
Unification in a λ-Calculus with
Intersection Types

Michael Kohlhase
FB Informatik
Universität des Saarlandes
W-6600 Saarbrücken, Germany
kohlhase@cs.uni-sb.de

Frank Pfenning
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA
fp@cs.cmu.edu

Abstract

We propose related algorithms for unification and constraint simplification in
λ→&, a refinement of the simply-typed λ-calculus with subtypes and bounded
intersection types. λ→& is intended as the basis of a logical framework in
order to achieve more succinct and declarative axiomatizations of deductive
systems than possible with the simply-typed λ-calculus. The unification
and constraint simplification algorithms described here lay the groundwork
for a mechanization of such frameworks as constraint logic programming
languages and theorem provers.

1 Introduction

The motivation for our work comes from the area of logical frameworks. A
logical framework is a meta-language for the specification and implementa-
tion of deductive systems as they arise in logic and the study of programming
languages. Examples of such frameworks are LF [5], hereditary Harrop for-
mulae [12], and ALF [10]. All these frameworks are based on some type
theory. They have been used as the basis for the logic-independent theo-
rem prover Isabelle [15] and the logic programming languages λProlog [13]
and Elf [16]. Extensive experiments in logic and the theory of programming
languages have been carried out in these implementations.

In a recent paper [17] the second author has proposed a refinement of
the type theory λΠ underlying the LF logical framework in order to sim-
plify the presentation of many deductive systems. This refinement, λΠ&,
incorporates subtypes and intersection types. In addition to a more natural
reflection of informal mathematical practice in the specifications of languages
and deductive systems, we also believe that refinement types can be bene-

ficial to execution in logic programming languages such as λProlog or Elf
and to search in theorem provers such as Isabelle. In first-order languages
the potential of order-sorted type structures have long been realized (see,
for example, [22, 21, 6]) and we see our work as a natural extension of these
efforts.

At the heart of theorem proving or logic programming lies unification.
In this paper we present 3 related algorithms for unification and constraint
simplification for λ→&, a refinement of the simply-typed λ-calculus with
subtypes and bounded intersection types. It builds upon Huet’s algorithm
for the simply-typed λ-calculus [7] and extensions to related languages by
Nipkow and Qian [14] and the first author [8, 9], although the systems are
incomparable in terms of their expressive power. The motivating example
below should help to illustrate the differences. A λ-calculus with simple
subtypes as considered by [14] contains no intersections and type labels on
λ-abstractions are not interpreted as bounds. This means that the necessary
sort computations for our algorithm are significantly more complex. The sys-
tem considered by the first author in [9] permits so-called term declarations
which lead to an undecidable type-checking problem and is thus in some
ways more general. On the other hand, in order to model intersection types,
one would have to add an infinite collection of new types and infinitely many
new term declarations to a given signature.

The rest of this paper is structured as follows. We begin with a moti-
vating example in the context of λProlog, followed by the definition of λ→&.
We then discuss general (pre)-unification in λ→&. We conclude the paper by
presenting transformations for unification restricted to higher-order patterns
in the sense of Miller [11].

2 A Motivating Example

The value of subsorting (sometimes called subtyping) for first-order logic
programming languages has long been recognized and extensively investi-
gated (see, for example, [22, 6, 18]). Type systems with subsorts afford
a concise, yet declaratively correct formulation of many programs. Fur-
thermore, many programming errors manifest themselves as type errors at
compile-time. Current higher-order logic programming languages with a
term language including λ-abstractions (such as λProlog or Elf) are based
on simple, polymorphic, or dependent type disciplines, but do not incor-
porate a notion of subtyping. This can be traced in part to a lack of a
uniform and accurate type system that combines function types (which clas-
sify λ-abstractions) with subtyping. As a motivating example we consider
the classification of legal goals and programs in λProlog. We begin with the
language of formulae.

Simple Types A ::= a | o | A1 → A2

Formulae F ::= At | F1 ∧ F2 | F1 ⊃ F2 | F1 ∨ F2 | ∀x:A. F | ∃x:A. F

Here o is the distinguished type for formulae and a stands for explicitly
declared type constants. An atom At has the normal form hM1 . . .Mn for
a variable or non-logical constant h, where the type of the whole expression
must be o. Programs and goals must be restricted in order to guarantee
that the uniform proof property is satisfied for the resulting logic and goal-
directed search will be complete. The restriction we show here is to higher-
order hereditary Harrop formulae [12]. The notation Atr stands for rigid
atoms, that is, atoms whose head must be a constant.

Programs D ::= Atr | D1 ∧D2 | G ⊃ D | ∀x:A. D
Goals G ::= At | G1 ∧G2 | G1 ∨G2 | D ⊃ G | ∃x:A. G | ∀x:A. G

There is one further restriction: subterms of Atr may not contain implica-
tions. If this restriction were relaxed, then for constants q and r of type o
and p of type o→ o, the goal pG ∧G has a proof given the program

p((q ∨ r) ⊃ (r ∨ q)),

but it has no uniform proof. The difficulty is that the subterm (q∨r) ⊃ (r∨q)
is not a legal goal, but becomes a goal after the instantiation of the variable
G. Unfortunately this restriction also rules out programs such as meta-
interpreters which cannot lead to a failure of the uniform proof property. In
order to circumvent this problem, we would like to distinguish legal goals g
and legal programs d as refinements of the type o of formulae. This leads to
the following refinement declarations

g :: o

d :: o

But what then is the type of conjunction, for example? For one, it maps two
goals to a goal, but is also maps two programs to a program. Of course, it
also still maps two arbitrary formulae to a formula. Similar considerations
apply to implication and we have

∧ : o→ o→ o ⊃ : o→ o→ o

∧ : g → g → g ⊃ : d→ g → g

∧ : d→ d→ d ⊃ : g → d→ d

The declarations for the remaining logical constants can now easily be added;
we omit them here for the sake of brevity. Multiple typings are not limited
to constants: the function λx:o. λy:o. y ∧ x, for example, should intuitively
have precisely the same types as ∧. In order to see this consider the result
of applying this function to two goals G1 and G2: the result will always be
a goal (namely G2 ∧ G1). But this fact cannot be expressed in a system
of simple subtypes (such as the one considered in [14]): we need to add
intersection types, written as A1 &A2. With the system we propose below
we can infer, for example,

(λx:o. λy:o. y ∧ x) : (o→ o→ o) &(g → g → g) &(d→ d→ d)
(λx:o. λy:o. y ⊃ x) : (o→ o→ o) &(g → d→ g) &(d→ g→ d)

In contrast to other calculi, the type labels on λ-abstractions here must be
considered as bounds on the sorts of possible instantiations of the variable.
Thus, in order to type-check a λ-expression λx:A. M we must analyze M
for every subtype of A. In order to guarantee that this process remains
finitary and principal types exist, we distinguish between proper types and
sorts. Proper types (such as o in our example) divide terms into disjoint
collections. Sorts (such as g and d) refine the type structure by classifying
terms (which must already possess the same proper type) more accurately
than is possible with proper types alone. We thus refer to this type system
as a system of refinement types. Note that sorts may not necessarily be
disjoint. For example, every (rigid) atom is both a legal goal and a legal
program. Thus a new predicate pred on integers should be declared with

pred : int → (g& d)

or we could add another sort a of atoms and declare it a subsort of both d

and g:
a :: o a ≤ g a ≤ d

pred : int → a

With this type structure, we can now safely program with higher-order pred-
icates without undue restrictions. The counterexample above now fails, since
G is a variable of sort g and the argument (q ∨ r) ⊃ (r ∨ q) does not have
sort g (only type o). On the other hand, safe usage in a meta-interpreter
such as

∀D:d. ∀G:g. (hyp(D) ⊃ solve(G)) ⊃ solve(D ⊃ G)

is permitted if we have the typings solve : g → g and hyp : d→ d.
We have many other examples where refinement types are beneficial in

higher-order logic programming. For example, in the higher-order repre-
sentation of natural deductions [2] one can distinguish normal forms as a
refinement of arbitrary derivations instead of explicitly encoding two dif-
ferent representations. In the implementation of functional languages [4]
refinement types can distinguish values from arbitrary expressions instead
of leaving this distinction implicit. The interested reader is referred to [17]
for further examples and discussion.

3 Basic Definitions

The syntax of λ→& is that of the simply-typed λ-calculus augmented with
the intersection operator & for types. The main change in the language
concerns signatures, where we drop the restriction that each constant be
declared at most once. We furthermore add refinement declarations a1 :: a2

which declares sort a1 as a refinement of type a2 and subsort declarations
a1 ≤ a2 which declares that a1 is a subsort of a2. The inference rules for

valid signatures guarantee certain consistency properties between multiple
declarations.

Types A ::= a | A1 → A2 | A1 &A2

Objects M ::= c | x | λx:A. M | M1M2

Contexts Γ ::= · | Γ, x:A

Signatures Σ ::= · | Σ, a:Type | Σ, c:A | Σ, a1 :: a2 | Σ, a1 ≤ a2

We use a and b to range over type constants, c to range over object constants,
and x, y, and z to range over object variables. We also restrict contexts
so that each variable is declared at most once. Since we also identify α-
convertible terms, this does not essentially restrict the inference rules below.
We will call A&B the intersection of A and B, but refer to A and B as its
conjuncts.

Our system is more restrictive than customary formulations of intersec-
tion types (see, for example, [1, 19, 20]). The validity judgments below
introduce a distinction between proper types and sorts. Proper types behave
essentially like simple types and do not contain intersections. Sorts further
refine proper types by enabling a more precise classification of terms, but
sorts can only be intersected or compared if they refine the same proper
type. In the context of a functional language as in [3], this leads to a decid-
able type inference problem. Here we are more concerned with the fact that
the adequacy of representations in the logical framework is preserved. For
this it is vital that we do not extend the language of λ-terms, but only the
language of types that classify them. Thus the type labels in λ-abstractions
are restricted to proper types. For type-checking, a type label A acts as a
bound and the body of the λ-term is analyzed for each sort B that refines A.
By the restrictions sketched above only finitely many such sorts B exist up
to a simple syntactic equivalence. For further discussion and some examples
the interested reader is referred to [17].

3.1 Judgments

The validity judgments have the following form. Here, Type is a special
token to allow a uniform presentation of the validity judgments for types
and objects.

` Σ Sig Σ is a valid signature

Σ̀ Γ Ctx Γ is a valid context

Σ̀ A : Type A is a valid type
Γ Σ̀ M : A M is a valid object of type A

We also need some auxiliary judgments. In particular,

Σ̀ A :: B A refines B

Σ̀ A ≤ B A is a subsort of B

We begin with the refinement judgment for types.

Σ̀ A1 :: B1 Σ̀ A2 :: B2

Σ̀ A1 → A2 :: B1 → B2

Σ̀ A1 :: B Σ̀ A2 :: B

Σ̀ A1 &A2 :: B

a:Type in Σ

Σ̀ a :: a

a :: a′ in Σ

Σ̀ a :: a′

Note that the refinement relation is neither transitive nor reflexive. The
conditions on valid signatures will guarantee that exactly one of the last
two rules is applicable for any declared constant, and the second only for a
unique a′. This implies that in a valid signature Σ for a given A there exists
at most one B such that Σ̀ A :: B. We call a type A such that Σ̀ A :: A a
proper type.

The next set of rules defines the valid signatures.

` · Sig

` Σ Sig a not declared in Σ

` Σ, a:Type Sig

` Σ Sig Σ̀ A : Type Σ̀ A :: A′ Σ̀ Ai :: A′ for every c:Ai in Σ
(1)

` Σ, c:A Sig

` Σ Sig a2:Type in Σ a1 not declared in Σ

` Σ, a1 :: a2 Sig

` Σ Sig a1 :: a3 in Σ a2 :: a3 in Σ

` Σ, a1 ≤ a2 Sig

The rule (1) for constant declarations enforces that in a valid signature, all
types Ai declared for a given constant c refine the same proper type A′.
Valid contexts are straightforward, just as in the simply-typed λ-calculus.

Σ̀ · Ctx

Σ̀ Γ Ctx Σ̀ A : Type

Σ̀ Γ, x:A Ctx

The rules for valid types enforce that all type constants are declared and that
sorts can only be intersected if they refine a common proper type.

a:Type in Σ

Σ̀ a : Type

a :: b in Σ

Σ̀ a : Type

Σ̀ A1 : Type Σ̀ A2 : Type

Σ̀ A1 → A2 : Type

Σ̀ A1 : Type Σ̀ A2 : Type Σ̀ A1 :: B Σ̀ A2 :: B

Σ̀ A1 &A2 : Type

Subsorting is contravariant in the domain sort, as expected. The rules guar-
antee that we can only compare sorts that refine a common proper type.

a ≤ b in Σ

Σ̀ a ≤ b
Σ̀ A1 :: B Σ̀ A2 :: B

Σ̀ A1 &A2 ≤ A1

Σ̀ A1 :: B Σ̀ A2 :: B

Σ̀ A1 &A2 ≤ A2

Σ̀ A ≤ B1 Σ̀ A ≤ B2

Σ̀ A ≤ B1 &B2

Σ̀ A→ B1 :: C Σ̀ A→ B2 :: C

Σ̀ (A→ B1) &(A→ B2) ≤ A→ (B1 &B2)

Σ̀ B1 ≤ A1 Σ̀ A2 ≤ B2

Σ̀ A1 → A2 ≤ B1 → B2

Σ̀ A :: B

Σ̀ A ≤ A
Σ̀ A ≤ B Σ̀ B ≤ C

Σ̀ A ≤ C

We introduce a partial equivalence relation ∼ on types by defining Σ̀ A ∼ B
as an abbreviation for Σ̀ A ≤ B and Σ̀ B ≤ A. It is easy to verify that
(with respect to a valid signature) any proper type has only finitely many
refinements up to ∼ equivalence.

Lemma 1 (Basic Properties of Sorts) We implicitly assume that both
sides of each of the equivalences below refine the same type.

(i) A&B ∼ B&A, (ii) A&(B&C) ∼ (A&B) &C,

(iii) A&A ∼ A, (iv) (A→ B) &(A→ C) ∼ A→ B&C.

In the rules for valid objects we see that the type label of a λ-abstraction
must be a proper type and that the body of the λ-expression may be analyzed
for every sort which refines this type.

x:A in Γ

Γ Σ̀ x : A

c:A in Σ

Γ Σ̀ c : A

Γ Σ̀ M : A1 Γ Σ̀ M : A2

Γ Σ̀ M : A1 &A2

Γ Σ̀ M : A Σ̀ A ≤ B
Γ Σ̀ M : B

Γ Σ̀ M1 : A2 → A1 Γ Σ̀ M2 : A2

Γ Σ̀ M1 M2 : A1

Σ̀ B :: A Γ, x:B Σ̀ M : C

Γ Σ̀ λx:A. M : B → C

3.2 Algorithmic Judgments

The judgments given above are declarative and it is not immediately obvious,
for example, if the subsorting or typing judgments are decidable. Following
Pierce [19], we formulate new versions of these judgments which directly

embody an algorithm for deciding subsorting and synthesizing a minimal
type for an object.

We start with the algorithmic version of the subtype judgment, Σ̀ A v B.
It requires an auxiliary operator • on types that is used to uncurry function
types.

Σ̀ a v a
a ≤ a′ in Σ Σ̀ a

′ v b

Σ̀ a v b

Σ̀ A1 v B → a

Σ̀ A1 &A2 v B → a

Σ̀ A2 v B → a

Σ̀ A1 &A2 v B → a

Σ̀ A v B • C1 → C2

Σ̀ A v B → (C1 → C2)

Σ̀ B1 v A1 Σ̀ A2 v B2 → a

Σ̀ A1 → A2 v B1 •B2 → a

Σ̀ A v B → C1 Σ̀ A v B → C2

Σ̀ A v B → C1 &C2

Theorem 2 The judgment Σ̀ A v B is effectively decidable. Furthermore,
if A and B are types not containing the • operator such that Σ̀ A :: C and

Σ̀ B :: C for some C, then Σ̀ A ≤ B, iff Σ̀ A v B.

Proof: By an interpretation into Pierce’s system [19].

The second judgment expresses that M has minimal type A, written as
Γ Σ̀ M ∈ A. For the purposes of this system and the remainder of the paper,
it is convenient to treat intersection as an operator on multiple arguments
and occasionally a set of arguments. This is admissible in view of the basic
properties of & (cf. Lemma 1).

x:A in Γ

Γ Σ̀ x ∈ A Γ Σ̀ c ∈ &{A|c:A in Σ}

Γ Σ̀ M1 ∈ &
i
(Bi → Ci) Γ Σ̀ M2 ∈ A

Γ Σ̀ M1 M2 ∈ &{Ci| Σ̀ A v Bi}

Γ Σ̀ λx:A. M ∈ &{B → C| Σ̀ B :: A; Γ, x:B Σ̀ M ∈ C}

The intersection operator applied to an empty set is undefined. The last
rule could lead to an infinite intersection, but there are only finitely many

refinements of a proper type up to ∼. Thus only finitely many conjuncts
contribute to the intersection and we can operationalize the rule by assum-
ing a fixed algorithm for enumerating refinements of a proper type. This
inference system is now syntax-directed, and it is therefore immediate that
the judgment Γ Σ̀ M ∈ A is decidable.

Theorem 3 Given a valid signature Σ, a context Γ valid in Σ and types A
and B valid in Σ. Then Γ Σ̀ M : A iff Γ Σ̀ M ∈ B and Σ̀ B ≤ A.

Proof: Again, via an interpretation into the system of Pierce. It is cru-
cial for this interpretation that the number of ∼-equivalence classes of sorts
refining a proper type is finite.

Lemma 4 Let Σ̀ A :: A1 → A2, then Γ Σ̀ M : A, iff Γ Σ̀ λx:A1. Mx : A.

Proof: Via completeness of the algorithmic judgments.

We will write M ≡ N , if M and N are convertible by βη-conversions.

Lemma 5 (Normal Form Lemma) Let M be a term such that Γ Σ̀ M :
C. Then there is a long normal form N = λx1:F1 . . . xn:Fk. hN1 . . .Nm,
such that h is a constant or variable and M ≡ N . As usual we call h the
head of M .

4 General Bindings and Type Constraints

The notion of a general binding is central to all higher-order unification
algorithms. In contrast to the simply typed λ-calculus, general bindings for
terms in λ→& are not unique up to the choice of the new variables. Therefore
we obtain additional nondeterminism in the imitation and projection steps.
However, in contrast to the case with full term declarations [9], we have that
type-erasures of all general bindings are unique and the types of the new
variables only depend on the types of the binding and its head. Therefore
we will handle the nondeterminism by introducing type variables (which we
denote by α) for the unification algorithm and delay the computation of
the actual type information for the new variables into type constraints. In
order to simplify the notation we write A for the proper type B such that

Σ̀ A :: B. We also assume in the following that all types are valid, thus A
always exists and is unique.

Definition 6 (General Binding) Let h be a constant or variable with
Γ Σ̀ h ∈ A and C ∼ &j≤l C1j → . . .→ Ckj → Dj a sort. Then the general
binding G of type C with the head h is the term

G = λx1:C1j . . . λxk:Ckj . h[y1x1 . . . xk] . . . [ynx1 . . .xk]

where yi: &j≤l C1j → . . .→ Ckj → αji and the {αji |1 ≤ i ≤ n} are solutions
of the type constraint SChC defined below. As Lemma 8 will show, G is a
most general term with head h and sort C.

If h is a constant or a free variable we write the general binding as GhC
and call it a general imitation binding. If h is the bound variable xi, then we
write GiC and call it the general i-projection binding. In this case we write
the type constraint as SCiC.

In order for Γ Σ̀ GhC : C to hold we have to guarantee that for all 1 ≤ j ≤ l

Γ, x1:C1j, . . . , xk:Ckj Σ̀ h[y1x1 . . . xk] . . . [ynx1 . . .xk] : Dj.

This in turn requires that h at least map the αji intoDj. These considerations
together with the co- and contravariance of ≤ explain the type constraints

SChC = A ≤ &1≤j≤l α
j
1 → . . .→ αjn → Dj,

SCiC =
∧

1≤j≤l Cij ≤ α
j
1 → . . .→ αjn → Dj

Definition 7 We will call a substitution σ = [M1/x1, . . . ,Mn/xn] well-typed
in a context Γ, iff Γ Σ̀ xi : Ai implies Γ Σ̀ Mi : Ai. Let W be a set of
variables. Then we write σ = θ[W] if for all x ∈ W , σ(x) = θ(x), and
σ ≤ θ[W] if there exists a well-typed substitution ρ such that ρ ◦ σ = θ[W].

Lemma 8 (General Binding Lemma) If Γ ` M : C and the head of M
is h, then there exists a general binding G of type C with the head h and a
well-typed substitution θ, such that θ(G) ≡M .

Proof: By lemma 5 we can assume M to be in normal form, that is, M has
the form λx1:F1 . . . λxk:Fk. hN1 . . .Nn. We only treat the case where h is
not a bound variable — the other case is similar. Let C = &j≤l C1j → . . .→
Ckj → Dj and Γ Σ̀ M : C. Then Γ, x1:C1j, . . . , xk:Ckj ` hN1 . . .Nn : Dj for
all 1 ≤ j ≤ l.

Now let A = &j≤mA1j → . . .→ Anj → Bj and Γ Σ̀ h ∈ A. Thus, since
hN1 . . .Nn is well-typed and of type Dj, there is a k ≤ m, such that Σ̀ Bk v
Dj and there are types F ji , such that Γ Σ̀ Ni ∈ F ji and Σ̀ F ji v Ajk. We

can easily verify that Γ Σ̀ A1k → . . .→ Ank → Bk v F j1 → . . .→ F jn → Dj

for all j, so the type assignment [F ji /α
j
i] is a solution of SChC.

Now let G be the general binding for the head h and the type C

G = λx1:C1j . . . λxk:Ckj . h[y1x1 . . . xk] . . . [ynx1 . . .xk]

such that yi: &j≤l C1j → . . . → Ckj → αji . We note that Cij is just Fi and
define θ(yr) = λx1:F1 . . . λxk:Fk. Nr. Then θ is well-typed in the context Γ
and we furthermore have that θ(G) ≡ λx1:F1 . . . λxk:Fk. hN1 . . .Nn.

Lemma 9 If θ = [M/x] ∪ θ′ then there exists a general binding G and a
substitution ρ, such that θ = [M/x]∪ρ∪ θ′[dom(θ)] = ρ ◦ [G/x]∪ θ′[dom(θ)].

Proof sketch: Directly from Lemma 8.

Example 10 Let

Σ = B:Type, T :: B, F :: B,∧:T → T → T,∧:T → F → F,

∧:F → T → F,∧:F → F → F.

Then

G∧T→F &F→T = λx:B. ∧ [y1x][y2x]
SC∧T→F &F→T = T → T → T &T → F → F &F → T → F

&F → F → F ≤ α1
1 → α1

2 → F &α2
1 → α2

2 → T

The constraints on the types of y1 and y2 have the following three solutions

y1:F → T &T → F, y2:F → T &T → T

y1:F → T &T → F, y2:F → T &T → F

y1:F → T &T → T , y2:F → T &T → F

5 General Unification and Pre-Unification

Building upon the notion of general binding and type constraint simpli-
fication we give a set of transformations for general unification and pre-
unification, which we will prove correct and complete with the methods of
[23].

Definition 11 (Unification Problem) A unification problem is a formula
in the language

F ::= M
.
= N | ∃x:A. F | ∀u:A. F | ∃α :: A. F | F1 ∧ F2 | > | A1 ≤ A2

where the types A may now contain type variables α. We will call all subfor-
mulae of F of the form A1 ≤ A2 type constraints. The refinement judgment
is extended in the obvious way (assuming α refines A in the scope of ∃α :: A)
and we require that for each type constraint A1 ≤ A2 there is a proper type
A such that A1 :: A and A2 :: A.

Since we have defined type variables to range only over the (finite) set
of refinements of a given type, the set of solutions of a type constraint is
effectively computable by a generate-and-test approach. It is clear, however,
that this is not a viable implementation strategy. A more reasonable con-
straint simplifier can be derived from the algorithmic rules for subtyping,
but we leave the details to a future paper.

In order to simplify the presentation of the algorithm, we assume that
all unification formulae are in ∃∀-form. Each formula is equivalent to one in
this form by raising [11]. We will refer to the universally quantified variables
as parameters and use the meta-variables u and v to range over parameters.

Note that they may not occur in the substitution terms for existential vari-
ables, which we denote by x, y, and z. We also use h to stand for either a
constant or a parameter. Furthermore, we fix the signature Σ and omit the
context Γ and simply write M ∈ A for the judgment Γ Σ̀ M ∈ A when the
context Γ can be recovered from the place in which M appears.

Definition 12 (Provability) The basic judgment is Γ `̀ F (F is provable)
is defined by the following inference rules.

Γ Σ̀ M : A M ≡ N Γ Σ̀ N : A

Γ `̀ M .
= N Γ `̀ >

Γ `̀ F Γ `̀ G
Γ `̀ F ∧G

Γ Σ̀ M : A Γ `̀ [M/x]F

`̀ ∃x:A. F

Σ̀ B :: A Γ `̀ [B/α]F

`̀ ∃α :: A. F

Γ, u:A `̀ F
Γ `̀ ∀u:A. F

Σ̀ A ≤ B
Γ `̀ A ≤ B

We call a substitution σ for the existential variables in a unification
formula F legal for F if it is well-typed and no parameters occur in the
instantiation terms for σ. Note that a proof of a formula F in ∃∀ form
uniquely determines a legal substitution σ for the existential variables in F .
Conversely, any ground instance of a legal unifier for the equations in the
matrix of F uniquely determines a proof for F . In slight abuse of notation,
we will thus call such a σ a unifier for F . The notion of most general unifier
is extended similarly to formulae.

Definition 13 (Solved Form) A unification formula F is in solved form
if it contains no sort constraints and all of its equations are in solved form,
i.e., of the form x

.
= M , such that x ∈ A, M ∈ B and B ≤ A, neither x nor

any parameter u is free in M , and x is not free elsewhere in F . It is easy to
show that if F is in solved form with matrix x1

.
= M1 ∧ . . .∧ xn .

= Mn then
σF = [M1/x1, . . . ,Mn/xn] is a most general unifier for F .

Note that a formula in solved form is not necessarily provable from the
empty context, since some sorts may be empty. However we feel that the
nonemptyness of sorts should be treated in the deduction system that uses
the unification algorithm, rather than in unification itself (cf. Theorem 15).

Definition 14 (Transformations for General Unification) In the de-
scription of the rules, we use F− to stand for the matrix of F . We omit the
obvious versions of the rules where the equations on the left-hand side are
reversed.

trivial M
.
= M =⇒ >.

decompose hM1 . . .Mn
.
= hN1 . . .Nn =⇒M1

.
= N1 ∧ . . .∧Mn

.
= Nn.

merge x
.
= M such that x ∈ A, M ∈ B and B ≤ A, then F− =⇒ x

.
=

M ∧ [M/x]F−, if neither x nor any parameter u occurs in M and x

occurs elsewhere in F−.

imitate xM1 . . .Mm
.
= cN1 . . .Nn =⇒ xM1 . . .Mm

.
= cN1 . . .Nn ∧ x .

=
GcA ∧ SCcA, where x ∈ A.

i-project xM1 . . .Mm
.
= N =⇒ xM1 . . .Mm

.
= N ∧ x .

= GiA ∧ SCiA where
x ∈ A.

guess xM1 . . .Mm
.
= yN1 . . .Nn =⇒ xM1 . . .Mm

.
= yN1 . . .Nn ∧ x .

= GhA ∧
SChA if h is some constant or existential variable and x ∈ A.

simplify constraint type constraints can be simplified by any sound con-
straint simplifier.

lam-lam λv:A. M
.
= λv:A. N =⇒ ∀v:A. M

.
= N . Note that the type labels

on both sides must be the same for the equation to be valid (they are
proper types, not sorts).

lam-term λv:A. M
.
= N =⇒ ∀v:A. M

.
= N v where N is not a λ-

abstraction.

Furthermore we require the structural rules that deal with quantifier ex-
change from [11] and rules to erase > from a conjunction.

These transformations (and those of the following unification algorithms)
can be employed by very different algorithms, depending on the strategy
involved in constraint simplification. Solving type constraints eagerly after
each imitation and projection step amounts to separate imitation rules for
each solution.

For a realistic implementation it seems advantageous to pass the type
constraints along and wait for more information in form of further instan-
tiation. Such further instantiation might be provided by further imitation
steps. An implementation of the algorithm would also add rules to iden-
tify failure due to non-applicability of rules early and yield a more efficient
algorithm.

The soundness of the transformations can readily be established from
the soundness of the constraint simplifier and lemmata 8 and 4 by using the
techniques from [23]. Now we will turn to the completeness of the transfor-
mations.

Theorem 15 (Completeness) For any unifier θ of a unification formula
F there exists a sequence of transformations for general well-typed unification
from F to S in solved form, such that σS ≤ θ[X] where X is the set of
existential variables in F .

Proof sketch: We define a variant of the transformations from Defini-
tion 14 that operate on a pair (θ, F), where F is a unification formula and
θ is a substitution. For θ = [M/x] ∪ θ′ let G be the general binding and
ρ the substitution guaranteed by Lemma 9. The transformations imitate,
project and guess are of the form (θ, F) =⇒ (θ′∪ρ∪[M/x], F∧x .

= G∧SC),
where ρ is as in Lemma 9.

Obviously we get a subsystem of that defined in Definition 14, if we
restrict this variant to the unification formulae. Furthermore in contrast to
the unrestricted system it can be shown that all sequences of transformations
in this system must terminate with an irreducible pair (θ, F). On the other
hand by close inspection of the transformations using lemma 8, we can see
that irreducible pairs are in solved form. Thus we get the completeness result
from Definition 13.

The notion of pre-unification is of interest to automated theorem proving,
since pre-unifiers can always be extended to unifiers (see Lemma 17) and the
pre-unification problem is often tractable. We will only state the definitions
and the completeness result.

Definition 16 (Transformations for General Pre-Unification) The
transformations for pre-unification are the same as those for general uni-
fication except that the guess rule is dropped.

These rules are applied to an initial unification problem, until it is in
in pre-solved form, that is all equations are in either in solved form or the
heads of both sides of the equation are existential variables.

Lemma 17 Pre-solved unification problems are always unifiable.

Proof: Let F be a unification problem in pre-solved form and let E be
an equation xM1 . . .Mm

.
= yN1 . . .Nn in F where x and y are existential

variables. Then the substitution

σ = [[λx1:Aj1 . . . xn:Ajn. z]/x, [λy1:Cj1 . . . yn:Cjm. z]/y]

where x, y are existential variables with x ∈ &j≤k Aj1 → . . .→ Ajn → Bj ,
y ∈ &j≤l Cj1 → . . .→ Cjm → Dj and z: &j≤k Bj & &j≤lDj unifies E. This
idea can be extended to solve all equations of this form simultaneously.

Theorem 18 (Completeness of Pre-Unification) For any pre-unifier θ
of a unification formula F there exists a sequence of transformations for
general pre-unification from F to a pre-solved form S, such that σS ≤ θ[X]
where X is the set of existential variables in F .

Corollary 19 If F is a closed unification problem and F is transformed into
a (pre-)solved form S by a sequence of transformations for general unification
or pre-unification and all sorts of variables that are existentially bound in S

are nonempty, then `̀ F .

6 Unification Restricted to Patterns

We now specialize the algorithm from Section 5 to patterns, which are de-
fined just as in the simply-typed λ-calculus: any occurence of an existential
variable x in

∃x1:A1 . . .∃xq:Aq∀u1:B1 . . .∀up:Bp. F

must have the form x uφ(1) . . .uφ(n), where φ is a partial permutation from n

into p, i.e., an injective mapping form 1, . . . , n to 1, . . . , p. The transforma-
tions for pattern unifications are those of Definition 14 where the rule guess
is replaced by the following transformations.

Definition 20 (Transformations for Pattern Unification) Here x and
y are existential variables where x:C = &j≤k C1j → . . .→ Cnj → Dj.

var-var-same x uφ(1) . . .uφ(n)
.
= x uψ(1) . . .uψ(n) is transformed into

x
.
= λv1:Bφ(1) . . . λvn:Bφ(n). x

′ vρ(1) . . . vρ(l),

where ρ is a partial permutation satisfying: there exists a k such that
ρ(k) = φ(i) iff φ(i) = ψ(i) and x′ : &j≤k Cρ(1)j → . . .→ Cρ(l)j → Dj is
a new existential variable.

var-var-diff x uφ(1) . . . uφ(n)
.
= y uψ(1) . . .uψ(m). Then let φ′ and ψ′ be par-

tial permutations satisfying: there exists a k such that φ′(k) = i and
ψ′(k) = j iff φ(i) = ψ(j). We transform into

x
.
= λv1:Bφ(1) . . . λvn:Bφ(n). z vφ′(1) . . . vφ′(l) ∧

y
.
= λv1:Bψ(1) . . .λvm:Bψ(m). z vψ′(1) . . . vψ′(l), where

z : &j≤k Cψ′(1)j → . . .→ Cψ′(l)j → Dj

Note that in the case of higher-order patterns the use of the rules project
and imitate are deterministic, that is, all but the imitation or one projection
immediately lead to failure. The sort constraints, however, may still have
multiple solutions.

Theorem 21 (Completeness of Pattern Unification) Let F be a closed
unification problem where all objects are higher-order patterns. Then the
transformations of pattern unification always terminate and either

1. yield a unification problem S in solved form and σS is a unifier for
F . Furthermore, if all sorts of existentially bound variables in S are
nonempty, then `̀ F .

or 2. yield a unification problem where none of the transformations are ap-
plicable and F is not provable.

7 Conclusion and Further Work

The unification algorithms presented here can serve as a basis for practical
implementations of theorem provers or logic programming languages which
incorporate a notion of subtype and intersection type. Standard techniques
should be applicable to achieve the same efficiency as current implementa-
tions of higher-order unification or pattern unification whenever no subtype
or refinement declarations are made. The presence of sort conditions po-
tentially leads to an explosion of the search space during unification. In
theorem proving this merely shifts work from logical inferences to unifica-
tion where it is handled algorithmically, and we expect it to improve overall
performance. In logic programming many sort computations can be shown
to be redundant at compile-time, given that the goal is always maintained
in well-sorted form. This situation is familiar from (first-order) order-sorted
logic programming and we believe that such static analysis is necessary to
obtain a practical system.

We would also like to extend the algorithm to λΠ&, a type theory with
intersection and dependent types proposed in [17]. An extension of the
language Elf [16] along these lines would be based on a constraint solver
(rather than a unification or pre-unification algorithm) that solves pattern
unification problems, but maintains other equations and sort conditions as
constraints. The principal question in this context is when and to what
extent sort computation should lead to branching during the computation.
This will depend in large part upon the results of experimentation with a
prototype implementation.

Finally, we would like to consider relaxing some of the restrictions of
the current system without disturbing its basic properties. For example, it
may be possible to admit arbitrary type labels in abstractions if we also add
conversion rules that relabel abstractions with compatible types.
Acknowledgments. The first author was supported by the “Sonderfor-
schungsbereich 314, Künstliche Intelligenz” of the Deutsche Forschungsge-
meinschaft (DFG) and the “Studienstiftung des deutschen Volkes”. The
second author was supported in part by the U.S. Air Force under Contract
F33615-90-C-1465, ARPA Order No. 7597.

References

[1] M. Coppo and P. Giannini. A complete type inference algorithm for
simple intersection types. In J.-C. Raoult, editor, 17th Colloquium on
Trees in Algebra and Programming, Rennes, France, pages 102–123,
Berlin, February 1992. Springer-Verlag LNCS 581.

[2] Amy Felty. Specifying and Implementing Theorem Provers in a Higher-
Order Logic Programming Language. PhD thesis, Department of Com-

puter and Information Science, University of Pennsylvania, July 1989.
Available as Technical Report MS-CIS-89-53.

[3] Tim Freeman and Frank Pfenning. Refinement types for ML. In Pro-
ceedings of the SIGPLAN ’91 Symposium on Language Design and Im-
plementation, Toronto, Ontario, pages 268–277. ACM Press, June 1991.

[4] John Hannan. Investigating a Proof-Theoretic Meta-Language for Func-
tional Programs. PhD thesis, University of Pennsylvania, January 1991.
Available as MS-CIS-91-09.

[5] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

[6] P. M. Hill. Combining prescriptive and taxonomic types in logic pro-
gramming. Submitted, January 1993.

[7] Gérard Huet. A unification algorithm for typed λ-calculus. Theoretical
Computer Science, 1:27–57, 1975.

[8] Michael Kohlhase. Order-sorted type theory I: Unification. SEKI
Report SR-91-18, Universität des Saarlandes, Saarbrücken, Germany,
1991.

[9] Michael Kohlhase. Unification in order-sorted type theory. In
A. Voronkov, editor, Proceedings of the International Conference on
Logic Programming and Automated Reasoning, pages 421–432, St. Pe-
tersburg, Russia, July 1992. Springer-Verlag LNAI 624.

[10] Lena Magnusson. The new implementation of ALF. In B. Nordström,
K. Petersson, and G. Plotkin, editors, Proceedings of the 1992 Workshop
on Types for Proofs and Programs, pages 265–282, B̊astad, Sweden,
June 1992. University of Göteborg.

[11] Dale Miller. Unification under a mixed prefix. Journal of Symbolic
Computation, 14:321–358, 1992.

[12] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov.
Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic, 51:125–157, 1991.

[13] Gopalan Nadathur and Dale Miller. An overview of λProlog. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Program-
ming: Proceedings of the Fifth International Conference and Sympo-
sium, Volume 1, pages 810–827, Cambridge, Massachusetts, August
1988. MIT Press.

[14] Tobias Nipkow and Zhenyu Qian. Reduction and unification in lambda
calculi with subtypes. In D. Kapur, editor, Proceedings of the 11th In-
ternational Conference on Automated Deduction, pages 66–78, Saratoga
Springs, New York, June 1992. Springer-Verlag LNAI 607.

[15] Lawrence C. Paulson and Tobias Nipkow. Isabelle tutorial and user’s
manual. Technical Report 189, Computer Laboratory, University of
Cambridge, January 1990.

[16] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

[17] Frank Pfenning. Intersection types for a logical framework. POP Re-
port 92-006, School of Computer Science, Carnegie Mellon University,
December 1992.

[18] Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cam-
bridge, Massachusetts, 1992.

[19] Benjamin C. Pierce. Programming with Intersection Types and Bounded
Polymorphism. PhD thesis, School of Computer Science, Carnegie Mel-
lon University, December 1991. Available as Technical Report CMU–
CS–91–205.

[20] John C. Reynolds. The coherence of languages with intersection types.
In T. Ito and A. R. Meyer, editors, International Conference on The-
oretical Aspects of Computer Software, pages 675–700, Sendai, Japan,
September 1991. Springer-Verlag LNCS 526.

[21] Manfred Schmidt-Schauß. Computational Aspects of an Order-Sorted
Logic with Term Declarations. Springer-Verlag LNAI 395, 1989.

[22] G. Smolka. Logic Programming over Polymorphically Order-Sorted
Types. Dissertation, Universität Kaiserslautern, May 1989.

[23] Wayne Snyder. A Proof Theory for General Unification. Progress in
Computer Science and Applied Logic. Birkhäuser, 1991.

