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Abstract

We present the spine calculgs” %7 as an efficient representation for the lineacalculusA™ %7 which

includes unrestricted functions-), linear functions o), additive pairing &), and additive unit ). S~ %"

enhances the representation of Church’s simply typedlculus by enforcing extensionality and by incorporat-

ing linear constructs. This approach permits procedures such as unification to retain the efficient head access that
characterizes first-order term languages without the overhead of perforadagversions at run time. Appli-

cations lie in proof search, logic programming, and logical frameworks based on linear type theories. It is also
related to foundational work on term assignment calculi for presentations of the sequent calculus. We define the
spine calculus, give translations " %" into S~ °%" and vice-versa, prove their soundness and complete-
ness with respect to typing and reductions, and show that the typable fragment of the spine calculus is strongly
normalizing and admits unique canonidad, Sn-normal, forms.
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1 Introduction

The internal representation &fcalculi, logics and type theories has a direct impact on the efficiency of systems for
symbolic computation that implement them such as theorem provers and logic programming languages. In partic-
ular, major gains can be achieved from even small improvements of procedures that manipulate terms extensively:
unification, for instance, is a well-known bottleneck in the execution time of a logic program. For languages based
on first-order termsProlog, for example, the natural representation of terms supports simple and fast unification
algorithms. Indeed, a function symbglapplied to three arguments b andc, written f(a, b, ¢) in the syntax of

Prolog, is encoded as a record consisting of the hgadd the list of its arguments. This is sensible from the point

of view of unification since the head of a terms must be analyzed before its arguments. Early implementations
of systems embedding a higher-order term language, such as the logic programming laidjufee94] and

AProlog [Mil89, Mil01], typically represented terms in a way that mimics the traditional definition)otalculus.

Ignoring common orthogonal optimizations such as the use of de Bruijn indices [dB72] or explicit substitutions
[ACCL91], the above term is parsed and encodef{ @5a) b) ¢). During unification, three applications (here rep-
resented as juxtaposition) must be traversed before accessing its head, possibly just to discover that it differs from
the head of the term being unified. This representation is similarly inefficient when normalizing a term: in order
to reduce((Az. \y. Az. f zy z) a b ¢) to the above term, we need again to go through three applications before
exposing the first redex.

Apparently, adopting an internal representation that treats nested applications as in the first-ordes.,case (
as a head together with a list of arguments) but perigbstraction would significantly improve the efficiency
of higher-order unification algorithms. This approach has been studied extensively for different purposes [Bar80,
Her95, DP98, DP99, Sch99, San00, DUO1]. However, the complex equational theory that charactarizes a
calculus leads to difficulties in procedures such as unification and normalization. In partjecdenversion rules
can yield instances of a same function symbol applied to a different number of arguments. This might even lead
to fragmented lists of argument as the resulefeduction €.g, while performing unification) that need to be
monitored and compacted regularly. Ultimately, such a representation may turn out to be even more complex to
deal with than traditionakh-expressions. Instead, no such difficulty emerges with the trivial equational theory of
first-order terms.

In this paper, we propose a variant of this idea that supports efficient head accesses, but that does not suffer
from the drawbacks we just mentioned. This representationtefms, that we call genericallyspine calculusis
based on the observation that, in a typedalculus, the use of the troublesomeonversion rules can be limited
to a preprocessing phase that expands terms to upipreg forms, which are preserved Byreduction. Insisting
on n-long terms has the advantage of simplifying the code for procedures such as unification and normalization,
of permitting easier informal descriptions of these algorithms, and more generally of reducing the complexity of
studying the meta-theory of such formalisms. Moreowetalculi featuring a unit type and a unit element do not
admit a Church-Rosser theorem unless all termg)aepanded [JG95]: this means that typing information must
be stored and maintained in otherwise type-free procedures such as pattern unification [Mil91, Pfe91].

The benefits of the spine calculus representation, in conjunction with explicit substitutions, have been exploited
in a new implementation of the logical framewdtk [HHP93] as the higher-order logic programming language
Twelf [PS99]. LF is based on the type theo!, a refinement of Church’s simply-typedcalculusA— with
dependent types. In this paper, we will instead focus on the simply-typed lirealculus A\~ T, which
extends\— with the type constructorso, & and T, derived from the identically denoted connectives of linear
logic [Gir87]. We will define the corresponding spine calcufiis %7, present translations between the two, and
prove the meta-theoretical propertiesdf <% T that make it adequate as an internal representation language for
A~ —%T Notice that our analysis applies to any sublanguageof°® T, in particular toA™ and its extension
with extensional products and a unit type; ¥ " ; moreover, it can easily be extended to the treatment of dependent
types.

A similar proposal for term representation was already mentioned in passing by Howard in his seminal paper
[How80]. The normal forms of the spine calculus also arise as a term assignment language for uniform proofs,
which form the basis for abstract logic programming languages and is based on a much richer set of connectives
[MNPS91]. A thorough investigation of a related calculus on Xhefragment has been conducted by Herbelin
[Her95]. Schwichtenberg [Sch99], Dyckhoff and colleagues [DP98, DP99, DUO01], aridt&santo [San00]
study a version of the intuitionistic spine representation and ordikagiculi in a single system which incorpo-



rates commutative conversions, instead of the wholesale translation investigated here (which is closer to an efficient
implementation).

A~ &T corresponds, via a natural extension of the Curry-Howard isomorphism, te-the & T) fragment
of intuitionistic linear logic, which constitutes the propositional core of the logic programming landumdige
[HM94] and of the linear logical frameworkLF [Cer96, CP02]\~%T is also the simply-typed variant of the
term language ofLF. Its theoretical relevance derives from the fact that it is the biggest likeaiculus that
admits unique longn-normal forms A\~ °%T shares similarities with the calculus proposed in [Bar96] and with
the term language of the systdRiLF [IP98].

The implementation of a language based on linear type theories sudl-eend RLF raises new challenges
that emerge neither for non-linear languages suchvasdf [PS99], nor for linear logic programming languages
featuring plain (non-linear) terms such laslli [HM94] or Forum [Mil94]. In particular, the implementation of
formalisms based on a linearcalculus must perform higher-order unification on linear terms in order to instan-
tiate existential variables [CP97a]. The spine calcus*" was designed as an efficient representation for
unification and normalization over the lineaexpressions that can appear inldi- specification.

The adoption of linear term languageslihF and RLF has been motivated by a number of applications.
Linear terms provide a statically checkable notation for natural deductions [IP98] or sequent derivations [CP02]
in substructural logics. In the realm of programming languages, linear terms naturally comdeltationsn
imperative languages [CP02] or sequences of moves in games [Cer96]. When we want to specify, manipulate, or
reason about such objects (which is common in logic and the theory of programming languages), then internal
linearity constraints are critical in practice (see, for example, the first formalizations of cut-elimination in linear
logic and type preservation féini-ML with references [CP02]).

The principal contribution of this work is the definition of spine calculi (1) as a new representation technique
for genericA-calculi that permits both simple meta-reasoning and efficient implementations, and (2) as a term
assignment system for the logic programming notion of uniform provability.

Our presentation is organized as follows. In Section 2, we define*® " and present its main properties.

We introduce the syntax and the typing and reduction semanti§s’of® T in Section 3. In Section 4, we give
translations from the traditional presentation to the spine calculus and vice-versa and show that they are sound
and complete with respect to the typing and reduction semantics of both languages. In Section 5, we state and
prove the major properties 6~ T . Further remarks are made in Section 6. Finally, Section 7 summarizes the
work done, discusses applications and hints at future development. In order to facilitate our description, we must
assume the reader familiar with linear logic [Gir87]. Appendix A studies the intermezbateion calculusised

in Section 4.

2 The Simply-Typed Linear Lambda Calculus A\~ %7

In this section, we introduce the linear simply-typedalculusA— %", which augments Church’s simply-typed
A-calculusA™ [Chu40] with a number of operators from linear logic [Gir87]. More precisely, we give its syntax

in Section 2.1, present its typing semantics in Section 2.2 and its reduction semantics and some properties in
Section 2.3. Itis the simply-typed variant of the linear type thedty°% T, thoroughly analyzed in [Cer96]. We

refer the interested reader to this work for the proofs of the propertigs’ of“ T stated in this section.

2.1 Syntax

The simply-typed linean-calculus\~—°%T extends Church’s\™ with the three type constructors> (linear

function, & (additive product and T (additive uni), derived from the identically denoted connectives of linear

logic [Gir87]. The language of terms is augmented accordingly with constructors and destructors, devised from
the natural deduction style inference rules for these connectives. Although not strictly necessary at this level of the
description, the inclusion of unrestricted constants is convenient in developments of this work that go beyond the
scope of this paper. We present the resulting grammar in a tabular format to relate each type constructor (left) to the
corresponding term operators (center), with constructors preceding destructors. Clearly, constants and variables
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Figure 2.1: Typing fom-long A\~ ~%T Terms

can have any type.

Types: A= a Terms: M = ¢ | x
| A; — Ao | Ae:AM | My Mo (unrestricted functions)
| A;—o Ay | Nz A M | My "My (linear functions)
| A1 & Ay | (My,M3) | FSTM | SNDM (additive pairs)
| T | () (additive unit)

Herez, ¢ anda range over variables, constants and base types, respectively. In addition to the names displayed
above, we will often usévV and B for terms and types, respectively.
The notions of free and bound variables are adapted fromAs usual, we identify terms that differ only by
the name of their bound variables and wfil¢/x] N for the capture-avoiding substitution 8f for « in the term
N.

2.2 Typing Semantics

As usual, we rely on signatures and contexts to assign types to constants and free variables, respectively.
Signatures: Y= | X,c: 4 Contexts: I':=- | [z : A

We will also use the lettef\, possibly subscripted, to indicate a context. We require variables and constants to be
declared at most once in a context and in a signature, respectively. Contexts and signatures are treated as sets; we
promote " to denote their disjoint union and omit writing™when unnecessary.

Recall that, ilZ\—, a termM is in n-long formonly if every function appearing in/ (either as a symbol or as
a redex) occurs applied to as many arguments as dictated by its type. For exatfiple# a« — a andc : a, the
term\y:a. f cy is n-long, butf ¢ is not. This idea extends naturally }0° T by requiring that every symbol
be enclosed by as many destructors as necessary to expose a base type. For example, given the:eokstant
the term(FSTp, SNDp) is in n-long form, butp by itself is not. It also follows thaf) is the onlyn-long term of
typeT.



Operating solely on well-typed termsinlong form is particularly convenient when implementing operations
such as unification since it strongly restricts the structure that a term of a given type can assume (see the Surjectivity
Lemma 2.1 later in this section). Instead, untypecbnversion rules are often included in the reduction semantics
of a A-calculus in order to expand or contract terms as needed. In the presence of a unit glgment, T,
this approach is unsound. We cleanly realize the above desideratum by distinguishing a pre-canonical typing
judgment, which validates precisely the well-typed termaof°¢T in 5-long form (pre-canonical termjs from
a pre-atomic judgment, which handles intermediate stages of their constrymrgeat¢mic termpssuch asf ¢ and
p above. These judgments are respectively denoted as follows:

ARy M A M is a pre-canonical term of typd in T'; A and X
ARy M| A M is a pre-atomic term of typd in I"; A and X

wherel” and A are called thainrestrictedand thelinear context, respectively. Whenever a property holds uni-
formly for the pre-canonical and pre-atomic judgments above, we will Write s, M | A and then refer to the

term M and the typed if needed. Moreover, if two or more such expressions occur in a statement, we assume that
the arrows of the actual judgments match, unless explicitly stated otherwise. Wevaritet.A, possibly super-
and/or sub-scripted, for derivations of the above pre-canonical and pre-atomic typing judgments, respectively.

The rules displayed in the upper part of Figure 2.1 validate pre-canonical ferimg deriving judgments of
the formI"; A B M {t A. Rulesl)_unit, 1\_pair, 1\_llam andl)_ilam allow the construction of terms of the
form (), (My, Ma), \z:A. M, and Az : A. M, respectively (the constructors of our language). The manner they
handle their context is familiar from linear logic. Notice in particular thatinit is applicable with any linear
context and that the premises of ridepair share the same context, which also appears in its conclusion. Rules
1\ llam andl)_ilam differ only by the nature of the assumption they add to the context in their premise: linear in
the case of the former, unrestricted for the latter. The remaining rule defining the pre-canonical judymuant,
is particularly interesting since it is the reason why all terms derivable in the pre-canonical system-tmagn
form: a pre-atomic term must be fully appliede(, have base type) before it can be considered pre-canonical.
Observe that the rules defining the pre-canonical judgment are type-directed.

The rules defining the pre-atomic judgmehtA s, M | A, are displayed in the lower part of Figure 2.1.
They validate constants (rul®_con) and linear and unrestricted variables (rubledvar andl) _ivar, respectively).
They also allow the formation of the terrasT M, SND M, M "N and M N that start with one of the destructors
of A= 2T (rulesl_fst, 1\_snd, 1\ lapp andl)\_iapp, respectively). The role played by linear assumptions in
A~ 4T s particularly evident in these rules. Indeed, an axiom AN&:én, 1\_lvar andlX_ivar) can be applied
only if the linear part of its context is empty, or contains just the variable to be validated, with the proper type.
Linearity appears also in the elimination rule fes, where the linear context in the conclusion of rildapp is
split and distributed among its premises. Observe also that the linear context of the argument part of an unrestricted
application, in ruld)_iapp, is constrained to be empty. The presence of ruleedex accounts for the possibility
of validating terms containing-redices, as defined below: it allows arbitrary pre-canonical terms in positions
where only pre-atomic objects could otherwise appear. If we remove ityelolyg 5-normal (or, more succinctly,
canonica) terms can be derived.

This formulation of the typing semantics af* T s the simply-typed variant of the pre-canonical system
which defines the semantics of the linear type theory underlildg [Cer96, CP02]. We direct the interested
reader to these references for the proofs of the statements in this section.

If we ignore the terms and the distinction between the pre-canonical and the pre-atomic judgments, the rules in
Figure 2.1 correspond to the specification of the familiar inference rules forthe§ T) fragment of intuition-
istic linear logic,ILL~ % T [HM94], presented in aatural deductiorstyle. It is easy to prove the equivalence to
the usual sequent formulation.” =T andILL—~ T are related by a form of the Curry-Howard isomorphism:
the terms that appear on the left of the types in the above judgments record the structure of a natural deduction
proof for the corresponding linear formulas. Note that the interactions of rulaait and1)_lapp can collapse
proofs with the same structure but different linear contexts to the same® " term.

We say a constructor for a type ssirjectiveif its image includes all canonical members of the type. For
example, if every canonical object of type — B has the form\z : A. M for someM, then\ is surjective.
Since this notion refers to objects that are canonioaldo not contains-redices and every pre-canonical subterm
appears im-long form), surjectivity is intimately related to the notiemtensionality intuitively, two members
of a type are extensionally equal if they cannot be distinguished by applying elimination rules to them. We will



B—reductions

Ir_beta_fst Ir_beta_snd

FST(M,N) — M SND(M,N) — N

Ir_beta_lin Ir_beta_int

(Az:A.M)"N — [N/z]M (Az:A.M)N — [N/z]M

Figure 2.2: Reduction Semantics for’ <& T

not investigate these properties in detail, but it is worth noting that both surjectivity and extensionality are critical
in applications ofA-calculi in logical frameworks and logic programming languages. In our language, we make
an a priori commitment to extensionality, which is partially expressed by the surjectivity property below. Note
that the constructors are surjective already for pre-canonical terms, not only canonical terms. It is this property,
together with the subject reduction lemma, that allows an implementation to drop type information entirely during
algorithms such as unification [CP97a]. Surjectivity is formalized in the following lemma, whose proof can be
easily adapted from [Cer96].

Lemma 2.1 (Surjectivity
i. If I';AFs M 1 a,then M is one ofe, x, FSTN, SNDN, N; "Ny, Ny No;
i. If T;AFs M A T,thenM = ();
i. If T;AFs M1 A& B, thenM = (N7, No);
iv. If T;A by M f A—o B, thenM = \z: A. N;
V. If T Abs M A— B,thenM = Ax:A. N. m|

This result, like the many to follow, adopts the convention that all meta-variables appearing in the antecedant
of an if-then sentence are implicitely universally quantified, while the remaining variables (occurring only in the
consequent) are existentially quantified.

2.3 Reduction Semantics

The reduction semantics af* &7 s given by the congruence relation on terms;, based on thg-reduction
rules in Figure 2.2. In addition we have straightforward congruence rules that allow a reduction to take place at an
arbitrary subterm occurrence, but which we do not show explicitly/I— N is derivable, therV differs from
M by the reduction of exactly one redex. We denote its reflexive and transitive closuregsand use= for
the corresponding equivalence relation. We wéitgossibly variously decorated, for derivations of any of these
judgments. Itis easy to show that the rules obtained from Figure 2.2 by replaeingith —* (or even with=)
are admissible. We adopt the standard terminology and call aténimat does not contaifi-redicesnormal, or
B-normal When emphasizing the fact that our well-typed termsjalang, we will instead use the teraanonical
Similarly, we reserve the woratomicfor a pre-atomic term that does not contain g@hsedices.

Similarly to A~, A~ °%T enjoys a number of highly desirable properties [Cer96]. In particular, confluence
and the Church-Rosser property hold for this language, as expressed by the following lemma:

Theorem 2.2 (Church-Rossgr

Confluence: IfM —* M’and M —* M", then there is a ternV such that
M' —* Nand M"” —* N.

Church-Rosser: IfM’ = M, then there is a ternV such thatM’ —* N and M —* N. O

Moreover A~ —°¢T enjoys the following substitution principle (also knowntemsitivity lemma, that, among
many interpretations, permits viewing variables as unspecified hypothetical derivations to be instantiated with
actual derivations. Notice the different treatment of unrestricted and linear variables.



Lemma 2.3 (Transitivity)
i If T;A)2:Bbs M| A andT;A’ s N ff B, thenT; A A’ by [N/x]M A A.
i. f Tyz:B;Aby Ml AandT;-Fg N B, thenT; A by [N/z]M f A. |

An important computational property of a typgetalculus is subject reduction: it states that reductions do not
alter the typability (and the type) of a term. The lemma below also impliessthatiuctions do not interfere with
surjectivity: reducing a redex rewriteslong terms taj-long terms.

Lemma 2.4 (Subject reduction
If T;AFs M A Aand M —* N,thenT; A Fs N {}| A. o

Our calculus also enjoys strong normalizatioa, a well-typed term cannot undergo an infinite sequence of
B-reductions. Said in another way, a normal form will eventually be reached no matter ginéctex we choose
to reduce first.

Theorem 2.5 (Strong normalizatiop
If T;AFs M| A, thenM is strongly normalizing. |

Finally, well-typed terms have unigque normal forms, up to the renaming of bound variables. Since every
extension ofA~&T (for example with® and multiplicative pairs) introduces commutative conversions, this
language is the largest linearcalculus for which strong normalization holds and yields unique normal forms.

Corollary 2.6 (Uniqueness of normal forms
If T;AFs M 1) A, then there is a unique normal terivi such thatM —* N. |

We write Can(M) for the canonical formof the termAf, which is well-defined by the above corollary. A
calculus that validates only canonical terms can easily be obtained from the system in Figure 2.1 by removing rule
I\_redex.

3 The Spine CalculusS——°&T

In this section, we present an alternative formulatiomof=%T, the spine calculu$——°%T, that contributes

to achieving more efficient implementations of critical procedures such as unification [CP97a]. We describe the
syntax, typing and reduction semantics®f <% in Sections 3.1, 3.2 and 3.3, respectively. We will formally
state the equivalence of "% T andS—°%T in Section 4 and prove major properties of the spine calculus in
Section 5.

3.1 Syntax

Unification algorithms base a number of choices on the nature of the heads of the terms to be unified. The head
is immediately available in the first-order case, and still discernibl®nsince everyn-long normal or weak
head-normal term has the form

)\.’L'lZAl. )\l'nAnhMl Mm

where the head is a constant or a variable ariél M; ... M,,) has base type. The usual parentheses saving
conventions hide the fact thais indeed deeply buried in the sequence of application and therefore notimmediately
accessible. A similar notational trick would be difficult far" T, since on the one hand a term of composite
type can have several headsq, (c; "z, ¢y “z)), possibly noned.g, ()), and on the other hand destructors can be
interleaved arbitrarily in a term of base typed, FST((SND¢) "z y)).



Thespine calculuss——%T permits recovering both efficient head accesses and notational convenience. Every
atomic termM/ of A~ —°%T is written in this presentation as@ot H - S, whereH corresponds to the head bf
and thespineS collects the sequence of destructors applied to it. For example; (h M7 ... M,,) is written
U = h-(Uy;...Un;NIL) in this language, where™represents applicatiomiL identifies the end of the spine,
andU; is the translation of\/;. Application and " have opposite associativity so thif; is the innermost subterm
of M while U; is outermost in the spine &f. ThIS approach was suggested by an empirical study of higher-order
logic programs based ox1” terms [MP92] and is reminiscent of the notion of abstra@hi trees [Bar80, Her95].
Its has been employed in experimental implementation of a unification algorithiofor{Cer96, CP02] and
Twelf [PS99]. A similar technique has been independently applied in the réegjuisimplementation [Nad01] of
AProlog [Mil89, Mil01].

The following grammar describes the syntax$f T we write constructors as iR~ %", but use new
symbols to distinguish a spine operator from the corresponding term destructor.

Terms: U= H-S Spines: S ::= NIL Heads: H::= ¢ |z | U
| Az:A.U | U;S
| Az AU | U:S
} Uz, Us) | 7715 | m28

We adopt the same syntactic conventions as7m°% " and often writel” for terms inS— T, Generic terms
are allowed as heads in order to constréaedices. Indeed, norm&——~%T terms have either a constant or a
variable as their heads.

We conclude this section by giving a few examples of how%T terms (left) appear, once rendered in the
syntax ofS——%T (right), with a few parentheses added for clarity:

c o ¢ NIL
(e, d) s (c-NIL,d - NIL)
Ay:a.(fecy) s Ay:a. f-((e-NIL); (y - NIL);NIL)

FST((SNDc¢) z y) ¢ (mg (z-NIL) S (y - NIL); TNIL)

Admittedly, it takes some practice to familiarize oneself to the syntaof°*T. However, we do not promote it

as areplacement for” %" but as an internal syntax aimed at expediting execution. We will describe translations
from A~ ¢ andS——%T, and vice versa, in Section 4.

3.2 Typing Semantics
The typing judgments for terms and spines are denoted as follows:

AR U:A UisatermoftypedinI'; A and®
AR S:A>a S is a spine from heads of typéto terms of type inI'; A and X

The latter expresses the fact that given a h&adf type A, the rootH - S has typea. Notice that the target

type of a well-typed spine is a base type. This has the desirable effect of permitting-tortg terms to be
derivable in this calculus: allowing arbitrary types on the right-hand side of the spine typing judgment corresponds
to dropping this property. Abstract®m trees [Bar80, Her95] are obtained in this manner since more destructors
could legitimately be applied to it. We will further comment on this point later.

The mutual definition of the two typing judgments $f <% is given in Figure 3.1. The rules concerning
terms resemble very closely the definition of the pre-canonical judgmext of ", except for the treatment of
heads. The rules for the spine typing judgment are instead related to pre-atomic typing°fa’. The opposite
associativity that characterizes the spine calculus with respect to the more traditional formulation is reflected in
the manner types are managed in the lower part of Figure 3.1. WeldveitelS, possibly super-/sub-scripted, for
derivations of the typing judgments for terms and spines respectively.

We conclude this section by showing that, asXor %", the typing relation o6~ %" validates only terms
in n-long form, as expressed by the lemma below.



Terms
A Fs U:A T3 A" Fs S:A>a
1S_redex
A A Fs U-S:a
A Fsea S:A>a T'Abs S:A>a Tz:A;A s S:A>a
1S_con 1S_lvar 1S_ivar
A bFscac-S:a A z:AbFs z-S:a Nx:A;AbFs 2-S:a
P;A Fz; U1 :Al F;A Fz; U2 :A2
———— IS_unit 1S_pair
F;A }—2 <>T F;A |—2 <U1,U2>1A1&A2
I Az:Abs U: B Iz:A;A s U: B
- 1S_llam 1S_ilam
I'NAbFs A2:AU:A—oB A bFs M:AU:A— B
S.[.)iln.e.s ...........................................................................................................
1S_nil
I';-Fs NIL:a>a
A Fs S: A > AR St A >
(No spine rule forT) > Lo 1S _fst > 2o 1S_snd
A Fs mS: A& A >a A By meS: A& A > a
DA FsU:A T3 A" Fs S:B>a I s U:B T5A s S:B>a
1S_lapp 1S_iapp
A A by USS:A—oB>a INAFs U;S:A— B>a
Figure 3.1: Typing for-long S~ T Terms
NIL —reduction
Sr_nil
(H-S)-NL - H- S
B—reductlons .....................................................................................................
Sr_beta_fst Sr_beta_snd
(U, Vy-(mS) = U-8 (U V) - (m28) = V- §
Sr_beta_lin Sr_beta_int
Az:A.U)- VIS = [V/aU - S Az:A.U)-V;S = [V/a]U - S
Figure 3.2: Reduction Semantics f6r" <% T
Lemma 3.1 (Surjectivity
i. f ;A by U:a,thenU =H - S,
i. f TA s U:T,thenU = ();
ii. f ;A bFy U:A&B,thenU = <V1,V2>;
iv. If T;A by U: A—o B, thenU = Az:A.V;
V. If A Fx U: A— B, thenU = \x:A. V.
Proof: By inversion on the first rule applied in the given derivations. g

Notice how the structure 0§~ T terms, in particular the availability of roots, permits a leaner statement of
surjectivity as compared with the traditional formulation in Lemma 2.1.



3.3 Reduction Semantics

We will now concentrate on the reduction semantic§ of°¢ . The natural translation of the-rules of A\~ % T
(right) yields the5-reductionsdisplayed on the left-hand side of the following table:

(U V) (mS) —p U-S
(U, V) - (m28) 55 V-8
) S

Sy V/eU - S
) = [V/2]U-S

FST(M,N) — M
SND(M,N) — N
(Az:A.M)"N — [N/z]M
Ax:A.-M)N — [N/z|M

A

The trailing spine in the reductions f6r~ T is a consequence of the fact that this language reverses the nesting
order of A~ % T destructorssS accounts for the operators that possiahglosahe corresponding— % T object.

We call the expression patterns on the left-hand side of the asradices We write — 5 for the congruence

relation based on these rules and overload this notation to apply to both terms and spines. We denote the reflexive

and transitive closure of this relation a%»;;. Finally, we write= s for the associated equivalence relation. Formal

inference rules fori>g are obtained by considering the lower segment of Figure 3.2 and the straightforward
congruence rules that allow a reduction to be applied to an arbitrary subterm. WeFwirjtessibly superscripted,
for derivations of these judgments.

It takes little experimentation to realize that the ab@eeduction rules do not produce exactly the same
effects as the notion of reducibility of~—~%T. Consider for example the simple projection redex (c, d),
which reduces te in just one step im\—~°%T. Applying rule Sr_beta_fst to the corresponding——°%T term,
{c-NIL,d-NIL) - mNIL, Yields(c - NIL) - NIL rather than the expected NIL. A similar phenomenon arises with
functional redices, as schematized on the right-hand side of the following figure.

FST(c,d) e~ (c-NIL,d-NIL) - TNIL (Az:a.fz)e o~ (Az:a.f-(z-NIL;NIL))- (¢ NIL;NIL)
| It | It
o (¢c-NIL) - NIL Ve (f - ((e-NIL) - NIL;NIL)) - NIL
c s c-¢NIL fe s f~(c-|tlIL;NIL)

In both cases, the gap represented by the dashed arrow ¢an be bridged if we consider terms of the form
(H - S)-NIL as additional redices that reducefo S. The projection redex on the left requires one such reduction
(underlined), while the functional redex on the right would make two uses of it.

Thus, the structure of roots in the spine calculus makes one more reduction rule necessary, namely:

We call this ruleniL-reduction its left-hand side aliL-redexand write—-,, for the corresponding congruence
relation. We denote its reflexive and transitive closure-as?, and the corresponding equivalence relation as
%N,L. We write Fy,., possibly decorated, for derivations of any of these judgments.

We will investigate the nature and propertiesnof -reductions in Sections 4 and 5. Meanwhile, we shall
provide an informal explanation of its origin. The roots and spineSof°¢T act as a syntactic discriminant
between pre-canonical and pre-atomic objects. Instead® " requires a typing derivation to distinguish them:
rulesl)_atm andl)_redex play an essential role in this process, but are not syntactically accounted for within
A~ 4T terms. We will see in Section 4 that observizng T reductions at the level of typing derivations
reveals the formation of alternations of rulesatm andl)_redex which correspond precisely to occurrences of
NIL-redices.

We write — for the union ofiw and—-,, . Itis the congruence relation obtained by allowing the use of
both G-reductions and thaiL-reduction. This is the relation we will use as the basis of the reduction semantics
of S~=&T_ We reserve—5* for its reflexive and transitive closure, and for the corresponding equivalence
relation. We denote derivations of these judgments$ apossibly decorated. The definition of- is displayed



in Figure 3.2, except for the obvious congruence rules. As\for°® T, the rules obtained from this figure by

H S . S % . . . - . . .S
replacing—— with — * are admissible. This fact will enable us to lift every result below mentionifg
(possibly as—-5 or —=,.) to corresponding properties of>* (—=7 or -, , respectively).

Finally, aS— T term or spine that does not contain aiyor NiL-redex is callechormal We use instead
the adjectivecanonicalwhen emphasizing that this object issjdong form. By the above surjectivity property,
every well-typed normal term is canonical.

Itis interesting to observe that rule nil is not sufficient in the presence of terms that are nationg form.
Consider for example the redéxz : a. f ) ¢ d where f has typea — a — a. This term is not in-long form
(its n-expansion iS Az : a. \y : a. f x y) cd), but still reduces tof cd in A= &7, The equivalents— T
expression reduces fg - (c¢- NIL);NIL)) - (d - NIL; NIL) after one3- and oneNiL-reduction, but cannot be further
reduced to the expected: (¢ - NIL;d - NIL; NIL). Such a step would require a reduction of the form:

(H-5)-8 = H-(Sa5)

where the meta-level operatigi@.S’ has the effect ofoncatenatingpinesS and.S’, i.e,, it replaces the trailing

NIL of S with S’. Notice thatSr_nil is an instance of this rule whef# = NIL. Observe also that the more general

rule is not needed when operating exclusively wittong terms:(Az:a. Ay:a’. f-(x-NIL;y-NIL; NIL))-(¢-NIL; d-

NIL; NIL) reduces taf - (¢ - NIL;d - NIL; NIL) by two applications of rul&r_beta_int and threeniL-reductions.

Since we are primarily interested iplong terms in this paper, we will not pursue the meta-theory of this more
general setting any further, except incidentally. We refer the interested reader to [CP97a] for a precise development
of this observation.

4 Relationship betweem\—~ 4T and §—~—°%T

There exists a structural translation of terms\in %7 to terms inS— %7 and vice versa. As we will see

in this section, this translation preserves typing @agductions, so thax~ T and S——°%T share the same
properties on well-typednflong) terms, and are therefore equivalent for practical purposes. Although a direct
translation between the two languages is possible (see [CP97b]), a more elegant and instructive approach breaks
this endeavor at the intermediateercion calculugC— %" which differs from\——°%T py its syntactic account

of the application of the rules that bridge the pre-canonical and pre-atomic terms. The translation betwigehn
andC——%T captures in full the dynamics of what appearsvas-reductions in the spine calculu€:~ %" is

defined and its main properties are summarized in Section 4.1 (a detailed study is the object of Appendix A).
The rest of this section relates the coercion and the spine calculi. More precisely, in Section 4.2 we introduce a
mapping ofC—~°%T to S~&T and prove its soundness with respect to typing. In Section 4.3, we will instead
develop the machinery to prove the soundness of this translation with respect to the reduction semantics of the two
languages. We introduce the reverse translation in Section 4.4 and establish its soundness with respect to reduction
in Section 4.5. Sections 4.3 and 4.5 are rather technical; the casual reader should be able to skip them and still
follow the overall discussion. Finally, in Section 4.6, we adapt these results to ketaté " andS——&T.

4.1 The Simply-Typed Lambda Calculus with Explicit CoercionsC——°4T

As we observed in [CP97hbiiiL -reductions appear as an omnipresent nuisance when investigating the meta-theory
of S~—%T and even more so when relating it to the traditional formulation. In this section, we isolate the source
of these difficulties in a mismatch between the syntaaof°¢T and the inference rules that define its typing
semantics. The typing rules af* &7 as given in Figure 2.1, do not force a one-to-one correspondence between
the structure of a well-typed term and the shape of a derivation tree for it. For examplec@ifigpea s a, a
derivation for the ternFsTc may start with the application of ruléa_fst, 1\_atm, or evenl\_redex. In the first

and last cas&sT c would be considered pre-atomic, while in the second case it would be pre-canonical. Moreover,
there are infinitely many valid typing derivations of either kinds for this term. We can easily trace the source of this
multiplicity to rulesl)_atm andl)_redex, the only ones that are not bound to a specific construct in the language,
making the rules in Figure 2.1 not syntax-directed. In this section, we will slightly alter the definitlon of "

to obtain a perfect mapping.
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Pre—canonical terms
IAFS Rla
—— IC_atm
IAFS tRfa
DAFE Qufr A T;AFS Q21 B
———— 1C_unit 1C_pair
DAFS O T [ARS (Q1,Q2) 1+ A& B
A z:AFS QB ILe:A;AFS Q) B
" 1C_llam 1C_ilam
IARS Az:A.Qff A—oB IARS M2:A.QYA— B
EE LR R LR RRRLLERRRRRLLERRRRRE LA
;AFS Q1 A
————— IC_redex
MAFS 1Q L A
—— IC_con ——  IC_lvar 1C_ivar
F;-#g,c:A cl A Diz:AFS | A oA FS x| A
IAFS R A& B I'AFS R| A& B
(No rule forT) 1C_fst 1C_snd
IARS FSTR | A I'AS sSNDR | B
DA'FE Rl A—-oB T;A'FE Qo A AFS RIA—-B I FSE QM A
1C_lapp 1C_iapp
DA A" R°Q | B IAFS RQ | B

Figure 4.1: Typing for-long C—~°%T Terms

The coercion calculus0— T extends the syntax of~ T with the twocoercion operators:_ and_,
intended to witness the application of rulesatm andl)_redex, respectively. This allows syntactically discrimi-

nating terms that are either pre-canonical or pre-atomic (when at all typable). In order to avoid confusion, we use

the letter@, variously annotated, for the former and the letiefor the latter. We will write the other constructs
as in\~&T, We definepre-canonicaland pre-atomic termsnutually recursively by means of the following
grammar:

Pre-canonical Pre-atomic
terms: @ == terms: Ru= ¢ | z
| Az:A.Q | RQ (unrestricted functions)
| Az:A.Q | R°Q (linear functions)
| (Q1,Q2) | FSTR | SNDR (additive pairs)
[ () (additive unit)
| IR | Q (coercions)

We adopt the same syntactic conventions as\for°® T, but writeT for a term that can be either pre-canonical or
pre-atomic. As fon =% T andS— T, we write[R/x|T for the substitution oR for z in 7. Observe however
that, sincer is pre-atomic, so must be the substituting te®Rm

The typing semantics af ~ %7 is expressed by the judgments

AR QN A Q is a pre-canonical term of typd inI'; A and X
AFS R A Ris a pre-atomic term of typd in T'; A and X

and is given in Figure 4.1. It differs from the typing rule setof =T only by the fact that rulesC_atm and
1C_redex are only applicable to terms of the fornk and '@, respectively. Whenever a property holds uniformly
for the pre-canonical and pre-atomic judgments above, we will Witk -5 T | A and then refer to the term

T and the typeA if needed. Moreover, if two or more such expressions occur in a statement, we assume that
the arrows of the actual judgments match, unless explicitly stated otherwise. Observe that the typing rules of our

11



AC—reduction
Cr_AC
L("R) <5 R
Hireductlons .....................................................................................................
Cr_beta_fst Cr_beta_snd
FST(H{Q1,Q2)) — 1Qu SND (1{Q1,@2)) —= 1Q2
N Cr_beta_lin Cr_beta_int
(Az:A.Q) Q" - 11Q'/«]Q (tz:A.Q)Q - 11Q'/2]Q

Figure 4.2: Reduction Semantics for- %"

intermediate language are syntax-directed. We wditand R for pre-canonical and pre-atomi¢~ %" typing
derivations, respectively.

Not surprisingly,C~—%T satisfies an surjectivity principle similar to~ =T, but the stricter form of its
typing rules limits the form of a pre-canonical term of atomic type to just

Lemma 4.1 (Surjectivity
i If T;AFS Q1fra, then Q = 1R;
i. If T;ARS QA T,then@ = ();
i. If T;ARS Q1 A& B, then@ = (Q1,Q2);
iv. If T;AFS Qft A—o B, thenQ = \z:A.Q';
v. If T;ARS Qft A— B, thenQ = \z:A.Q'.

Proof: By inversion on the given derivations. [

Porting the reduction semanticsof ©%T to C— T requires some care since invisible coercions need to be
made explicit in the calculus considered in this section. This process is eased by observifigdthwetions op-
erate in\~°%T at the level of derivations. Consider first a typing derivation for the two sides ofireta_fst:

Gy Ca
F,A"E Mlﬂ‘A F,A}_Z MgﬂB
1\ _pair
A Fs (M, My) # A& B Cy
IXA_redex
;A Fs (M, M) | A& B DAy M4 A
IA_fst B IX_redex
[5A s FST(My, M) | A ARs My LA

We need to account for the uses of rilleredex in devising the corresponding— %" reduction rule by includ-
ing the l_ coercion in the appropriate places. SoMf correspond taR;, for i = 1,2, we obtain the following
rule:

FST(HQ1,Q2)) ——p Q1

We similarly adapt rulér_beta_snd as follows:
SND (H{Q1,Q2)) 5 Qo

We constructC—~ %7 reduction rules for the functional forms gfreduction in a similar way and obtain the
following C—~—°%T reduction rules corresponding labeta_int andlr_beta_lin, respectively:

(1(Ae:A.Q) Q' =5 11Q'/2]Q
(1(Ae:A.Q))°Q" =5 1[1Q'/2]Q

12



We write L@ for the congruence relation based on these four rules. We overload this notation to apply to
both pre-atomic and pre-canonical terms. We denote the reflexive and transitive closure of this rela‘ﬁ@p as
and writeéﬁ for the associated equivalence relation. Formal inference rulesey are given in the lower

segment of Figure 4.2, augmented by the straightforward congruence rules. Wéswpitessibly superscripted,
for derivations of these judgments.

The presence of explicit coercions@~ T makes one more reduction necessary. In the traditional formula-
tion, alternations of ruleb\_atm andl)\_redex can be eliminated without affecting the derivability of a judgment:

A
F;A |_Z Mla
— I\_atm
F;Al—z Mﬂa A
——— 1\ _redex -2
I'Aby M a IAFEs M | a

This transformation, invisible at the level 8> T terms, is captured by the followirge-reductionin S——°%T:
ﬂac : l(ﬂR) i>A(; R

We call the expression on the left-hand side of the arr@mexcion redexor anAc-redex We write -, ¢ for the
congruence relation induced by this rquéj,—»:C for its reflexive and transitive closungt,AC for the corresponding
equivalence relation, antth for their derivations. The upper part of Figure 4.2 formaliz&s ...

Ac-redices and the reduction they induce are closely related tuitheedices and theliL-reduction rule of
S——&T "as we will see in what faollows>— %7 offers a simple setting where to study the meta-theory of this
relation, which we will port to the more complex world of spines and roots in Section 5. In order to keep the size
of this section reasonable, we limit the present discussion to listing the main properties,ef The interested
reader can find formal statements and proofs in Appendix A.

Ac-reduction enjoys many of the desirable properties of a reduction relation for a ypaldulus. Not only
doesAc-reduction preserve typing (Lemma A.1), but this property holds also when usingCiukeC as an
expansion rule (Lemma A.2). Viewed as a rewrite systef,c and its derivatives are strongly normalizing
(Lemma A.3) and confluent (Lemma A.5), and therefore admit unique normal forms (Lemma A.6). A'term
is Ac-normalif it does not contain anyc-redex,i.e., a subterm of the formt R. We write C;”“" for the
sublanguage of~ %7 that consists only okc-normal terms.

We conclude our present discussion of the semanticsof°“T by analyzing how rulecr_AC interacts with
B-reductions. First observe that performinggaeduction has often (but not always) the effect of exposing an
AC-redex:

FST(FSTH{(fe, d), fie)) —=5 FSTL{Ne, fid) 5 L(1e) —pc €

The reverse property does not hold in general, htraduction can be blocked by the presence ofafedex:
FSTINL (e, td) ——sac FSTL{c,td) —=5 L(fc) ——pc ¢

We write - for the union of-"-5 and—"+,c. It is the congruence relation obtained by allowing the use of
both 3- and Ac-reductions. This is the relation we will use as the basis of the reduction seman€ics6f ',
which is studied in detail in Appendix A. We reserve-* for its reflexive and transitive closure, and for
the corresponding equivalence relation. We wélfgpossibly decorated, for derivations of these judgments. The
definition of - is displayed in Figure 4.2, except for the straightforward congruence rules. Asfot“T
and S~ 4T the rules obtained from this figure by replacing with —<-* are admissible. A0~ °%T term
that does not contain any- or Ac-redex is callechormal By the above surjectivity property, every well-typed
normal term isy-long (and as usual we will writeanonicalwhen emphasizing this point). It is easy to prove that
a pre-canonical term® is normal if and only if it does not contain any occurrences of the coercioNormal
pre-atomic terms may mention this construct, but only as their outermost operator.

Extending\— T with coercions to obtaid@~ %" can be motivated independently from typing considera-
tions: we insert the atomic-to-canonical coerciarevery time the immediate subterm of a constructor starts with
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a destructor (or is a constant or a variable). Dually, the canonical-to-atomic coeraioediates the transition
from destructors to constructors (except for the argument of the applications).

The type-free translatiohC of A\~ %7 into C——&T given in Appendix A, formalizes this idea by means
of the judgments

M 2% Q M translates to pre-canonical ter@
M 2% R N translates to pre-atomic term®

We prove in Appendix A that these mutually recursive judgments transformang® " term into anac-normal
pre-canonical and pre-atom&— %" object, respectively (Lemma A.10). Therefore, the range of this func-
tion is OO_"O&T rather than the fulC——%T. Other important properties ofC' are that it preserves typing: if

M 2% T and eitherM or T is well-typed, then the other side of the arrow is typable as well (Theorem A.8
and Corollary A.19). This translation preserves reducibility (Theorem A.13 and Corollary A.27), but exposes the
interplay of 3- andAc-reductions inC— %" The soundness ofC with respect to reducibility (Theorem A.13)

is described by the following diagram:

M——-> M

AC "AC

where derivations given as assumptions are represented with full lines, while derivations whose existence is pos-
tulated are displayed using dotted edges. For typographic reasons, we use a double arrow rather thgrira star (
order to denote the reflexive and transitive closure of a relation. HegAc-normal, but emulating the reduction

M — M’ occurring in\~°%T may produce a terrfi™* that is not inAc-normal form: it takes one or more
Ac-reductions to reconcile this term with the translatioméf.

The reverse translatiafi), from C— T to \=—%T simply erases every coercion. We show in Appendix A
that it is the inverse oAC' moduloac-equivalence (Corollary A.18), and that it preserves typing (Theorem A.14
and Corollary A.19) and reductions (Corollaries A.23 and A.26). In particatzequivalent terms are mapped to
the same\~ 4T term (Lemmas A.21 and A.22).

Readers interested @@~ %7 its relation toA~°%T and its meta-theory can find additional information in
Appendix A.

4.2 CS: A Translation from C——°%T to §——0&T

The translation fronC T to S~—&T  abbreviated”'S, maps the pre-canonical and pre-atomic terms of
C—=%T to the roots, terms and spines®f %", CS is specified by means of the following judgments:

Q=U Pre-canonical terng) translates to/
R\S =U Pre-atomic termR translates td/, given spineS

The rules defining them are displayed in Figure 4.3. We will denote derivations of either judgmentdSwith
possibly annotated. When translating a pre-atofiic°“" term R by means of the second judgment, the spine

S acts as an accumulator for the destructors appearifigy ifhis indirection is needed to cope with the opposite
associativity of spines i8—~ T and destructor nesting ifi—” %" . Notice that, for each of the two judgments

of CS, the structure of the first argument determines uniquely which rule can be used in the translation process.
This, together with the fact that every production in grammagof°¢T is covered, ensures that these judgments
implement a functioni,e., that every term has a unique translation:

Lemma 4.2 (Functionality ofC'S)

i. For every pre-canonical terr® in C——°%T  there is a unique terry in S~ —°%T such thatQ) <= U.

ii. For every pre-atomic ternk in C—~ %7 and every spiné there is a unique terry in S——°%T such that
R\ S = U.
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Pre—canonical terms
R\NL & H.S
——  CS_atm
tR = H- S
Q1> U1 Q2= U
5 CS-unit ps CS_pair
=10 (Q1,Q2) — (U1, Uz)
Q=U Q= U
- " CS_llam CS_ilam
Ax:A.Q S Az AU Me:A.Q S5 Az AU
TR E L L LR E LR EEEEEELERLEEEELERRERERRERERRERRRRRRRRRRRE IRREE
Q-=U
——— CS_redex
R\S & uU-s
—— CS_con ——  CS_var
c\S =c-8 z\S =5 x-S
R\mS =V R\mS =V
—— CS_fst ———————— CS_snd
FSTR\S =V SNDR\S =V
Q=U R\U:S &V Q =U R\U;SZEV
CS_lapp CS_iapp
R°Q\S =V RQ\S =V

Figure 4.3: Translation af~ T into §—~—°&T

Proof: By induction on the structure @ andR. g

We can immediately prove the faithfulness of this translation with respect to typing. This result expresses the
adequacy of the system in Figure 3.1 as an emulation of the typing seman€ics8f ™. Here and below, we
abbreviate the phrases “the judgmehhas derivation7” and “there is a derivatioryy of the judgment/” as
J o J.

Theorem 4.3 (Soundness &f'S for typing)
i If QuT;ARS QN A and Q =5 U, thenT; A by U : A;
i, if RuT;A1FE R A TAs by S: A>a andR\ S =V, thenl; Ay, Ay by Vi a.
Proof: By simultaneous induction on the structure@andR. of
Notice that this statement implies not only that types are preserved during the translation process, but also, by

virtue of surjectivity, that)-long objects ofC— T are mapped tg-long terms in the spine calculus. We will
obtain an indirect proof of the completenesstf with respect to typing in Section 4.4,

4.3 Soundness of®'S with respect to Reduction

We have seen in the previous section thsf is sound with respect to the typing semanticsCof &7 and
S——&T, We dedicate the present section to proving that it also preserves reductions. This task is complicated by
the fact that the reduction semanticsSf T, in particular ruleSr_nil is specialized t@)-long forms. Consider
for example thee—~ 4T term

R = (I z:a.0(f tx)) tend

for a signature withf : a — a — a, ¢ : a andd : a. This term is not inp-long form (its n-expansion is
(LAz:a. Ay:a. n(f 1z ty)) e nd). Ones- and twoAc-reductions rewriteR to the canonical form

R = frend
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whose translation i~ T (given the initial auxiliary spineuiL) is
V=7F-((c-NIL);(d-NIL);NIL)
On the other hand;'S would translateR to the S~ 4T term
U= Az:a.f-(x-NIL);NIL) - ((c¢- NIL); (d - NIL);NIL)
which cannot be reduced further than
(f - (ec-NIL);NIL) - ((d - NIL);NIL),

a different term froml/. We can recoveV by appending the spines, as described at the end of Section 3.

As we can see from this exampl€S does not commute with reduction in the general case. We can track the
problem to the fact that, whilg-reduction and surjectivity are orthogonal conceptsime® " and to a large extent
in C——%T (see Appendix A), they are intimately relateddm —%T. However, as long as we are interested only
in n-long terms, the definitions given in the previous section ensuré€'hes sound with respect to the reduction
semantics of our calculi. Therefore, we need to pay particular attention to operating omioog terms. We
achieve this purpose indirectly by requiring that cert@n—~%T terms in our statements be well-typed. This is
stricter than needed, but typing is the only way we can enforce surjectivity and extensionality.

RulesCr_betalin andCr_beta int generate their reduct by means of a meta-level substitution. The corre-
sponding reduction it~ &7 operate in a similar way. Therefore, we need to show €hgitcommutes with
substitution.

Lemma 4.4 (Substitution inC'S)

i If CS::Q =5 U and CSq : Q =V, then [1Q/z]Q" == [V/z|U.

i. If CS:R\S-=5U and(CSq ::Q =V, then[lQ/z]R\[V/z]S = [V/z]U.
Proof:

The proof proceeds by induction on the structur€&f All cases are quite simple. We will analyze the cases
whereCS ends with ruleCS_redex andCS_var (limited to the subcase where the variable in question is precisely
x) to familiarize the reader with reasoning within the spine calculus.

cS'
Q/ i U/
CS_redex CS = CS_redex
Q\Ss=u-S
where R=1Q" andU =U"- S.

CS™ = [1Q/x)Q" == [V/x)U’ by induction hypothesis (i) 06S’,
CS* = [1Q/x](1Q")\ [V/x]S == [V/2]U' - [V /]S by rule CS_redex onCS**,
[1Q/z](1Q)\ [V/z]S = [V/x)(U" - S) by definition of substitution.
CS_var CS=——— CS_var
r\S =>z-8
whereR =z andU =z - S.
CS* :1Q\[V/z]S =V . [V/x]S by rule CS_redex onCSy,,
[Q/x])x\[V/x]S = [V/z](x - 9) by definition of substitution. o
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We need one more technical result prior to tackling the main theorem of this section. More precisely, we
show that, when translating a pre-atomic term, reductions within the corresponding spine are mapped directly to
reductions in the resulting— %" term, as expressed by the diagram on the right. In particiegductions are
mapped tg3-reductions andiiL -reductions yieldNIL-reductions.

Lemma 4.5 (Spine reduction R\ S cs Ly
If ¢S R\S =V and F :: § - &, then there is a ter¥’ such that :
R\S =V and V = V. s ‘s

v
Proof: R\ S -5y
This straightforward proof proceeds by induction on the structutg.of i

It is easy to show that this result remains valid when considering the transitive and reflexive closure of the involved
relations.

At this point, we are in a position to prove th@s is sound with respect to the reduction semantiaSof°% "
and S~ T one of the few points where we need typing to ensure surjectivity. Note that in applications this
property will always be satisfied. It is expressed by the diagram on the right.

Theorem 4.6 (Soundness @f'S for reducibility)
i If £:Q -5 Q and €S = Q = U with Q :T;AFS Q 1t A, thenthereisa Q —%— Q'

termU’ such thatU —» U’ and Q' =% U, :
cs 1Cs

i. If €2 R % R and CS = R\S = U with R = T;A+E R | A and :
A\l
S T;A" b5 S : A > a, thenthereis a tern’ such thatU — U’ and ;. 5. L

R'\S = U
Proof:

This simple proof proceeds by induction on the structure @fnd inversion orCS. We will develop the
cases where the last rule appliecfiiis Cr_beta_lin, Cr_AC or Cr_lapp2, the second congruence rule for linear
application.

Cr_beta_lin E= Cr_beta_lin

(HAz:4.Q1))"Q2 — 1[1Q2/]Q
where R = (I(Az:A.Q1))"Q2 and R’ = |[1Q,/x]Q.

By inversion on the structure @S, we obtain that there exist ternig and U, such thatU = (Az :
A.Uy) - (U3 S) and there are derivatiosS; andCS» such thaS; :: Q1 <> U; andCSs :: Q2 <= Us:
CS,y

cs
Q1 — U
CS_llam

CSs Az A. Q1 % Az AU
CS_redex

Qs =>Us  A2:A.Q1\Uz3S =5 Az A.UY) - (U3 S)
CS = n " CS_lapp
(LAz:A.Q1)"Q2\ S =5 (Az:A.UY) - (U2 S)

CS™ 1 [1Qa/x]Q1 =5 [Ua/x|Us by the Substitution Lemma 4.4 @6, andCSa,
CS* : 1[1Q2/x)Q1\ S = [Uy/x]U; - S by rule CS_redex onCS**,

F o (QAz:A.Uy) - (Uz3S) = [Uy/x]U; - S by ruleSr_ beta lin.

Cr. AC ¢ Cr-AC

e}

a I(tR") — R
where R = L(tR).
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By inversion on the structure @fS, we have thall = (H - S’) - S for spinesS and S’ and there is a
derivationCS such thaCS’ :: R’ \NIL = H - S":

cs’

R'\NL = H-8
CS_atm
TR = H-5
CS = CS_redex
LARH\S = (H-5")-S
A =d and
Q tTAFE R | o by inversion on rul@C_redex andiC_atm for R,
a =a and
S =NIL by inversion onsS,
F =(H-S)-NL - H-S by rule Sr_nil.
5‘/
Q2 — Qb
Crlapp2 &= - Cr_lapp2
R1°Q2 — R17Qy

where R = R; "Q2 and R’ = Ry Q.
CSy Q2 = Us and
CS1 R \Uy3S = U by inversion on ruleCS_iapp for CS,
A =A;—0A; and
Q ;A2 FE Qa1 Ag by inversion on rul@C_lapp for R,
F' Uy = U} and
CSy QY = US by induction hypothesis (i) ofi’, CS, andQ’,
F'UytS =5 ULsS by rule congruence frorf”,
CS| mR\USS = U and
F U S U by the Spine Reduction Lemma 4.5 68, andF",
CS* tR1"QL\ S = U’ by rule Cr_lapp2 onCS’ andCSs. il

The typing assumptions appearing in the statement of this theorem would be unnecessary if we were to replace
our NIL-reduction with the generalized version that allows appending spieegsf we were to give up on our

surjectivity requirements.

A careful inspection of this proof reveal$S mapss-reductions inC— 4T to g-reductions inS— %" and
Ac-reductions taniL-reductions; moreover, no typing derivation is needed in the former case:

Corollary 4.7 (Soundness af'S for reducibility)

i If Q 5 Q and Q = U, then there is a terV’ such thatU —-5 U’ and Q' <% U'.

i. If Q ac @ and Q = U with T;A RS Q 1+ A, then there is a terit’ such thatU —,, U’

and Q' = U'.

The notion of soundness we adopted relative to the reduction semantics of our calculi ensures that every re-
duction in the source language correspond to one reduction in the target language. We define completeness dually:
every reduction in the target language should correspond to some reduction in the source language. We will give
an indirect proof of the completeness@f with respect to the reduction semantics of our calculi in Section 4.5,

when considering the inverse of our translation.

18



Terms

S\e=5Q S\z =% Q U=%Q S\1Q =@

— SC_con ——— SC_var SC_redex
c-8S=%Q x-S Q U-8%Q
U =% Q1 U =% Q
pos SC_unit s SC_pair
0190 (U1, U2) = (Q1,Q2)
U-=%Q U= Q
= = SC_llam SC_ilam
Ax: AU 5 Ae:A.Q Me: AU 5 \z:A.Q
S.[.)i.n.e.s ...........................................................................................................
SC_nil

NIL\ R =% 1R

S\FSTR % Q S\SNDR =% Q
—— SC_fst ———————— SC_snd
mS\RiQ WzS\RiQ
USQ S\RQ =Q U=%Q S\RQ =Q
SC_lapp SC_iapp

US\R =% Q U;S\R =% Q

Figure 4.4: Translation o§—~ T into C—~—°%T

4.4 SC: A Translation from S—°&T to C—~—o&T

In this section and in the next, we consider the problem of translating termsSromi® " back toC—~=%T an
essential operation to interprét” —=%T objects in the usual notatiorC'S cannot be used for this purpose since
the rules at the bottom of Figure 4.3 are not syntax-directed with resp&ctt6“ " spines. The approach we take
is instead to define an independent translati®@, that maps entities i~ T to terms inC—~ T, We will
prove later that it is precisely the inverse@f. The SC translation is specified by means of the judgments

U=.0Q U translates to pre-canonical ter@
S\R = Q S translates to pre-canonical ter@, given pre-atomic seel

and defined in Figure 4.4. We writgC, possibly annotated, for derivations of either judgments. The notion of
spine does not have a proper equivalentim —<T: it corresponds indeed to a term withhale as its head.
Therefore, when translating a spine, we need to supply a head in order to generate a me@ningful term.
This is achieved by the judgmeft\ R = Q: the auxiliary termR (the seed is initialized to the translation of
some head for the spirfe(rulesSC_con, SC_var andSC_redex); it is successively used as an accumulator for the
translation of the operators appearingSirfrulesSC_fst, SC_snd, SC_lapp andSC_iapp); when the empty spine

is eventually reached (ruC_nil), the overall translation has been completed &g returned. As inC'S, the

use of an accumulator handles the opposite associativify o™ andC— 4T,

The faithfulness o6 C with respect to typing is formally expressed by the following theorem. Again, we shall
stress the fact that the translation process preserves not only types, but also surjectivity.
Theorem 4.8 (Soundness & C for typing

i fUT;A Fs Ut A, and SC U =% Q, thenT; A RS Q 1 A.

i If SuT;A; by S:A>a, RuT;AFS R AandSC - S\ R =5 @, thenT; A1, A HE Q 1 a.

Proof: By simultaneous induction on the structurd6andsS. [

We dedicate the remainder of this section to proving #@is the inverse o’'S. Besides getting the comfort-
ing formal acknowledgment that our two translations do behave as expected, we will take advantage of this result
to obtain straightforward proofs of the completenes§'sfand.SC' with respect to typing and reduction.

We begin our endeavor by proving th&€ is actually a function frons——°%T to C——&T,
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Lemma 4.9 (Functionality ofSC)
i. ForeveryS——%T termU, there is a unique pre-canonicél~°¢T term(@ such thatU =% Q.
ii. For every spineS and pre-atomic see®, there is a unique pre-canonical—~ %" term @ such that
S\ R = Q.

Proof: By induction on the structure @f and.S. o

Based on this fact, it is easy to show ti$&f' andC'S are each other’s inverse.

Lemma 4.10 (Bijectivity)

C'S and SC are bijections between the set@f” %" terms and the set &~ T terms. Moreover, they
are each other’s inverse. More precisely, we have that

i If SC::U =% Q, then@ = U.

i. If SC::S\R-=Q andCS:: R\S =->U, thenQ = U.

ii. If CS Q< U, thenU =
iv. If CS:: R\ S 5T and SC:: S\ R =5 Q, then U =5 Q.

Proof:

The proof thatSC is the right-inverse of’ S (itemsi andii) proceeds by induction on the structuresf (and
inversion ornCS when present). The proof thatsS is the right-inverse o C (itemsiii andiv) is similarly done by
induction on the structure @fS (and possible inversion af(C).

It then is an easy exercise in abstract algebra to show that, given two fungtiois— Y andg : Y — X, if
fog=1Idy andg o f = Idx, thenf andg are bijections and moreover= !, o

This property opens the door to easy proofs of the completeness direction of every soundness theorem achieved
so far. We first consider the completenesg’sf with respect to typing. In this and other results below, we refrain
from presenting an auxiliary proposition relating pre-atomic terms and spines.

Corollary 4.11 (Completeness @f'S for typing
If Q=5U andT;A by U: A thenT; A by Q 1t A

Proof:
By the Bijectivity Lemma 4.10/ =%+ Q. Then, the soundness &fC for typing yields a derivation of
ARS Q1 A of

In a similar fashion, we prove the completenes$ 6fwith respect to typing.

Corollary 4.12 (Completeness &fC for typing)
If U-=5Q andT;ARS QA thenT;A by U : A.
Proof: Similar to the proof of Corollary 4.11. f

4.5 Soundness o5 C with respect to Reduction

We will now analyze the interaction betwe&i€ as a translation fron§—~ %" andC—=°%T, and the notion
of reduction inherent to these two languages. The main results of our investigation will bg&(hateserves
B-reductions and mapsiL-reductions inS—°%T to Ac-reductions inC—~ T, We will also take advantage of
the fact that this translation is the inverse(d$ to prove the completeness counterpart of these statements.

The discovery in the previous section thas and SC are bijective accounts for a simple proof of the com-
pleteness of the latter translation with respect to the reduction semantics of the involved calculi.
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CS/SC
o~ —o&T S—)—O&T

——o0&T & T
CO SNIL

Figure 4.5:C'S andSC

Corollary 4.13 (Completeness ¢fC for reduction

i If Q 5 Q and U =% Q, then there is a ternb/’ such thatU' —>»5 U’ U U/
and U’ =% Q. :
i If U250, Q Sa Q, and ;A by, U : A, then there is a terni/’ S¢ 50
such that -5, U’ and U’ =% @'. c
Q—Q
Proof:
We rely on the Bijectivity Lemma 4.10 and the soundnesS@fwith respect to typing (Theorem 4.8) to reduce
the above statement to the Soundness Corollary 4.@ for o

We conclude this section by showing tifat' is sound with respect to the reduction semantic§ of°¢". The
required steps in order to achieve this result are reminiscent of the path we followed when proving the analogous
statement foiC'S. There is however one difference: the statements below do not need to mention any typing
information.

The first step towards the soundness$'6f with respect to §-)reduction is given by the following substitution
lemma, needed to cope with functional objects, both linear and unrestricted.

Lemma 4.14 (Substitution inSC)
i If Q:U =% Q and Qy = V =% R, then [V/2]U =% [R/z]Q.
i. If Q:S\R =% Q and Qy :: V =% R, then [V/z]S\ [R/z]R' =% [R/z]Q.
Proof: By induction on the structure a. f

In order to handle the translation rules for the two forms of applicatio of°¢T, we need the following
technical result, akin to the spine reduction lemma presented in Section 4.3.

Lemma 4.15 (Seed reduction S\ R—~q
If SC::S\R-=Q and £ :: R - R/, then there is a term)’ such
that S\ R =% Q" and Q = Q.

Proof: By induction on the structure &C. o S\ R e BC
Finally, we have the following soundness theorem, that stateSthadreserves reductions.
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Theorem 4.16 (Soundness & C for reducibility)

i If F:U - U and SC :: U =% Q, then there is a terng)’ such that U—S v
Q-5 @ and U =% Q.

i. If F:8 =5 8 and SC:: S\ R =% Q, then there is a tern)’ such that 5¢ 5¢
Q < @ and S'\R = Q. Q- Com
Proof: By induction on the structure &iC. o

Clearly, the above result holds also relatively to the reflexive and transitive closufe of

As in the case of’'S, a close inspection of this proof reveals tisat’ maps the3-reductions ofS—°%T to
the B-reductions ofC—~°%T and faithfully relatesviL-reductions toac-reductions. We express this fact in the
following corollary.

Corollary 4.17 (Soundness & C for reducibility)
i If U =5y U and U =% Q, then there is a term)’ such thatQ ——,c Q' and U’ =% Q.

i. If U -5 U and U 2% Q, then there is a terny)’ such thatQ 5 Q' and U’ =% Q. O

Therefore,C'S and SC constitute an isomorphism betwe€m ~&T and S~ T that faithfully respects reduc-
tions. The operations of this translation are depicted in Figure 4.5.

The previous theorem, together with the fact that and C'S form a pair of inverse functions, allows us to
achieve a simple proof of the completenes§'sf with respect to the reduction semanticsSof T,

Corollary 4.18 (Completeness @f'S for reductior Qe G Q'
If Q<5 U and U - U’, then there is a tern®)’ such thatQ —— Q' :
and Q/ SN U'. CS ECS
v
S ’
Proof: U u
By the Bijectivity Lemma 4.10, there is a derivation Gf = Q. By the soundness §C with respect to
reduction, there is atery such that) - @’ andU’ =% Q’. Again by bijectivity, we have that th&’ <> U’
is derivable. o

4.6 RelatingA==°%T and §—~—°%T

In Section 4.1 we introduced@— %" as an intermediate formal language aimed at simplifying the analysis of
the relation betweea— T andS——%T. We displayed two pairs of inverse translations between the coercion
calculus and each of T andS—°%T and proved that they preserved the typing and reduction semantics of
these languages. In this section, we will chain these results to pefate® ™ andS— T directly.

We write the translation.S betweem\~ T andS——°%T by means of the following judgments:

M 25U TermM translates ta/
M\S 22U TermM translates tdJ, given spineS
AS is defined as the composition &€ andC'S by the following clauses:
M 25U iff M2@Q and @Q=U
M\ S 2% U iff M2>R and R\S=U

for appropriateC—%T terms@Q and R, that exist since\C is functional in its first argument (Lemma A.9).
SinceC'S is functional as well, our translation is a function. It should be noted that, sint@roducesac-
normalC—~%T terms (Lemma A.10) and'S faithfully preserves reductions (Corollary 4.7), the range 8fis
to well-typedS——°%T terms inNIL-normal form. These properties are summarized in Figure 4.6.

The soundness ofS for typing is a direct consequence of this definition and of the analogous results proved
for \C andC'S:
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)\—>—0&T S—>—0&T

AS

SN—I>L—O&T
Figure 4.6:\S
Theorem 4.19 (Soundness oS for typing)
If T;AFs M A and M 2% U, thenT; A Fx U : A, 0

The associated completeness result is obtained in a similar way.

The soundness oS with respect to reductions requires some additional care since on the one hand the similar
property for \C' maps each reduction of~ %" into a combination of a3-reduction and zero or morac-
reductions inC——°%T and on the other hands relies on typing to ensure surjectivity. With these considerations
in mind, we obtain the following statement:

Theorem 4.20 (Soundness ofS for reducibility) M M’
If M — M, M 2% U, and T;A s M {4 A, then there are .
termsU* andU’ suchthatyU —-5 U*, U* =% U’ and M’ 2% U, AS R
m .
s « s
U-eeeiB U e o~ U’

Again, the corresponding completeness result is obtained analogously

The definition and analysis of the reverse translafianfrom S~ —%T back toA~ T, proceeds in the same
way. We rely on the judgments

U2 M U translates toM/
S\N 2 M S translates tal/, given seedV
defined by
U2 M iff U-=%Q and QM
S\N =5 M iff N 2% R, S\R-=% and Q5 M

Observe that the translation of spines relies on the A@pfrom A~ T from C——°%T, In practice,.e., when
this judgment is invoked as a subroutineldf2- M, this step is bypassed altogether, as one can observe from
the rules in Figure 4.4.

By lemmas 4.9 and A.1% )\ is a function and it mapsIL-equivalent objects i5—~°%T to the same object in
A~ &T (by lemmas A.21 and A.22). This is shown in Figure 4.7. Furthermore, Lemmas 4.10 and A.18 entail that
S and\S form a pair of inverse bijections, when the domain of the former and the range of the later is restricted
to well-typedSy, %" terms.

The soundness and completenesS bfor typing is a consequence of the analogous propertié&oandC \.
We report here only the statement of soundness.

23



S—>—0&T )\—>—0&T

SA
Figure 4.7:S\
Theorem 4.21 (Soundness & A for typing
If T;A by U: A thenU 25 M and T; A by M ) A. O

Finally, S\ enjoys the following soundness result as far as reducibility is concerned.

Theorem 4.22 (Soundness & ) for g-reducibility) U 5 % U’
If U =55 U’ and U 2 M, then there is a term/’ such that M — M’ :
and U’ 25 M. O SA LS
The associated completeness statement is obtained similarly. JY . ]\;[/

5 Properties of S~ & T

In this section, we will deduce the main propertiessof °% T from the analogous results presented¥or°¢T in

Section 2, or more precisely from the adaptation of those properti€sts® ™ analyzed in Appendix A. We will

first examineNiL-reducibility and ultimately the existence and uniquenessiofnormal forms in Section 5.1.
Then, in Section 5.2, we will turn to properties such as the existence of unique normal forms for the complete
reduction semantics ¢~ &7, Finally, in Section 5.3, we hint at further properties related to weak head-normal
forms,n-expansion, and equality ifi~ T,

5.1 Properties ofNIL-Reducibility

In this section, we study the notion mfL-reducibility, an omnipresent nuisance when directly investigating the
meta-theory o6~ %" and when studying direct translations from <7 In doing so, we will take advantage
of our detailed study okc-reducibility for C——&T in Appendix A.

The analysis of the interplay between typing and-reduction reveals that this relation enjoys the subject
reduction property. Moreover, the usenof -reduction in the reverse directiarg., as an expansion rule, preserves
typing too. We combine these two results in the following lemma.

Lemma 5.1 (NIL-reduction/expansion preserves typing
i If U 5y U/, thenT;A by U: A ifandonlyif ;A by U’ : A.
i. IfS 5y 8, thenT;A by S:A>a ifandonlyif T;A by S': A > a.
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Proof:

Since SC mapsNIL-reductions toac-reductions (Corollary 4.17), we make use of the analogous results for
C— T (Lemmas A.21 and A.22) followed by the soundnes<Csf for typing (Theorem 4.3) to obtain the
desired result. o

We now concentrate on the propertiesf <7 and—-,,  as a rewriting system. An application of rule
Sr_nil reduces aniL-redex by eliminating a trailinguiL spine. Therefore, only as mamyL-reductions can be
chained starting from a given term as the numbexiefredices present in it. This implies that any sequence of
NIL-reductions is terminating if— %,

Lemma 5.2 (StrongNiL-normalization
Every maximal sequence wiL-reductions starting at a terry (spinesS) is finite.

Proof:

Again, we rely on the fact tha#C' andC'S faithfully relateNIL- and Ac-reductions to map this property to
C——%T It then reduces to lemma A.3. o

This property entails also that, given a tetmthere is only a finite number of termé such that/ —-* V' is
derivable. Therefore checking whethiér —%, V has a derivation is decidable. Clearly, these results hold also
for spines.

If the NIL-reduction rule is applicable in two positions in a term, the resulting terms can be reduced to acommon
reduct by a further application unless they are already identical. This property can be iterated, as expressed in the
following confluence lemma, that applies equally to terms and spines.

Lemma 5.3 (Confluence

If U =55, U" and U -5, U”, then there is a termv’ such thatU’ —%, V and U” —-%, V, and

similarly for spines.

Proof:
Again, we rely on the faithfulness &S andSC' to express this property ii— %", which is then resolved
by the corresponding result in corollary A.5. [

As already defined in Section 3, we say that a term or a spineNg_imormal formif it does not contain any
NIL-redex. Since—-,, eliminates aniL-redex, an exhaustive application to a teth{a spineS) yields aniL-
normal term (spine, respectively). A combination of the results above ensuresuthabharmal form is eventually
found (by the termination lemma), and that it is unique (by confluence). This is the essence of the uniqueness
lemma below.

Lemma 5.4 (Uniqueness ofiiL-normal form3

For every terni/ (spineS) there is a uniqueniL -normal termV/ (spineS’) such that/ —-*, V (S =%, 9,
respectively).
Proof:

This is again an immediate consequence of the analogous resaitfot“ " (lemma A.6). v

As said, we denotthe NiL-normal form of a ternU and a spine asNF\, (U) andNFy,. (S), respectively,

and writeSy;, °%" for the sublanguage &~ % that consists only ofiiL-normal terms.

We will take advantage of the following technical result below that states that substitution preserves
reducibility.

Lemma 5.5 (Substitution
i If FoU 8, U and Fy = V55V then [V/z|U =5, [V /z|U".
i, If FoS xS and Fy oV r VY then [V/z)S 5%, [V /2],
Proof: By induction on the structure of. o
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5.2 Properties of Reducibility

We will now present the main properties®f* <% T, ultimately strong normalization and the uniqueness of normal
forms. In order to do so, we will take advantage of the fact that similar results hofetfoP® ", and that we have
well-behaved translations to and from this calculus. The™&T results cited in this section are the subject of
Appendix A, where they are deduced from the analogous propertkes o given in Section 2. An alternative
would have been to give direct proofs of these properties.

We begin by showing thas~ %" admits confluence and the Church-Rosser property. Differently from
A~ °&T put similarly toC—~ 4T, the statement of this property must include typing assumptions in order to
express certain surjectivity requirements. For typographic reasons, we model the equivalencezgisalatfola
double arrow.

Theorem 5.6 (Church-Rossgr

U
Confluence: Assume that :: T; A s U : A. f y\
If 7/ U —*U’ and F” : U —5*U”, then there is a ternt’
U/ U//

such that// —-*V and U” -2+ V.

Similarly for spines "
\%
Church-Rosser: Assume t?at’ sDARs U -AandU” = T;A B U A, 9 s U
If F:: U = U”, thenthereis a tern such thatU’ —-*V and _
S g g
U’ 2y, '\ >
Similarly for spines V

Proof:

We will carry out a detailed proof in the case of confluence only by mapping this propefty t6%" thanks
to the existence of a reduction- and typing-preserving isomorphism betsveet“ " and this language, and then
relying on the analogous property of the coercion calculus proved in Appendix A. The Church-Rosser property is
handled similarly.

Since, by Lemma A.155C is a total function oveS— % there is a unique ter such that/ =% Q is
derivable. By typing soundness (Theorem 4.8), we obtainlthat -5, @ f+ A. By iterated applications of the
soundness o C over reduction (theorem 4.16), we deduce that there are ©fmsdQ"” such thaty ——* @’ and
U’ =% @', and similarlyQ —<5* Q" andU” =% Q". By the confluence property 6f~—&T (corollary A.5),
we know that there exists a ter@ such that)! ——* Q* andQ” —<>* Q* are derivable.

By the bijectivity of SC' (Lemma 4.10)Q’ <> U’ andQ” >+ U". By the soundness af'S with respect
to reductions (theorem 4.6), there are tefifisand V" such thaty’ —-*V’ andQ* <% V’, and similarly
U" =55V andQ* <= V. However, sinc&’'S is a function (Lemma 4.2)y" = V"; let us call this terni/ .

By composing the various reductions above, we obtain the desired derivatibiis-66* V andU” —-* V.

Next, we consider th§~ T equivalent of the transitivity Lemma 2.3 discussed in Section 2. Asin® T
andC—T we must distinguish the linear and the unrestricted cases, but we have no convenient notation that
spans uniformly over terms and spines. Therefore, the lemma below has four parts.

Lemma 5.7 (Transitivity)
i fUT;Az:Bbs U:AandUy = T;A" by Vi B, thenT; A A’ by [V/2]U - A.
i. f SuT;A2:Bby S:A>a and Uy =T;A" by Vi B, thenT; A A" by [V/2]S : A > a.
i. fUT,2:B;AFs U:AandUy :T;- by VB, thenT; A by [V/2]U : A.
iv. If ST x:B;AbFy S:A>aandUy =T kg V: B, thenT; A by [V/z]S: A > a.
Proof:

We prove this lemma by means of a technique similar to the one we just sketched in the case of the Church-
Rosser property. We illustrate the manner spines are handled by presenting the full treatment iof. céke (
treatment of the other parts is similar or simpler.
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Let z be a variable that does not appear in neithie\, nor A’, and that is different from:. We will use
it as a generic head fd§. By rule1C_lvar, there is a (trivial) typing derivation df;z : A F§$ 2z | A. On the
basis of this fact, by the soundness3#' for typing (Theorem 4.8), there is a tehsuch thatS \ z =% @ and
I;A,z:B,2: AFS Q 1 a are derivable. By the same theorem, there is a ©frand derivations of/ == Q'
andT; A’ H§ 1Q' | B. By the transitivity lemma A.29 foo—%T T:A A z: A FS [1Q'/z]Q f+ ais
derivable.

By rule CS_var, there is a derivation of \ S <> 2 - S. By the bijectivity lemma 4.10, there is a derivation
of @ =% z - S. Again by the bijectivity lemma, there is a derivatigh <>+ V is derivable. By the substitution
lemma 4.4, there is a derivation pfQ’ /z]Q == z - ([V/x]S) (remember that # z). By the soundness af S
with respect to typing (theorem 4.3); A, A’ z: A Fx z-([V/z]S) : ais derivable. By inversion on rulS_lvar,
A A by [V/z]S @ A > ais derivable as well. g

The next property we are interested in proving$or <% is subject reduction. Again, we must deal separately
with terms and with spines. Remember that we have already proved this property in the subaasedfiction
as Lemma5.1.

Lemma 5.8 (Subject reduction
L fUT;A by U:Aand F = U =5 V, then; A by V2 A,
i f SuT;AFy S:A>aand F S - S/ thenT;A by S A > a.

Proof:

Again, we rely on the fact that'S/SC are a typing- and reduction-preserving isomorphism betugerr® "
andC— %7 to reduce this statement to the analogous result for the coercion calculus (lemma A.30). &

We now tackle strong normalization which, as in the casa of°¢ T, states that no infinite chain of (either
NIL- or 3-) reductions can start from a well-typett” <% T term. Therefore, we can reduce a well-typed term to
normal (actually canonical) form by exhaustively reducing randomly selected redices.

Theorem 5.9 (Strong normalization
i. If U:T;A s U: A, thenU is strongly normalizing.
i. If S:T;AFy S:A> a,thensS is strongly normalizing.

Proof:
We rely again on the techniques already deployed for theorem 5.6 and lemmas 5.7 and 5.8 to reduce this
statement to the strong normalizability @~ —~%T (theorem A.31). il

Strong normalization ensures that exhaustive reductions of a well-typed® " term (or spine) will eventu-
ally produce an object in normal form. Depending on which redex is selected at each step, this procedure might
yield different normal objects. The uniqueness corollary below guarantees that every reduction path will lead to
the same normal term (or spine), up to the renaming of bound variables.
Corollary 5.10 (Uniqueness of normal forms

i. If U=T;A by U: A, then there is a unique normal terfisuch that' —-* V.

i. If S:T;A Fy S:A> a,thenthereisaunique normal spisé such thats —-* 5’

Proof: Again, this is a consequence of the analogous resulffore“ "™ (Corollary A.32). o
As in the case o\~ °%T and C~ T, the above results allow us to speak abthe normal form (or
equivalentlythe canonical form) of a ternt/ or a spineS, whenever these objects are well-typed. We denote this

term and spin€an(U) andCan(.S), respectively. A calculus that accepts only canonical objects can be obtained
from the typing system displayed in Figure 3.1 by simply removing ISleedex.
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5.3 Other Properties

A number of other properties of the spine calculus are investigated in [CP97a]. Although aimed at the specific task
of proving the soundness and completeness of a linear higher-order unification algorithm expressetfih,

many are of general interest. In that paper, we formally define and analyze the notion of (weak) head-normal
reduction for the spine calculus [CP97a, Section 2.3]. This relation reduces the superficial redices of a generic term,
but is not defined within spines. We show that it is confluent in general and strongly normalizing for well-typed
terms, and therefore that typable objects have unique head-normal forms consisting of a superficial layer that is
redex-free and a deeper layer that is arbitrary. We also define a lazy algorithm based on them to efficiently check the
equality of twoS—%T terms and spines, and prove its correctness with respect to the simple-minded procedure
that relies on canonical forms [CP97a, Section 2.4]. Finally, we study in detail the notipexgfansion [CP97a,
Section 2.5].

6 Further Remarks

In this section, we briefly report on important relationships between our spine calculus and other formal systems in
the literature. More precisely, we briefly discuss the implementation (Section 6.1), point out a relationship between
the spine calculus and the logic programming notion of uniform derivability (Section 6.2), raise the issue of adding

polymorphism (Section 6.3), and discuss related work (Section 6.4).

6.1 Implementations of the Spine Calculus

The most frequent operations arterms in a logical framework or logic programming language are type-checking,
equality testing, and unification. While in principle the cost of such operations is dominated by the time required

to normalize the terms involved, in practice we mostly deal with terms that are in canonical form. This means term
traversal is the most important and time-critical operation. All three principal algorithms (type-checking, equality
testing, unification) have to access first the head of an atomic term and then its arguments. As a result we visit
each subterm at each layer twice: once while descending to the head, and once when we recursively traverse the
arguments. In the spine representation, the term is laid out in the order it is traversed, roughly saving a constant
factor of two.

In addition, in an implementation with binary application, we may have to save pointers to the unprocessed
arguments on a stack while accessing the head of a term. Recursively, this means we have to maintain a stack of
sizeO(n) instead of orde®(log(n)) as for the spine calculus.

The spine calculus has been used in the reimplementatigif Pfe94] in theTwelf system [PS99], and also
in an experimental implementation of LLF [CP02]. A similar representation with other optimizations is also used
in the Teyjusimplementation [Nad01] ofProlog. The technique was originally suggested by an empirical study of
higher-order logic programs [MP92]. We did not carry out a systematic study to compare the spine representation
with the traditional representation in terms of binary application, since we simultaneously improved other aspects
of the system (in particular by the introduction of explicit substitutions and a crude form of compilation). On the
other hand, on first-order programs (which are mostly orthogonal to the other implementation improvements), we
did indeed observe a constant-factor speed-up roughly consistent with the predicted factor of two.

6.2 Relations to Uniform Provability

An abstract logic programming languadl®INPS91] is a fragment of a logic such that every derivable sequent has

a uniform derivation An intuitionistic cut-free sequent derivation is uniform if it is constructed in the following
way, from the bottom up: right introduction rules are applied until the formula on the right-hand side of the sequent
(thegoal formulg is atomic, then a formula on the left-hand side (pinegram) of the sequent is selected (theeus

or stoup and left introduction rules are applied to it until the same atomic formula is exposed, possibly spawning
subgoals that are to have uniform proofs.

The fragment of linear logic obtained by considering the typeaof°¢T and S~ %" as logic formulas
is known as the language of (propositional) linear hereditary Harrop formulas [HM94, Cer96]. We denoted it
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Uniform provability w
IA— A>a

u_lin

AA—S a
—— u_top
A5 T
IAA—- B

A A—oB

u_lolli

IAAS A>a

u_int

A, A q

F;AL A F;AL Ao

u_with

F7Ai> A1 & Ao
I'A;A - B

u_imp

A A B

Immediate entailment
i_atm

I a>a

A A > a A% Ay > a
(No rule forT) i_with1 i_with2
A2 A& Ay > a A5 A& Ay > a

A B>a A5 A A B>a -5 A

i_lolli i_imp

A A—-B>a

AA" % A—oB>a

Figure 6.1: Uniform Derivability

ILL—~—%T in Section 2. This formalism is an abstract logic programming language and a uniform proof system
for it, adapted from [Cer96], is reported in Figure 6.1. Timform provability judgment

A% A

is subject to the application of the right introduction rules of a sequent calculus presentatibmof® ™. When
an atomic formula is exposed (rulea_lin andu_int), a program formul& is selected and isolated in the central
part of theimmediate entailment judgment

A5 A>a

and left introduction rules are applied to it.

There is a striking correspondence between the proof system displayed in Figure 6.1 and the typing inference
system forS——%T given in Figure 2.1. Indeed, deleting every trace of terms from the typing rules of our spine
calculus yields precisely the above derivability ruleslidr——~%T except for rule$S_con andIS_redex that do
not have any match. A uniform provability equivalent of rifiecon can be obtained by patrtitioning the left-hand
side of a sequent into an unrestrictebgram corresponding to the concept of signature, and a collection of
dynamic assumptionsorresponding to the notion of context$im T If we ignore the terms in rulkS_redex,
we recognize an analogue of the cut rule.

A5 A TAS A>a

AN S o

Clearly, since uniform derivations are cut-free, the system in Figure 6.1 is not supposed to contain such an inference
figure.

The similarity between the inference rules of uniform provability and the typing rulésoP® T indicates
that our spine calculus is a natural term assignment system for uniform derivatitids in°¢T. This sets the
basis for a form of the Curry-Howard isomorphism [How80] between normal, well-tgped® " terms and valid
uniform derivations ifLL—~—&T_ Other authors have come to similar conclusions, as described in Section 6.4
below.

The underlying relation between spine representation and focusing is of foundational significance as it general-
izes to any abstract logic programming language. Namely, we postulate that for every logic that admits a uniform
proof system there is a spine calculus that can be used as a term assignment system for it.
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In practice, this correspondence is of little use for logic programming languages that do not return proof-terms
as an account of their execution, for exampielog, Lolli [HM94] and AProlog [Mil89, Mil01]. The situation
is different for logic programming languages based on a type theory kkgiHP93] or LLF [CP02] rather than
a logic. It is currently exploited in th&welf implementation oLF to efficiently construct proof-terms directly
in spine form during execution. Previous implementations essentially wove in a transformation akin to that in
Figure 4.4 at each step, including when visiting portions of the search tree that would later be discarded.

6.3 Interaction with Polymorphism

One of the important features of our spine calculus is that it keeps terms in long normal form, even if substitution
introduces news-redices. This means that types do not need to be passed around in many algorithms that would
otherwise require it, such as equality testing or pattern unification. In the presence of polymorpliamforms

are still well-defined [DHW93] and exist in many expresshealculi [Gha97], but they are no longer preserved

by G-reduction or substitution. This is true even in the absence of linearity. For example,

Fy Ao Az:a.x f Va. a — «,
but ts Az:a—a.zf (a—a)— (a— a),
and s Ax:T.z T — T.

In both cases we have tpexpandx in order to obtain a long-normal form.

Fyx Az:a— a Ay:a.zy (e — a) = (a — a)

We conjecture that in case of the polymorphicalculus (possibly augmented with linear functions, products, and
unit) it is sufficient to store the type for each rootH - S of variable type. During substitution for a type variable

a, we locally n-expand the spiné&' in roots H - S : «. In a calculus with explicit substitutions this effect can

be achieved when descending into the spine of a root of variable type. The overhead of such an implementation
appears minimal when compared to the cost of having to carry types explicitly when traversing a term for the
purpose of equality testing or unification in the presence of extensionality. We conjecture that it is possible to
generalize this technique further to calculi with variable type constructors and dependencies by storing types with
roots whenever the head of the type is a variable.

6.4 Related Work

The uniform derivation system given in Figure 6.1 is a presentation of the sequent calculus for% T that

embeds restrictions on the applicability of inference rules. The strong relationship between intuitionistic frag-
ment of sequent calculi (not necessarily linear) and term languages akin to our spine calculus has been already
noticed in the literature. A first indirect reference appears in the seminal work of Howard on the types-as-formulas
correspondence [How80], although a formal spine-like calculus is not defined.

Barendregt [Bar80] relies on an term language akin to our spine calculus to study the notion of normalization
in the untyped\-calculus. Terms in this language are callgthB trees. Huet'sonstructive enginfHue89] uses
some ideas reminiscent of the spine calculus in an implementation of the Calculus of Construction.

In [Her95], Herbelin presents a systematic account of the relationship between the ky3tamd the term
language\, which extends tha— restriction of our spine calculus with a spine concatenation operator and explicit
substitutions with named variabled.JT is a variant of the implicational fragment of Gentzen’s intuitionistic
sequent calculus with ideas similar to the uniform provability system from the previous section: in particular the
left-hand side of a sequent contains a stoup and left rules are restricted to operate only on the formula currently
in focus. Since no extensionality requirement is made\ éerms, the calculus relies on concatenation to append
fragmented spines. The presence of explicit substitutions provides a direct handling of the two cut-rules of this
calculus. \ is defined for foundational reasons, as the tadgealculus of a derivations-as-terms correspondence
for LJT. Indeed, its reduction rules correspond to the steps in a cut-elimination procedl&Tf@o that the
strong normalization theorem farsubsumes the cut-elimination property for this logic.

In [DP98, DP99], Dyckhoff and Pinto use the work of Herbelin to investigate the meta-theory of the sequent
calculus and natural deduction presentations of intuitionistic implicational logic. They obtain a simple proof of
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a classical equivalence result for them by relating terms inXfalculus and in\ [Her95]. In [DP98], they
furthermore propose a simplification of Herbelin’s proof of strong cut-eliminatiod.{6F .

Schwichtenberg [Sch99] adopts a similar approach relative to a richer logic consisting of implication, con-
junction and universal quantification. He starts from a more traditional presentation of the sequent calculus. In
particular the absence of a stoup forces him to consider commutative conversions. The term calculus he proposes
differs from Herbelin's by the absence of explicit concatenation operators and substitutions. It is therefore more
similar to our spine calculus.

A Curry-Howard-like correspondence between a calculus akin to Herbelift$er95] and the calculus of
explicit substitution [ACCL91] is further pursued by Dyckhoff and Urban in [DUO1]. They show in particular that
the studied language is strongly normalizing. H$p Santo conducts similar investigation in [San00] with an eye
ony-long terms.

7 Conclusions

In this paper, we have formalized an alternative presentation of the I\ealculusA— %" which can be used
to improve the efficiency of critical procedures such as unification in the implementation of languages based
on (linear) \-calculi. The resulting language, the spine calcu$is %", strengthens the the studies of term
assignment systems for sequent calculi [Her95, DP98, DP99, Sch99, San00, DUO1] to encompass extensional
products &), a unit type (') and linearity (o), with the further requirement that well-typed terms be)itong
form. S—%T terms of base type are structured similarly to the objects found in first-order term languages. In
particular, their head is immediately available, an important benefit for procedures such as unification that base a
number of choices on the nature of the heads of the terms they operate upon. Having extensionality built-in permits
avoiding the overhead, both in terms of bookkeeping and execution time, of perfojreimgversions at run time.

The intended applications of this work lie in proof search, logic programming, and the implementation of
logical frameworks based on linear type theories. In particular, the spine cal§ulus“" has been designed
as a first approximation of an internal representation for the type th&érg® " underlying the linear logical
frameworkLLF [Cer96, CP02]. An extension to the full language, which includes dependent types, does not
appear to be problematic. The adoption of a spine calculus as an internal representation device appears to integrate
well with the simultaneous use of explicit substitutions [ACCL91]. However, the details of the amalgamation of
these two techniques in the presence of linearity still need to be worked out formally.
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A The Coercion CalculusC——°%T

The syntax and the typing and reduction semantics of the coercion catéatus®™ have been given in Sec-

tion 4.1. In this appendix, we define and analyze the translatighsind C\ between\~—°%T and C——&T

in Sections A.2 and A.3, respectively. Before this, we spend Section A.1 studying the main properties of the
Ac-reduction of the coercion calculus. We conclude in Section A.4 by deducing the main resuts féf "
reductions from the analogous propertiesXor =T listed in Section 2.
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A.1 Meta-Theory of AC-Reducibility

Ac-reduction (1R —,c R) is closely related to th&iL-reduction ofS~—°¢T ((H - §) - NIL —\, H - S),

but does not have an equivalent im %7, This complicates proving the correctness of a direct translation
between this language and the spine calculus [CP97b]. Fortunately, we can isolate the main propétigs of

and therefore achieve simple proofs of these results. We will apply them in Sections A.2 and A.3 to ascertain the
correctness oAC andC )\, and in Section 5 to deduce the analogous properties.efeducibility.

The analysis of the interplay between typing axwtreduction reveals that this relation enjoys the subject
reduction property, as stated by the following lemma.
Lemma A.1 (Ac-reduction preserves typing

If QuT;AFE THlAand & =T S, T/, thenT; A RS TV 4 A
Proof: By induction on the structure &f and inversion org. f

A further property, that we use in Section A.4 of this appendix and also in Section 5 of the body of this paper,
is that the use okc-reduction in the reverse directioing., as an expansion rule, preserves typing too.
Lemma A.2 (Ac-expansion preserves typing

If €T Spc T and Q' = T;A RS T/ | A, thenT; A RS T A.

Proof: By induction on the structure & and inversion orQ’. o

We now concentrate on the properties@f °¢T and—,. as a rewriting system. An application of rule
Cr_AC reduces anc-redex by eliminating adjacemandtcoercions. Therefore, only as maag-reductions can
be chained starting from a given term as the numberasfedices present in it. This implies that any sequence of
Ac-reductions is terminating i@’ — %,
Lemma A.3 (StrongAc-normalizatior)

Every maximal sequence at-reductions starting at a terrd’ is finite.

Proof: A formal proof goes by induction on the structurefaf o

This property entails also that, given a tefmthere is only a finite number of terni$" such thatl" ii\c T is
derivable. Therefore checking whetfer—-*_ T* has a derivation is decidable.

If the Ac-reduction rule is applicable in two positions in a term, the resulting terms can be reported to a common
reduct by a further application (unless they are already identical). This property is formalized in the following local
confluence lemma, that applies equally to pre-canonical and pre-atomic terms.

Lemma A.4 (Local confluence

If & T S, T and & :: T -5, T, then eitherT” = T” or there is a termI™ such that
T —Sopc T and T —pc T*.

Proof: By simultaneous induction on the structuregéfand&”. of

Well-known results in term rewriting theory [DJ90] allow lifting this property, in the presence of termination,
to the reflexive and transitive closure 6f- .

Corollary A.5 (Confluencg

If 755 T" and T -5, T”, then there is a terrfi™ such that 7" -4, T* and T" <% T*. O
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We say that a term is inc-normal formif it does not contain angc-redex. Since-"-,. eliminates amc-
redex, an exhaustive application to a pre-canonical #@ror pre-atomic termR yields anAc-normal term. A
combination of the results above ensures that@mormal form is eventually found (by the termination lemma),
and that it is unique (by confluence). This is the essence of the uniqueness lemma below.

Lemma A.6 (Uniqueness okc-normal form$

For every termil” there is a uniquexc-normal termT™* such thatl’ —=%_ T*.

Proof:

Since -7 is terminating, there is at least one teffn such thatl’ —~-*_ T is derivable and such that*
does not admit furthexc-reductions. Thefl™ cannot contain angc-redex.

Assume that there are two such teffif,and7 say. Then by confluence, they must have a comamneduct
T**. However, since neithef;* nor 75 admitAc-reductions, it must be the case thgt = 7 = 7**. o

We denotethe Ac-normal form of a pre-canonical ter (pre-atomic termR) asNFxc(Q) (NFac(R), re-
spectively). Furthermore, we Wrilté'o_""‘g‘T for the sublanguage af ~—%T that consists only ohc-normal
terms.

In Section A.4, we will take advantage of the following technical result that states that substitution preserves
Ac-reducibility.

Lemma A.7 (Substitution
If &7 -5 T and g : R—%. R/, then [R/z]T —~%. [R'/z]|T".

Proof: By induction on the structure df. [

Observe that the substituted term ought to be pre-atomic, while the term on which the substitution is performed
can be either pre-canonical or pre-atomic.

A.2 AC: A Translation from A—°&T to C—~—o&T

The translation from\~°%T to C— T abbreviated\C, mapsA—°%T terms to objects i©—°%T. \C is
specified by means of the following judgments:

M 2% Q M translates to pre-canonical ter@
N2 R N translates to pre-atomic terit

The rules defining them are displayed in Figure A.1. The side conditions inxdlegm and\C_redex specify

the admissible structure of their first argumeit ©r N); they could be avoided by specializing these rules to
take into account the different possibilities they encompass. Notice that, for each of the two judgmerit shef
structure of the first argument determines uniquely which rule can be used in the translation process. Y& write
possibly annotated, for derivations of either judgments.

We can immediately prove the faithfulness of this translation with respect to typing. This result expresses the
adequacy of the system in Figure 4.1 as an emulation of the typing semantics©f ' . We will take advantage
of this fact below.

Theorem A.8 (Soundness ofC for typing
If C:T;AFy M AL A and £LC : M 25 T, thenT; A RS T A 4;

Proof:

This proof proceeds by simultaneous induction on the structur@ oMost cases are resolved by simple
invocations of the induction hypothesis. However, rileatm andl\_redex require some care in order to satisfy
the side conditions in rulesC_atm and A\C_redex, respectively. We will focus our analysis on these proof
patterns.
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Pre—canonical terms

N2%R

N 2% 4R
T AC_unit
0=

M 2% Q
AC_llam

Xz A M 2% 3z:A.Q

Pre—atomic terms

M 2% Q
M 2% 1Q
AC_con
AC
cC —C
N2 R
AC_fst

FSTN 2% FSTR
N=2%R M->%Q
N"M 2% R"Q

AC_lapp

AC.atm (for N =c¢, z, FSTN’, sSNDN', N'"M, N' M)

My 2% Q1 Mz 2% Qo

AC_pair
(M1, Mz) 2% (Qu1, Q2)
M 2% Q
AC_ilam

Ax: A M 25 Az A.Q

ACoredex (for M = (), (M', M"Y, Ax:A. M’ Ax:A. M')

AC_var

AC
r— T

N2% R
SNDN 2% sNDR
N=2%R M-=>%Q

NM2%RQ

AC_snd

AC_iapp

Figure A.1: Translation ok~ T into C—~—%T

A/
ARy M| a
I\ _atm: C=—  Ihatm
I;AFs M a
where A = a.

M =c¢, x, FSTM', SNDM', M'"M" or M’ M"

T =tR

LC M 2% R

R TAFS Rla
Q T;AFE tRfa

C/
Ay M A
I\_redex: C

IA_redex

ARy M LA

This case is more delicate than the previous situation because we have no tool such as the Surjectivity
Lemma to invoke the induction hypothesis. We must instead distinguish subcases on the structure of the

by the Surjectivity Lemma 2.1 o},
and

by inversion on rule\C_atm,

by induction hypothesis o’ and£C’,
by rule A\C_atm onR’.

type A. More precisely, the major discriminant is whetheis an atomic or a composite type:

SubcaseA # a:
M =), (M, M"Yy, Aa: A. M’ or Az: A. M’
T =1Q
L£C M 2% Q

Q TAFS QN A
R TAFS 1Q L A

by the Surjectivity Lemma 2.1 off,
and

by inversion on rule\C_redex,

by induction hypothesis of and£C’,
by rule A\C_redex on Q'.
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Subcased = a:
A T AbFs M| a by inversion on rule\C_atm on(’,
R =T;AFS Rla by induction hypothesis od’ and LC.

This last subcase cancels occurrences ofinuledex immediately followed byix_atm in a typing deriva-
tion. In this way, it essentially removes an impligit-redex from the original derivation.

Notice that this statement implies not only that types are preserved during the translation process, but also, by
virtue of surjectivity, that)-long objects o\~ %" are mapped tg-long terms in the coercion calculus.

We will obtain an indirect proof of the completeness)af' with respect to typing in Section A.3. As a
preparatory step, we get some insight in the maiépperates.

We first show thabC'is a functionj.e., that every term has a unique translation, as established by the following
lemma.

Lemma A.9 (Functionality ofA\C)
i. ForeveryM in A~ %7 there is a unique pre-canonical ter@in C— %7 such that M 2% Q.
ii. ForeveryM in A\~ °%T there is a unique pre-atomic terRin C— %" such that M/ 2% R.

Proof: This simple proof proceeds by induction on the structuré/of g

\C translates every term ik~ % to an object inac-normal form. Therefore, the range of this function is
the set of terms iy %"

Lemma A.10 (Range ofAC)
If £C:: M 2% T, thenT is in Ac-normal form.

Proof: The proof proceeds by induction on the structur&6f o

We have just seen that” is sound with respect to the typing semantica of°¢T andC——%T, We dedicate
the remainder of this section to proving that it preserves also reductions. This task is complicated by the fact that
B-reductions in\~ %" do not correspond t@-reductions inC—~ %" but in general tg3-reductions followed
by zero or morenc-reductions.

Consider for example the simphe~—~&T redex(S\a: :a. f ") "¢ which reduces in onesf)step tof “c. lIts
pre-atomic translation t6'~—%T according to\C'is

(LAz:a.t(f~(12)))) " (1e)

(Its pre-canonical translation wraps this expression with one more occurretfjc®ufe 3-reduction step yields

L(f (4 (e)))))
It then takes twac-reductions to simplify this term intg ~(n¢), which is the pre-atomic image ¢f"c according

to \C.

Ruleslr _beta lin andlIr _beta.int generate their reduct means of a meta-level substitution. The corresponding
reduction inC——%T operate in a similar way. Therefore, we need to show Macommutes reasonably well
with substitution. This is achieved in the next lemma.

Lemma A.11 (Substitution il\C')

Assume thaf is a derivation of eithef; A,z : Ay M ff| BorT',z: A;A Fs M 4| B, and moreover
A:T;A'Fs N | A
If £C:: M 2T and LCy :: N 2% R, then [N/z]|M 2% [R/z]T.
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Proof:

The proof proceeds by induction on the structureC6f All cases are quite simple except for the situation
whereM is precisely the variable (subcase of rulaC_atm).

AC_var: LC = AC_var
AC

r—x

where M =z and T = z.

LCy :[N/x)x 2% [R/z]x by definition of substitution
£c!
x L X
AC.atm: LC =———— )C_atm
z 2% g

where M =z and T = fx.

A =a by inversion on ruléX_atm for C,
N =c¢, y, FSTN’, SNDN’, N'°"N" or N' N" by a simple induction o,
LC N 2% 4R by rule A\C_atm on £LC v,
[N/z]x 2% [R/z]tx by definition of substitution. o

The presence of typing derivations in the above result are needed to ensure that th&/tamdsV are in
n-long form. When this property does not hold, our set of reductions in the coercion calculus are not sufficient to
support our translation. An example shall clarify this point: consider the t&fms (¢, z) andN = (d, e). Then,
clearly [N/z]M = (c,(d,e)). Now AC (pre-atomically) translatel/ and N to Q = (¢, tz) andR = L(nd, fre),
respectively. Then, by performing the substitution at the levél of°“ T, we obtain[R/z]Q = (¢, tl{nd, fte)),
while [N/x]M 2% (tc, (td, fre)). Notice however thaz/z]Q embeds the sequence of operators which is
not handled by any of the reduction rules@f %7 (in particular not bySr_AC, which expects these constructs
to occur in reverse order). Schematically,

[ (die) — Jal  (em) = (e {d,e))
ACJ ACJ \
[ Lnd, te)  Jx]  (tex) = (e, BL{frd, fre) ) «overeeeees Wi, - (fic, (1d, Te))

Anomalies of this type do not arise when operatingrelong terms only since a variable of composite type
would not occur immediately prefixed by the coercion.

In a functional redex, both the substituting and the substituted terms are pre-canonical. The following corollary
adapts the above lemma to handle this situation. Observe that it may intredueguctions

Corollary A.12 (Substitution inA\C')

LetA:T;A"Fsy N | A
1. Assume there is a derivation of eitherA,z : Aby M ff BorI',z: A;A s M 1 B. Then,
if £C:: M 2% Q' and LCy == N 2% Q, then [N/z]M 2% Q* where [1Q/z]Q" —=%. Q*.

2. Assume there is a derivation of eithefA,z : Absy M | BorI',z: A;A s M | B. Then,
if £C:: M 2% R and LCy :: N 2% Q, then [N/z]M 2% Q* where |[1Q/z]R 5. Q*.

Proof:
1. We distinguish cases on the basis of the last proof rule appliéd jn.
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e If this derivation ends in rulaC_atm, then@ = t R and there is a derivation & 2 R. By the pre-
vious lemmal[N/z]M 2% [R/z]Q’. Then a simple induction shows tHatt R) /2]Q" —%. [R/z]Q’.

e Otherwise, by the Surjectivity Lemma 2.1, we can ext€dd, with an application of rule.C_redex.
The desired result then follows by a direct application of the above Substitution Lemma.

2. We proceed similarly to the first part of this corollary, but by cases on the structul@. of o

At this point, we are in a position to prove thef' is sound with respect to the reduction semanticsof°¢ "
andC——°%T_ This property is schematized by the diagram on the right.

Theorem A.13 (Soundness ofC for reducibility) M——->M
Assume that :: T; A by, M { A. L
AC AC
If DM — M’ and £C :: M 2% T, then there are term&* and «
T’ suchthatT 5 T*, T* 55 T' and M’ 2% 7. TS T G 77

Proof:

The proof proceeds by induction on the structur@®ofAll cases are straightforward with the exception of the
treatment of the3-reduction steps oA~ %" (ruleslr _beta fst, Ir _beta_snd, Ir _beta lin andIr _beta.int). We
develop in full the cases where the last rule applie®iis Ir _beta lin.

Ir_beta_lini D =— Ir_beta_lin
()\.’17 A Ml) AMQ — []V[Q/.%‘]Ml

where M = (Az: A. My) "M, and N = [My/x] M.

Cy ::F;Al,l‘:A'—E MlﬂB and
Co T A0bks Mot A by inversion orC,
By inversion onLC, there are term§); and@-, and derivationgC; and LC- that allow expanding’C as
follows:
LCq
My =% @
" ~ AC_llam
Az A My 25 Azt A.Qq £Cs
= = AC_redex o
)\ZC!A.Ml Ll(}\.}?AQl) M2—>Q2
LC = AC_lapp

(Az: A M) "My 2% (1(Az:A. Q1)) Q2
where T = (1(Az:A. Q1)) Q.

Es = (LAZ:A.Q1) Qo 5 [1Q2/x]Qy by rule Cr_beta_lin,

Enc 1 U[1Qo/x]Q1 =1 Q and

LC My /x] My 2% Q' by the Substitution Corollary A.12 o6,
Co, LCq, andECQ. o

This result can be lifted to the reflexive and transitive closures of the mentioned reduction relations.

The notion of soundness we adopted relative to the reduction semantics of our calculi requires that every reduc-
tion in the source language correspond to one (or more) reductions in the target language. We define completeness
dually: every reduction in the target language should correspond to some reduction in the source language, possi-
bly none. We will give an indirect proof of the completenesa6fwith respect to the reduction semantics of our
calculi in Section A.3, when considering the inverse of our translation.
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A.3 C\: A Translation from C—°&T tg \—~—o&T

In this section, we consider the problem of translating terms #onm% T back toA~ %", \C cannot be used
for this purpose since its co—domain@%ﬁ%’gﬁ, the subset o~ —°%T consisting only ofAc-normal forms.

The approach we take is instead to define an independent transl@tipnhat maps entities i~ %7 to
terms in\—~ %", We will prove later that it is the inverse ' in a sense to be made precisg) is specified by
means of the judgments

Q=M Q translates taM/
RS N R translates taV

that simply erase the coercionsand! from a term. We omit the obvious inference rules defining this translation
We will write CL, variously annotated, for derivations of either of these judgments.

The faithfulness o'\ with respect to typing is formally expressed by the following theorem. Again, we shall
stress the fact that the translation process preserves not only types, but also surjectivity.

Theorem A.14 (Soundness af')\ for typing)
If Q:T;ARS THl AandCL::T = M, thenT;Abs M 1] A.

Proof: By induction on the structure a. [

Prior to showing tha’\ preserves reductions, we will prove th@A is the inverse oAC. Besides getting the
comforting formal acknowledgment that our two translations do behave as expected, we will take advantage of this
result to obtain straightforward proofs of the completenesg’doandC'\ with respect to typing and reduction.

We begin our endeavor by proving th@h is actually a function fronC'— T to A~ —& T,

Lemma A.15 (Functionality ofC'\)

i. For every pre-canonical—%T term @, there is a unique\— %7 term M such thatQ > M.
ii. For every pre-atomi©©—°%T termR, there is a unique\— %" term M such thatR 2~ M.

Proof: By induction on the structure @ andR. o

We wishC A to be the inverse okC'. This property does not hold in its full strength. The problem is that these
two functions have different domains and ranges. Indaétiproduces elements iﬁ‘(T‘O&T, a strict subset or
C—=%T_On the other hand;'\ accepts arbitrary terms ii—” <% T. We bridge these differences in the lemma
below by relying omc-reduction.

Lemma A.16 (Right invertibility) Toevvnnnaans Do T
Assume tha@ :: T; A F§ T )] A. \ o
If CL::T 25 M, then M 2% T' where T -5, T". CA Rete
M

Proof:

The proof proceeds by induction on the structur€6fand inversion or®. We rely on the same reasoning pat-
tern already used in the proofs of the substitution lemmaddfLemma A.11) and in the soundness theorem A.13.
The most complex cases involve rul@a _redex andCX_atm. o

Again, the typing assumption in the statement of this lemma is aimed at enforcing surjectivity. Consider for
example theC— T terml (¢, #d), which is not inn-long form. C'A would translate it tqc, d), which would

in turn be mapped to they{long) term({t¢, td). However, none of our reduction rules can bridge the gap between
the twoC— 4T expressions. No such problems arise when working exclusivelyliting terms.

The reverse of this property holds in a much stronger sense: translatng’¥ " term toC— %" and then
back yields the very same original term, without any need for a typing derivation. We have the following lemma.
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Lemma A.17 (Left invertibility)
If £C:: M 2% T, thenT £ M.

Proof: By induction on the structure diC. g

The left-invertibility lemma states that composi@g\ with \C' transforms a\~ T term to itself; therefore
it corresponds to the identity function om %", On the other hand, the right-invertibility lemma A.16 states
thatC X is the right inverse oAC on WeII—typedC(?”&T terms. On the basis of this observation and of previously
proved properties, we easily deduce that they form a pair of inverse functions between the well-typed fragments of
A~ 4T andCy” 4T,

Corollary A.18 (Bijectivity)

AC and C\ are bijections between the set of well-typed %" terms and the set of well—typ@iﬁﬁ“’&T
terms. Moreover, they are each other’s inverse.

Proof:

It is an easy exercise in abstract algebra to show that, given two fungtions — Y andg : ¥ — X, if
fog=1Idy andg o f = Idx, thenf andg are bijections and moreover= 1.

By Lemmas A.9, A.10 and Theorem A.13, we know th&t is a function from the well-typed portion of
A~ 4T to the well-typed subset aff;” °“T. By the functionality lemma A.15C'A mapsC— 4T terms to
C—%T objects; in particular, it associates well-typed-normalC— %" terms to well-typed\~°%T terms.
Moreover, since terms that are alreagly-normal cannot be furthexc-reduced, the right-invertibility Lemma
states that’ \ is the left inverse oAC on WeII-typedOO_"mg‘T terms. Finally, by the left-invertibility lemmayC
is the left inverse o\ on A~ 4T, and in particular on its well-typed fragment.

On the basis of these hypotheses, the previous algebraic observation allows us to conchdeatitat’ \ are
indeed bijections between well-typed objects\in <% T and well-typed terms im;WT, and that they are one
another’s inverse. [

This property opens the door to easy proofs of the completeness direction of every soundness theorem achieved
so far. We first consider the completeness 6fwith respect to typing.

Corollary A.19 (Completeness ofC for typing
If M 25T andT;A RS T A, thenT;A by M A A.

Proof:
By the left invertibility lemma, T <>~ M. Then, the soundness 6f\ for typing yields a derivation of
;A Fsy M4 A. o

In a similar fashion, we prove the completenesg§’afwith respect to typing.

Corollary A.20 (Completeness af X for typing
If T M andT;A by M Q| A thenT; A RS T A A.

Proof:

By the right-invertibility lemmaj/ 2% 7" whereT —%_ T". By the soundness ofC for typing, we obtain
that'; A §, 17 4 A. Finally, sinceac-expansion preserves typing (Lemma A.2), welgeh ¢ T | A. &

We will now analyze the interaction betweéh\ as a translation fron— %" and\~ T and the notion
of reduction inherent to these two languages. The main results of our investigation will ligXtmeservess-
reductions, but identifiesac-convertible terms. We will also take advantage of the fact that this translation is the
inverse ofAC to prove the completeness counterpart of these statements.

It will be convenient to start by getting a deeper understanding of Amneducibility relates ta”'A. Consider
the equivalence relatiof-sAC induced by thexc-reduction congruencec—>Ac. Its equivalence classes consist of all
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the terms ofC—~ 4T thatAc-reduce to the samec-normal form. C'\ uniformly maps every object in such an
equivalence class to the satie °%T term. In order to prove this fact, we first show that-reducing a term does
not affect its translation.

Lemma A.21 (Invariance ofC\ underac-reduction) T T
If QT S, T and CL = T = M, then T" = M.
_ _ CA L OX
Proof: By induction on the structure aj. g M

This lemma can also be interpreted as stating hais sound with respect tac-reducibility. Therefore, in the
following discussion, we will concentrate on the interaction between this translation and the fnaukrctions
of C—~—o&T,
The converse of the above property holds aléts maps a term and all of itac-expansions to the same
A~ %T object. This is formally stated as follows.
c

Lemma A.22 (Invariance ofC'A underAc-expansiof T- =1
If QT —Sopc T' and CL :: T 2 M, then T 2 M. _
. _ ox-, (o)
Proof: By induction on the structure aj. o M

StrongAc-normalization (Lemma A.6) enables to easily shift these properties to the reflexive and transitive
closure of-% ¢, and to the corresponding equivalence relation.

The Ac-invariance properties we just achieved together with the discovery above@handC )\ are weakly
bijective account for a simple proof of the completeness of the latter translation with respect to the reduction
semantics of the involved calculi.

Corollary A.23 (Completeness a@f ) for reductior) T.....%. o T ! < o T
Assume thaF; A +S T 1| A. o
If 7=~ M and M — M’, then there is amc-normal termT™* A ...-'.C)\
and aterml” such thatT -~ T*, T* -5 T" and T' % N. »
M M’
Proof:

By the left-invertibility lemma A.17, there is arc-normal termZ™* such that\V/ 2% T* andT —%. T* are
derivable. By the soundness bf' with respect to reduction (Theorem A.13), there are tefinand7”’ such that

T S TS5, T" and M 25T

By the right-invertibility lemma A.16, we have th@’’ < M’. Finally, by the functionality and invariance of

C\ underAc-reductions (Lemmas A.15 and A.21), we obtain that=*» M. ol

We conclude this section by showing th@ is sound with respect to the reduction semantic€'of %,
The above invariance lemmas capture this property in the case-dduction. Therefore, we focus the discussion
on -reductions.

The required steps in order to achieve this result are reminiscent of the path we followed when proving the
analogous statement faiC'. There are however three important differences. First, the proofs are much simpler
in the present case. Second, the statements below do not mention any typing informationad-né@ductions
do not appear in these statements. This overall simplification derives from the fact that, because of the presence
of Ac-reduction,C~°%T has more structure thaxr —=%T. Therefore,C'\ can simply forget about the extra
structure of theo— T terms it acts upon.

The first step towards the soundnes£0f with respect to §-)reduction is given by the following substitution
lemma, needed to cope with functional objects, both linear and unrestricted.

Lemma A.24 (Substitution inC'\)
If CL::T = M and CLg :: R <> N, then [R/z]T > [N/z]M.
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Proof: By induction on the structure @fL. g

Finally, we have the following soundness theorem, that state€th@treservegi-reduction.

Theorem A.25 (Soundness df'\ for G-reducibility) T—¢ % T
If DT 55 T and CL :: T 2~ M, then there is a termd’ such that :
M — M and T 2% M. CA 1OA
v
Proof: By induction on the structure 6. o M:-eonee - M’

We can summarize the previous theorem, stating the soundnéss fair g-reducibility, and the invariance
lemma A.21, expressing the soundness”of for Ac-reducibility in a single statement mentioning the generic
notion of reduction of>——&T,

Corollary A.26 (Soundness af' for reducibility) T ¢ .
If 7 - T and T =% M, then there is a termd/’ such that M —* M’ :
and 77 =5 M. O\ Lo
v
e !
Proof: M oveeenn M
Depending on whether™ is -, or - 5, this statement corresponds to Lemma A.21 or to theorem A.25,
respectively. In the former cas&]’ = M and—* is instantiated to the identity. o

Clearly, the above result holds also relatively to the reflexive and transitive closufe of

The previous theorem, together with the fact that and A\C' form a pair of inverse functions, allows us to
achieve a simple proof of the completenesa Gfwith respect to the reduction semanticgof <%, Notice that
this corollary mentions both- andAc-reductions.
Corollary A.27 (Completeness ofC for reduction Moeeenen - M

Assume thal; A by T {)| A. h

If M 2% T and T -S4 T* -5, T’ with T" in Ac-normal form, then A ’\C
there is atermM’ such thatM — M’ and M’ 2% T7. T C  qe_0C “ e
B AC

Proof:

By the left-invertibility lemma A.17, there is a derivation Bf < M. By the soundness @f\ with respect
to 3-reduction, there is a terf’ such thatd — M’ andT* <> M’. By the invariance of>\ underAc-
reduction, there is a derivation @ - M’. By composing various typing soundness results, we obtain that
;A RS T4 A, so that we can apply the left-invertibility lemma, obtaining that <> 7" is derivable. g

A.4 Properties of C—~°%T

We will now present the main properties@f” T, ultimately strong normalization and the uniqueness of normal
forms with respect to bothc- ands-reducibility. In order to do so, we will take advantage of the facts that similar
results hold for\=&T, and that we have reasonably well-behaved translations to and from this calculus. An
alternative would have been to give direct proofs of these properties.

We begin by showing that——%T admits confluence and the Church-Rosser property.
Theorem A.28 (Church-Rossér

Confluence: Assumetha® :: T; A F§ T 4] A. f X
If DT ST and D :: T —S5* T", then there is a terrf such
that7’' —<>*T and 7" -5 T.
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Church-Rosser: Assumeth&@' = T;A RS T fif A and Q" = T; A RS T ] A.

e}

If D T' = T, then there is a terfT such that 7/ -<-* T and

~ [ORH .
T" 5+ T. hNs

T C T

Proof:
We will carry out the proof in the case of confluence only. The Church-Rosser property is handled similarly.

Since, by lemma A.150'\ is a total function ove— T there is a unique term/ such thatl' 2> M is
derivable. By typing soundness, we obtain that\ s, M )| A. By iterated applications of the soundnesgof

over reduction, we deduce that there are tefisand M such that\l —* M’ andT’ > M’, and similarly

M —* M"andT"” £ M". By subject reduction, we have tHatA Fs, M’ | Aandl'; A Fs, M" {| A. By
the confluence property of” T we know that there exists a terM such that\/’ —* N andM” —* N
are derivable.
By the invertibility lemma, there ar€ —~—°%T termsT* andT** such that\/’ 2% T* with T/ <%, T* and
M”25 T with T <. T**. By the soundness ofC' with respect to reductions, there are terifisand
T" such thatr* —“»*T" and N 2% T", and similarly7** -%* 7" andN 2% T". However, since\C' is
a function, 77 = T"; let us call this terni". By composing the various reductions above, we obtain the desired
derivations of” —<+* T andT” —<+* T o

Next, we consider th&€——°%T equivalent of the Transitivity Lemma 2.3 discussed in Section 2. As in
A~ &T 'we must distinguish the linear and the unrestricted cases.
Lemma A.29 (Transitivity)

i If QuTsAz:BFE THl Aand R T;A' S R | B, thenT; A A [R/x]T ] A.

i. If QuT,2:B;AFS Tl AandR ::T;-+S R| B, thenT; A RS [R/z]|T fi| A.

Proof:
We prove this lemma by means of a technique similar to the one we just sketched in the case of the Church-
Rosser property. i

The next property we are interested in proving or <7 is subject reduction. Remember that we have
already proved this property in the subcaseofreduction.

Lemma A.30 (Subject reduction
If Q:T;AFE Tl Aand D= T -5 T, thenT; A FE T 4 A.

Proof:

By the soundness af A with respect to typing, there are a teti and derivations of” =2+ M andl'; A by,
M )| A. By the soundness af A with respect to reductions, there are a tevi and derivations of” = A/’
andM —* M'. By the subject reduction property af* T T: A s, M’ )| Ais derivable.

Now, by the soundness ofC' with respect to typing, there is a teri* such thatl’; A +§ T | A and
M’ 25 T* are derivable. On the other hand, by the right-invertibility lemma A.16, there is af&trsuch that
M’ 2% 7+ andT’ -7, T** are derivable. However, since, by Lemma AN} is a function, we have that
T* = T**. Then, in order to conclude this proof, we simply take advantage of the fagtdhextpansion preserves

typing (Lemma A.2) to obtain the desired derivatioTofA & T 1| A. o

We now tackle strong normalization which, as in the casg of°¢ T states that no infinite chain of (either
AC- or 3-) reductions can start from a well-typé&d~—%T term. Therefore, we can reduce a well-typed term to
normal (actually canonical) form by exhaustively reducing randomly selected redices.

Theorem A.31 (Strong normalization
If Q:TARE T 1] A, thenT is strongly normalizing.
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Proof:
Assume we have a (possibly infinite) sequence of téfng7, 1y, . .. such thatl’ = T and there are deriva-
tions for the following reductions:
O':TOLTl i>T’Qi>

By the soundness @\ with respect to reducibility, everg-reduction ino corresponds to a reduction k1> % T
(Theorem A.25) while evernc-reduction disappears (Lemma A.21). This entails that there is a sequence of
A~ °%T terms My, M;, Mo, . .. such that on the one hand there are derivatiorg; of* M ;) wherep maps
maximal subsequences®finked byAc-reductions to the same~ % term, and on the other hand the following
reduction sequence is derivable

O'/:M() — M1 — Mg —_— ...

Notice in particular that there is a derivation Bf-2+ M,. Therefore, by the soundness@h with respect to
typing, the judgment; A Fy M, 1 A is derivable. By the strong normalization theorem for °¢T, ¢/ is
finite. Then, alsar must be finite since, by the strong normalizatiomafreduction (Lemma A.6), the maximal
subsequences aic-reducts collapsed by are finite. o

Strong normalization ensures that exhaustive reductions of a well-typed® " term will eventually produce
an object in normal form. Depending on which redex is selected at each step, this procedure might yield different
normal objects. The uniqueness corollary below guarantees that every reduction path will lead to the same normal
term, up to the renaming of bound variables.

Corollary A.32 (Uniqueness of normal forms
If Q:=T;AFS T 1] A, then there is a unique normal terfif such thatT —~* 7.

Proof:

By the strong normalization theorem, we know that every sequence of reductions staffitepds to a term
in normal form. Let consider two reduction sequences validating—* 7" andT’ —* 7", for termsI” andT"”’
in normal form. By confluence, there is a tefim to which both reduce. However, sinéé andT” do not contain
redices, the only way to close the diamond is to haveihat 7" = T*, and use the identical reduction. &

As in the case oA~ °%T the above results entitle us to speak aktbatnormal form (or equivalentlyhe
canonical form) of a ternT’, whenever this object are well-typed. We denote this t€sm(T). A calculus that
accepts only canonical objects can be obtained from the typing system displayed in Figure 4.1 by simply removing
ruleIC_redex

A term in which redices appear at most in the argument of an application is said toAsaknhead-normal
form. Any well-typed term can be converted to weak-head normal form by repeatedly selecting a redex that violates
this property and reducing it. We ugeto denote the weak-head normal form of a t&fm

45



