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1 Introduction

In [12], Harper, Honsell, and Plotkin present LF (the Logical Framework) as a general framework
for the definition of logics. LF provides a uniform way of encoding a logical language, its inference
rules and its proofs. In [2], Avron, Honsell, and Mason give a variety of examples for encoding
logics in LF. In this paper we describe Elf, a meta-language intended for environments dealing
with deductive systems represented in LF.

While this paper is intended to include a full description of the Elf core language, we only state,
but do not prove here the most important theorems regarding the basic building blocks of Elf. These
proofs are left to a future paper. A preliminary account of Elf can be found in [26]. The range of
applications of Elf includes theorem proving and proof transformation in various logics, definition
and execution of structured operational and natural semantics for programming languages, type
checking and type inference, etc. The basic idea behind Elf is to unify logic definition (in the style
of LF) with logic programming (in the style of λProlog, see [22, 24]). It achieves this unification by
giving types an operational interpretation, much the same way that Prolog gives certain formulas
(Horn-clauses) an operational interpretation. An alternative approach to logic programming in LF
has been developed independently by Pym [28].

Here are some of the salient characteristics of our unified approach to logic definition and meta-
programming. First of all, the Elf search process automatically constructs terms that can represent
object-logic proofs, and thus a program need not construct them explicitly. This is in contrast to
logic programming languages where executing a logic program corresponds to theorem proving in a
meta-logic, but a meta-proof is never constructed or used and it is solely the programmer’s respon-
sibility to construct object-logic proofs where they are needed. Secondly, the partial correctness of
many meta-programs with respect to a given logic can be expressed and proved by Elf itself (see
the example in Section 5). This creates the possibility of deriving verified meta-programs through
theorem proving in Elf (see Knoblock & Constable [18] or Allen et al. [14] for other approaches).

Elf is quite different in look and feel to the standard meta-programming methodology of writing
tactics and tacticals in ML [11]. On the positive side, Elf programs tend to be more declarative
and easier to understand. Often one can take what authors bill as an “algorithmic” version of
an inference system and implement it in Elf with very little additional work. Moreover, it is
possible to implement tactics and tacticals in Elf along the lines proposed by Felty [8]. Such
tactics are also often easier to write and understand than tactics written in a functional style, since
they inherit a notion of meta-variable (the logic variable, in logic programming terminology), a
notion of unification, and nondeterminism and backtracking in a uniform way from the underlying
logic programming language. The Isabelle system [25] also provides support for meta-variables and
higher-order unification in tactics, but they are generally not as accessible as in Elf. On the negative
side we encounter problems with efficiency when manipulating larger objects, something which we
hope to address in future work with compilation techniques from logic programming adapted to
this setting. Also, on occasion, it is difficult to express the operations we would like to perform as a
pure logic program. For example, neither the cut operator ! familiar from logic programming nor a
notion of negation-by-failure are available in Elf. For some initial ideas to address these deficiencies
see Section 6.

We conclude this introduction with an overview of the remainder of this paper. After a brief
review of the LF Logical Framework, we begin with an exposition of unification as used in Elf. The
general unification problem for the LF type theory is undecidable and non-deterministic, which
immediately calls into question the whole enterprise of designing a logic programming language
based on LF, given that unification is such a central operation. However, inspired by Miller’s
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work on Lλ [21], we design an algorithm which solves the “easy” unification problems (without
branching, for example) and postpones all other equalities which may arise as constraints. Since
dependent types and explicit Π-quantification further complicate unification, we found it necessary
to develop a new view of unification as theorem proving in a very simple logic (the unification logic).
A unification algorithm is then described as a set of transformations on formulas in that logic,
reminiscent of the description of first-order unification by transformations on a set of equations.
In Section 3 we develop this view by first presenting the main ideas for an untyped, first-order
language and then generalizing it to the LF type theory.

Besides unification, execution of a logic program also requires back-chaining search. In Elf, this
search takes the form of finding a term of a given type (possibly containing logic variables) over a
given signature. This necessitates a form of resolution, which we express through an extension of
the unification logic by a notion of immediate implication. When restricted to ordinary first-order
logic programming, we would say that a clause H ← B1, . . . , Bn immediately implies an atomic
goal G, if G unifies with H under substitution θ and the remaining subgoals (θBi) are all provable.
A formalization of this concept in this more general setting can be found in Section 4.

Back-chaining search and unification describe a non-deterministic interpreter. In order to make
this useful as a programming language, search control must be added. This takes two forms.
First we distinguish those types which are subject to search (and thus play the role of goals) from
those types whose elements are subject only to unification (and thus play the role of ordinary
logic variables). We call these closed and open type families, respectively. Second we make a
commitment to depth-first search. These are described in Sections 4.4 and 4.5 which conclude the
(partly informal) definition of the operational semantics of Elf.

In Section 5 we then introduce the concrete syntax for Elf and present examples which illustrate
some of its unique features and common patterns of usage. The main example is an implementation
of a decision procedure for term equality in the simply-typed λ-calculus. We also describe some
aspects of the implementation Elf in this Section. In particular, we sketch our method of type
reconstruction, since, we believe, it has independent interest.

We conclude the paper with speculation about future work.

2 The LF Logical Framework

We review here only the basic definitions and properties of the LF Logical Framework. For more
details, the reader is referred to [12]. A number of examples of representations of logical systems
in LF can be found in [2].

The LF calculus is a three-level calculus for objects, families, and kinds. Families are classified
by kinds, and objects are classified by types, that is, families of kind Type.

Kinds K ::= Type | Πx:A.K
Families A ::= a | Πx:A.B | λx:A.B | AM
Objects M ::= c | x | λx:A.M |MN

We use K to range over kinds, A,B to range over families, M,N to range over objects. a stands
for constants at the level of families, and c for constants at the level of objects. In order to describe
the basic judgments we consider contexts (assigning types to variables) and signatures (assigning
kinds and types to constants at the level of families and objects, respectively).

Signatures Σ ::= 〈 〉 | Σ, a:K | Σ, c:A
Contexts Γ ::= 〈 〉 | Γ, x:A
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Since families (and thus types) may be indexed by objects, it is important that signatures and
contexts be ordered lists, rather than sets. We stipulate that constants can appear only once in
signatures and variables only once in contexts. This can always be achieved through renaming.
[M/x]N is our notation for the result of substituting M for x in N , renaming variables as necessary
to avoid name clashes. We also use the customary abbreviation A→ B and sometimes B ← A for
Πx:A.B when x does not appear free in B.

The notion of definitional equality we consider here is βη-conversion. Harper et al. [12] formulate
definitional equality only with β-conversion and conjecture that the system resulting from adding
the η-rule would have the properties we list below. This has recently been proved by Coquand [3]
and independently by Salvesen [30]. For practical purposes the formulation including the η-rule is
superior, since every term has an equivalent canonical form. Thus, for us, ≡ is the least congruence
generated by βη-conversions in the usual manner. The basic judgments are Γ Σ̀ M : A and
M ≡ N and analogous judgments at the levels of families and kinds. We assume that a well-
formed signature Σ is given, but omit the signature subscript of the various judgments in our
presentation. As examples, we show the rules for abstraction, application, and type-conversion at
the level of objects.

Γ, x:A `M : B

Γ ` λx:A.M : Πx:A.B

Γ `M : Πx:A.B Γ ` N : A

Γ `M N : [N/x]B

Γ `M : A A ≡ A′ Γ ` A′ : Type

Γ `M : A′

We state a selection of the crucial properties of the LF type theory as given and proven in [12]
and [3].

1. (Unicity of Types) If Γ `M : A and Γ `M : A′ then A ≡ A′.

2. (Strong Normalization) If Γ `M : A then M is strongly normalizing.

3. (Canonical Forms for Types) If Γ ` A : Type then A ≡ Πu1:A1 . . .Πun:An.aM1 . . .Mn for
some family a and objects M1, . . . ,Mn.

4. (Decidability) All judgments of the LF type system are decidable.

The existence of canonical forms for types will be used tacitly in the remainder of this paper.
For example, the phrase “in the case that M has the form λx : Πx:A.B . M ′” is to be interpreted
as “in the case that M has the form λx : A′ . M ′ where A′ ≡ Πx:A.B”.

3 A Meta-Logic for Unification

The foundation of the logic programming paradigm is goal-directed search and unification. Due to
the nature of LF, both of these differ significantly from first-order logic programming languages.
In particular, proof search and unification become intertwined and unification is no longer a simple
subroutine. This phenomenon is already familiar from constraint logic programming [17, 24], but
Elf has at least one additional complication: goals are identified with logic variables (see Section 4).

This set of circumstances calls for a new approach to describe the operational semantics of Elf.
The key idea is to develop an explicit meta-logic for LF, not to prove properties about LF, but to
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describe the operational behavior of Elf. This meta-logic was called state logic in [26], since it is
used to describe the states of an abstract interpreter for Elf. An alternative approach was taken
by Pym & Wallen [29] who give a sequent presentation for LF which allows free meta-variables to
appear in the sequents.

We begin with the discussion of unification which will be extended to a logic strong enough
to describe the complete state of the interpreter in Section 4. One important property of the
unification logic is that it is separated from the formalism of LF and has its own, independent
judgments. It is possible to construct such a meta-logic for unification over a number of different
term languages and type theories, but a further exploration of this possibility is beyond the scope
of this paper.

Miller’s mixed prefixes [20] and the existential variables considered by Dowek [4] perform a func-
tion similar to our unification logic. Though Dowek deals with a more expressive logical framework
(the Calculus of Constructions) we believe that our meta-logic is more expressive, since we can
represent not only a formula in a context with some existential variables, but also several formulas
simultaneously which share some context. This allows the natural specification and manipulation
of unsolved equations as constraints.

3.1 A First-Order Unification Logic with Quantifier Dependencies

The unification logic arises most naturally from a generalization of the usual view of unification
as transformations of a set of equations [19, 31]. There we are given set of equations with some
free variables. This set is unifiable if there is a substitution for the free variables such that all
the equations become true. A unification algorithm is described as a set of transformations which
can be used to transform the original set of equations into a solved form from which a satisfying
substitution can be extracted easily.

We transform this view, first by replacing the notion set of equations by the notion conjunction
of equations. The second step is to existentially quantify explicitly over the free variables. Thus
the logical content of a unification problem becomes apparent.

Now the problem of determining unifiability becomes one of establishing the truth of a certain
closed formula. When function symbols are uninterpreted, this view gives rise to a deductive sys-
tem in which provable formulas correspond to unifiable equations. We further generalize the usual
unification by allowing explicit universal quantification. In first-order unification, this generaliza-
tion is not necessary, since one can use Skolemization, though even there it may have some interest
for efficient implementation. In the higher-order case Skolemization is more problematic and thus
explicit variable dependency is desirable not only from the point of view of implementation, but
also in order to simplify the theory.

In summary, the unification logic is built upon the following fragment of first-order logic, defined
inductively by a BNF grammar.

Formulas F ::= u
.
= v | > | F ∧G | ∃x.F | ∀y.F

We use x and y to stand for variables, u and v to stand for terms, and F and G to stand for
formulas. The basic judgment is `̀ F (F is provable) is defined by the following inference rules:

`̀ u .
= u `̀ >

`̀ F `̀ G
`̀ F ∧G
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`̀ [u/x]F

`̀ ∃x.F
`̀ F
`̀ ∀y.F

Here [u/x]F is the result of substituting u for x in F , renaming bound variables if necessary to
avoid capturing free variables in u.

3.2 Transformations for First-Order Unification

In the representation of unification problems as sets, one might have the following set of transfor-
mations

{u = u} ∪ S =⇒ S identity
{u = v} ∪ S =⇒ {v = u} ∪ S exchange

{f(u1, . . . , un) = f(v1, . . . , vn)} ∪ S =⇒ {u1 = v1, . . . , un = vn} ∪ S term decomposition
{x = v} ∪ S =⇒ {x = v} ∪ [v/x]S variable elimination

when x is not free in v. A pair x = u in S is in solved form if x does not occur in u or elsewhere
in S, and S is in solved form if every member of S is in solved form. A set of equations S is said
to unify iff there is a sequence of transformations S =⇒ · · ·=⇒ S ′ such that S ′ is in solved form.

Here, we take an analogous approach. Instead of writing “. . . ∪ S” we stipulate that our
transformations can be applied to an arbitrary subformula occurrence matching the left-hand side.

u
.
= u −→ > identity

u
.
= v −→ v

.
= u exchange

f(u1, . . . , un)
.
= f(v1, . . . , vn) −→ u1

.
= v1 ∧ . . .∧ un .

= vn term decomposition
∃x.F [x

.
= t] −→ ∃x.x .

= t ∧ [t/x](F [x
.
= t]) variable elimination

where x is not bound in F , no free variable in t is bound in F , and x does not occur in t. Here F [G] is
our notation for a formula F with a subformula occurrence G. However, these rules are not sufficient
to perform unification: we also need some structural rules which allow us to exchange quantifiers
(with the obvious provisos regarding variable occurences in the rules dealing with conjunction):

∃y.∃x.F −→ ∃x.∃y.F
F ∧ (∃x.G) −→ ∃x.F ∧G
(∃x.F ) ∧G −→ ∃x.F ∧G
∀y.∃x.F −→ ∃x.∀y.F

A formula is in solved form if it has the form S defined inductively by

S ::= > | S ∧ S′ | ∃x.x .
= u ∧ S | ∃x.S | ∀y.S

where x is not free in u.
It is important that the opposite of the last transformation, namely ∃x.∀y.F −→ ∀y.∃x.F is

not valid. The reason why the quantifier exchange rules are required is somewhat subtle. Consider
an example of the form

∃x.∀y.∃z. x .
= f(z) ∧ F.

z appears in the “substitution term” f(z) for x, and it would thus be illegal to instantiate z to
a term containing y, since this would violate the condition on variable elimination for x (“no free
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variable in t may be bound in F”). Thus, in order to put the example formula into solved form,
we will have to move the quantifier on z outward past the quantifiers on y and x, yielding

∃z.∃x.∀y. x .
= f(z) ∧ F.

Now variable elimination can be applied, yielding

∃z.∃x. x .
= f(z) ∧ ∀y. f(z)

.
= f(z) ∧ [f(z)/x]F.

It is now obvious that z can no longer depend on y.
These rules are sound and complete for unification as specified by the inference rules for the `̀

judgment, and, with some additional control structure, can be guaranteed to terminate. We will
not formulate these theorems here, as our real interest is in the generalization of this idea to the
LF type theory.

3.3 A Unification Logic for LF

LF poses two new problems over the first-order setting discussed above: the presence of types
and a non-trivial notion of equality between terms. In the specification of the unification logic,
this is a rather simple change: in order to prove an equality, we have to show that the terms are
βη-convertible, and the rule for the existential quantifier must check that the substituted term is
of the correct type. The generalized class of formulas is defined inductively by

F ::= M
.
= N | > | F ∧G | ∃x:A.F | ∀y:A.F

We will use M , N , A, B, as in LF, and F and G will again range over formulas. The general-
ization of the basic provability judgment `̀ now requires a context Γ assigning types to variables.
As we will see later, the unification transformations do not need to deal with this context — it
maintains its own notion of context and quantifier dependencies through universal and existential
quantification. Throughout we make the simplifying assumption that all variable names bound by
∃, ∀, or λ in a formula are distinct. We can then say that y is quantified outside of x if the (unique)
quantifier on x is in the scope of the quantifier on y. The defining inference rules for this unification
logic exhibit the connection between the equality formula M

.
= N and βη-convertibility (M ≡ N ).

Γ `M : A M ≡ N Γ ` N : A

Γ `̀ M .
= N Γ `̀ >

Γ `̀ F Γ `̀ G
Γ `̀ F ∧G

Γ `̀ [M/x]F Γ `M : A

Γ `̀ ∃x:A.F

Γ, x:A `̀ F
Γ `̀ ∀x:A.F

Substitution at the level of formulas must, of course, substitute into the types attached to the
meta-quantifiers and, as before, rename variables when necessary.

3.4 A Generalization of Lλ Unification to LF

The general problem of higher-order unification is undecidable even for the second-order simply-
typed λ-calculus with only one binary function constant [10]. This result notwithstanding, a
complete pre-unification algorithm for the simply-typed λ-calculus with generally good operational
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behavior has been devised by Huet [15]. Extensions to LF have been developed independently
by Elliott [5, 7] and Pym [28]. “Pre-unification” here refers to the fact that the algorithm will
not enumerate unifiers, but simply reduce the original problem to a satisfiable set of constraints
(so-called flex-flex pairs) whose unifiers are difficult to enumerate.

While this unification algorithm has proven quite useful in the context of automated theorem
proving [1, 13], as the basis for a a logic programming language it has some drawbacks. In particular,
the potentially high branching factor and the possibility of non-termination make it difficult to
exploit the full power of Huet’s algorithm in a safe and predictable way.

Observing the actual practice of programming, both in λProlog and Elf, it is noticable that
almost all defensible uses of unification are deterministic. Based on this observation, Miller designed
a syntactically restricted logic programming language Lλ [21] in which it is guaranteed that only
deterministic unification problems arise during program execution. However, the restricted subset
disallows important LF representation techniques. For example, the natural rule for universal
elimination in an encoding of first-order logic (see [12])

∀E : ΠF :i→ o . Πx:i . true(∀F )→ true(F x)

would not satisfy Miller’s restriction once generalized to LF from the simply-typed λ-calculus, since
the variable x (which is subject to instantiation during Elf search) appears in an argument to F ,
which is also subject to instantiation.

Thus, unlike Miller, we make no static restriction of the language. Unification problems which
arise during Elf program execution and are not in the decidable subset are simply postponed as
constraints. The disadvantage of this approach is that, unlike in Huet’s algorithm, constraints
cannot be guaranteed to have solutions. For example, given two distinct constants c : i and c′ : i,
the formula ∃x:i → i . ∃z:i . x z .

= c ∧ x z
.
= c′ has no proof and none of the transformations we

list are applicable, since the left-hand side of both equations, x z, is not in the form of a generalized
variable (see below). On the other hand the formula ∃x:i→ i . ∃z:i . x z .

= c has many proofs, but
no transitions are applicable either. We say that a formula from which no transformations apply
is in reduced form.

In Elf the fact that reduced forms do not always have solutions has not shown itself to be a
practical problem. On the contrary: some programs (such as a program for type reconstruction for
the polymorphic λ-calculus) now show markedly improved performance and behavior.

We briefly review the ideas behind the unification in Lλ through some special cases. The
central concept is that of a generalized variable which in turn depends on the notion of a partial
permutation.

Given n and p, a partial permutation φ from n into p is an injective mapping from {1, . . . , n}
into {1, . . . , p}, that is, φ(i) = φ(i′) implies i = i′.

Assume we are considering a formula of the form

∃x1 . . .∃xq . ∀y1 . . .∀yp . N .
= M

(omitting types for the moment). In this special case, N will be a generalized variable or Gvar if
it has the form xj yφ(1) . . .yφ(n) for some partial permutation φ from n into p and 1 ≤ j ≤ q. The
following examples should provide some intuition about the way generalized variables are unified
with terms. Restore the types of all universal variables as some base type, say i, and the remaining
types so as to lead to well-typed equations at type i. Without formally defining substitutions, the
annotations shown below should give an indication of the substitution term used for the existential
variable in the proof of `̀ F , where F is the formula on the left.
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(i) ∃x.∀y1.∀y2 . x y1 y2
.
= y1 [(λu1.λu2.u1) / x]

(ii) ∃x.∀y1.∀y2 . x y1 y2
.
= g y2 [(λu1.λu2.g u2) / x]

(iii) ∃x.∀y1.∀y2.∀y3 . x y2 y3 y1
.
= x y1 y3 y2 [(λu1.λu2.λu3.x

′ u2) / x]
where x′ is a new existential variable.

(iv) ∃x1.∃x2.∀y1.∀y2.∀y3 . x2 y3 y1
.
= x1 y2 y3 [(λv1.λv2.x3 v2) / x1]

[(λu1.λu2.x3 u1) / x2]
where x3 is a new existential variable.

The remaining are counterexamples to illustrate branching when restrictions on generalized
variables are violated. Each of these have two most general solutions.

∀y1.∃x . x y1
.
= y1 [(λu1.u1) / x]

or [(λu1.y1) / x]
∃x.∀y1 . x y1 y1

.
= y1 [(λu1.λu2.u1) / x]

or [(λu1.λu2.u2) / x]
∀y.∃x1.∃x2 . x1 x2

.
= y [(λu1.u1) / x1] [y / x2]

or [(λu1.y) / x1]

Now we state the transformations, beginning with those common to Lλ and Elliott’s algorithm
and then introduce the notion of a generalized variable. We omit some types in the presentation
below—they can be inferred easily from the context. As before, transformations may be applied
at any subformula occurrence which matches the left-hand side.

λx:A.M
.
= λx:A.N −→ ∀x:A . M

.
= N Lam-Lam

λx:A.M
.
= N −→ ∀x:A . M

.
= N x Lam-Any

M
.
= λx:A.N −→ ∀x:A . M x

.
= N Any-Lam

(λx:A.M0)M1M2 . . .Mn
.
= N −→ ([M1/x]M0)M2 . . .Mn

.
= N Beta-Any

M
.
= (λx:A.N0)N1N2 . . .Nn −→ M

.
= ([N1/x]N0)N2 . . .Nn Any-Beta

cM1 . . .Mn
.
= cN1 . . .Nn −→ M1

.
= N1 ∧ . . .∧Mn

.
= Nn Const-Const

∀y.F [yM1 . . .Mn
.
= yN1 . . .Nn] −→ ∀y.F [M1

.
= N1 ∧ . . .∧Mn

.
= Nn] Uvar-Uvar

∀y.∃x.F −→ ∃x.∀y.F Forall-Exists
∃y.∃x.F −→ ∃x.∃y.F Exists-Exists

F ∧ (∃x.G) −→ ∃x.F ∧G And-Exists
(∃x.F ) ∧G −→ ∃x.F ∧G Exists-And

Our assumption that no variable name is bound twice entails, for example, that x cannot be
free in F in the And-Exists transformation. The term Uvar in the names of the rules stands for
universal variable.

In first-order unification, unifying a variable x with itself or another variable is of course trivial—
here possible arguments add complications. Huet [15] has shown for the simply-typed λ-calculus
that such equations (Huet calls them flex-flex) can always be unified, but that enumeration of all
unifiers of such problems is very undirected. This analysis has been extended to LF by Elliott [7].
Here some flexible-flexible pairs can be solved completely, but other unification problems for which
Elliott’s algorithm would have enumerated solutions or failed, will be postponed. Thus Huet’s
algorithm and extended Lλ unification as presented here are in some sense incomparable: each will
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postpone some equations as constraints which could have been solved by the other algorithm. In
the eLP implementation of λProlog [6] a combination of the two algorithms is used.

The remaining transitions we consider have a left-hand side of the form

∃x : Πu1:A1 . . .Πun:An.A .

F [∀y1:A′1 . G1[. . .∀yp:A′p . Gp[x yφ(1) . . .yφ(n)
.
= M ] . . .]]

for some partial permutation φ from n into p. We refer to x yφ(1) . . .yφ(n) in the context above as a
generalized variable. Depending on the form of M , we consider various subcases. For some of the
transitions there is a symmetric one (M is on the left-hand side) which we will not state explicitly.

The formulation below does not carry along the substitutions made for existential variables,
that is, instead of ∃x.F −→ ∃x.x .

= L ∧ [L/x]F the transitions have the form ∃x.F −→ [L/x]F .
This simplifies the presentation and no essential properties are lost. The substitutions for the
original variables can be recovered from the sequence of transformations.

Gvar-Const M has the form cM1 . . .Mm for a constant c : Πv1:B1 . . .Πvm:Bm.B. In this case we
perform an imitation [15]. Let L = λu1:A1 . . .λun:An . c (x1u1 . . .un) . . . (xmu1 . . .un) and
we make the transition to

∃x1 : Πu1:A1 . . .Πun:An.B1 . . .
∃xm : Πu1:A1 . . .Πun:An.[xm−1 u1 . . .un/vm−1] . . . [x1 u1 . . .un/v1]Bm . [L/x]F

Solution of example (ii) above would begin with this step.

Gvar-Uvar-Outside M has the form yM1 . . .Mm for a y universally quantified outside of x.
Here an analogous transition applies (replace c by y in Gvar-Const).

Gvar-Uvar-Inside M has the form yφ(i)M1 . . .Mm for 1 ≤ i ≤ n. In this case we perform
a projection [15]. Let L = λu1:A1 . . .λun:An . ui (x1 u1 . . .un) . . . (xm u1 . . .un) and then
perform the same transition as in Gvar-Const where B1, . . . , Bm and B are determined (up
to conversion) by Ai ≡ Πv1:B1 . . .Πvm:Bm.B.

The solution of example (i) above would be generated by this transformation.

Gvar-Identity M is identical to x yφ(1) . . .yφ(n). In this case we simply replace the equation by
>.

Gvar-Gvar-Same M has the form x yψ(1) . . .yψ(n). In this case, pick a partial permutation ρ

satisfying φ(i) = ψ(i) iff there is a k such that ρ(k) = φ(i). Such a partial permutation ρ

always exists and is unique up to a permutation: it simply collects those indices for which
the corresponding argument positions in x yφ(1) . . .yφ(n) and x yψ(1) . . .yψ(n) are identical. Let
L = λu1:A1 . . .λun:An . x

′ uρ(1) . . .uρ(l) and make the transition to

∃x′ : Πu1:Aρ(1) . . .Πul:Aρ(l) . [L/x]F

Example (iii) above illustrates this case.

Gvar-Gvar-Diff M has the form z yψ(1) . . .yψ(m) for some existentially quantified variable z dis-
tinct from x and partial permutation ψ. In this case we only apply a transition if we have
the following situation:

∃z : Πv1:B1 . . .Πvm:Bm.B . ∃x : Πu1:A1 . . .Πun:An.A .

F [∀y1:A′1 . G1[. . .∀yp:A′p . Gp[x yφ(1) . . .yφ(n)
.
= z yψ(1) . . .yψ(m)] . . .]]
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for partial permutations φ and ψ, that is, the quantifiers and z and x are consecutive, with
z outside of x.

In this case, pick two new partial permutations φ′ and ψ′ such that φ(i) = ψ(j) iff there
is a k such that φ′(k) = i and ψ′(k) = j. φ′ and ψ′ always exist and are unique up to a
permutation. Given such partial permutations, we define

L = λu1:A1 . . .λun:An.x
′ uφ′(1) . . .uφ′(l)

L′ = λv1:B1 . . .λvm:Bm.x
′ vψ′(1) . . .vψ′(l)

and transform the initial formula to

∃x′ : Πu1:Aφ′(1) . . .Πul:Aφ′(l) . [L′/z][L/x]F

An example of this transformation is given by (iv) above.

The last case might seem overly restrictive, but one can use the quantifier exchange rules to
transform an equation of two generalized variables into one where Gvar-Gvar-Diff applies. For
example

∃z.∀y1.∃x.∀y2 . z y1 y2
.
= x y2

−→ ∃z.∃x.∀y1.∀y2 . z y1 y2
.
= x y2 by Forall-Exists

−→ ∃x′.∀y1.∀y2 . (λu1.λu2 . x
′ u2) y1 y2

.
= (λv1.x

′ v1) y2 by Gvar-Gvar-Diff
−→∗ ∃x′.∀y1.∀y2 . x

′ y2
.
= x′ y2 by Beta-Anys and Any-Beta

−→ ∃x′.∀y1.∀y2 . > by Gvar-Identity

If we make no restrictions, the transformations stated are not sound. Consider, for example,
∀y:a.∃x:b . x

.
= y. This is clearly not provable, since y and x have different types. On the other

hand, using Gvar-Uvar-Outside, we can make a transition to ∀y:a.y
.
= y which is provable. In the

case of the simply-typed λ-calculus, it is enough to require that any equation M
.
= N in a formula is

well-typed (both M and N have the same type in the appropriate context). Here, it is not possible
to maintain such a strong invariant due to the dependent types. Instead, we maintain the rather
technical invariant that F is acceptable. The Definitions 4.37 and 4.38 in [7] can be transcribed
into this setting. Following the ideas of Elliott it is then possible to show that if F −→ F ′ and F is
acceptable, then F ′ is acceptable. Initially, acceptability is established by type-checking. Definition
of these concepts and the proof of the soundness theorem below are beyond the scope of this paper.

Theorem (Soundness of Unification) If F is acceptable, F −→ F ′, and Γ `̀ F ′ then Γ `̀ F .

3.5 Precompleteness of the Transformations for Unification

The set of transformations given above is weak in the sense that many unification problems cannot
be transformed, regardless of whether they have a solution or not (see the earlier examples).

On the other hand, there are some desirable properties of this restricted form of unification
which can be stated once we have fixed an algorithm by imposing a control structure on the rules
which explicitly allows for the possibility of failure (indicated by an additional atomic formula ⊥
which has no proof). The resulting algorithm is deterministic (up to some equivalence, as in the
case of first-order unification) and preserves provability, that is if Γ `̀ F and F =⇒ F ′ then Γ `̀ F ′.
Thus there is no branching in the unification algorithm, and logic program execution can never fail
due to incompleteness in unification.
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The basis for the more committed formulation of the transformation rules (written as F =⇒ F ′)
is formed by the transformations defining the −→ relation. We restrict the quantifier exchange rules
(they can lead to incompleteness and non-termination) as described below. We also add explicit
rules for failure as shown below.

cM1 . . .Mn
.
= c′N1 . . .Nm =⇒ ⊥ if c 6= c′ Const-Clash

∀y.F [∀y′.F ′[yM1 . . .Mn
.
= y′N1 . . .Nn] =⇒ ⊥ Uvar-Clash

There are also two circumstances under which unification of a generalized variable with a term
must fail. Consider as examples:

∃x.∀y1.∀y2 . x y1
.
= y2

∃x . x .
= g x

Then, when unifying a generalized variable with a term (where the equation in question has the
form x yφ(1) . . .yφ(n)

.
= M) we may apply:

Gvar-Uvar-Depend M has the form yiM1 . . .Mm such that i is not in the range of φ. In this
case we make a transition to ⊥.

A variable x is said to occur rigidly in M iff (i) M is xM1 . . .Mn, or (ii) M is cM1 . . .Mm

or yM1 . . .Mm for a universally quantified y, and x occurs rigidly in at least one Mj , or (iii)
M is λu:A.M ′ and x occurs rigidly in A or M ′ (the definition of rigid occurrence in a type A is
analogous). The next rule takes precedence over the Gvar-Const and Gvar-Uvar rules.

Occurs-Check The Gvar-Gvar-Same rule does not apply and x occurs rigidly in M . In this case
we make the transition to ⊥.

The final case to consider is the case where we unify two distinct generalized variables, but the
condition on the transition Gvar-Gvar-Diff is not satisfied. In this case we pick the inner variable,
say z and move its quantifier outwards using the quantifier exchange rules until the condition holds.

Theorem (Precompleteness of Unification) If Γ `̀ F and F =⇒ F ′ then Γ `̀ F ′.

A brief aside: in the implementation, the rules dealing with generalized variables are combined
into a form of generalized occurs-check which performs three functions: the usual occurs-check along
rigid paths [15], the dependency check, which also might lead to failure, and finally it generates
constraints (equations which cannot be reduced further) from flexible subformulas which are not
generalized variables.

If we also maintain an approximate well-typedness condition [5] we can show termination of
unification. Approximate well-typedness is necessary in order to guarantee termination of successive
applications of the β-reduction transformations. This is beyond the scope of this paper, but both
approximate well-typing and occurs-check are realized in the implementation.

4 Adding Proof Search

Besides the basic notion of unification, the interpreter must be able to perform back-chaining search.
This search is modelled after the behavior of ordinary logic programming interpreters, though
there are a number of complicating factors. For example, due to the presence of constraints, back-
chaining search through a program and unification cannot be completely decoupled. The other
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complication is that the logic program (represented as a signature) does not remain static, but
changes during execution. In order to describe the form of search necessary here, we extend the
unification logic introduced in the previous section to a logic expressive enough to describe the full
state of the interpreter. The interpreter is then described in two steps analogous to our presentation
of unification: first non-deterministic transformations are presented, and then a control structure
is imposed.

4.1 A State Logic for the Interpreter

We add two new atomic formulas to the unification logic: M ∈ A which represents the goal of
finding an M of type A, and immediate implication M ∈ A � N ∈ C, where C must be atomic,
that is, of the form aM1 . . .Mn for a family a. The former is used to represent goals, the latter to
describe back-chaining. Formulas now follow the grammar

F ::= M
.
= N | M ∈ A | N ∈ A�M ∈ C | > | F ∧G | ∃x:A.F | ∀y:A.F

It may be possible to formulate this logic without the formulas of the form M ∈ A, since the
existential quantifier is typed and thus also imposes a typing constraint (albeit only on existential
variables, not arbitrary terms). Economizing the system along these lines would significantly
complicate the description of the operational semantics of Elf, since typing information available
to unification and typing information necessary for search are not separated.

The meaning of the two new kinds of formulas is defined by the following inference rules.

M ≡M ′ C ≡ C′

Γ `̀ M ∈ C � M ′ ∈ C′
Γ `M : A

Γ `̀ M ∈ A

Γ `̀ N N ′ ∈ [N ′/x]B �M ∈ C Γ `̀ N ′ ∈ A
Γ `̀ N ∈ Πx:A.B �M ∈ C

The following lemma illustrates the significance of immediate implication and formulas of the
form M ∈ C:

Lemma (Immediate Implication)

1. If Γ `̀ M ∈ A then Γ `M : A.

2. If Γ `̀ M ∈ A and Γ `̀ M ∈ A� N ∈ C then Γ `̀ N ∈ C.

From the inference rule one can see that (N ∈ Πx1:A1 . . .xn:An.C) � M ∈ C′ iff there are
appropriately typed terms N1, . . . , Nn such that [N1/x1] . . . [Nn/xn]C ≡ C′ and N N1 . . .Nn ≡M .
If there are no dependencies and N is a constant c, we can think of C as “the head of the clause
named c”. Then we have that c ∈ (A1 → . . . → An → C) � M ∈ D iff C ≡ D and, for proofs
Ni : Ai, M ≡ cN1 . . .Nn. Now the relation to the back-chaining step in Prolog should become
clear: the difference here is that we also have to maintain proof objects. Moreover, the implicit
universal quantifier is replaced by Π, and conjunction in the body of a clause is replaced by nested
implication. Thus, for example, the Prolog clause

p(X) :- q(X,Y), r(X).

would be expressed as the constant declaration
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c : Πx:i . Πy:i . r x→ q x y→ p x

where c can be thought of as the name of the clause, and i : Type is the type of first-order terms. In
order to improve readibility of the clauses, we introduce the notation B ← A to stand for A→ B.
The ← operator is right associative. Moreover, type reconstruction will add implicit quantifiers
and their types, so in Elf’s concrete syntax the clause above would actually be written as

c : p X <- q X Y <- r X.

In this manner pure Prolog programs can be transcribed into Elf programs.

4.2 Transformations for Proof Search

The operational meaning of M ∈ A and immediate implication is given by the following transfor-
mations (recall that C stands for an atomic type of the form aN1 . . .Nn for some family a).

GΠ : M ∈ Πx:A.B −→ ∀x:A . ∃y:B . y
.
= M x ∧ y ∈ B

G1
Atom : ∀x:A . F [M ∈ C] −→ ∀x:A . F [x ∈ A�M ∈ C]

G2
Atom : M ∈ C −→ c0 ∈ A�M ∈ C where c0:A in Σ.

DΠ : N ∈ Πx:A.B �M ∈ C −→ ∃x:A.(N x ∈ B �M ∈ C) ∧ x ∈ A
DAtom : N ∈ aN1 . . .Nn�M ∈ aM1 . . .Mn −→ N1

.
= M1 ∧ . . . ∧Nn

.
= Mn ∧N .

= M

The soundness theorem below is the crucial theorem in the context of logic programming. It
has been argued elsewhere [22] that non-deterministic completeness is also an important criterion
to consider. Here, completeness fails (even non-deterministically), due to the incompleteness of
unification. On the other hand, there is an analogue to the precompleteness theorem in Section 3.5
which is beyond the scope of this paper. But the practical importance of such (pre)completeness
theorems is not clear: an early version of Elf as described in [26] based on Elliott’s unification algo-
rithm was non-deterministically complete, but in practice less useful than the version we describe
here.

Theorem (Soundness of Search) If F is acceptable, F −→ F ′, and Γ `̀ F ′, then Γ `̀ F .

4.3 Search Control

What we have described so far could be considered a non-deterministic proof search procedure for
LF. However, as the basis of a proof procedure it has some serious drawbacks, such as incomplete-
ness of unification and a very high branching factor in search.

The transitions for unification and search we gave are more amenable to an interpretation as a
method for goal reduction: rather than completely solve an original goal (given as a formula), we
reduce it to another goal (also represented as a formula). In practice, the final reduced goal will
often be in a solved form with obvious solutions.

To turn this view of the transformations as goal reductions into a useful programming language,
we need mechanisms to control applications of the transformations. The basic ideas for the control
mechanisms come from logic programming. This is in contrast to the approach taken in many
current proof development systems where tactics and tacticals are used to describe when inference
rules should be applied. Elf gives meta-programs a much more declarative flavor, and programs
tend to be easier to read and have more predictable behavior than tactics. Moreover, tactics can
easily be defined within Elf (similarly to Felty’s formulation [8]). Finally, by programming directly
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in a language with dependent types, static typechecking can make stronger correctness guarantees
than functional meta-languages without dependent types (such as ML, for example).

The way dependent types can be used to impose constraints on logic variables is one of the
attractive features of Elf. The feature is missing if one follows the proposal by Felty & Miller [9]
to interpret LF signatures in Hereditary Harrop logic. While their encoding is adequate on the
declarative level, it is inadequate on the operational level, since typing constraints are expressed
as predicates which are checked after the execution of a goal, thus potentially leading to much
backtracking and generally undesirable operational behavior.

4.4 Open and Closed Type Families

Since we now would like to think operationally, we speak of a formula in the state logic as a goal.
The first control mechanism we introduce is to distinguish goals we would like to be fully solved
from those we would like to postpone if possible. This is done by declaring families to be either
open or closed. If a family a has been declared open, then any atomic type of the form aM1 . . .Mn

is defined to be open, if a family a has been declared closed, then any atomic type of the form
above is also defined to be closed. Every family-level constant must be declared as open or closed,
but the syntactic form of this declaration depends on Elf’s module system whose design is still in
progress, and thus we do not address such syntactic issues here.

Intuitively, if A is open, then a goal ∃x:A.F [x ∈ A] should be postponed—otherwise, the current
context of x will be searched for entries which could construct a term of type A. The type of x
then acts purely as a restriction on the instantiations for x which might be made by unification.
Thus open and closed declarations function purely as search control declarations—they do not
affect the soundness of the interpreter. In Section 4.5 we explain in more detail what we mean by
“postponement” here.

In most examples, types which classify syntactic entities will be declared as open. To illustrate
this, consider the following simple signature.

nat : Type
zero : nat
succ : nat → nat

eqnat : nat → nat → Type
refl : Πn:nat . eqnat nn

There are four possibilities of open/closed declarations. We consider each of them in turn. For
the sake of brevity, we omit the types of the quantified variables.

1. If nat is open and eqnat closed, then the formula

∃N.∃M.∃Q . N ∈ nat ∧M ∈ nat ∧Q ∈ eqnat (succN ) (succM)

will be reduced to ∃N.N ∈ nat (with some added > conjuncts). During this transformation,
the substitution for Q will be refl N . In the actual top-level interaction with Elf, the an-
swer substitutions would be M = N and Q = refl N. This is the typical case and the desired
behavior.

2. If nat and eqnat are both closed the goal above will be fully solved (transformed to a conjunc-
tion of >’s). Both N and M are instantiated to zero for the first solution. Upon backtracking,
N and M will be instantiated to succ zero, etc. The problem with this scheme of “eager”
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solution is that solving any free variable of type nat may be an overcommittment, leading to
a potentially large amount of backtracking. In most applications it is better to leave types
such as nat open—variables of such type will then only be instantiated by unfication.

3. If nat and eqnat are both open, then the original goal is already in reduced form and no
reductions will be applied. This may lead to very undesirable behavior. For example, the for-
mula ∃Q.Q ∈ eqnat zero (succ zero) is also in reduced form! What the interpreter establishes
in such a case is that

λQ.Q : eqnat zero (succ zero)→ eqnat zero (succ zero)

which is a valid LF typing judgment, given the signature above, but not very useful.

4. If nat is closed and eqnat is open, then the formula

∃N.∃M.∃Q . Q ∈ eqnat N (succM) ∧N ∈ nat ∧M ∈ nat

would be reduced with the substitution of zero for M and zero for N (Q remains unin-
stantiated). Upon backtracking, M will be increased to succ zero, etc. Clearly, this is very
undesirable behavior, as there are no solutions to Q in most of these cases.

4.5 Depth-First Search

In the spirit of logic programming, search is committed to be depth-first. The enables an efficient
implementation without overly constraining the programmer. Of course, this means that search will
be incomplete, and the programmer will have to take account of this when formulating programs.
Let us make the point again: Elf is a programming language and not a theorem prover. Given a
signature defining a logic, in Elf one will generally have to program a theorem prover—the signature
alone will usually not be sufficient.

The operational semantics of Elf is given by imposing a control structure on the application
of the transformation rules in the previous sections, that is, the transitions for unification and the
transitions for search. The state of the interpreter is completely described by a formula G without
free variables. The interpreter traverses this formula G from left to right until it encounters an
atomic formula F . Depending on the structure of F , it takes one of the following actions.

1. If F has the form M ∈ Πx:A.B the transformation GΠ is applied.

2. If F is of the form M ∈ C for atomic and closed C, it applies G1
Atom to the innermost

quantifier ∀x:A such that A is closed and M ∈ C is in its scope. On backtracking, further
universal quantifiers are considered (from the inside out). Finally the signature Σ is scanned
from left to right, applying G2

Atom to declarations c0 ∈ A for closed A. We backtrack when
the entire signature has been scanned.

3. If F is an immediate implication, we apply rule DΠ if it matches. Finally we apply DAtom if
both atomic types begin with the same family-level constant. Otherwise we backtrack over
previous choices.

4. If F is an equality not in reduced form, we repeatedly apply unification transformations to
all of G until all equalities are in reduced form or unification fails. In the latter case we
backtrack.
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5. If F is >, an equality in reduced form (no transformation applies), or M ∈ C for open
C, we pass over it, looking for the next atomic formula in G (still searching from left to
right). Thus, equalities in reduced form are postponed as constraints which are reexamined
whenever unification transitions are applied. If we have scanned all of G and none of cases 1
through 4 apply, the formula is in reduced form and we “succeed”. In this case the problem of
proving the initial formula has been reduced to proving the current formula (in the extended
unification logic).

5 An Extended Example

We now illustrate Elf and its operation through an extended example. In order to closely match
the implementation and describe some of its features, we use concrete syntax in these examples.

5.1 Elf Concrete Syntax

In the syntax, the level of kinds, families, and objects are not distinguished, but they can be
determined by type reconstruction. We use expression to refer to an entity which may be from any
of the three levels. In the last columns we list the corresponding cases in the definition of LF in
Section 2.

Expressions e ::= | c | x a or c or x

| {x:e}e Πx:A.B or Πx:A.K
| [x:e]e λx:A.M or λx:A.B
| e e AM or M N

| type Type
| e -> e | e <- e

| {x}e | [x]e | _ | e:e | (e)
Signatures sig ::= empty | c : e. sig

Here c stands for a constant at the level of families or objects. A -> B and B <- A both
stand for A → B. The later is reminiscent of Prolog’s “backwards” implication and improves the
readability of some Elf programs. Type reconstruction fills in the omitted types in quantifications
{x} and abstractions [x]. Omitted expressions (indicated by an underscore _) will also be filled in
by type or term reconstruction, though in case of ambiguity a warning or error message results (see
Section 5.5). Bound variables and constants in Elf can be either uppercase or lowercase, but free
variables in a clause or query must be in uppercase (an undeclared, unbound lowercase identifier
is flagged as an undeclared constant).

Because of the different roles of signature entries we sometimes refer to the declaration of a
constant of closed type as a clause, and a constant of open type as a constructor.

5.2 Equality in the Simply-Typed λ-Calculus

We begin with a representation of the simply typed λ-calculus (λ→) in LF. In this formulation,
the types are “intrinsic” to the representation: we can only represent well-typed terms. tp is the
syntactic category of types of λ→. We include a single base type tp and the arrow type constructor
to form function types. Both families are open: they will only be instantiated via unification, not
through a search of the signature.
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tp : type.

arrow : tp -> tp -> tp.

nat : tp.

The representation of a term of λ→ is indexed by its type. The constructors of terms repre-
sent 0, successor, λ-abstraction, and application. In order to obtain the maximal benefits of the
expressiveness of the meta-language (LF), the variables of the object language λ→ are represented
as variables in the meta-language.

term : tp -> type.

z : term nat.

s : term (arrow nat nat).

lam : (term A -> term B) -> term (arrow A B).

app : term (arrow A B) -> term A -> term B.

Note the free variables A and B in the declaration for lam. In a pure LF signature, one would
have to specify

lam : ΠA:tp.ΠB:tp . (term(A)→ term(B))→ term(arrow AB).

In Elf, the quantifiers on A and B are inferred, including the type of the variables. The omitted
quantifier also has another role: wherever lam is encountered subsequently it is replaced by lam _ _,
where _ stands for an (LF) object or type to be reconstructed (see Section 5.5 for further discussion).

In this representation, the simply-typed term (λx:nat → nat .x) z is encoded as the following
term:

app nat nat (lam nat nat [x:term nat] x) z.

In concrete syntax this will be accepted and printed as

app (lam [x] x) z.

The next part of the signature defines βη-equality between terms in λ→. Before showing it, we
give the usual two-dimensional representation of three of the inference rules which are discussed
below.

β
(λx:A.M)N ≈ [N/x]M

η
(λx:A.M x) ≈M

M ≈M ′
λ

λx:A.M ≈ λx:A.M ′

with the proviso that x is not free in M in the η-rule. The equiv judgment is declared as closed,
since we hardly would want to accept free variables ranging over equivalence proofs in an answer
to a query. On the other hand the signature below should never be used for search, as it very
quickly gets into infinite loops. In the implementation this is handled by allowing the programmer
to specify which signatures will be used in search. The concrete syntax for these language features
are likely to change in the near future as the design of the module system for Elf matures, and thus
not described here.

equiv : term A -> term A -> type.

e_beta : equiv (app (lam M) N) (M N).

e_eta : equiv (lam [x] (app M x)) M.
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e_app : equiv (app M N) (app M’ N’) <- equiv M M’ <- equiv N N’.

e_lam : equiv (lam M) (lam M’) <- {x} equiv (M x) (M’ x).

e_refl : equiv M M.

e_sym : equiv M N <- equiv N M.

e_trans : equiv M N <- equiv M R <- equiv R N.

A number of common techniques are illustrated in this signature. The formulation of the β-rule
takes advantage of LF-level application in order to represent substitution. The usual side-condition
on η-conversion is also implicit: the quantifier on M (which we omitted) is on the outside. If we tried
to instantiate this quantifier with a term containing x free, substitution would actually rename the
bound variable x in order to avoid a name clash. The rule e_lam illustrates the way we descend
into abstractions by using the LF-level context.

This signature is never used for search, only for type-checking purposes. One can easily see
why: depth-first search using this signature, or any other naive control structure will almost in-
evitably lead to non-termination. Instead we take the approach of explicitly giving an algorithmic
formulation of equivalence in terms of a signature which can be used for search. The soundness
of the algorithmic formulation with respect to the definition can then be expressed in Elf (see
Section 5.4).

5.3 An Algorithmic Formulation

The algorithmic version of equality requires three separate judgments: M and N are equal at type
A (the main judgment), M weakly head reduces to N , and M and N have the same head and
equal arguments. All three judgments are declared to be closed.

We begin with weak head reduction, whr. As an inference system, the above might have been
written as

redex
(λx:A.M)N −→whr [N/x]M

M −→whr M
′

left
MN −→whr M

′N

The Elf formulation is not much more verbose than the formulation through inference rules. More-
over, it expresses and verifies directly that weak head reduction relates terms of the same type!
The possibility of statically verifying this property during type reconstruction stems from the use
of dependent types in the declaration of whr: we explicitly state that both arguments to whr have
the same type A (in λ→).

whr : term A -> term A -> type.

whr_redex : whr (app (lam M) N) (M N).

whr_left : whr (app M N) (app M’ N) <- whr M M’.

Next we introduce the main judgments, eq and eq’, which are mutually recursive. eq reduces
equality at function types to equality at base type by using extensionality, and eq’ checks whether
two terms have the same head and correspondingly eq arguments. The type argument to eq is
made explicit, since the program unifies against this type. This is only a stylistic decision: if
the explicit quantifier over A were omitted, we could, for example, formulate the rule eq_base as
eq (M:nat) N <- eq’ M N.
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eq : {A:tp} term A -> term A -> type.

eq’ : term A -> term A -> type.

eq_arrow : eq (arrow A B) M N

<- ({x:term A} eq’ x x -> eq B (app M x) (app N x)).

eq_base : eq nat M N <- eq’ M N.

eq_whrl : eq nat M N <- whr M M’ <- eq nat M’ N.

eq_whrr : eq nat M N <- whr N N’ <- eq nat M N’.

eq’_z : eq’ z z.

eq’_s : eq’ s s.

eq’_app : eq’ (app M N) (app M’ N’) <- eq’ M M’ <- eq _ N N’.

From the formulation of the inference rules for eq’ it may seem that there is no case for variables.
However, when a variable is added to the context (in the right-hand side of the eq_arrow rule),
we also add to the context a proof that this variable is equal (eq’) to itself—another common
programming technique in Elf.

The use of _ in the last clause indicates that the omitted type should be inferrable from the
context. We have no explicit name for the type here, since it appears only in the synthesized and
thus suppressed arguments to eq’ and app. We could have easily created such a name through an
explicit type annotation, as in

eq’_app : eq’ (app M (N:term A)) (app M’ N’) <- eq’ M M’ <- eq A N N’.

To see the practical utility of implicit syntax and implicit quantification as realized in Elf,
consider the explicit version of the eq’_app rule:

eq’_app : {A:tp} {N:term A} {N’:term A}

{A’:tp} {M:term (arrow A A’)} {M’:term (arrow A A’)}

eq A N N’ -> eq’ (arrow A A’) M M’

-> eq’ A’ (app A A’ M N) (app A A’ M’ N’).

In particular deductions where the 6 implicit arguments are shown are completely unreadable.
Here is a sample query as given to the interactive top-level loop of Elf which is modeled after

Prolog.

?- eq A (app (lam [x] x) s) M.

M <- s ,

A <- arrow nat nat .

Query <- eq_arrow ([x:term nat] [p:eq’ x x] eq_whrl

(eq_base (eq’_app (eq_base p) eq’_s)) (whr_left whr_redex)) .

Here the substitution for A is determined during type reconstruction, the substitutions for M and
Query are constructed by search and unification.
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5.4 Soundness of the Algorithmic Formulation

We would now like to show that the program for eq given above is sound with respect to the
definition of equiv—so far we have made no formal connection. The most immediate one is to
interpret whr, eq, and eq’ all as establishing equivalence between two terms, and then show that
the rules for those judgments are derived rules. In an extension of Elf currently under development
this interpretation will be in the form of a functor (in the terminology of the Standard ML module
system). Here we simply show how the definitions as they might appear in the body of such a
functor.

def whr = equiv.

def whr_redex = e_beta.

def whr_left P = e_app e_refl P.

def eq A = equiv.

def eq’ = equiv.

def eq_arrow P = e_trans (e_trans e_eta (e_lam P)) (e_sym e_eta).

def eq_base P = P.

def eq_whrl Q P = e_trans P Q.

def eq_whrr Q P = e_trans (e_sym Q) P.

def eq’_z = e_refl.

def eq’_s = e_refl.

def eq’_app Q P = e_app P Q.

The fact that these definitions are type-correct is enough to guarantee the soundness of our
algorithm for deciding equality for λ→, since it allows us to interpret the “trace” (algorithmic
deduction) of eq A M N as a proof of equiv M N. Of course, such a direct interpretation will not
always be possible. This is because the LF type theory has no recursion operator, as the addition of
operators for recursion would render many encodings as not adequate. In such cases the soundness
of an operational formulation can only be expressed as a relation. In our example, the following
signature relates algorithmic deductions to proofs of equivalence.

treq : eq A M N -> equiv M N -> type.

treq’ : eq’ M N -> equiv M N -> type.

trwhr : whr M N -> equiv M N -> type.

tr_redex : trwhr whr_redex e_beta.

tr_redexl : trwhr (whr_left Tr) (e_app e_refl P) <- trwhr Tr P.

tr_z : treq’ eq’_z e_refl.

tr_s : treq’ eq’_s e_refl.

tr_app : treq’ (eq’_app Tr Tr’) (e_app P P’) <- treq Tr P <- treq’ Tr’ P’.

tr_base : treq (eq_base Tr’) P <- treq’ Tr’ P.
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tr_arrow : treq (eq_arrow F) (e_trans (e_trans e_eta (e_lam P)) (e_sym e_eta))

<- {x} {tr’} treq’ tr’ e_refl -> treq (F x tr’) (P x).

tr_whrl : treq (eq_whrl Tr TrW) (e_trans P Q)

<- treq Tr P <- trwhr TrW Q.

tr_whrr : treq (eq_whrr Tr TrW) (e_trans (e_sym Q) P)

<- treq Tr P <- trwhr TrW Q.

Thus while the method of direct interpretation allows a form of compile-time soundness proof
through the type checker, the second method requires that we explicitly transform a proof Tr

of eq M N into a proof P of equiv M N by calling treq Tr P. We are guaranteed that P is an
equivalence proof for M and N only when this translation succeeds.

5.5 Type Reconstruction for Elf

The method of type reconstruction for Elf is different from what is used in LEGO [27] or the
implementation of the Calculus of Constructions at INRIA [16] in that (1) argument synthesis and
type and term reconstruction are completely decoupled, and (2) there is no restriction on which
types and terms can be omitted in the input. We only sketch the algorithm here.

If a constant declaration has implicit quantifiers, these arguments are assumed to be implicit
and are inserted as underscores during parsing (see the earlier example). In the second phase,
the type reconstruction algorithm performs unification as described in Section 3 augmented with
straightforward transitions to deal with variables at the level of types. Underscores are converted
into logic variables during this phase, and their value may depend on all bound variables it is in the
scope of. At present, we do not attempt to infer types for undeclared constants, though underscores
may be inserted in any place where a term or type would be legal.

Thus we presuppose no particular flow of information, except that the analysis is done one
constant declaration at a time. This avoids some unnatural problems which sometimes arise in other
systems. For example, in many synthesis algorithms polymorphic constants with no arguments
(such as nil) or constructors with only implicit arguments (such as the inference rule e_beta in
the example above) must be supplied with arguments, even though the context often determines
unambiguously what these arguments should be.

This algorithm has surprisingly good operational behavior: it is very efficient, gives good error
messages most of the time, and one rarely has to disambiguate by giving additional information.
If a type has been reconstructed without any remaining constraints it is a principal type, since
unification as described by the transitions in Section 3 does not branch. Moreover, type recon-
struction will not fail if there is a valid typing, due to the precompleteness of unification. However,
in some, in practice rare cases, constraints remain after type reconstruction. These may or may
not be satisfiable and the programmer will be advised to further annotate his program.

Elf has no explicit way to specify that an argument should be synthesized, or to explicitly
override synthesis. In the case where the latter would be necessary, one can use the general :
operator to annotate arbitrary subexpressions and achieve the same effect as the | annotation
provides in LEGO, though somewhat more verbosely.

6 Conclusion and Future Work

To summarize, we have presented the design and preliminary implementation of the logic program-
ming language Elf based on the LF logical framework. As in classical first-order logic programming,



Logic Programming in the LF Logical Framework 23

Elf proof search is sound, but not complete with respect to a given LF signature. Unlike Prolog,
the interpreter constructs proof terms during the solution of a query, and such proof terms can be
used later. In this framework logic variables and goals are identified, a distinction which is replaced
by a similar distinction between open and closed families—a distinction made purely for reasons of
search control.

Dependent types and can be used as expressive constraints on logic variables. Moreover, de-
pendent types can internally (through Elf type checking) give correctness guarantees which are not
possible in a system with only simple types. Elf has been used to specify and write meta-programs
in the domains of theorem proving, type checking and inference, natural semantics, program ex-
traction and proof transformation. Some of these are partially verified internally.

The primary deficiencies of Elf as it currently stands are the lack of a module system (under
development), the absence of notational definition and polymorphism (both of which are actually
provided in the implementation, but for which the theoretical consequences have not been fully
investigated), and the inefficiency of the implementation on large problems. We hope to address
the latter through a number of improvements, such as dependency analysis to avoid redundant
unification, elimination of the construction of proofs whenever it can be shown statically that they
will be discarded, and the compilation of signatures to take advantage of indexing techniques and
to optimize unification. In particular, the costly (generalized) occurs-check can be avoided in many
cases without loss of soundness.

Finally, Elf lacks some control constructs such as cut (!), assert, var, etc. that are familiar
from logic programming, and occasionally this presents some difficulties. Our basic design principle
in extending the language has to be to preserve the declarative reading of a signature at all costs,
that is, the operational behavior of a language extension will have to be sound with respect to its
declarative interpretation (though usually incomplete). This is more or less forced, as Elf, unlike
Prolog, will deliver proofs, not just substitutions. On the other hand, we try to be circumspect and
only incorporate extensions which in some sense appear necessary. The addition of Σ-types (strong
sums) as first envisioned in [26] has not been necessary as anticipated and has, for the moment at
least, been abandoned.

It is possible, however, to include some search control operators in Elf programs without de-
stroying the basic promise to deliver proofs for the original query. An example of such an operator
is once, where we define that Γ `M : onceA iff Γ `M : A, though search for proofs of onceA will
behave differently from search for proofs of A (operationally, by delivering only the first proof M
but deliver no more on backtracking). The theoretical and practical properties of such extensions
have not yet been fully investigated.
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