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Abstract

We present new proofs of cut elimination for intu-
itionistic, classical, and linear sequent calculi. In all
cases the proofs proceed by three nested structural in-
ductions, avoiding the explicit use of multi-sets and
termination measures on sequent derivations. This
makes them amenable to elegant and concise imple-
mentations in Elf, a constraint logic programming lan-
guage based on the LF logical framework.

1 Introduction

Gentzen’s sequent calculi [Gen35] for intuitionistic and
classical logic have been the central tool in many
proof-theoretical investigations and applications of
logic in computer science such as logic programming
or automated theorem proving. The central property
of sequent calculi is cut elimination (Gentzen’s Haupt-
satz) which yields consistency of the logic as a corol-
lary. The algorithm for cut elimination may be inter-
preted computationally, similarly to the way normal-
ization for natural deduction may be viewed as func-
tional computation. For the case of linear logic, this
point was made by Girard [Gir87] and later elaborated
by Abramsky [Abr93]; see also [BTKP93] and [Gal93].
The study of various cut elimination properties and
procedures thus plays an important role in theoretical
computer science.

Many proofs of cut elimination have been given in the
literature yet, to our knowledge, none of them have
been formalized even though this is clearly possible
in principle (see Matthews [Mat94] for a pencil-and-
paper analysis of cut elimination for the (Vv,-) frag-
ment of classical propositional logic in F'Sp). They
are difficult to mechanize for a number of reasons
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which in combination are quite intimidating. Most
proofs require tedious data structures (such as multi-
sets) and use complex termination measures and arith-
metic reasoning. They also involve global conditions
on occurrences of parameters in sequent derivations.
In this paper we present new proofs of cut elimina-
tion for intuitionistic, classical, and linear sequent cal-
culi and sketch their implementations in the Elf sys-
tem [Pfe91] which is based on the LF Logical Frame-
work [HHP93]. Multi-sets are avoided altogether in
these proofs, and termination measures are replaced
by three nested structural inductions. Parameters are
treated as variables bound in derivations, thus nat-
urally capturing occurrence conditions. Critical is
the elimination of structural rules, both for the in-
formal proofs and their formalizations, which leads us
quite naturally to Kleene’s sequent system G3 [Kle52]
for intuitionistic and classical logic and a variant of
LU [Gir93] for linear logic. These formulations can
easily be seen to be equivalent to more traditional se-
quent calculi.

The reader interested in structural cut elimination for
intuitionistic, classical, or linear logic, but not in its
formalization, should be able to follow this paper by
ignoring the material regarding implementation. In
order to understand and appreciate the representation
of the sequent calculus and the proof of cut elimina-
tion the reader should have a basic knowledge of the
representation methodology of LF and the Elf meta-
language; the interested reader is referred to [HHP93]
and [Pfe91].

The principal contributions of this paper are: (1) new
formulations of intuitionistic, classical, and linear se-
quent calculi with proof terms, (2) direct proofs of



cut elimination for these systems by simple nested
structural inductions, (3) extremely concise and ele-
gant implementations of sequent derivations and cut
elimination in the Elf meta-language.

The remainder of the paper is organized as follows. In
Section 2 we introduce a formulation of the intuitionis-
tic sequent calculus motivated from natural deduction.
In Section 3 we give a notation for proof terms that
record the structure of the sequent derivation. The
representation of sequents in LF based on proof terms
is shown in Section 4. The proof of admissibility of cut
in the intuitionistic sequent calculus and its implemen-
tation are the subject of Section 5. In Section 6 we
extend these results to a classical sequent calculus and
in Section 7 to a linear sequent calculus. We conclude
with an assessment and some remarks about future
work in Section 8. Full details for the intuitionistic
and classical systems may be found in [Pfe94al; the
linear system is given in [Pfe94b).

2 Intuitionistic Sequent Calculus

In this section we develop a formulation of the se-
quent calculus for intuitionistic logic by transcribing
the process of searching for a natural deduction into an
inference system. The proximity to natural deduction
then allows a high-level encoding of sequent deriva-
tions in LF. The resulting sequent calculus is basi-
cally Kleene’s system G3 [Kle52] which he introduced
to obtain a simple decidability proof for its proposi-
tional fragment. In [Pfe94a] we consider a complete
set of logical connectives and quantifiers (A, D, V, —,
T, 1,V, and 3). Here we restrict ourselves to D and 3
for the sake of brevity. The notions of free and bound
variable are defined as usual. We identify formulas
that differ only in the names of their bound variables
and write [t/x] A for capture-avoiding substitution of ¢
for zin A. We use A, B, and C to range over formulas.

A sequent T' — C'is a judgment representing the goal
of deriving C from I'. Our formulation eliminates all
explicit structural rules (which present well-known dif-
ficulties for cut elimination) by incorporating weaken-
ing into initial sequents and contraction into each left
rule. Exchange remains implicit in the notation I, A.
We summarize the rules for the cut-free calculus Gs
on our fragment.
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71 -
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In the dL rule, the parameter a must be new, that
is, it may not occur in I', 3z. A, or C. The princi-
pal formula of an inference is either the formula being
introduced on the left or the right, or the formula oc-
curring on the left and the right in an initial sequent.
All other formulas are side formulas of the last infer-
ence. These notions also apply to individual formula
occurrences. It is important that the side formulas of
an inference are copied to all premises. The rule of
cut then has the form

r—A INA—<C
r—C

Cut.

Instead of taking Cut as a primitive rule, we show that
it is admissible, that is, whenever the premises are
derivable then the conclusion is also derivable. From
this, cut elimination in the sense of Gentzen follows
by a simple induction on the structure of a derivation
possibly containing Cut (see [Pfe94al).

Our formulation of the sequent calculus has the el-
ementary properties of weakening (if ' — C' then
I'A — (), contraction (if I'yA,A — C then
I'A — (), and permits substitution for parame-
ters. Note that the rules have been designed so that
weakening and contraction do not change the struc-
ture of the derivation, only the hypotheses present in
each sequent.

At this point we could define the size of a formula A
as the number of its connectives and quantifiers, the
length of a derivation as the number of inference rules
it contains, and then prove the admissibility of cut
by three nested inductions over the size of the cut for-
mula and the lengths of the derivations of ' — A and
I')A— C. A proof along these general lines, but on
a different sequent calculus and with a different rule
of cut was given by Dragalin [Dra87]. However, such a
proof is not well-suited for implementation. The first
difficulty is the encoding of the sequent calculus itself
and the notion of multi-set it requires. The second dif-
ficulty is that most proof checkers or theorem provers
use structural induction more effectively than proofs
with termination measures. We will return to both
points in the next section.



3 Proof Terms

The sequent rules as given so far do not explicitly in-
dicate the principal formula of an inference. For ex-
ample, there is only one derivation of — AD (AD A)
rather than two. If we are only interested in deriv-
ability then this is tolerable, but not if we need to
deal with the structure of derivations (as in the case of
cut elimination). We therefore endow sequent deriva-
tions with proof terms that resolve such ambiguities.
Proof terms also play an important role in the study
of computational properties of the sequent calculus
(see [Abr93, BTKP93, Gal93]), and form a natural in-
termediate step toward the representation of the rules
in LF.

The first step is to label hypotheses. The second is
to record a proof term d on the right of the sequent
arrow. A sequent then has the foom I' — d : A
where I' = hy: A1, ..., hp:A,. We assume that all hy-
pothesis labels in a context are distinct. In order to
avoid confusion with similar, but subtly different proof
term notations in the literature, we systematically in-
troduce precisely one new proof term constructor for
each inference rule of the sequent calculus and give
each a descriptive name. Rules that introduce param-
eters or hypotheses bind variables at the level of proof
terms—a phenomenon which should be familiar from
the Curry-Howard isomorphism. The idea of higher-
order abstract syntax (here applied to a syntax for
proof terms) is to reduce all binding operators to one,
namely A. This makes it immediately syntactically ap-
parent which variables are bound and where. We also
indicate the “type” of bound variables: they may bind
individuals (z:7), formulas (p:0), or hypotheses (h:A).
The rules for the fragment we consider here are given
in Figure 1. Propositional parameters p are required
in the rules for negation which have been omitted from
this extended abstract.

Erasure of the proof terms from a sequent derivation
in this calculus yields derivations from the rules given
in the previous section. We write D :: (J) if D is a
derivation of judgment J. Derivations and proof terms
are closed under substitutions for parameters, renam-
ing bound variables as necessary to avoid clashes. If
D is a derivation with hypotheses hi:A and hq:A, we
write [h1/h2]D, for the result of erasing hypothesis ho
on the left-hand side of every sequent occurring in D
and substituting h; in every place where hy occurs
on the right-hand side of a sequent. This may require
renaming some locally bound hypotheses to avoid cap-
ture of hy. We write (D, h:A) for the result of adding
hypothesis h: A to every sequent in D, possibly renam-

ing parameters introduced in D so as not to conflict
with parameters in A. The proofs of the following
properties are all immediate structural inductions.

Lemma 1 (Basic Properties of Proof Terms)
The intuitionistic sequent calculus with proof terms
satisfies the following properties.

1. (Weakening) If D == (' — d : C) then
(D,h:A) :: (T, h:A — d : C') where h is a new
label.

2. (Contraction) If D :: (T, h1:A hg:A — d : C)
then [h1/ha]D :: (T, h1:A — [hi/he]d : C).

3. (Uniqueness) If D :: (I — d : C) and D' =
(T —d:C") then D =D and C = C" (mod-
ulo variable renaming).

4 Sequent Derivations in LF

In this section we briefly summarize the representation
of sequent derivations in LF using the idea of higher-
order abstract syntax applied to proof terms. Readers
interested primarily in the proof of cut elimination
may safely skip this section.

For the sake of brevity we show the actual code in
Elf [Pfe91], an implementation of LF which permits
type declarations with implicit quantifiers. The rep-
resentation of formulas follows [HHP93]: Object lan-
guage variables are represented by meta-language vari-
ables. This technique is central for this particular en-
coding; it is not available in systems based on explicit
inductive definitions. The type i stands for individu-
als, the type o for formulas.

: 0 -> o0 -> 0.
(i -> o) -> o.

i : type. imp
o : type. exists :
Before giving the signature for the sequent calculus
we state the adequacy theorem since it is a useful
guide for interpreting the declarations. We use H7
for derivability in LF under the signature consisting
of the declarations yet to come. Assume we have a
derivation

D
hltAl, .. .,hntAn —d:C
with free individual parameters among ag, ..., a; and
propositional parameters among pi,...,Dm. Its rep-

resentation "D is a canonical object M such that

a1y ..., Ak, P10, . . . Dy 0,
hihyp™A17, ... hyhyp™ A, 5 M : conc™C7,



I''hA—d:B

I'h:A — axiomh : A

T'hADB —di: A

DR
I' — impr (Ah:A.d): ADB

T'h:AD B,ha:B — do : C

DL

I',h:AD B — impld; (MAh2:B. d2) h: C

I —d:[t/z]A

I, h:3z. A hi:[a/z]A — d: C

I' — existsrtd: dz. A

La

I, h:3z. A — existsl (Aa:i. Ahi:[a/z]A. d)h: C

Figure 1: Proof terms for intuitionistic sequent calculus

where hyp and conc are type families indexed
by formulas. We call the representation ade-
quate if -7 is a Dbijection between cut-free se-
quent derivations and such well-typed canonical ob-
jects and if it is also compositional in sense that
Ct/a]D = [t7/a]"D", T[C/p|D = [TC7/p]"D7, and
T[h1/h2]D™ = [h1/he] D™

We obtain the representation by transcribing the proof
terms into LF, taking care to distinguish between hy-
potheses and conclusions via the type families hyp
and conc. The signature below represents an ade-
quate encoding of sequents in Elf. Note that % be-
gins a comment that extends to the end of the line,
that {x:U}V is Elf’s concrete syntax for Ilz:U. V', and
that [x:UIM stands for Az:U. M. Most II-quantifiers
are left implicit and are reconstructed by Elf’s front
end in proper dependency order and with their most
general types.

hyp : o -> type. Y’ Hypotheses (left)
conc : o —> type. % Conclusion (right)
axiom : (hyp A -> conc A).
impl : conc A

-> (hyp B -> conc C)

-> (hyp (A imp B) -> conc C).

impr : (hyp A -> conc B)
-> conc (A imp B).

existsl : ({a:i} hyp (A a) -> conc C)
-> (hyp (exists A) -> conc C).
existsr : {T:i} conc (A T)

-> conc (exists A).

The encoding satisfies the representation theorem as
outlined above, which means that checking the validity

of sequent derivations can be accomplished by type-
checking their representations. It circumvents many
of the problems that ordinarily arise in representa-
tions of the sequent calculus. Multi-sets are avoided,
since hypotheses on the left-hand side of the sequent
arrow are transported into the LF context. Variable
naming conditions are encoded through the functional
representation of parametric judgments. The follow-
ing is proved by inductions on the structure of sequent
derivations and canonical forms in LF, using Lemma 1.

Theorem 2 (Adequacy of Representation) The
representation of intuitionistic sequent derivations in
LF is adequate.

5 Admissibility of Cut

The proof of cut elimination uses one principal lemma:
the admissibility of cut in the cut-free system. From
this, cut elimination follows by a simple structural in-
duction.

Theorem 3 (Admissibility of Cut)

Let D :: (T — d: A) and € :: (T,h:A — e : O)
be (cut-free) sequent derivations. Then there exists

a proof term f and a (cut-free) sequent derivation
FulT—f:0).

Proof: The proof proceeds by three nested structural
inductions on A, d, and e. In other words, we may use
the induction hypothesis for (immediate) subformulas
of A and arbitrary d and e, or for A, a subterm of d
and arbitrary e, and for A, d, and a subterm of e. We
distinguish cases for D and £ (determined by d and e)
which can be divided into four categories: (1) Either
D or & is initial with A as its principal formula, (2) A



is the principal formula of the last inference in both
D and &, (3) A is a side formula of the last inference
in D, and (4) A is a side formula of the last inference
in £. The proof is constructive and describes an algo-
rithm that computes F from D and £. The algorithm
is non-deterministic since the cases in the proof are
not mutually exclusive. |

This proof is represented as a relation between
TA7:0, "D7:conc A, "E7:hyp A -> conc C, and
TFT:conc C, which is implemented by a type family

ca : {A:0} conc A -> (hyp A -> conc C)
-> conc C -> type.

Each case in the proof gives rise to exactly one declara-
tion for ca; no lemmas, auxiliary type families, or the-
orem proving is needed. We show some excerpts from
the signature; in the full language there are 35 cases of
comparable complexity comprising 148 lines. The dec-
larations for ca_axiom_1, ca_imp, and cal_existsl
implement representative cases of categories (1), (2),
and (3), respectively.

ca_axiom_l : ca A (axiom H) E (E H).

ca_imp :
ca (A1 imp A2) (impr D2)
([h:hyp (A1 imp A2)] impl (E1 h) (E2 h) h) F
<- ca (A1 imp A2) (impr D2) E1 E1’
<- ({h2:hyp A2}
ca (Al imp A2) (impr D2)
([h:hyp (A1 imp A2)] E2 h h2) (E2’ h2))
<- ca Al E1’ D2 D2’
<- ca A2 D2’ E2’ F.

cal_existsl :
ca A (existsl D1 H) E (existsl D1’ H)
<- ({a:i} {h:hyp (Bl a)}
ca A (D1 ah) E (D1’ a h)).

6 Extension to Classical Logic

In sequent calculus, classical logic is handled by al-
lowing multiple conclusions, that is, a sequent has the
formT' — A, where both I" and A are lists (or multi-
sets) of formulas. For the proof of cut elimination
and our representation it is important that Gentzen’s
structural rules remain implicit: The principal formula
of an inference must always be copied to all premises
along with all side formulas.

The assignment of proof terms reflects the symmetry
between the left- and right-hand sides of a sequent in

that we label both negative (left-hand side) and posi-
tive (right-hand side) formulas with variables. A proof
term d then annotates the whole sequent; we write it
above the sequent arrow:
ni:Ai, ..., nj4; 4, p1:C1, ..., pk:C.

As in the intuitionistic calculus, our proof terms faith-
fully record the structure of the sequent derivation.
We again use A and the idea of higher-order abstract
syntax to delimit scope. Due to space constraints we
only show the fragment with V and — in Figure 2;
the development for a full complement of connectives
including quantifiers may be found in [Pfe94a].

Substitution, weakening and contraction work as in
the intuitionistic case, but now apply to both sides of
a sequent. We elide the classical analog of Lemma 1.

The LF representation closely models proof terms and
is thus also symmetric with respect to formulas on the
left and right: Both appear in the context of the LF
typing judgment. That is, a cut-free derivation

D

d
nitAi, .., nitA; — pr:Ch, .., priCy

with free individual parameters among ai, ..., ay, is

represented by a term M = "D™ such that

a1ty ..y AT,
nimeg" Ay, ..., nmeg" A, 7,

LF
pr:pos™Ch .. priposTCy T FY M s #,

where neg and pos are type families indexed by for-
mulas and # is a new type, the type of derivations.
Below we show the representation of cut-free sequent
derivations as an LF signature in the concrete syntax
of EIf.

# : type.
neg : o —> type.
pos : o —> type.

axiom’ : (neg A -> pos A -> #).
orrl’ : (pos A -> #)

-> (pos (A or B) —> #).
orr2’ : (pos B -> #)

-> (pos (A or B) -> #).
orl’ : (neg A > #)

-> (neg B -> #)
-> (neg (A or B) -> #).
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Figure 2: Proof terms for classical sequent calculus

notr’ (neg A —> #)
-> (pos (not A) -> #).
notl’ (pos A —> #)

-> (neg (not A) -> #).

The representation is adequate and compositional; we
skip the routine formulation of such a theorem. Ad-
missibility of cut is proved as in the intuitionistic cal-
culus, by three nested structural inductions on the cut
formula and the left and right derivations, although
there are more cases to consider.

Theorem 4 (Classical Admissibility of Cut)

Let D :: (T 4, p:A,A) and £ = (T,n:A -5 A)
be (cut-free) derivations in the classical sequent calcu-
lus G3. Then there is a proof term f and a (cut-free)

sequent derivation of F :: (T N A).

Girard’s notion of a cross-cut [Gal93], though with-
out unwieldy multiplicities, surfaces naturally in this
proof: Since formulas are never discarded they must
be eliminated explicitly from both premises of a cut in
a cross-cut fashion before the essential cut reduction
can take place. The proof is represented by a type
family

ca’ : {A:0} (pos A -> #) -> (neg A -> #)

-> # -> type.

implementing the relation between A, the derivation
D, the derivation £ and the resulting derivation F.
The implementation of each case is as direct as for the
intuitionistic calculus.

7 Extension to Linear Logic

In this section we apply the idea of the encoding for
the intuitionistic and classical cases to linear logic.
Constructive cut elimination in a sequent formulation
is significantly harder here, since structural rules are
more difficult to eliminate than in the classical and in-
tuitionistic cases. Girard [Gir87] uses proof nets (in-
stead of a sequent calculus) partly for that reason.
Galmiche and Perrier [GP94] give a syntactic analysis
of permutabilities of rules and apply it to cut elimi-
nation; our own analysis does not go quite as far, but
we have a simpler proof of cut elimination. We conjec-
ture that their presentation could be streamlined using
our presentation of the linear sequent calculus. Ro-
orda [Roo091] gives a different proof of cut elimination
by generalizing the cut rule to multiple occurrences of
modal formulas.

The main challenge is to isolate the non-linear reason-
ing and the associated structural rules. Our solution is
close to Andreoli’s Y2 [And92] and Girard’s LU [Gir93]
in that we divide a sequent into linear and non-linear
zones, and that we have several forms of cut. The
structural aspects of non-linear reasoning are treated
in the manner of the earlier sections. This leaves a
version of dereliction as the only structural rule, and
it can be handled directly by the structural induction
proving admissibility of cut. A proof along similar
lines, but using explicit termination measures instead
of structural induction over proof terms has been given
by Hodas [Hod94] for £, a fragment of intuitionistic
linear logic.



The following fragment is complete for classical propo-
sitional linear logic; the extension to include first-
order quantifiers and the remaining linear connectives
(which are all definable) is straightforward, both in
the proof and its implementation in EIf.

We treat AL as primitive and use two-sided sequents
to aid in the formalization. We include 7A even
though it is definable as (!(A+))* due to the special
role of the modal operators. A sequent has the form

I — A;0

which may be interpreted as ', I' — A, 7?0 in or-
dinary linear sequent calculus. Thus the outer zones
in the sequents represent non-linear hypotheses and
conclusions, the inner zones must be treated linearly.
The calculus is defined by the rules in Figure 3.

There are three rules of cut, which we show to be ad-
missible, rather than taking them as primitive. These
rules take advantage of the additional structure pro-
vided by the multi-zonal sequent, but they are pure in
the sense that do not refer directly to the exponentials
of linear logic.

\I/;F1—>A,A1;® \I/;FQ,A—>A2;®

Cut
\I/;Fl,rg —>A1,A2;®
;- — A;0 (P, A);T — A;0
Cut!
v:I' — A;0
I — A;(A4,0) U:A— 0
Cut?
v:I' — A;0

This system satisfies weakening and contraction in the
non-linear zones: We can adjoin a formula to the non-
linear zones of each sequent in a derivation to achieve
weakening, or substitute the use of one formula for an-
other to achieve contraction. In either case the struc-
ture of the derivation does not change.

We could now prove admissibility of these rules simul-
teneously by three nested inductions on the complex-
ity of the cut formula, the length of the derivation of
the left premise and the length of the derivation of the
right premise. However, for the purpose of implemen-
tation we would like the proof to be structural. As
before, we introduce proof terms so that the required
weakening for formulas in the non-linear zones does

not destroy the structural induction. However, there
are two new phenomena: proof terms now come from
a linear \-calculus and they no longer uniquely deter-
mine the sequent derivation, since the side formulas of
multiplicative rules may be split differently without af-
fecting the proof term. For our purposes, proof terms
for the Lolli fragment of linear logic [HM94] are suf-
ficient, which is important since it satisfies a stronger
normal form theorem than the full calculus. In this
fragment, we have linear (-o) and intuitionistic (->)
implication, additive conjunction (&), and top (T) and
corresponding proof constructors. In Figure 4 we show
the declarations of the constants that could be used
to construct the linear A-terms in the representation.
Alternatively, one can think of this as a specification
in Lolli where each clause has been labelled.

Lolli is first-order and has no notion of proof terms and
is thus not adequate to obtain an implementation of
derivations in the sequent calculus, only of derivability.
LF, on the other hand, has no notion of linearity. Thus
we approximate the proof terms as sketched above in
LF by interpreting -o as -> and eliminating T (top)
and & by currying, basically ignoring linearity restric-
tions, but properly modelling dependencies and vari-
able scope. This representation is not yet adequate,
but we can recover adequacy by using a higher-level
judgment 1in on proof terms, checking that they are
linear. This requires two auxiliary judgments checking
that embedded functions are linear in their argument
where required. We only show the declarations—the
implementation is relatively straightforward.

linp : (pos A -> #) -> type.
linn : (neg A -> #) -> type.
lin : # -> type.

The resulting representation of derivations is a com-
positional bijection between between LF objects of
type 1lin in an appropriate context and linear sequent
derivations in LV (a precise formulation of this the-
orem may be found in [Pfe94b]). We can prove ad-
missibility of cut by nested structural inductions as
before.

Theorem 5 (Admissibility of Cut in LV) The
three rules of cut for the linear sequent calculus are
admissible.

Proof: Let A be the cut formula and d and e the
proof terms of the derivations of the premisses of the
cut rules. We proceed by three nested structural in-
ductions on A, d and e, simultaneously for Cut, Cut!,



and Cut?. Appeals to Cut! and Cut? are considered
greater than Cut, if the cut formula A is the same.
To rephrase: We may appeal to the induction hypoth-
esis on (1) a smaller cut formula, (2) the same cut
formula, but pass from Cut! or Cut? to Cut, (3) the
same cut formula and rule, but smaller proof term d,
or (4) the same cut formula, rule, proof terms d, but
smaller proof term e. |

The faithful and concise implementation of this proof
in the spirit of the earlier encodings would require
a linear logical framework, which is the subject of
current research. But we can implement the trans-
formation on proof terms as they are represented in
LF. Note that the reasoning about linearity restric-
tions in the structural proof is not implemented here.
Nonetheless, it can be executed by applying it to proof
terms to obtain proof terms for the result of the cut.
By meta-level reasoning (i.e., the informal proof and
properties of LF) we know that this will always map
linear derivations to linear derivations. We only show
the declarations and three typical cases in Figure 5.

8 Conclusion

We have presented new structural proofs of cut elim-
ination for intuitionistic, classical, and linear sequent
calculi. We have further shown how sequent deriva-
tions in all three systems can be implemented in EIf.
For the intuitionistic and classical cases, the proof of
cut elimination can also be implemented in Elf, al-
though the fact that this implementation models the
informal argument is still partly an informal property,
just like the adequacy of the LF encoding of deriva-
tions. The implementations can be executed to trans-
form sequent derivations with cut to cut-free deriva-
tions. The proof representation is extremely concise
and much shorter than an informal proof of the same
argument. We have written a program to generate La-
TeX source for an informal version of each case in the
proof of admissibility. These “informalized” versions
are given in full detail in [Pfe94a].

In the case of linear logic the implementation of cut
elimination captures less of the informal reasoning by
ignoring linearity constraints, but is nonetheless oper-
ationally adequate in the sense that, given valid linear
sequent derivations, it will generate valid linear se-
quent derivations. The linearity check has also been
implemented in Elf, although it is somewhat tedious.
The combined sources for the implementations of ad-
missibility of cut and cut elimination for intuitionistic
and classical logic with a full complement of quanti-
fiers and connectives comprise 739 lines of Elf code and

require about 2 seconds to type-check on a Dec Alpha.
Cut elimination for linear logic adds 675 lines, which
includes the algorithm comprising 73 cases. Once we
arrived at the basic representation idea, the full im-
plementation was carried out, revised, and cleaned up
in about 2 days each for intuitionistic, classical, and
linear sequent calculi.

Once the structural proof of admissibility has been
found and implemented, it is natural to ask if it
can also be encoded in stronger frameworks such as
Coq [DFH"93] so that structural inductions are made
explicit and the proof is fully formally verified. There
are several aspects of our proof which make this dif-
ficult. The first is the essential use of higher-order
abstract syntax, which is not available in a similarly
straightforward fashion in other candidate environ-
ments. The second difficulty arises from the non-
deterministic nature of the cut elimination algorithm
contained in the proof. Making it deterministic in
the form of a primitive recursion (which would be re-
quired for a functional framework) would lead to an
explosion in the number of cases. It appears the only
way to avoid at least some of this combinatorial ex-
plosion is to introduce termination measures after all,
which requires a new sequence of lemmas regarding
sizes of formulas and derivations. We conclude that
a similarly elegant representation of cut elimination
in other systems is a non-trivial challenge which, we
hope, others will take up.

In future work we plan to verify mechanically that the
given signatures indeed implement proofs. The proto-
type implementation of the schema-checker sketched
in [Roh94] currently accepts them, but the (meta-
meta-)theoretical analysis of the schema-checker itself
is not yet complete. In other future work we plan to
reexamine the connection between normalization and
cut elimination in the same framework. Another di-
rection is to study cut elimination in a formulation as
a higher-order rewrite system along the lines of Nip-
kow [Nip91], but using dependent types. We first note
that our system of rules is terminating (note that we
cannot permute adjacent cuts). Assuming the com-
pleteness of a critical pair criterion for the depen-
dently typed calculus, the system is confluent mod-
ulo Kleene’s permutations of adjacent inference rules
in the cut-free system. This means that our cut con-
versions do not identify intuitively unrelated sequent
derivations, which has been a problem in other sys-
tems as noted by Lafont (see [Gal93]).

Finally, the representation of the linear sequent calcu-
lus and its cut elimination algorithm could be made



even more concise by using a linear logical frame-

work as sketched in Section 7.

In joint work with

I. Cervesato, we are currently designing such a linear
refinement of LF following ideas of Miller, Plotkin and
Pym [MPP92].
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Figure 3: Rules for LV
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# : type. % Token for Derivations
neg!: o -> type. % Modal Hypotheses (far left)
o -> type. % Hypotheses (left)
pos : o -> type. 7% Conclusions (right)
o -> type. Y’ Modal Conclusions (far right)

axiom : (neg A -o pos A -o #).

timesr : (pos A -o #) timesl : (neg A -o neg B -o #)
-o (pos B -o #) -0 (neg (A times B) -o #).
-o (pos (A times B) -o #).

oner : (pos one -o #). onel : # -o (neg one -o #).

andll : (neg A -o #)
andr : ((pos A -o #) & (pos B -o #)) -o (neg (A and B) -o #).
-o (pos (A and B) -o #).
andl2 : (neg B -o #)
-o (neg (A and B) -o #).

topr : T -o (pos (top) -o #). % mno topl
perpr : (neg A -o #) perpl : (pos A -o #)
-o (pos (perp A) -o #). -0 (neg (perp A) -o #).

'r : (pos A -o #) 11 : (neg! A -> #)

=> (pos (! A) -o #). -o (neg (! A) -o #).
?r : (pos? A -> #) 7?1 : (neg A -o #)

-0 (pos (7 A) -o #). -> (neg (7 A) -o #).
'd : (neg A -o #) ?d : (pos A -o #)

-0 (neg! A > #). -o (pos? A -> #).

Figure 4: Implementation of LV

ad : {A:0} (pos A -> #) -> (neg A -> #) -> # -> type.
ad! : {A:0} (pos A -> #) -> (neg! A -> #) -> # -> type.
ad? : {A:0} (pos? A -> #) -> (neg A -> #) -> # -> type.

ad_times
ad (A times B) ([p] timesr D1 D2 p) ([n] timesl E1 n) F
<- ({n2:neg B} ad A D1 ([nl:neg A] E1 nl n2) (E1’ n2))
<- ad B D2 E1’ F.

ad!_d :
ad! A D! ([n!] 'd (E1 n!) n!) F
<- ({nl:neg A} ad! A D! ([n!] E1 n! nl1) (E1’ nl))
<- ad A D! E1’ F.

adl_andr :
ad A ([p] andr (D1 p) (D2 p) P) E (andr D1’ D2’ P)

<- ({pil:pos B1} ad A ([p] D1 p p1) E (D1’ p1))
<- ({p2:pos B2} ad A ([p] D2 p p2) E (D2’ p2)).

Figure 5: Admissibility of cut in LV (three cases)
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