jects, possibly higher-order and linear.

In the rules in Figures 1–2, types and kinds are al-
ways checked using a purely intuitionistic context. This
prevents valid types from containing free linear vari-
ables. Loosening this restriction would require admit-
ting linear dependent function types in our language,
corresponding to linear quantifiers. Although this in-
clusion appears beneficial for certain applications, pre-
liminary investigations seem to indicate that the conse-
quent complications might outweigh the potential ad-
vantages.

LLF enjoys the same meta-theoretic properties that
hold for LF . The principal results are summarized as
follows:

Theorem

1. (Church-Rosser property) Whenever U ≡ U ′,
there is a term V such that U −→∗ V and
U ′ −→∗ V , where −→∗ is the transitive closure
of the reduction congruence −→.

2. (Unicity of types and kinds) If Ψ `Σ U ⇑–↓– V and
Ψ `Σ U ⇑–↓– V ′ are both derivable, then V ≡ V ′.

3. (Strong normalization) If Ψ `Σ U ⇑–↓– V is deriv-
able, then U is strongly normalizing.

4. (Decidability of type checking) It can be recur-
sively decided whether there exist derivations for
the judgments Ψ `Σ U ⇑–↓– V , `Σ Ψ ⇑– Ctx and
` Σ ⇑– Sig.

5. (Conservativity over LF) If Σ, Ψ, U and V do
not mention linear constructs, then Ψ `Σ U ⇑–↓– V
is derivable iff Ψ `LF

Σ U ⇑–↓– V is derivable in the
LF type theory, and similarly for contexts and sig-
natures. 2

The proofs of these results adapt the techniques out-
lined in [9] for LF . However, differently from that
treatment, our ability to work uniquely with η-long
forms permits obtaining precisely the canonical terms
that are needed for meta-representation and proof-
search. The reader is invited to consult [1] for details.

Since type checking for LLF is decidable, we can
effectively determine if a given term is the represen-
tation of a valid derivation from a (potentially linear)
object logic, which is crucial in applications of a log-
ical framework. Being a conservative extension over
LF is important, since all representation techniques,
adequacy theorems, and examples developed for LF
remain valid for LLF . This also means that, under

the computational interpretation of section 3, any LF
program is a valid LLF program and will behave in
exactly the same way.

From the explanation above, it should be clear that
the normal form of a pre-canonical term is indeed
canonical (that is, in long βη-normal form). A canoni-
cal proof system for LLF can easily be obtained from
the calculus in Figures 1–2: we replace the equiva-
lence rules fa eq, oc eq and oa eq with applications of
the normalization function NF() in the rules involving
substitution. NF() exists by virtue of strong normal-
ization; moreover, by removing the rule oa c, we guar-
antee that derivable objects do not contain β-redices,
and are therefore canonical. We write the canonical
derivability judgments in the form Ψ `Σ U ⇑ V (no-
tice the different arrow shape).

3 Logic Programming with LLF

The canonical system outlined at the end of the
last section is adequate for checking that an object
has a given type, but not for generating a (canoni-
cal) term of that type. Similarly to the case of LF, this
problem, proof-search under the Curry-Howard isomor-
phism, can be efficiently mechanized in LLF . This lays
the basis for converting our formalism into a linear con-
straint logic programming language.

For the purpose of motivating this statement, let
us cast our system into the usual terminology of logic
programming. We use ‘formula’ instead of ‘type’ and,
given the judgment Ψ `Σ M ⇑ A, we call A its goal
and adopt the name ‘program’ for the combined con-
text Σ,Ψ (overloading ‘,’ to denote concatenation). We
aim at finding a derivation, encoded as M , of the goal
A from the program Σ,Ψ. For this purpose, we want to
be able to interpret the connectives (type constructors
in our context) of A as search directives and the dec-
larations in Σ,Ψ as partial definitions for the atomic
formulas that might appear in the goal, so that pro-
gram formulas need to be accessed only when the goal
is atomic. A proof is goal-oriented if the program is
accessed only after the goal has been reduced to an
atomic formula. A proof is focused if every time a pro-
gram formula is considered, it can be processed up to
the atoms it defines without needing to access any other
program formula. A proof having both these properties
is uniform, and a formalism such that every provable
goal has a uniform proof is called an abstract logic pro-
gramming language [13].

LLF is an abstract logic programming language and
Figure 3 describes a uniform proof system for it. The
rules for the uniform provability judgment Ψ

u−→Σ M :
A, in the upper part, process the goal up to an atomic

5

Uniform provability

Ψ
u−→Σ,c:A,Σ′ c : A � M : P

ou con

Ψ
u−→Σ,c:A,Σ′ M : P

Ψ, x :A,Ψ′
u−→Σ x : A � M : P

ou ivar

Ψ, x :A,Ψ′
u−→Σ M : P

Ψ,Ψ′
u−→Σ x : A � M : P

ou lvar

Ψ, x :̂A,Ψ′
u−→Σ M : P

ou unit

Ψ
u−→Σ 〈〉 : >

Ψ
u−→Σ M : A Ψ

u−→Σ N : B
ou pair

Ψ
u−→Σ 〈M,N〉 : A&B

Ψ `Σ A ⇑ type Ψ, x :̂A
u−→Σ M : B

ou llam

Ψ
u−→Σ λ̂x :A.M : A−◦B

Ψ `Σ A ⇑ type Ψ, x :A
u−→Σ M : B

ou ilam

Ψ
u−→Σ λx :A.M : Πx :A.B

Immediate entailment
oi atm

Ψ
u−→Σ M : P � M : P

Ψ
u−→Σ fstM : A � N : P

oi fst

Ψ
u−→Σ M : A&B � N : P

Ψ
u−→Σ sndM : B � N : P

oi snd

Ψ
u−→Σ M : A&B � N : P

Ψ′′
u−→Σ MˆM ′ : B � N : P Ψ′

u−→Σ M ′ : A Ψ = Ψ′ 1 Ψ′′
oi lapp

Ψ
u−→Σ M : A−◦B � N : P

Ψ
u−→Σ M M ′ : NF([M ′/x]B) � N : P Ψ `Σ M ′ ⇑ A

oi iapp static

Ψ
u−→Σ M : Πx :A.B � N : P

Ψ
u−→Σ M M ′ : NF([M ′/x]B) � N : P Ψ

u−→Σ M ′ : A
oi iapp dynamic

Ψ
u−→Σ M : Πx :A.B � N : P

Figure 3. A Uniform Deduction System for LLF

formula, then select an assumption from the program
(rules ou con, ou lvar and ou ivar) and pass it to

the immediate entailment judgment Ψ
u−→Σ M : A �

N : P that decomposes it until it matches the goal
(rule oi atm). The term A in the program formula
Πx :A.B can be viewed either as the type of the term
M ′ to which the variable x should be instantiated (rule
oi iapp static), or as a formula to be proved by proof-
search (rule oi iapp dynamic); a complete discussion
on this aspect can be found in [1]. Notice that types
in Figure 3 are checked for being canonical in rules
ou llam, ou ilam and oi iapp static, therefore this
deduction system does not replace, but extends the full
canonical system.

This system is sound and complete with respect to
the canonical calculus outlined at the end of Section 2.

Theorem Ψ
u−→Σ M : A iff Ψ `Σ M ⇑ A

Proof: After a proper generalization to handle atomic
derivability and immediate entailment, we proceed by
structural induction on the derivations in the hypothe-
ses. See [1] for details. 2

We should stress that this is just the first step to-
wards the specification of LLF as a logic programming
language. In particular, a number of non-deterministic
choices remain implicit in Figure 3. Specifically, no
strategy is provided to split the context in rule oi lapp
(resource management non-determinism); no execution
order is specified for the premisses of rule oi lapp and
oi iapp (conjunctive non-determinism); no criterion
is given in order to pick a program formula when a
goal is atomic in rules ou con, ou lvar and ou ivar
(disjunctive non-determinism); and finally, no recipe
is given to choose the instantiating object M ′ in rule
oi iapp static (existential non-determinism). We ex-
pect to be able to adapt standard techniques [16] to our
linear setting in order to handle these issues effectively.

4 An Example: Reasoning about Im-
perative Computations

In [4] Chirimar demonstrates how Forum [12], a
meta-logic based on classical linear logic, can serve as
a natural meta-language for specifying UML, a ver-
sion of Mini-ML with references and continuations. In

6

(References)
Γ ` e : τ

ofe ref

Γ ` ref e : τ ref

Γ ` e : τ ref
ofe deref

Γ ` ! e : τ

Γ ` e1 : τ ref Γ ` e2 : τ
ofe assign

Γ ` e1 := e2 : 1

(Definitions)
Γ ` [v/x]e : τ

ofe letv

Γ ` letv x = v in e : τ

Γ ` e1 : τ1 Γ, x:τ1 ` e2 : τ2
ofe let

Γ ` let x = e1 in e2 : τ2

(Cells) ofc empty

∆ ` · : ·
∆ ` S : ∆′ ∆ ` v : τ

ofc cell

∆ ` (S, c = v) : (∆′, c:τ)

(Answers)
∆ ` S : ∆ ∆ ` v : τ

off loc

∆ ` (S, v) : τ

∆, c:τ ′ ` w : τ
off new

∆ ` new c. w : τ

Figure 4. Some Typing Rules for MLR

this section we sketch a similar (and executable) spec-
ification of Mini-ML with references (MLref) in LLF
and then show how to implement the proof of type
preservation for MLref . Among other things, our en-
coding indicates that the classical operators of Forum
are not essential in this example; this observation ex-
tends to a broad class of applications in the theory of
programming languages. It furthermore demonstrates
how the combination of linear and dependently typed
terms can be employed to mechanize the meta-theory
of languages with state at a very high level of abstrac-
tion which is not achievable in other frameworks.

The complete LLF code for this example can be
found in [3]. There and in this section, we adopt a
concrete syntax analogous to that of Elf [17]. In par-
ticular, we use {x:A}B for Πx :A.B, simplifying it to
A -> B or B <- A whenever possible. We adopt -o or
o- for −◦, & for & and <T> for >. We denote the ob-
jects 〈〉, 〈M,N〉, λx :A.M , λ̂x :A.M and MˆN as (),
(M,N), [x:A]M, [x^A]M and M^N, respectively. When-
ever possible, we keep the types implicit in the binding
constructs.

The polymorphism in MLref is restricted to val-
ues [21] which seems to be generally accepted as supe-
rior to SML’s imperative type variables. We achieve
this by distinguishing two forms of let. We use x
to stand for variables and c to stand for addresses of
cells which may be updated imperatively. In the in-
formal presentation we think of values as a subset of
all possible expressions and overload constructors be-
tween values and expressions as usual. The implemen-
tation distinguishes them as different LLF types. We
elide the standard expression and value constructors
and destructors for natural numbers, unit, pairs, func-
tions and recursion.

Types τ ::= nat | 1 | τ1 × τ2 | τ1 → τ2 | τ ref

Expressions e ::= v | . . . | ref e | ! e | e1 := e2

| let x = e1 in e2 | letv x = v in e

Values v ::= . . . | x | ref c

States S ::= · | S, c = v

Answers w ::= (S, v) | new c. w

To express the basic judgments we also need contin-
uations and contexts. Contexts declare types for vari-
ables and reference cells, store contexts only for cells.

Contexts Γ ::= · | Γ, x:τ | Γ, c:τ
Store contexts ∆ ::= · | ∆, c:τ
Continuations K ::= init | K; λx. e

A continuation is either initial or constructed by adding
an instruction to a continuation. We can think of con-
tinuations functionally (in which case init is the iden-
tity and “;” is function composition) or as a stack of
instructions. MLref is represented using standard tech-
niques of higher-order abstract syntax; no linearity is
needed at this level. An important point about the
representation is that the spaces of expressions exp,
values val, cells cell, answers final, and continua-
tions cont are all separate types, with some explicit
coercions between them. This is necessary since the
framework lacks subtyping. Note also that there are
no constructors of type cell in the signature: they are
only introduced as parameters during the execution of
a program when storage cells are allocated.

We have four typing judgments:

Γ ` e : τ (e has type τ)

Γ ` K : τ1 ⇒ τ2 (K maps values in τ1 to answers in τ2)

∆ ` S : ∆′ (Cells of S have types prescribed in ∆′)

∆ ` w : τ (Answer w has type τ)

respectively represented, following the usual
judgments-as-types methodology of LF, as the
type families

ofe: exp -> tp -> type.

ofk: cont -> tp -> tp -> type.

ofc: cell -> tp -> type.

off: final -> tp -> type.

7

S . K ;λx. ref x ` e ↪→ w
ex ref

S . K ` ref e ↪→ w

S, c = v . K ` ref c ↪→ w
ex ref1

S . K ` ref v ↪→ new c. w

S′, c = v, S′′ . K ` v ↪→ w
ex deref1

S′, c = v, S′′ . K ` ! (ref c) ↪→ w

S′, c = v2, S
′′ . K ` 〈 〉 ↪→ w

ex assign2

S′, c = v1, S
′′ . K ` ref c := v2 ↪→ w

S . K ` [v/x]e ↪→ w
ex letv

S . K ` letv x = v in e ↪→ w

S . K ` [v/x]e ↪→ w
ex return

S . K ;λx. e ` v ↪→ w
ex init

S . init ` v ↪→ (S, v)

Figure 5. Some Evaluation Rules for MLR

The type of the store is represented in a distributed
fashion with a separate typing assumptions for each
cell. We show some of the critical rules defining these
judgments in Figure 4.

In the rule for letv it may be desirable to also check
that v has at least some type, but this is not necessary
to prove type preservation. In practice, one would of
course implement this rule by computing a principal
type scheme for v, but we consider this an optimiza-
tion which is orthogonal to our declarative system. The
sample declarations below implement the first four in-
ference rules in Figure 4. Free variables in a declaration
are implicitly Π-quantified with a type which is deter-
mined during LLF type reconstruction.

ofe_ref: ofe (ref E) (rf T)

<- ofe E T.

ofe_deref: ofe (deref E) T

<- ofe E (rf T).

ofe_assign: ofe (assign E1 E2) 1

<- ofe E1 (rf T)

<- ofe E2 T.

ofe_letv: ofe (letv V ([x:val] E x)) T

<- ofe (E V) T.

The continuation-based operational semantics eval-
uates an expression e given a state S and a continuation
K to an answer w which encapsulates the final state.
We write S . K ` e ↪→ w. We show some of the criti-
cal rules concerned with state in Figure 5. Recall that
ref v is not a value, but that ref c is. The last two
rules show that values are returned by applying the
continuation or constructing the final answer.

In rule ex ref1, the cell c must be new, that is, not
occur in S, K, or v. Note that the evaluation rule
for the polymorphic let, letv, matches the typing rule,
which is critical in the proof of the type preservation
theorem below.

The representation of the evaluation judgment once
again follows the judgments-as-types methodology, but
we treat the state S specially as will be discussed be-
low. A judgment S . K ` e ↪→ w is encoded as the

type exec pKq (ev peq) pwq, where ev is merely a
coercion from expressions exp to machine instructions
inst which also encompass values v, which are coerced
as (return pvq). The state S is represented by an LLF
context with a linear hypothesis for every cell in S:

p·q = ·
pS, c = vq = pSq, c :cell, c′ :̂ contains c pvq

A derivation of a judgment is represented by a canoni-
cal object of the corresponding type under the context
obtained by translating the state. So if Ex :: (S . K `
e ↪→ w) then

pSq `Σ pExq ⇑ exec pKq (ev peq) pwq
Conversely, a canonical object of such a type in a

context of this form always represents a derivation of
the corresponding judgment. In fact, the representa-
tion function p q is a compositional bijection between
canonical LLF objects of the type above and deriva-
tions of the evaluation judgment. In this way LLF
objects directly represent imperative computations.

As an example, we show the concrete represen-
tations of the rules that create cells (ex_ref1),
derefence cells (ex_deref1), and change their value
(ex_assign2). We use a single auxiliary judgment
read with exactly one rule to obtain the contents of
a cell without changing the state.

exec : cont -> inst -> final -> type.

contains : cell -> val -> type.

read : cell -> val -> type.

rd : read C V o- contains C V o- <T>.

ex_ref1 : exec K (ref1 V1) (new* W)

o- ({c:cell} contains c V1

-o exec K (return (ref* c)) (W c)).

ex_deref1 : exec K (deref1 (ref* C)) W

o- read C V1 & exec K (return V1) W.

ex_assign2 : exec K (assign2 (ref* C1) V2) W

o- contains C1 V1

o- (contains C1 V2

-o exec K (return unit*) W).

8

The complete signature may be executed as a
logic program with queries of the form Ex :
exec init (ev peq) W for a closed expression e. If suc-
cessful, W will be instantiated to the final answer and
Ex to its computation; if it fails (which may happen
if e is not well-typed in MLref) or does not terminate,
then e has no value in the given operational semantics.

The last inference rule in the evaluation judgment in
Figure 5 pairs up the state S with a value v to obtain
the final answer (S, v). Since the state is represented in
a distributed fashion, this must be implemented by a
new type family, close, which transfers each cell from
the context to the final answer.

The type preservation theorem relates the type of
an expression to be evaluated to the type of the final
answer. It is stated as follows:

Theorem (Type Preservation) If S . K ` e ↪→ w
and ∆ ` S : ∆, ∆ ` K : τ ⇒ σ, and ∆ ` e : τ then
∆ ` w : σ.

Proof: The proof proceeds by structural induction on
the derivation Ex :: (S . K ` E ↪→ w), applying in-
version to obtain the typing derivations necessary to
appeal to the induction hypothesis. 2

While our development differs in some aspects from
the formulations and proofs given in the literature (see,
for example, [21] or [23]), our main contribution is
not the proof itself, but its high-level implementation.
We can indeed capture its computational contents but,
as usual in LF, the fact that our code represents a
proof needs to be checked as an external property [20].
The encoding takes the form of a relation between the
derivations involved in the statement of type preser-
vation. No lemmas or auxiliary judgments regarding
state are required (except in the proof of the ade-
quacy theorem for the representation) since the linear
framework provides the necessary mechanisms inter-
nally. Space does not permit a detailed discussion, so
we only show the declaration of the type family and the
most complicated case. Each declaration in the full sig-
nature corresponds to exactly one case in the induction
proof. The case given below treats the updating of a
reference cell.

tpex : exec K I W -> ofk K T S

-> ofi I T -> off W S -> type.

tpex_assign2 :

tpex (ex_assign2 ^ ([et2^contains C1 V2] Ex2^et2)

^ Et1) Ok (ofi_assign2 Ov2 (ofv_ref Oc)) Of

o- tpct Et1 Oc Ov1

o- ({et2:contains C1 V2}

tpct et2 Oc Ov2

-o tpex (Ex2 ^ et2) Ok

(ofi_return (ofv_unit)) Of).

Note that in this representation the first index ob-
ject of tpex (i.e., a derivation of exec K I W) is linear.
In other words, we need the full power of the linear log-
ical framework for this representation. Note that the
meta-reasoning is also linear which stands in contrast
to the cut elimination example given below, where the
index objects (linear sequent derivations) are linear,
but the meta-theory is implemented completely intu-
itionistically.

In the example above, the variable et2 bound by
the dependent type {et2:contains C1 V2} is quan-
tified intuitionistically because the framework lacks a
linear quantifier. The application (Ex2 ^ et2) in the
first argument of tpex is nonetheless well-typed, since
we can apply a linear function (Ex2) to intuitionistic
arguments (et2), but not vice versa. For closed com-
putations (and these are the ones we are ultimately in-
terested in) this is irrelevant and thus the intuitionistic
quantifier suffices for this and many other examples we
have examined.

5 Another Example: Cut Elimination
in Classical Linear Logic

A structural proof of the cut-elimination theorem for
classical linear logic was given in [18], together with an
LF formulation of a sequent calculus for it. Since LF is
intuitionistic, the first step of this encoding consisted
in representing the inference rules of this logic with-
out concern for the restrictions they impose on the use
of context formulas. Only in a second phase were the
resulting derivations checked for linearity. The com-
plications originating from this indirection prevented a
direct formalization of linear cut-elimination: the en-
coding of this procedure applied to generic derivations.
Fortunately, the specific proof under consideration had
the property that each case in it maintained linearity.
Therefore, given a linear derivation D, the represented
procedure yielded an equivalent (and linear) cut-free
derivation D′. The linearity of D had however to be
checked explicitly.

In this section, we encode the same problem in LLF .
The novel features of our framework permit a faithful
representation of the linearity constraints each infer-
ence rule imposes on its context formulas. Therefore,
only correct linear derivations can be built, so that
we can dispense with encoding the tedious linearity
check. The cut-elimination procedure is implemented
as in [18], with the difference that it operates on the
representation of linear derivations as linear LLF ob-
jects, and that its correctness does not depend on side-
conditions. The complete code for this example can be
found in [3].

9

Axioms
I

Ψ;A −→ A; Θ
. .
Connectives

1 1r

Ψ; · −→ 1; Θ

Ψ;Γ −→ ∆; Θ
1l

Ψ; Γ,1 −→ ∆; Θ

⊗
Ψ; Γ1 −→ A,∆1; Θ Ψ; Γ2 −→ B,∆2; Θ

⊗r

Ψ; Γ1,Γ2 −→ A ⊗ B,∆1,∆2; Θ

Ψ; Γ, A,B −→ ∆; Θ
⊗l

Ψ; Γ, A ⊗ B −→ ∆; Θ

> >r

Ψ;Γ −→ >,∆; Θ
(No > l)

&
Ψ; Γ −→ A,∆; Θ Ψ; Γ −→ B,∆; Θ

&r

Ψ; Γ −→ A&B,∆; Θ

Ψ; Γ, A −→ ∆; Θ
&l1

Ψ; Γ, A&B −→ ∆; Θ

Ψ; Γ, B −→ ∆; Θ
&l2

Ψ; Γ, A&B −→ ∆; Θ

⊥
Ψ; Γ, A −→ ∆; Θ

⊥r

Ψ; Γ −→ A⊥,∆; Θ

Ψ; Γ −→ A,∆; Θ
⊥l

Ψ; Γ, A⊥ −→ ∆; Θ

!
Ψ; · −→ A;Θ

!r

Ψ; · −→!A;Θ

Ψ, A; Γ −→ ∆; Θ
!l

Ψ; Γ, !A −→ ∆; Θ

?
Ψ; Γ −→ ∆;A,Θ

?r

Ψ; Γ −→?A,∆; Θ

Ψ;A −→ ·; Θ
?l

Ψ; ?A −→ ·; Θ
. .
Structural rules

Ψ, A; Γ, A −→ ∆; Θ
!d

Ψ, A; Γ −→ ∆; Θ

Ψ; Γ −→ A,∆;A,Θ
?d

Ψ; Γ −→ ∆;A,Θ

Cut rules
Ψ; Γ1 −→ A,∆1; Θ Ψ; Γ2, A −→ ∆2; Θ

cut

Ψ; Γ1,Γ2 −→ ∆1,∆2; Θ

Ψ; · −→ A; Θ Ψ, A; Γ −→ ∆; Θ
cut!

Ψ; Γ −→ ∆; Θ

Ψ; Γ −→ ∆;A,Θ Ψ;A −→ ·;Θ
cut?

Ψ; Γ −→ ∆; Θ

Figure 6. The Sequent Calculus System LV

We consider the fragment of propositional classical
linear logic defined by the following grammar:

A ::= P | 1 | A1 ⊗ A2 | > | A1 &A2 | A⊥ | !A | ?A
where P ranges over propositional letters. The remain-
ing connectives are all definable. A direct treatment
would increase the length of proofs and encodings, but
not their difficulty. A straightforward extension to en-
compass quantifiers adapts the techniques presented
in [19] and is included in [3]. We encode formulas as
canonical LLF objects of type o. As in the previous
example, the linear aspects of our meta-language are
not needed at this level.

As in [18, 19], we rely on the four-zoned sequents

Ψ; Γ −→ ∆; Θ

to capture the notion of derivability. Here, Ψ, Γ, ∆ and
Θ are multisets of implicitly labeled formulas. A de-
ductive system for this formulation, that we call LV, is

given in Figure 6. The LV sequent above is equiprov-
able to the more traditional !Ψ,Γ −→ ∆, ?Θ, as shown
in [18]. This presentation isolates the intuitionistic rea-
soning in the outer zones of the sequents rather than
restricting the structural rules of contraction and weak-
ening to exponential formulas only. The removal of
these rules is central to our proof of cut elimination.
Notice that the distinction between linear and intu-
itionistic zones in LV causes the refinement of the fa-
miliar cut rule into three rules. As we will see, all are
admissible.

We represent the occurrence of a formula in each
zone of the sequent above by means of the following
type families, respectively:

neg! : o -> type. neg : o -> type.

pos : o -> type. pos? : o -> type.

Derivability itself is captured by the type # with the
intent that if D is a cut-free derivation of the sequent

10

A1, . . . , Ai;B1, . . . , Bj −→ C1, . . . , Ck;D1, . . . , Dl,
with propositional letters among p1, . . . , pn, then
p1 :o, . . . , pn :o,
a1 :neg! pA1q, . . . , ai :neg! pAiq,
b1 :̂neg pB1q, . . . , bj :̂neg pBjq,
c1 :̂pos pC1q, . . . , ck :̂ pos pCkq,
d1 :pos? pD1q, . . . , dl :pos? pDlq

 `Σ pDq ⇑ #

is derivable in LLF . Notice that the formulas in the
linear zones are represented as linear LLF assumptions
while the formulas in the outer zones correspond to
intuitionistic hypotheses. In order to achieve the rep-
resentation above for derivations, we encode each in-
ference rule so that it respects the zones policy. We
show the LLF declarations corresponding to rules ⊗ r,
?l and !d:

timesr : (pos A -o #) -o (pos B -o #)

-o (pos (A times B) -o #).

?l : (neg A -o #) !d : (neg A -o #)

-> (neg (? A) -o #). -o (neg! A -> #).

Notice that −◦ at the level of derivations (i.e. just be-
fore #) implements access to the linear part of the con-
text. In other positions, it permits the flow of linear
assumptions among the premisses and conclusion of
the represented rule. Instead, → allows accessing in-
tuitionistic hypotheses and enforces constraints on the
contents of the linear context (e.g. in !d).

The critical step in proving cut elimination is show-
ing that the cut rules are admissible, i.e. that any (cut-
free) derivation of their premisses can be transformed
into a cut-free derivation of their conclusion. Formally,
we have the following theorem:

Theorem (Admissibility of cut, cut! and cut?)

i . Given cut-free derivations D :: Ψ; Γ1 −→ A,∆1; Θ
and E :: Ψ; Γ2, A −→ ∆2; Θ, there exists a cut-free
derivation F of Ψ; Γ1,Γ2 −→ ∆1,∆2; Θ;

ii . Given cut-free derivations D :: Ψ; · −→ A; Θ and
E :: Ψ, A; Γ −→ ∆; Θ, there exists a cut-free
derivation F of Ψ; Γ −→ ∆; Θ;

iii . Given cut-free derivations D :: Ψ; Γ −→ ∆;A,Θ
and E :: Ψ;A −→ ·; Θ, there exists a cut-free
derivation F of Ψ; Γ −→ ∆; Θ.

Proof: The three parts of this statement are proved
simultaneously by induction on the lexicographic order
defined by 1) the structure of A, 2) the convention that
(i) is smaller than both (ii) and (iii), 3) the structure
of D and E in the case of (i), of only E for (ii), and
of only D in the case of (iii). In order to make this
induction truly structural we have to consider linear
proof terms instead of full derivations D and E ; further
technical details are given in [18]. 2

We transliterate the statement of the admissibility
lemma as the type families

ad : (pos A -o #) -> (neg A -o #) -> # -> type.

ad!: (pos A -o #) -> (neg! A -> #) -> # -> type.

ad?: (pos? A -> #) -> (neg A -o #) -> # -> type.

Each case in the proof above is represented by an
LLF declaration of the appropriate type. We show
three declarations:

ad_times :

ad ([p^]timesr ^ ([p1^]D1^p1) ^ ([p2^]D2^p2) ^p)

([n^]timesl ^ ([n1^]E1^n1^n)) F

<- ({n2}ad ([p1^]D1^p1) ([n1^]E1^n1^n2) (E1’^n2))

<- ad ([p2^]D2^p2) ([n1^]E1’^n1) F.

ad!_d :

ad! ([p^]D!^p) ([n!] !d ^ ([n^]E1 n!^n) n!) F

<- ({n1}ad! ([p^]D!^p) ([n!]E1 n!^n1) (E1’^n1))

<- ad ([p^]D!^p) ([n1^]E1’^n1) F.

adl_withr :

ad ([p^]withr^([p1^]D1^p^p1,[p2^]D2^p^p2)^P)

([n^]E^n) (withr^([p1^]D1’^p1,[p2^]D2’^p2)^P)

<- ({p1} ad ([p^]D1^p^p1) ([n^]E^n) (D1’ ^ p1))

& ({p2} ad ([p^]D2^p^p2) ([n^]E^n) (D2’ ^ p2))

As usual, the cut elimination theorem follows by a
simple structural induction from admissibility. It can
also be formalized in LLF as shown in [3]; we omit the
straightforward details here.

6 Conclusion and Future Work

In this paper, we have developed an LF -style type
theory based on linear logic and provided examples of
its use as a logical framework in the theories of pro-
gramming languages and substructural logics. Addi-
tional substantial case studies we have completed in-
clude translations between minimal linear natural de-
duction and sequent calculus, as well as a number of
puzzles and solitaires. The interested reader may ac-
cess them on the World-Wide Web at [3].

LLF conservatively extends LF with constructs
from linear logic. We can think of it as the type the-
ory freely generated from the type constructors >, &,
−◦, and Π. This choice of constructors is complete in
the sense that they suffice to represent full intuitionis-
tic or classical linear logic, as our example in Section
5 shows. Further, adding any other linear connective
as a free type constructor destroys the property that
canonical forms exist. This property is crucial in the
proofs of adequacy theorems for encodings and also for
the completeness of uniform derivations and thus the
view of LLF as a logic programming language.

LLF generalizes other formalisms based on linear
logic such as Forum [12] by making linear objects avail-
able for representations, by permitting proof terms and

11

by providing linear types. Our approach is orthogonal
to general logics in the style of LU [8].

A slightly unpleasant feature of the type theory in
its current form, from the practical point of view, is
the insistence on dealing only with pre-canonical forms.
Ideally the input would be η-expanded to long form,
say, concurrently with type reconstruction and then the
long form would be maintained throughout the com-
putation as proposed here. We plan to consider such
an extension in future work. Another possible exten-
sion we intend to investigate is a generalization of &
and −◦ to linear Σ and Π types, respectively. It cur-
rently appears that this would greatly complicate the
type theory while it is not clear how much would be
gained. We would also like to explore the possibility of
automatically verifying that a signature implements a
meta-proof of a meta-theorem analogously to schema-
checking for LF [20].

In the more immediate future, we plan to release a
concrete implementation of LLF as a conservative ex-
tension of the logic programming language Elf (which
mechanizes LF) and to augment our already rich li-
brary of LLF examples.

References

[1] I. Cervesato. A Linear Logical Framework. PhD the-
sis, Dipartimento di Informatica, Università di Torino,
Feb. 1996.

[2] I. Cervesato, J. S. Hodas, and F. Pfenning. Efficient
resource management for linear logic proof search. In
R. Dyckhoff, H. Herre, and P. Schroeder-Heister, ed-
itors, Proceedings of the 5th International Workshop
on Extensions of Logic Programming, pages 67–81,
Leipzig, Germany, Mar. 1996. Springer-Verlag LNAI
1050.

[3] I. Cervesato and F. Pfenning. The linear logical frame-
work LLF. Accessible on the World-Wide Web as
http://www.cs.cmu.edu/~iliano/LLF/.

[4] J. L. Chirimar. Proof Theoretic Approach to Specifica-
tion Languages. PhD thesis, Department of Computer
and Information Science, University of Pennsylvania,
1995.

[5] R. Dyckhoff. Contraction-free sequent calculi for intu-
itionistic logic. Journal of Symbolic Logic, 57(3):795–
807, Sept. 1992.

[6] A. Felty. Encoding dependent types in an intuitionis-
tic logic. In G. Huet and G. D. Plotkin, editors, Logi-
cal Frameworks, pages 214–251. Cambridge University
Press, 1991.

[7] J.-Y. Girard. Linear logic. Theoretical Computer Sci-
ence, 50:1–102, 1987.

[8] J.-Y. Girard. On the unity of logic. Annals of Pure
and Applied Logic, 59:201–217, 1993.

[9] R. Harper, F. Honsell, and G. Plotkin. A framework
for defining logics. Journal of the Association for Com-
puting Machinery, 40(1):143–184, Jan. 1993.

[10] J. S. Hodas and D. Miller. Logic programming in
a fragment of intuitionistic linear logic. Information
and Computation, 110(2):327–365, 1994. Extended ab-
stract in the Proceedings of the Sixth Annual Sympo-
sium on Logic in Computer Science, Amsterdam, July
15–18, 1991.

[11] S. Michaylov and F. Pfenning. Natural semantics and
some of its meta-theory in Elf. In L.-H. Eriksson,
L. Hallnäs, and P. Schroeder-Heister, editors, Proceed-
ings of the Second International Workshop on Exten-
sions of Logic Programming, pages 299–344, Stock-
holm, Sweden, Jan. 1991. Springer-Verlag LNAI 596.

[12] D. Miller. A multiple-conclusion meta-logic. In
S. Abramsky, editor, Ninth Annual Symposium on
Logic in Computer Science, pages 272–281, Paris,
France, July 1994. IEEE Computer Society Press.

[13] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov.
Uniform proofs as a foundation for logic programming.
Annals of Pure and Applied Logic, 51:125–157, 1991.

[14] D. Miller, G. Plotkin, and D. Pym. A relevant analysis
of natural deduction. Talk given at the Workshop on
Logical Frameworks, B̊astad, Sweden, May 1992.

[15] F. Pfenning. Logic programming in the LF logical
framework. In G. Huet and G. Plotkin, editors, Logi-
cal Frameworks, pages 149–181. Cambridge University
Press, 1991.

[16] F. Pfenning. Computation and deduction. Unpub-
lished lecture notes, revised May 1994, May 1992.

[17] F. Pfenning. Elf: A meta-language for deductive sys-
tems. In A. Bundy, editor, Proceedings of the 12th
International Conference on Automated Deduction,
pages 811–815, Nancy, France, June 1994. Springer-
Verlag LNAI 814. System abstract.

[18] F. Pfenning. Structural cut elimination in linear
logic. Technical Report CMU-CS-94-222, Depart-
ment of Computer Science, Carnegie Mellon Univer-
sity, Dec. 1994.

[19] F. Pfenning. Structural cut elimination. In D. Kozen,
editor, Proceedings of the Tenth Annual Symposium on
Logic in Computer Science, pages 156–166, San Diego,
California, June 1995. IEEE Computer Society Press.

[20] E. Rohwedder. Verifying the Meta-Theory of Deduc-
tive Systems. PhD thesis, Carnegie Mellon University,
1996. Forthcoming.

[21] M. Tofte. Type inference for polymorphic references.
Information & Computation, 89:1–34, November 1990.

[22] P. Wadler. Linear types can change the world. In
M. Broy and C. B. Jones, editors, IFIP TC 2 Work-
ing Conference on Programming Concepts and Meth-
ods, pages 561–581, Sea of Gallilee, Israel, Apr. 1990.
North-Holland.

[23] A. K. Wright and M. Felleisen. A syntactic ap-
proach to type soundness. Information & Computa-
tion, 115(1):38–94, November 1994.

12

