Termination and Reduction Checking in the
Logical Framework

Brigitte Pientka and Frank Pfenning
Department of Computer Science
Carnegie Mellon University

1 Introduction

The logical framework LF [HHP93] offers concise encodings of deductive sys-
tems and their meta-theory. Twelf [SP98] is a realization of LF. It provides a
higher-order logic programming language for the implementation of deductive
systems as well as a higher-order inductive theorem prover to automatically
prove properties about these systems. The inductive theorem prover has been
used successfully to prove several challenging theorems like cut-admissibility
of intuitionistic logic and the Church-Rosser theorem. Under the proofs-as-
programs paradigm the application of the induction hypothesis (IH) in a proof
corresponds to the recursive call in a program. To check that the IH application
is valid, we need to show that the induction hypothesis is smaller than the induc-
tion conclusion according to a well-founded order. This corresponds to proving
that the arguments in the recursive call decrease according to a well-founded
order, i.e., a program terminates. Twelf uses a termination checker based on
structural ordering [RP96] to check termination of programs and to generate
valid induction hypotheses according to a given order.

We are interested in extending the power of the induction component to
enable complete induction or so called course-of-value ind. Complete induction
plays an important role in proofs about sequences of computation. These proofs
follow by induction on the structure of the computation sequence. Often we do
not only want to apply the induction hypothesis to immediate subsequences,
but to all smaller subsequences. In general, we also want to be able to apply
the induction hypothesis to the outcome of a previous IH application. This
can be done by first showing that the computation sequence resulting from the
IH application is smaller than the sequence we applied the IH to. Then we
verify that each IH application itself is valid, i.e. the sequence we apply the
IH to is smaller than the original sequence. To show that a subcomputation
is smaller than the original sequence of computation we need to reason about
orders relating subsequences.

In this paper, we present a reduction and termination checker which reasons
about orders. The reduction checker verifies properties relating input and out-

put. The termination checker proves properties relating inputs of the original
call to inputs of the recursive call. Both checkers take into account already
derived reduction properties and reason about them. Our method can be used
in a first-order and higher-order framework. To infer whether an order holds,
we use a deductive system in the spirit of the sequent calculus. We show com-
pleteness of our approach by proving cut to be admissible. The reduction and
termination checker is implemented in Twelf and has been used to check various
programs and inductive proofs.

Most work in automating termination proofs has been done for first-order
languages ([AGO00], [GBGY99]). To show termination in a higher-order setting
mainly two methods have been developed (for a survey see [vR99]): the first
approach relies on strict functionals by van de Pol [vdPS95], and the second
one is a technique developed by Jouannaud and Rubio for proving termination
of recursive path ordering [JR99]. Neither of these approaches provides an
algorithmic method for proving termination.

Unlike most other approaches, we are interested in checking a given order
for a program-proof and not in synthesizing an order for a program-proof. As
a consequence the user has to specify an order. The advantage is that checking
whether a given order holds is more efficient than synthesizing orders. In the
case of failure, we can provide detailed error messages. These help the user to
revise the program-proof or to refine the specified order.

The paper is organized as follows: We illustrate complete induction and
the reasoning about orders by discussing a proof which arises during compiler
verification [HP92] in section 2. By means of this example, we review the
background (see 3) and explain the main idea of our approach. In section 4 we
outline deductive system for reasoning about orders and discuss completeness of
the system. Finally, in section 5 we discuss related work, summarize the results
and outline future work.

2 Motivation

In this section, we motivate our approach by considering an example from com-
piler verification [HP92]. A compiler can be viewed as an abstract machine. The
computation in an abstract machine (and a real machine) can be represented as
a sequence of states.

We consider the operational semantics of an abstract machine for a small
subset of a programming language. The only operations we are discussing are
application and lambda abstraction. A state consists of a continuation K to-
gether with a machine instruction I. In each single step we transition from
one state of the abstract machine to another. The instruction I represents
the program to be executed. The continuation K represents the computation
which needs to be performed on I and can be viewed as an environment.
Instructions model left to right execution of the program, i.e. if we evaluate the
application ejes , then we first evaluate expressions e; and save the continuation
Av.appi v ea. The continuation represents what remains to be done. When the

expressions : e = zlejez|Az.e

values : v u=Aze

instructions : I = ret v|ev e|app; velapps v1v2
continuation : K = init|K; vt

states : S = K#I|ansv

value v; of expression e; is computed, we return it (ret v1). Then, expression eg
is evaluated and the continuation Av.apps v v is saved until the computation
of expression e is finished.

Figure 1 describes the operational semantics of the abstract machine and
inference rules representing the evaluation of expressions. Deductions of the

One-step transitions: Multi-step transitions:
lam " id

K#(ev Az.e) — K#(ret Az.e) S5 5

app S — Sl Sl 'L> S’
K#(ev erez) — (K; Avyi.app1 viez)#(ev e1) o <<

S S
appl

K#(app1 viez2) — (K; Avz.app2 vivz)#(ev e2)

app2
K#(app2 (Av2.e1)v2) — K#(ev (Avz.e1)v2) Evaluation of expressions

t — _
(K; I)#(ret v) — K#(Iv) e Xz.e — Az.e 7 lam
init e1 < Az.er’ ez vy [va/zler’ — v

init#(ret v) — ans v e1es S v

Figure 1: abstract machine

judgement S —— S’ have a very simple form: They all consist of a sequence of
single steps terminated by an application of the id rule. We will follow standard
practice and use a linear notation for sequences of steps:

Si—— Sy — S3+—...— S,

Similarly, we will mix multi-step and single-step transitions in sequences with
the obvious meaning.

We will discuss a central theorem when proving soundness of a compiler. The
lemma states that a complete computation with an appropriate initial state can
be translated into an evaluation followed by another complete computation.
More formally, if an expression e evaluates in an environment K in multiple
steps to some answer w then there exists an evaluation of expression e which
results in a value v and a subcomputation in environment K starting with the
value v which will return an answer w. For a more detailed discussion of this
example we refer to [Pfe00].

Theorem 1 If D :: K#(ev e) — (ans w) then € :: e < v and
D' K#(ret v) v~ (ans w) and D' < D.
Proof: By structural induction on D. Note we need the extra side condition D’ < D
to apply the induction hypothesis on D’ several times to finish the prove.
Case: D begins with app.
D = K#(ev eres) — (K; \vi.app: viea)#(ev e1) — (ans w)

e
By induction hypothesis on D’ there exists a value v1 and an evaluation & :
e1 = v1 and a subcomputation Dy : (K; \vi.app1 viez)#(ret v1) — (ans w)
s.t. D1 < D. By unfolding the subcomputation D; we yield the following
computation sequence:
Dy = (K;Avi.app: viez)#(ret v1) — K#(app: viez) —
(K; Avz.apps2 v1v2)#(ev e2) — (ans w)

DII
By induction hypothesis on D" there exists a value v2 and an evaluation & :
e2 < vz and a subcomputation Dz : (K; \v2.apps v1v2)#(ret v2) —— (ans w)
s.t. Dy < D".

By unfolding the subcomputation D":
D3 = (K; Mva.app2 v1v2)#(ret v2) — K#(app2 v1v2) — (ans w)

Dy
We can unfold Dy and set v1 to Az.e’y:
Ds = K#(app2 (Az.e1')v2) — K#(ev [v2/z]er’) — (ans w)

DI

By induction hypothesis on D’ there exists a value v and an evaluation&”’ :
([v2/x]er’) < v and a subcomputation Ds : K#(ret v) — (ans w) s.t. D5 <
D"’ Recall, we needed to show the following two facts:

E:erex — v and D" : K#(ret v) — (ans w) and D" < D.

We showed that we can derive D' after several unfolding steps and three ap-
plications of the induction hypothesis. We can construct £ by using ev_app rule
and &£',&",E" as premises.

To justify each of the IH applications we need to verify 1) if we apply the IH to D’
(D", D" resp.), the resulting sequence D1 (D2, Ds resp.) is shorter (reduction
property) and 2) if we apply the IH to D’ (D", D" resp.), then D’ (D", D" resp.)
is smaller than the original computation sequence D (termination property). To
establish reduction and termination properties we need to apply transitivity
reasoning.

O

This proof illustrates the need to apply the induction hypothesis to the
outcome of the previous IH application. We formulated this reduction property
explicitly in the theorem to emphasize the necessary reasoning steps. However,
a more natural way of dealing with this situation is to strengthen the induction

order. First, we check the reduction property (reduction checker) and then
we show that the IH applications are valid (termination checker) by taking into
account the derived reduction properties. In the next section we review the basic
principles of the logical framework and show the basic idea of our approach.

3 Basic Notation

The Logical Framework (LF) was first presented in [HHP93] and forms the
basis of Twelf. The LF calculus is a three-level calculus for objects, families,
and kinds. Families are classified by kinds, and objects are classified by types,
that is, families of kind type.

Kinds K = type |z : A.K

Types A = hMy...My|z: A;.Ay
Objects M == x| z: AM|M M,
Signatures Y = X a:K|X,c: A

Context T

|0, Vo : AT, 3z : A

We will use h for type family constants, ¢ for object constants, and x for
variables. Ilx : A;.As denotes the dependent function type or dependent prod-
uct: the type As may depend on an object x of type A;. Whenever = does not
occur free in As we may abbreviate Iz : A;.As as Ay — As.

The following principal judgments characterize the LF type theory.

ThFsM=M':A, ThsA=A':type object and type equivalence
FX ks T K the validity of signatures, contexts, kinds
TFsA: K and THsM : A assigning kinds to types, types to objects

The equivalence = is equality modulo Bn-conversion. We will rely on the
fact that canonical (i.e. long Bn-normal) forms of LF object are computable and
that equivalent LF objects have the same canonical form up to a-conversion.
We assume that constants and variables are declared at most once in a signature
and context, respectively. As usual we apply tacit renaming of bound variables
to maintain this assumption and to guarantee capture-avoiding substitutions.

To illustrate the use of basic notation, we consider the representation of the
abstract machine which was introduced in the last section. The operations ap-
plication and lambda abstraction can be represented as canonical LF objects of
type exp. Values, continuations, instructions and states are defined in a simi-
lar fashion. The evaluation derivation e < v is represented by the judgement
eval : exp -> val -> type. in Twelf. Similarly, we can encode the one-
step transition system and the multi-step transition system as a judgements in
Twelf.

oxp : tvoe ev_lam : eval (lam E) (lam* E).
p i type. eviapp : eval (app E1 E2) V

‘l’al Eypi-_>) s <- eval E1 (lam* E1’)
am : va exp exp. <- eval E2 V2
app : exp -> exp —> exp.

<- eval (E1’ V2) V.

In this example we reversed the function arrows, writing A, < Aj, instead of
A; — As following logic programming notation. Since — is right associative, <
is left associative. The capitalized identifiers that occur free in each declaration
are implicitly II-quantified. The appropriate type is deduced from the context
during type reconstruction. The fully explicit form of the first declaration would
be evlam: IIE: val -> exp. eval (lam E) (lam* E).

The proof discussed in the previous section can be written as a judgement
csd. The recursive call in the csd_app declaration corresponds to the application
of the induction hypothesis. (D’ << app) represents the unfolding step D =
K+#(ev eres) — (K vi.app1 viea)#(ev e1) — (ans w) in the informal proof.

e
csd : K # (ev E) =>x (answer W) -> eval E V -> K # (ret V) =>* (answer W) -> type.
%mode csd +CS -E -CS’.
csd_.lam : csd (D’ << lam) (ev_lam) D’.
csdapp : csd (D’ << app) (ev_app E’’’ E’’ E’) D5

<- csd D’ E’ (D’’ << appl << ret)
<- csd D’’ E’’ (D’’’ << app2 << ret)
<- csd D’’’ E’’’ D5.

For checking termination the user has to specify which input arguments we

need to consider and in which order they diminish. The specified input ar-

gument can either be atomic, or represent a lexicographic ({Argy, Arga}) or

simultaneous ([Argi, Args]) relation of several input arguments. In the given

example, we specify that the predicate csd should terminate in the first argu-

ment by %terminates D (csd D E D’). For reduction checking we specify an

explicit order relation between input and output elements which relates either

atomic arguments or lexicographic / simultaneous arguments to each other. In

the example we could say %reduces D’ < D (csd D E D’). To show that the

implementation of the proof terminates, we need to prove the following two

properties:

1. Reduction: if (D” << appl << ret) < D', (D"'<< app2 << ret) < D" and
Ds < D" then (Ds < (D'<< app)).

2. Termination:

(a) D' < (D'<< appl)

(b) if (D"<< appl << ret) < D’ then D" < (D'<< appl)

(c) if (D"<< appl << ret) < D' and (D"'<< app2 << ret) < D’ then
D" < (D'<< app).

The reduction property relates inputs and outputs. The reduction checker
first analyzes a declaration and extracts i/o relations which are valid according
to a given order. Hypothetical and parametric judgments are analyzed and
checked recursively, possibly leading to parametric i/o relation. In the second
step, we show that the (parametric) i/o relations from the recursive calls imply
the i/o relation from the original call.

The termination checker extracts for each recursive call a termination prop-
erty relating inputs of the original calls to inputs of the recursive calls possibly

taking into account (parametric) i/o relations of previous calls. Note all ex-
tracted reduction properties are valid, i.e. the truth of the reduction properties
does not depend on any assumptions. In the next section, we present a deductive
system for reasoning about orders.

4 Reasoning about orders

In this section, we develop a deductive system to reason about orders. Ar-
guments of an order can either be an object or it can be a lexicographic or
simultaneous extension. We will concentrate on the case where arguments of
the order are atomic, i.e. they are objects. However our system extends to
lexicographic and simultaneous orders in a straightforward manner. An order
predicate is either the < subterm relation or the = subterm relation. As para-
metric judgements in the LF framework induce parametric orders, we allow to
quantify over parameters which occur in an order relation (Ilz : A.P). In a

Pred. Context A |A, P
Order Predicate P n= Iz : A.P|Args < Args|Argr 5 Arge
Arg Arg M|{Argi, Arga}|[Args, Args)]

first-order setting reasoning about orders is straightforward. The main task is
to automate transitivity reasoning efficiently. In the higher-order framework
reasoning about orders is a challenging task. First of all, we need to define an
appropriate notion of higher-order subterm relations. For first-order terms it is
straightforward to determine whether a term is a subterm of another. When
considering higher-order terms, we need to find an appropriate interpretation
for lambda-terms. For example, we want to show that F x is a subterm of
(lam E) when z is a newly introduced parameter. Another example is taken
from the representation of first-order logic [Pfe95]. We can represent formulas
by the type family o. Individuals are described by the type family i. The
constructor V can be defined as forall: (i -> o) -> o. We might want to
show that A T (which represents [t/x]A)is smaller than forall A (which rep-
resents Va.A). In the informal proof we might count the number of quantifiers
and connectives, noting that a term t in first-order logic cannot contain any
logical symbols. Thus we may consider ATa subterm of forall A as long as
there is no way to construct an object of type i from objects of type o. A
term A’ is less than a A-term (Ax.A) if there exists a parameter instantiation
a for x s.t. A’ is less than [a/z]A. A Aterm (Az.A)is less than a term A, if
for any parameter a, [a/x]A’ is less than A. We refer to the head of a type
hd(Ilzy : Ay, ..., 2n: Ay .aMy ... M,y,) as a. If the type family a (hd(A))is a
subordinate of the type family o’ (hd(A’)), i.e., o’ is mutual recursive to a, but
a is not mutually recursive to a’, then a subterm of type A can never contain a
subterm of type A’. In this case , we may instantiate a A-term of type A with
an arbitrary term M.

We will use the convention that a will represent a new parameter, while a

stands for an already defined parameter. To adopt a logical point of view, the A-
term on the left of a subterm relation can be interpreted as universally quantified
and the A-term on the right as existentially quantified. The inference system
describing subterm reasoning is presented in figure 2. We assume that we always
keep copies of Ax.M < M’, and IIz.P. There is also a set of inference rules to
reason about =X which are similar to the < rules. If the rule L < has no premises,
i.e., N is a constant ¢ with an empty spine, the hypothesis is contradictory and
the conclusion A, M < ¢ — P is trivially true. In general, the completeness of

- - l
A,P—>Pld A—>M5Mref
A — M < M, A—>M1—<M’t_< A — M I3 M A—>M15M’t<
A—M<M A M=M ~
A—MIM A— M <M A—M<M A— M 3IM
t 3< t <3
A— M < M A— M < M
A — M= N; AMIN —P ... AM=N, — P
A S M<hN .. N, BT A M <hNi...Nn — P L<
A — [a/z]M < N . A, [a/z]M < N — P
A e AM<N DESA Ao AM<N —p PEXA
A — M < [a/z]N RE < A A, M < [a/z]N — P .
A S M<iz:AN = AM<rz AN p PEXA
A —s [a/x]P A la/a]P — P’
A — Ilz.P RI A z.P — P’

Figure 2: Subterm Relations (<)

a logical system can be shown by cut-admissibility. It is important to recall that
our assumptions are the extracted valid reduction properties, i.e., they are true
without any assumptions. To show that our system is complete, it is therefore
enough to prove cut-admissibility for valid order predicates.

Proving cut-admissibility for first-order subterm relations is straightforward.
Reasoning about higher-order subterm relations introduces additional complex-
ity. As A-terms can occur on either side of the relation, this leads to non-
determinism in the proof. Reasoning about A-terms introduces new parameters.
One of the consequence of this phenomenon is that the induction hypothesis used
in the proof should be closed under substitution.

Theorem 2 (Cut admissibility)
1. IfD: . — oM <M and £ : A,M < M' — P’ then F: A — P’.
2.IfD:.— oMM and & : A,M I M — P’ then F: A — P'.

The proof follows by induction on £ and D. Let P be the cut-predicate, i.e.,
either M < M’ or M X M’. Either the order predicate P gets smaller or P
stays the same and one of the derivations is strictly smaller while the other one
stays the same. However, we will not be able to show cut-admissibility directly
in the given calculus due to the non-deterministic choices introduced by A-term.
Consider, for example, the cut between
&
D= .—ocl.M<N. A, la/z]M <N — P
&= LI\
A e M <N — P

We would like to apply inversion on D; therefore we need to consider all
possible cases of previous inference steps which lead to D. There are three
possible cases we need to consider: R <, RLA* and RR). Unfortunately, it
is not possible to appeal to the induction hypothesis and finish the proof in
the R < and RRA\ case. This situation does not arise in the first order case,
because all the inversion steps where deterministic. In the higher-order case we
have many choices. Moreover, in the higher-order case we are manipulating the
terms by instantiating variables in A-terms.

The simplest remedy seems to restrict the calculus in such a way, that we
always first introduce all possible parameters, and then instantiate them. This
means, we push the instantiation with parameter variables as high as possible
in the proof tree. This way, we can avoid the problematic case above, because
we only instantiate a A-term in Ax.M < N, if N is atomic.

Therefore, we proceed as follows: First, we define an inference system, in
which we first introduce all new parameters and take apart the left hand side
until all terms are normal. Then we transition to the system where variables in
A-terms are instantiated. Second, we show this system is sound and complete
with respect to the original inference system. Third, we show that cut is admis-
sible in the restricted calculus. This implies that cut is also admissible in the
original calculus. This way we can prove global completeness of our inference
system. For a detailed discussion see [Pie00]. When extending the inference
system and the proofs to lexicographical and simultaneous ordering, we might
ask should the following conjecture should be true:

z.[(Ay.M)(M'z)] < [(Ay.N)(N'z)] — [(A\y.M)(1lam M")] < [(\y.N)(lam N')]

The problem is that simultaneous (and lexicographical) orderings introduce a
disjunctive choice, i.e. to show [(Ay.M)(lam M')] < [(Ay.N)(lam N')] we need
to prove either (A\y.M) = (Ay.N)(lam N') and lam M’ < lam N’ or (\y.M) <
(Ay.N)(lam N’) and lam M’ X lam N’. In order to be able to instantiate the
II-quantified order on the left, we need to descend to a lambda abstraction.
Therefore, we first have to commit to a disjunctive choice. This will prevent
us from proving the given conjecture. Therefore, from a logical perspective,
this conjecture is not provable because the lambda abstraction might be buried
underneath a disjunctive choice. The fact that this conjecture is not true may
seem surprising. In practice we have not discovered any conjectures as the one
discussed here and our system proves all previous termination properties and

additional ones which involve reasoning about reduction properties.

5 Conclusion

In this paper we presented a termination and reduction checker to extend the
power of the induction theorem prover to complete (or course-of-values) induc-
tion. At the heart of the termination and reduction checker lies a deductive
system to reason about orders. We proved our system complete by showing
cut to be admissible. The termination and reduction checker is implemented
in Twelf based on the presented inference system. In the implementation we
restrict the multiplicity to one. The algorithm first normalizes the orders, i.e. it
unfolds all lexicographical/ simultaneous orders, then introduces all parameters
originating from A-terms. Then we instantiate possible II-quantified predicates
in the hypothesis and perform a second normalization phase until all orders are
atomic and all parameters have been introduces. Finally we use transitivity
reasoning and instantiate the parameters in A-terms via unification. In prac-
tice this algorithm works on all previous examples and is able to check all new
examples which require course-of-value induction.

To our knowledge this is the first method which allows reasoning about
orders and gives an algorithm for termination / reduction checking for a higher-
order framework. We expect our method to be applicable to other higher-
order frameworks like Isabelle or Aprolog. In the future, we plan to use the
termination checker to generate valid induction hypothesis during the automatic
inductive proof. This seems straightforward. As the user has to specify an
induction order, we generate the additional hypotheses only when required.
We also plan to extend the system to multi-set ordering and recursive path
orderings, incorporating results about termination order for higher-order rewrite
systems ([JR99, LP95]).

References

[AG00] Thomas Arts and Jiirgen Giesl. Termination of term rewriting using
dependency pairs. Theoretical Computer Science, 236:133-178, 200.

[GBGY9] Jeremy Gow, Alan Bundy, and Ian Green. Extesions to the estima-
tion calculus. In A. Voronkov H. Ganzinger, D. McAllester, editor,
Proceedings of the 6th International Conference on Logic for Program-
ming and Automated Reasoning (LPAR‘99), LNAI 1705, pages 258—
272, Thlisi, Georgia, 1999. Springer-Verlag.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143-184, January 1993.

10

[HPY2]

[JR99]

[LP95]

[Pfe95]

[P£e00)]

[Pie00]

[RP96]

[SP9g]

[vdPS95)

[VR99]

John Hannan and Frank Pfenning. Compiler verification in LF. In
Andre Scedrov, editor, Seventh Annual IEEE Symposium on Logic in
Computer Science, pages 407-418, Santa Cruz, California, June 1992.

J.-P. Jouannaud and A. Rubio. The higher-order recursive path or-
dering. In G. Longo, editor, Proceedings of the 14th Annual Sympo-
stum on Logic in Computer Science (LICS’99), pages 402—411, Trento,
Italy, July 1999. IEEE Computer Society Press.

Olav Lysne and Javier Piris. A termination ordering for higher or-
der rewrite systems. In Jieh Hsiang, editor, Proceedings of the Sizth
International Conference on Rewriting Techniques and Applications,
pages 26-40, Kaiserslautern, Germany, April 1995. Springer-Verlag
LNCS 914.

Frank Pfenning. Structural cut elimination. In D. Kozen, editor,
Proceedings of the Tenth Annual Symposium on Logic in Computer
Science, pages 156—166, San Diego, California, June 1995. IEEE Com-
puter Society Press.

Frank Pfenning. Computation and Deduction. Cambridge University
Press, 2000. In preparation. Draft from April 1997 available electron-
ically.

Brigitte Pientka. Termination and reduction checking in the logical
framework. Technical report cmu-cs-77?, Carnegie Mellon University,
2000.

Ekkehard Rohwedder and Frank Pfenning. Mode and termination
checking for higher-order logic programs. In Hanne Riis Nielson, edi-
tor, Proceedings of the European Symposium on Programming, pages
296-310, Linkoping, Sweden, April 1996. Springer-Verlag LNCS 1058.

Carsten Schiirmann and Frank Pfenning. Automated theorem prov-
ing in a simple meta-logic for LF. In Claude Kirchner and Hélene
Kirchner, editors, Proceedings of the 15th International Conference
on Automated Deduction (CADE-15), pages 286-300, Lindau, Ger-
many, July 1998. Springer-Verlag LNCS 1421.

J. van de Pol and H. Schwichtenberg. Strict functionals for termina-
tion proofs. In M. Dezani-Ciancaglini and G. Plotkin, editors, Pro-
ceedings of the International Conference on Typed Lambda Calculi
and Applications, pages 350-364, Edinburgh, Scotland, April 1995.
Springer-Verlag LNCS 902.

Femke von Raamsdonk. Higher-order rewriting. In Proceedings of the
10th International Conference on Rewriting Techniques and Applica-
tions (RTA ’99), pages 220-239, Trento, Italy, July 1999. Springer-
Verlag LNCS 1631.

11

