
91

Parallel Complexity Analysis with Temporal Session Types

ANKUSH DAS, Carnegie Mellon University, USA

JAN HOFFMANN, Carnegie Mellon University, USA

FRANK PFENNING, Carnegie Mellon University, USA

We study the problem of parametric parallel complexity analysis of concurrent, message-passing programs.

To make the analysis local and compositional, it is based on a conservative extension of binary session types,

which structure the type and direction of communication between processes and stand in a Curry-Howard

correspondence with intuitionistic linear logic. Themain innovation is to enrich session types with the temporal
modalities next (⃝A), always (2A), and eventually (3A), to additionally prescribe the timing of the exchanged

messages in a way that is precise yet flexible. The resulting temporal session types uniformly express properties

such as the message rate of a stream, the latency of a pipeline, the response time of a concurrent queue, or the

span of a fork/join parallel program. The analysis is parametric in the cost model and the presentation focuses

on communication cost as a concrete example. The soundness of the analysis is established by proofs of

progress and type preservation using a timed multiset rewriting semantics. Representative examples illustrate

the scope and usability of the approach.

CCS Concepts: • Theory of computation→ Concurrency; Modal and temporal logics; Linear logic;

Additional Key Words and Phrases: Session Types, Linear logic, Concurrency, Resource analysis

ACM Reference Format:
Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Parallel Complexity Analysis with Temporal Session

Types. Proc. ACM Program. Lang. 2, ICFP, Article 91 (September 2018), 30 pages. https://doi.org/10.1145/3236786

1 INTRODUCTION
For sequential programs, several type systems and program analyses have been proposed to

structure, formalize [Danner et al. 2015; Lago and Gaboardi 2011; Çiçek et al. 2017], and auto-

mate [Avanzini et al. 2015; Gulwani et al. 2009; Hoffmann et al. 2017] complexity analysis. Analyzing

the complexity of concurrent, message-passing processes poses additional challenges that these

systems do not address. To begin with, we need information about the possible interactions between

processes to enable compositional and local reasoning about concurrent cost.

Session types [Honda et al. 1998] provide a structured way to prescribe communication behavior

between message-passing processes and are a natural foundation for compositional, concurrent

complexity analysis. In particular, we use a system of binary session types that stands in a Curry-

Howard correspondence with intuitionistic linear logic [Caires and Pfenning 2010; Caires et al.

2016]. Our communication model is asynchronous in the sense of the asynchronous π -calculus:
sending always succeeds immediately, while receiving blocks until a message arrives.

In addition to the structure of communication, the timing of messages is of central interest

for analyzing concurrent cost. With information on message timing we may analyze not only

properties such as the rate or latency with which a stream of messages can proceed through a

Authors’ addresses: Ankush Das, Carnegie Mellon University, USA, ankushd@cs.cmu.edu; Jan Hoffmann, Carnegie Mellon

University, USA, jhoffmann@cmu.edu; Frank Pfenning, Carnegie Mellon University, USA, fp@cs.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/9-ART91

https://doi.org/10.1145/3236786

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

https://doi.org/10.1145/3236786
https://doi.org/10.1145/3236786

91:2 Ankush Das, Jan Hoffmann, and Frank Pfenning

pipeline, but also the span of a parallel computation, which can be defined as the time of the final

response message assuming maximal parallelism.

There are several possible ways to enrich session types with timing information. A challenge is

to find a balance between precision and flexibility. We would like to express precise times according

to a global clock as in synchronous data flow languages whenever that is possible. However,

sometimes this will be too restrictive. For example, we may want to characterize the response time

of a concurrent queue where enqueue and dequeue operations arrive at unpredictable intervals.

In this paper, we develop a type system that captures the parallel complexity of session-typed

message-passing programs by adding temporal modalities next (⃝A), always (2A), and eventually
(3A), interpreted over a linear model of time. When considered as types, the temporal modalities

allow us to express properties of concurrent programs such as the message rate of a stream, the

latency of a pipeline, the response time of concurrent data structure, or the span of a fork/join parallel
program, all in the same uniform manner. Our results complement prior work on expressing the

work of session-typed processes in the same base language [Das et al. 2017]. Together, they form a

foundation for analyzing the parallel implementation complexity of session-typed processes.

The type system is constructed conservatively over the base language of session types, which

makes it quite general and easily able to accommodate various concrete cost models. Our language

contains standard session types and process expressions, and their typing rules remain unchanged.

They correspond to processes that do not induce cost and send all messages at the constant time 0.

To model computation cost we introduce a new syntactic form delay, which advances time by

one step. To specify a particular cost semantics we take an ordinary, non-temporal program and

add delays capturing the intended cost. For example, if we decide only the blocking operations

should cost one unit of time, we add a delay before the continuation of every receiving construct. If

we want sends to have unit cost as well, we also add a delay immediately after each send operation.

Processes that contain delays cannot be typed using standard session types.

To type processes with non-zero cost, we first introduce the type ⃝A, which is inhabited only

by the process expression (delay ; P). This forces time to advance on all channels that P can

communicate along. The resulting types prescribe the exact time a message is sent or received and

sender and receiver are precisely synchronized.

As an example, consider a stream of bits terminated by $, expressed as the recursive session type

bits = ⊕{b0 : bits, b1 : bits, $: 1}
where ⊕ stands for internal choice and 1 for termination, ending the session. A simple cost model

for asynchronous communication prescribes a cost of one unit of time for every receive operation.

A stream of bits then needs to delay every continuation to give the recipient time to receive the

message, expressing a rate of one. This can be captured precisely with the temporal modality ⃝A:

bits = ⊕{b0 : ⃝bits, b1 : ⃝bits, $: ⃝1}
A transducer neg that negates each bit it receives along channel x and passes it on along channel y
would be typed as

x : bits ⊢ neg :: (y : ⃝bits)

expressing a latency of one. A process negneg that puts two negations in sequence has a latency

of two, compared with copy which passes on each bit, and id which terminates and identifies the

channel y with the channel x , short-circuiting the communication.

x : bits ⊢ negneg :: (y : ⃝⃝bits) x : bits ⊢ copy :: (y : ⃝bits) x : bits ⊢ id :: (y : bits)

All these processes have the same extensional behavior, but different latencies. They also have the

same rate since after the pipelining delay, the bits are sent at the same rate they are received, as

expressed in the common type bits used in the context and the result.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:3

While precise and minimalistic, the resulting system is often too precise for typical concurrent

programs such as pipelines or servers. We therefore introduce the dual type formers 3A and 2A to

talk about varying time points in the future. Remarkably, even if part of a program is typed using

these constructs, we can still make precise and useful statements about other aspects.

For example, consider a transducer compress that shortens a stream by combining consecutive 1

bits so that, for example, 00110111 becomes 00101. For such a transducer, we cannot bound the

latency statically, even if the bits are received at a constant rate like in the type bits. So we have to

express that after seeing a 1 bit we will eventually see either another bit or the end of the stream.

For this purpose, we introduce a new type sbits with the same message alternatives as bits, but
different timing. In particular, after sending b1 we have to send either the next bit or end-of-stream

eventually (3sbits), rather than immediately.

sbits = ⊕{b0 : ⃝sbits, b1 : ⃝3sbits, $: ⃝1}
x : bits ⊢ compress :: (y : ⃝sbits)

We write ⃝3sbits instead of 3sbits for the continuation type after b1 to express that there will

always be a delay of at least one; to account for the unit cost of receive in this particular cost model.

The dual modality, 2A, is useful to express, for example, that a server providing A is always
ready, starting from “now”. As an example, consider the following temporal type of an interface to

a process of type 2queueA with elements of type 2A. It expresses that there must be at least four

time units between successive enqueue operations and that the response to a dequeue request is

immediate, only one time unit later (N stands for external choice, the dual to internal choice).

queueA = N{ enq : ⃝(2A ⊸ ⃝32queueA),
deq : ⃝⊕{ none : ⃝1, some : ⃝(2A ⊗ ⃝2queueA) } }

As an example of a parametric cost analysis, we can give the following type to a process that

appends inputs l1 and l2 to yield l , where the message rate on all three lists is r + 2 units of time

(that is, the interval between consecutive list elements needs to be at least 2).

l1 : listA[n], l2 : ⃝(r+4)n+2 listA[k] ⊢ append :: (l : ⃝⃝listA[n + k])

It expresses that append has a latency of two units of time and that it inputs the first message from

l2 after (r + 4)n + 2 units of time, where n is the number of elements sent along l1.
To analyze the span of a fork/join parallel program, we capture the time at which the (final)

answer is sent. For example, the type tree[h] describes the span of a process that computes the

parity of a binary tree of height h with boolean values at the leaves. The session type expresses that

the result of the computation is a single boolean that arrives at time 5h + 3 after the parity request.

tree[h] = N{ parity : ⃝
5h+3 bool }

In summary, the main contributions of the paper are (1) a generic framework for parallel cost

analysis of asynchronously communicating session-typed processes rooted in a novel combination

of temporal and linear logic, (2) a soundness proof of the type system with respect to a timed

operational semantics, showing progress and type preservation (3) instantiations of the framework

with different cost models, e.g. where either just receives, or receives and sends, cost one time unit

each, and (4) examples illustrating the scope of our method. Our technique for proving progress

and preservation does not require dependency graphs and may be of independent interest. We

further provide decidable systems for time reconstruction and subtyping that greatly simplify the

programmer’s task. They also enhance modularity by allowing the same program to be assigned

temporally different types, depending on the context of use.

Related is work on space and time complexity analysis of interaction nets by Gimenez and Moser

[2016], which is a parallel execution model for functional programs. While also inspired by linear

logic and, in particular, proof nets, it treats only special cases of the additive connectives and

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:4 Ankush Das, Jan Hoffmann, and Frank Pfenning

Type Provider Action Session Continuation

⊕{ℓ : Aℓ}ℓ∈L send label k ∈ L Ak

N{ℓ : Aℓ}ℓ∈L receive and branch on label k ∈ L Ak

1 send token close none

A ⊗ B send channel c : A B

A ⊸ B receive channel c : A B

Fig. 1. Basic Session Types. Every provider action has a matching client action.

recursive types and does not have analogues of the 2 and 3 modalities. It also does not provide a

general source-level programming notation with a syntax-directed type system. On the other hand

they incorporate sharing and space bounds, which are beyond the scope of this paper.

Another related thread is the research on timed multiparty session types [Bocchi et al. 2014]

for modular verification of real-time choreographic interactions. Their system is based on explicit

global timing interval constraints, capturing a new class of communicating timed automata, in

contrast to our system based on binary session types in a general concurrent language. Therefore,

their system has no need for general2 and3modalities, the ability to pass channels along channels,

or the ability to identify channels via forwarding. Their work is complemented by an expressive

dynamic verification framework in real-time distributed systems [Neykova et al. 2014], which we

do not consider. Semantics counting communication costs for work and span in session-typed

programs were given by Silva et al. [2016], but no techniques for analyzing them were provided.

The remainder of the paper is organized as follows. We review our basic system of session

types in Section 2, then introduce the next-time modality ⃝A in Section 3 followed by 3A and

2A in Section 4. We establish fundamental metatheoretic type safety properties in Section 5 and

time reconstruction in Section 6. Additional examples in Section 7 are followed by a theorem in

Section 8 connecting the semantics presented in Figure 4 to the standard semantics of session-typed

programs. Section 9 discusses further related work followed by a brief conclusion.

2 THE BASE SYSTEM OF SESSION TYPES
The underlying base system of session types is derived from a Curry-Howard interpretation of

intutionistic linear logic [Caires and Pfenning 2010; Caires et al. 2016]. We present it here to fix our

particular formulation, which can be considered the purely linear fragment of SILL [Pfenning and

Griffith 2015; Toninho et al. 2013]. Remarkably, the rules remain exactly the same when we consider

temporal extensions in the next section. The key idea is that an intuitionistic linear sequent

A1,A2, . . . ,An ⊢ C

is interpreted as the interface to a process expression P. We label each of the antecedents with a

channel name xi and the succedent with channel name z. The xi ’s are channels used by P and z is
the channel provided by P .

x1 : A1,x2 : A2, . . . ,xn : An ⊢ P :: (z : C)

The resulting judgment formally states that process P provides a service of session type C along

channel z, while using the services of session types A1, . . . ,An provided along channels x1, . . . ,xn
respectively. All these channels must be distinct, and we sometimes implicitly rename them to

preserve this presupposition. We abbreviate the antecedent of the sequent by Ω.
Figure 1 summarizes the basic session types and their actions. The process expression for these

actions are shown in Figure 2; the process typing rules in Figure 3. The first few examples (well

into Section 4) only use internal choice, termination, and recursive types, together with process

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:5

Expression Action Continuation Rules
P ,Q ::= x ← f ← e ; Q spawn process named f [a/x]Q def

| x :A← P ; Q spawn [a/x]P [a/x]Q cut

| c ← d identify c and d none id

| c .k ; P send label k along c P ⊕R,NL

| case c (ℓ ⇒ Pℓ)ℓ∈L receive label k along c Pk ⊕L,NR

| close c close c none 1R

| wait c ; P wait for c to close P 1L

| send c d ; P send d along c P ⊗R,⊸L

| x ← recv c ; P receive d along c [d/x]P ⊗L,⊸R

Fig. 2. Basic Process Expressions

definitions and forwarding, so we explain these in some detail together with their formal operational

semantics. A summary of all the operational semantics rules can be found in Figure 4.

2.1 Internal Choice
A type A is said to describe a session, which is a particular sequence of interactions. As a first type

construct we consider internal choice ⊕{ℓ : Aℓ}ℓ∈L , an n-ary labeled generalization of the linear

logic connective A ⊕ B. A process that provides x : ⊕{ℓ : Aℓ}ℓ∈L can send any label k ∈ L along x
and then continue by providing x : Ak . We write the corresponding process as (x .k ; P), where
P is the continuation. This typing is formalized by the right rule ⊕R in our sequent calculus. The

corresponding client branches on the label received along x as specified by the left rule ⊕L.

(k ∈ L) Ω ⊢ P :: (x : Ak)

Ω ⊢ (x .k ; P) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

(∀ℓ ∈ L) Ω,x :Aℓ ⊢ Qℓ :: (z : C)

Ω,x :⊕{ℓ : Aℓ}ℓ∈L ⊢ case x (ℓ ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

We formalize the operational semantics as a system ofmultiset rewriting rules [Cervesato and Scedrov
2009]. We introduce semantic objects proc(c, t , P) and msg(c, t ,M) which mean that process P or

messageM provide along channel c and are at an integral time t . A process configuration is a multiset

of such objects, where any two offered channels are distinct. Communication is asynchronous, so

that a process (c .k ; P) sends a message k along c and continues as P without waiting for it to be

received. As a technical device to ensure that consecutive messages on a channel arrive in order,

the sender also creates a fresh continuation channel c ′ so that the message k is actually represented

as (c .k ; c ← c ′) (read: send k along c and continue as c ′).

(⊕S) proc(c, t , c .k ; P) 7→ proc(c ′, t , [c ′/c]P),msg(c, t , c .k ; c ← c ′) (c ′ fresh)

When the message k is received along c , we select branch k and also substitute the continuation

channel c ′ for c .

(⊕C) msg(c, t , c .k ; c ← c ′), proc(d, t , case c (ℓ ⇒ Qℓ)ℓ∈L) 7→ proc(d, t , [c ′/c]Qk)

Themessage (c .k ; c ← c ′) is just a particular form of process, where c ← c ′ is identity or forwarding,
explained in Section 2.3. Therefore no separate typing rules for messages are needed; they can be

typed as processes [Balzer and Pfenning 2017].

In the receiving rule we require the time t of the message and receiver process to match. Until

we introduce temporal types, this is trivially satisfied since all actions are considered instantaneous

and processes will always remain at time t = 0.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:6 Ankush Das, Jan Hoffmann, and Frank Pfenning

Ω′ ⊢ P :: (x : A) Ω,x : A ⊢ Q :: (z : C)

Ω,Ω′ ⊢ (x :A← P ; Q) :: (z : C)
cut

y : A ⊢ (x ← y) :: (x : A)
id

(k ∈ L) Ω ⊢ P :: (x : Ak)

Ω ⊢ (x .k ; P) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

(∀ℓ ∈ L) Ω,x :Aℓ ⊢ Qℓ :: (z : C)

Ω,x :⊕{ℓ : Aℓ}ℓ∈L ⊢ case x (ℓ ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

(∀ℓ ∈ L) Ω ⊢ Pℓ :: (x : Aℓ)

Ω ⊢ case x (ℓ ⇒ Pℓ)ℓ∈L :: (x : N{ℓ : Aℓ}ℓ∈L)
NR

Ω,x :Ak ⊢ Q :: (z : C)

Ω,x :N{ℓ : Aℓ}ℓ∈L ⊢ (x .k ; Q) :: (z : C)
NL

· ⊢ (close x) :: (x : 1)
1R

Ω ⊢ Q :: (z : C)

Ω,x :1 ⊢ (wait x ; Q) :: (z : C)
1L

Ω ⊢ P :: (x : B)

Ω,y:A ⊢ (send x y ; P) :: (x : A ⊗ B)
⊗R

Ω,y:A,x :B ⊢ Q :: (z : C)

Ω,x :A ⊗ B ⊢ (y ← recv x ; Q) :: (z : C)
⊗L

Ω,y:A ⊢ P :: (x : B)

Ω ⊢ (y ← recv x ; P) :: (x : A ⊸ B)
⊸R

Ω,x :B ⊢ Q :: (z : C)

Ω,x :A ⊸ B,y:A ⊢ (send x y ; Q) :: (z : C)
⊸L

(Ω′ ⊢ f = Pf :: (x : A)) ∈ Σ Ω,x :A ⊢ Q :: (z : C)

Ω,Ω′ ⊢ (x ← f ← Ω′ ; Q) :: (z : C)
def

Fig. 3. Basic Typing Rules

The dual of internal choice is external choice N{ℓ : Aℓ}ℓ∈L , which just reverses the role of

provider and client and reuses the same process notation. It is the n-ary labeled generalization of

the linear logic connective AN B.

2.2 Termination
The type 1, the multiplicative unit of linear logic, represents termination of a process, which (due

to linearity) is not allowed to use any channels.

· ⊢ close x :: (x : 1)
1R

Ω ⊢ Q :: (z : C)

Ω,x :1 ⊢ (wait x ; Q) :: (z : C)
1L

Operationally, a client has to wait for the corresponding closing message, which has no continuation

since the provider terminates.

(1S) proc(c, t , close c) 7→ msg(c, t , close c)
(1C) msg(c, t , close c), proc(d, t ,wait c ; Q) 7→ proc(d, t ,Q)

2.3 Forwarding
A process x ← y identifies the channels x and y so that any further communication along either x
or y will be along the unified channel. Its typing rule corresponds to the logical rule of identity.

y : A ⊢ (x ← y) :: (x : A)
id

We have already seen this form in the continuations of message objects. Operationally, the intuition

is realized by forwarding: a process c ← d forwards any messageM that arrives along d to c and

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:7

(cutC) proc(c, t ,x :A← P ; Q) 7→ proc(a, t , [a/x]P), proc(c, t , [a/x]Q) (a fresh)

(defC) proc(c, t ,x ← f ← e ; Q) 7→ proc(a, t , [a/x , e/Ωf]Pf), proc(c, t , [a/x]Q) (a fresh)

(id+C) msg(d, t ,M), proc(c, s, c ← d) 7→ msg(c, t , [c/d]M) (t ≥ s)
(id−C) proc(c, s, c ← d),msg(e, t ,M(c)) 7→ msg(e, t , [d/c]M(c)) (s ≤ t)

(⊕S) proc(c, t , c .k ; P) 7→ proc(c ′, t , [c ′/c]P),msg(c, t , c .k ; c ← c ′) (c ′ fresh)
(⊕C) msg(c, t , c .k ; c ← c ′), proc(d, t , case c (ℓ ⇒ Qℓ)ℓ∈L) 7→ proc(d, t , [c ′/c]Qk)

(NS) proc(d, t , c .k ; Q) 7→ msg(c ′, t , c .k ; c ′← c), proc(d, t , [c ′/c]Q) (c ′ fresh)
(NC) proc(c, t , case c (ℓ ⇒ Qℓ)ℓ∈L),msg(c ′, t , c .k ; c ′← c) 7→ proc(c ′, t , [c ′/c]Qk)

(1S) proc(c, t , close c) 7→ msg(c, t , close c)
(1C) msg(c, t , close c), proc(d, t ,wait c ; Q) 7→ proc(d, t ,Q)

(⊗S) proc(c, t , send c d ; P) 7→ proc(c ′, t , [c ′/c]P),msg(c, t , send c d ; c ← c ′) (c ′ fresh)
(⊗C) msg(c, t , send c d ; c ← c ′), proc(e, t ,x ← recv c ; Q) 7→ proc(e, t , [c ′,d/c,x]Q)

(⊸S) proc(e, t , send c d ; Q) 7→ msg(c ′, t , send c d ; c ′← c), proc(e, t , [c ′/c]Q) (c ′ fresh)
(⊸C) proc(c, t ,x ← recv x ; P),msg(c ′, t , send c d ; c ′← c) 7→ proc(c ′, t , [c ′,d/c,x]P)

Fig. 4. Basic Operational Semantics

vice versa. Because channels are used linearly the forwarding process can then terminate, making

sure to apply the proper renaming. The corresponding rules of operational semantics are as follows.

(id+C) msg(d, t ,M), proc(c, s, c ← d) 7→ msg(c, t , [c/d]M) (t ≥ s)
(id−C) proc(c, s, c ← d),msg(e, t ,M(c)) 7→ msg(e, t , [d/c]M(c)) (s ≤ t)

In the last transition, we write M(c) to indicate that c must occur in M , which implies that this

message is the sole client of c . In anticipation of the extension by temporal operators, we do

not require the time of the message and the forwarding process to be identical, but just that the

forwarding process is ready before the message arrives.

2.4 Process Definitions
Process definitions have the form Ω ⊢ f = P :: (x : A) where f is the name of the process and P its

definition. All definitions are collected in a fixed global signature Σ. We require that Ω ⊢ P :: (x : A)
for every definition, which allows the definitions to be mutually recursive. For readability of the

examples, we break a definition into two declarations, one providing the type and the other the

process definition binding the variables x and those in Ω (generally omitting their types):

Ω ⊢ f :: (x : A)
x ← f ← Ω = P

A new instance of a defined process f can be spawned with the expression

x ← f ← y ; Q

where y is a sequence of variables matching the antecedents Ω. The newly spawned process will

use all variables in y and provide x to the continuation Q . The operational semantics is defined by

(defC) proc(c, t ,x ← f ← e ; Q) 7→ proc(a, t , [a/x , e/Ω]P), proc(c, t , [a/x]Q) (a fresh)

Here we write e/Ω to denote substitution of the channels in e for the corresponding variables in Ω.
Sometimes a process invocation is a tail call, written without a continuation as x ← f ← y. This

is a short-hand for x ′← f ← y ; x ← x ′ for a fresh variable x ′, that is, we create a fresh channel

and immediately identify it with x (although it is generally implemented more efficiently).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:8 Ankush Das, Jan Hoffmann, and Frank Pfenning

2.5 Recursive Types
Session types can be naturally extended to include recursive types. For this purpose we allow

(possibly mutually recursive) type definitions X = A in the signature, where we require A to be

contractive [Gay and Hole 2005]. This means here that A should not itself be a type name. Our

type definitions are equi-recursive so we can silently replace X by A during type checking, and no

explicit rules for recursive types are needed.

As a first example, consider a stream of bits (introduced in Section 1) defined recursively as

bits = ⊕{b0 : bits, b1 : bits, $: 1}

When considering bits as representing natural numbers, we think of the least significant bit being

sent first. For example, a process six sending the number 6 = (110)2 would be

· ⊢ six :: (x : bits)
x ← six = x .b0 ; x .b1 ; x .b1 ; x .$; close x

Executing proc(c0, 0, c0 ← six) yields (with some fresh channels c1, . . . , c4)

proc(c0, 0, c0 ← six) 7→∗ msg(c4, 0, close c4),
msg(c3, 0, c3.$; c3 ← c4),
msg(c2, 0, c2.b1 ; c2 ← c3),
msg(c1, 0, c1.b1 ; c1 ← c2),
msg(c0, 0, c0.b0 ; c0 ← c1)

As a first example of a recursive process definition, consider one that just copies the incoming bits.

y : bits ⊢ copy :: (x : bits)
x ← copy← y =

case y (b0⇒ x .b0 ; x ← copy← y % received b0 on y, send b0 on x , recurse
| b1⇒ x .b1 ; x ← copy← y % received b1 on y, send b1 on x , recurse
| $⇒ x .$; wait y ; close x) % received $ on y, send $ on x , wait on y, close x

The process neg mentioned in the introduction would just swap the occurrences of x .b0 and x .b1.
We see here an occurrence of a (recursive) tail call to copy.

A last example in this section: to increment a bit stream we turn b0 to b1 but then forward the

remaining bits unchanged (x ← y), or we turn b1 to b0 but then increment the remaining stream

(x ← plus1← y) to capture the effect of the carry bit.

y : bits ⊢ plus1 :: (x : bits)
x ← plus1← y =

case y (b0⇒ x .b1 ; x ← y
| b1⇒ x .b0 ; x ← plus1← y
| $⇒ x .$; wait y ; close x)

3 THE TEMPORAL MODALITY NEXT (⃝A)
In this section we introduce actual cost by explicitly advancing time. Remarkably, all the rules we

have presented so far remain literally unchanged. As mentioned, they correspond to the cost-free

fragment of the language in which time never advances. In addition, we have a new type construct

⃝A (read: next A) with a corresponding process construct (delay ; P), which advances time by one

unit. In the corresponding typing rule

Ω ⊢ P :: (x : A)

⃝Ω ⊢ (delay ; P) :: (x : ⃝A)
⃝LR

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:9

we abbreviatey1:⃝B1, . . . ,ym :⃝Bm by ⃝(y1:B1, . . . ,ym :Bm). Intuitively, when (delay ; P) idles, time

advances on all channels connected to P . Computationally, we delay the process for one time unit

without any external interactions.

(⃝C) proc(c, t , delay ; P) 7→ proc(c, t + 1, P)

There is a subtle point about forwarding: A process proc(c, t , c ← d) may be ready to forward a

message before a client reaches time t while in all other rules the times must match exactly. We can

avoid this mismatch by transforming uses of forwarding x ← y at type ⃝
nS where S , ⃝(−) to

(delayn ; x ← y). In this discussion we have used the following notation which will be useful later:

⃝0A = A delay0 ; P = P
⃝n+1A = ⃝⃝nA delayn+1 ; P = delay ; delayn ; P

3.1 Modeling a Cost Semantics
Our system allows us to represent a variety of different abstract cost models in a straightforward

way. We will mostly use two different abstract cost models. In the first, called R, we assign unit cost

to every receive (or wait) action while all other operations remain cost-free. We may be interested

in this since receiving a message is the only blocking operation in the asynchronous semantics.

A second one, called RS and considered in Section 7, assigns unit cost to both send and receive

actions.

To capture R we take a source program and insert a delay operation before the continuation of

every receive. We write this delay as tick in order to remind the reader that it arises systematically

from the cost model and is never written by the programmer. In all other respects, tick is just a

synonym for delay.
For example, the earlier copy process would become

bits = ⊕{b0 : bits, b1 : bits, $: 1}

y : bits ⊢ copy :: (x : bits) % No longer correct!
x ← copy← y =

case y (b0⇒ tick ; x .b0 ; x ← copy← y
| b1⇒ tick ; x .b1 ; x ← copy← y
| $⇒ tick ; x .$; wait y ; tick ; close x)

As indicated in the comment, the type of copy is now no longer correct because the bits that arrive

along y are delayed by one unit before they are sent along x . We can observe this concretely by

starting to type-check the first branch

y : bits ⊢ copy :: (x : bits)
x ← copy← y =

case y (b0⇒ % y : bits ⊢ x : bits
tick ; . . .)

We see that the delay tick does not type-check, because neither x nor y have a type of the form

⃝(−). We need to redefine the type bits so that the continuation type after every label is delayed

by one, anticipating the time it takes to receive the label b0, b1, or $. Similarly, we capture in the

type of copy that its latency is one unit of time.

bits = ⊕{b0 : ⃝bits, b1 : ⃝bits, $: ⃝1}

y : bits ⊢ copy :: (x : ⃝bits)

With these declarations, we can now type-check the definition of copy. We show the intermediate

type of the used and provided channels after each interaction.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:10 Ankush Das, Jan Hoffmann, and Frank Pfenning

x ← copy← y =
case y (b0⇒ % y : ⃝bits ⊢ x : ⃝bits

tick ; % y : bits ⊢ x : bits
x .b0 ; % y : bits ⊢ x : ⃝bits
x ← copy← y % well-typed by type of copy

| b1⇒ % y : ⃝bits ⊢ x : ⃝bits
tick ; % y : bits ⊢ x : bits
x .b1 ; % y : bits ⊢ x : ⃝bits
x ← copy← y

| $⇒ % y : ⃝1 ⊢ x : ⃝bits
tick ; % y : 1 ⊢ x : bits
x .$; % y : 1 ⊢ x : ⃝1
wait y ; % · ⊢ x : ⃝1
tick ; % · ⊢ x : 1
close x)

Armed with this experience, we now consider the increment process plus1. Again, we expect the
latency of the increment to be one unit of time. Since we are interested in detailed type-checking,

we show the transformed program, with a delay tick after each receive.

bits = ⊕{b0 : ⃝bits, b1 : ⃝bits, $: ⃝1}

y : bits ⊢ plus1 :: (x : ⃝bits)
x ← plus1← y =

case y (b0⇒ tick ; x .b1 ; x ← y % type error here!
| b1⇒ tick ; x .b0 ; x ← plus1← y
| $⇒ tick ; x .$; wait y ; tick ; close x)

The branches for b1 and $ type-check as before, but the branch for b0 does not. We make the types

at the crucial point explicit:

x ← plus1← y =
case y (b0⇒ tick ; x .b1 ; % y : bits ⊢ x : ⃝bits

x ← y % ill-typed, since bits , ⃝bits
| . . .)

The problem here is that identifying x and y removes the delay mandated by the type of plus1. A
solution is to call copy to reintroduce the latency of one time unit.

y : bits ⊢ plus1 :: (x : ⃝bits)
x ← plus1← y =

case y (b0⇒ tick ; x .b1 ; x ← copy← y
| b1⇒ tick ; x .b0 ; x ← plus1← y
| $⇒ tick ; x .$; wait y ; tick ; close x)

In order to write plus2 as a pipeline of two increments we need to delay the second increment

explicitly in the program and stipulate, in the type, that there is a latency of two.

y : bits ⊢ plus2 :: (x : ⃝⃝bits)
x ← plus2← y =
z ← plus1← y ; % z : ⃝bits ⊢ x : ⃝⃝bits
delay ; % z : bits ⊢ x : ⃝bits
x ← plus1← z

Programming with so many explicit delays is tedious, but fortunately we can transform a source

program without all these delay operations (but explicitly temporal session types) automatically

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:11

in two steps: (1) we insert the delays mandated by the cost model (here: a tick after each receive),

and (2) we perform time reconstruction to insert the additional delays so the result is temporally

well-typed or issue an error message if this is impossible (see Section 6).

3.2 The Interpretation of a Configuration
We reconsider the program to produce the number 6 = (110)2 under the cost model from the

previous section where each receive action costs one unit of time. There are no receive operations

in this program, but time reconstruction must insert a delay after each send in order to match the

delays mandated by the type bits.
bits = ⊕{b0 : ⃝bits, b1 : ⃝bits, $: ⃝1}

· ⊢ six :: (x : bits)
x ← six = x .b0 ; delay ; x .b1 ; delay ; x .b1 ; delay ; x .$; delay ; close x

Executing proc(c0, 0, c0 ← six) then leads to the following configuration

msg(c4, 4, close c4),
msg(c3, 3, c3.$; c3 ← c4),
msg(c2, 2, c2.b1 ; c2 ← c3),
msg(c1, 1, c1.b1 ; c1 ← c2),
msg(c0, 0, c0.b0 ; c0 ← c1)

These messages are at increasing times, which means any client of c0 will have to immediately

(at time 0) receive b0, then (at time 1) b1, then (at time 2) b1, etc. In other words, the time stamps

on messages predict exactly when the message will be received. Of course, if there is a client in

parallel we may never reach this state because, for example, the first b0 message along channel

c0 may be received before the continuation of the sender produces the message b1. So different

configurations may be reached depending on the scheduler for the concurrent processes. It is also
possible to give a time-synchronous semantics in which all processes proceed in parallel from time

0 to time 1, then from time 1 to time 2, etc.

4 THE TEMPORAL MODALITIES ALWAYS (2A) AND EVENTUALLY (3A)
The strength and also the weakness of the system so far is that its timing is very precise. Now

consider a process compress that combines runs of consecutive 1’s to a single 1. For example,

compressing 11011100 should yield 10100. First, in the cost-free setting we might write

bits = ⊕{b0 : bits, b1 : bits, $: 1}

y : bits ⊢ compress :: (x : bits)
y : bits ⊢ skip1s :: (x : bits)

x ← compress← y =
case y (b0⇒ x .b0 ; x ← compress← y

| b1⇒ x .b1 ; x ← skip1s← y
| $⇒ x .$; wait y ; close x)

x ← skip1s← y =
case y (b0⇒ x .b0 ; x ← compress← y

| b1⇒ x ← skip1s← y
| $⇒ x .$; wait y ; close x)

The problem is that if we adopt the cost model R where every receive takes one unit of time, then

this program cannot be typed. Actually worse: there is no way to insert next-time modalities into

the type and additional delays into the program so that the result is well-typed. This is because if

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:12 Ankush Das, Jan Hoffmann, and Frank Pfenning

the input stream is unknown we cannot predict how long a run of 1’s will be, but the length of

such a run will determine the delay between sending a bit 1 and the following bit 0.

The best we can say is that after a bit 1 we will eventually send either a bit 0 or the end-of-stream

token $. This is the purpose of the type 3A. We capture this timing in the type sbits (for slow bits).
bits = ⊕{b0 : ⃝bits, b1 : ⃝bits, $: ⃝1}
sbits = ⊕{b0 : ⃝sbits, b1 : ⃝3sbits, $: ⃝1}

y : bits ⊢ compress :: (x : ⃝sbits)
y : bits ⊢ skip1s :: (x : ⃝3sbits)

In the next section we introduce the process constructs and typing rules so we can revise our

compress and skip1s programs so they have the right temporal semantics.

4.1 Eventually A

A process providing3A promises only that it will eventually provideA. There is a somewhat subtle

point here: since not every action may require time and because we do not check termination

separately, x : 3A expresses only that if the process providing x terminates it will eventually provide
A. Thus, it expresses non-determinism regarding the (abstract) time at which A is provided, rather

than a strict liveness property. Therefore, 3A is somewhat weaker than one might be used to from

LTL [Pnueli 1977]. When restricted to a purely logical fragment, without unrestricted recursion, the

usual meaning is fully restored so we feel our terminology is justified. Imposing termination, for

example along the lines of Fortier and Santocanale [2013] or Toninho et al. [2014] is an interesting

item for future work but not necessary for our present purposes.

When a process offering c : 3A is ready, it will send a now! message along c and then continue

at type A. Conversely, the client of c : 3A will have to be ready and waiting for the now! message

to arrive along c and then continue at type A. We use (when? c ; Q) for the corresponding client.
These explicit constructs are a conceptual device and may not need to be part of an implementation.

They also make type-checking processes entirely syntax-directed and trivially decidable.

The typing rules for now! and when? are somewhat subtle.

Ω ⊢ P :: (x : A)

Ω ⊢ (now! x ; P) :: (x : 3A)
3R

⃝∗2Ω′ = Ω Ω,x :A ⊢ Q :: (z : C) C = ⃝∗3C ′

Ω,x :3A ⊢ (when? x ; Q) :: (z : C)
3L

The 3R rule just states that, without constraints, we can at any time decide to communicate along

x : 3A and then continue the session at type A. The 3L rule expresses that the process must be

ready to receive a now! message along x : 3A, but there are two further constraints. Because the

process (when? x ; Q) may need to wait an indefinite period of time, the rule must make sure that

communication along z and any channel in Ω can also be postponed an indefinite period of time.

We write C = ⃝∗3C ′ to require that C may be delayed a fixed finite number of time steps and then

must be allowed to communicate at an arbitrary time in the future. Similarly, for every channel

y : B in Ω, B must have the form ⃝∗2B, where 2 (as the dual of 3) is introduced in Section 4.3.

In the operational semantics, the central restriction is that when? is ready before the now!
message arrives so that the continuation can proceed immediately as promised by the type.

(3S) proc(c, t , now! c ; P) 7→ proc(c ′, t , [c ′/c]P),msg(c, t , now! c ; c ← c ′) (c ′ fresh)
(3C) msg(c, t , now! c ; c ← c ′), proc(d, s,when? c ; Q) 7→ proc(d, t , [c ′/c]Q) (t ≥ s)

We are now almost ready to rewrite the compress process in our cost model R. First, we insert tick
before all the actions that must be delayed according to our cost model. Then we insert appropriate

additional delay, when?, and now! actions. While compress turns out to be straightforward, skip1s
creates a difficulty after it receives a b1:

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:13

bits = ⊕{b0 : ⃝bits, b1 : ⃝bits, $: ⃝1}
sbits = ⊕{b0 : ⃝sbits, b1 : ⃝3sbits, $: ⃝1}

y : bits ⊢ compress :: (x : ⃝sbits)
y : bits ⊢ skip1s :: (x : ⃝3sbits)

x ← compress← y =
case y (b0⇒ tick ; x .b0 ; x ← compress← y

| b1⇒ tick ; x .b1 ; x ← skip1s← y
| $⇒ tick ; x .$; wait y ; tick ; close x)

x ← skip1s← y =
case y (b0⇒ tick ; now! x ; x .b0 ; x ← compress← y

| b1⇒ tick ; % y : bits ⊢ x : 3sbits
x ′← skip1s← y ; % x ′ : ⃝3sbits ⊢ x : 3sbits
x ← idle← x ′ % with x ′ : ⃝3sbits ⊢ idle :: (x : 3sbits)

| $⇒ tick ; now! x ; x .$; wait y ; tick ; close x)

At the point where we would like to call skip1s recursively, we have
y : bits ⊢ x : 3sbits
but y : bits ⊢ skip1s :: (x : ⃝3sbits)

which prevents a tail call since ⃝3sbits , 3sbits. Instead we call skip1s to obtain a new channel x ′

and then use another process called idle to go from x ′ : ⃝3sbits to x : 3sbits. Intuitively, it should
be possible to implement such an idling process: x : 3sbits expresses at some time in the future,
including possibly right now while x ′ : ⃝3sbits says at some time in the future, but not right now.

To type the idling process, we need to generalize the ⃝LR rule to account for the interactions of

⃝A with 2A and 3A. After all, they speak about the same underlying model of time.

4.2 Interactions of ⃝A and 3A

Recall the left/right rule for ⃝:

Ω ⊢ P :: (x : A)

⃝Ω ⊢ (delay ; P) :: (x : ⃝A)
⃝LR

If the succedent were x : 3A instead of x : ⃝A, we should still be able to delay since we can freely

choose when to interact along x . We could capture this in the following rule (superseded later by a

more general form of ⃝LR):

Ω ⊢ P :: (x : 3A)

⃝Ω ⊢ (delay ; P) :: (x : 3A)
⃝3

We keep 3A as the type of x since we retain the full flexibility of using x at any time in the future

after the initial delay. We will generalize the rule once more in the next section to account for

interactions with 2A.
With this, we can define and type the idling process parametrically over A:

x ′ : ⃝3A ⊢ idle :: (x : 3A)
x ← idle← x ′ = delay ; x ← x ′

This turns out to be an example of subtyping (see Section 6.1), which means that the programmer

actually will not have to explicitly define or even reference an idling process. The programmer

simply writes the original skip1s process (without referencing the idle process) and our subtyping

algorithm will use the appropriate rule to typecheck it successfully.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:14 Ankush Das, Jan Hoffmann, and Frank Pfenning

4.3 Always A
We now turn our attention to the last temporal modality, 2A, which is dual to 3A. If a process P
provides x : 2A it means it is ready to receive a now! message along x at any point in the future.

In analogy with the typing rules for 3A, but flipped to the other side of the sequent, we obtain

⃝∗2Ω′ = Ω Ω ⊢ P :: (x : A)

Ω ⊢ (when? x ; P) :: (x : 2A)
2R

Ω,x :A ⊢ Q :: (z : C)

Ω,x :2A ⊢ (now! x ; Q) :: (z : C)
2L

The operational rules just reverse the role of provider and client from the rules for 3A.

(2S) proc(d, t , now! c ; Q) 7→ msg(c ′, t , now! c ; c ′← c), proc(d, t , [c ′/c]Q) (c ′ fresh)
(2C) proc(c, s,when? c ; P),msg(c ′, t , now! c ; c ′← c) 7→ proc(c ′, t , [c ′/c]P) (s ≤ t)

As an example for the use of 2A, and also to introduce a new kind of example, we specify and

implement a counter process that can receive inc and val messages. When receiving an inc it will
increment its internally maintained counter, when receiving val it will produce a finite bit stream
representing the current value of the counter. In the cost-free setting we have the type

bits = ⊕{b0 : bits, b1 : bits, $: 1}
ctr = N{inc : ctr, val : bits}

A counter is implemented by a chain of processes, each holding one bit (either bit0 or bit1) or
signaling the end of the chain (empty). For this purpose we implement three processes:

d : ctr ⊢ bit0 :: (c : ctr)
d : ctr ⊢ bit1 :: (c : ctr)
· ⊢ empty :: (c : ctr)

c ← bit0← d =
case c (inc⇒ c ← bit1← d % increment by continuing as bit1

| val⇒ c .b0 ; d .val ; c ← d) % send b0 on c , send val on d , identify c and d

c ← bit1← d =
case c (inc⇒ d .inc ; c ← bit0← d % send inc (carry) on d , continue as bit1

| val⇒ c .b1 ; d .val ; c ← d) % send b1 on c , send val on d , identify c and d

c ← empty =
case c (inc⇒ e ← empty ; % spawn a new empty process with channel e

c ← bit1← e % continue as bit1
| val⇒ c .$; close c) % send $ on c and close c

Using our standard cost model R we notice a problem: the carry bit (the d .inc message sent in the

bit1 process) is sent only on every other increment received because bit0 continues as bit1 without
a carry, and bit1 continues as bit0 with a carry. So it will actually take 2

k
increments received at the

lowest bit of the counter (which represents the interface to the client) before an increment reaches

the kth process in the chain. This is not a constant number, so we cannot characterize the behavior

exactly using only the next time modality. Instead, we say, from a certain point on, a counter is

always ready to receive either an inc or val message.

bits = ⊕{b0 : ⃝bits, b1 : ⃝bits, $: ⃝1}
ctr = 2N{inc : ⃝ctr, val : ⃝bits}

In the program, we have ticks mandated by our cost model and some additional delay, when?, and
now! actions to satisfy the stated types. The two marked lines may look incorrect, but are valid

based on the generalization of the ⃝LR rule in Section 4.4.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:15

d : ⃝ctr ⊢ bit0 :: (c : ctr)
d : ctr ⊢ bit1 :: (c : ctr)
· ⊢ empty :: (c : ctr)

c ← bit0← d =
when? c ; % d : ⃝ctr ⊢ c : N{. . .}
case c (inc⇒ tick ; % d : ctr ⊢ c : ctr

c ← bit1← d
| val⇒ tick ; % d : ctr ⊢ c : bits

c .b0 ; % d : ctr ⊢ c : ⃝bits
now! d ; d .val ; % d : ⃝bits ⊢ c : ⃝bits
c ← d)

c ← bit1← d =
when? c ; % d : ctr ⊢ c : N{. . .}
case c (inc⇒ tick ; % d : ctr ⊢ c : ctr (see Section 4.4)

now! d ; d .inc ; % d : ⃝ctr ⊢ c : ctr
c ← bit0← d

| val⇒ tick ; % d : ctr ⊢ c : bit (see Section 4.4)
c .b1 ; % d : ctr ⊢ c : ⃝bits
now! d ; d .val ; % d : ⃝bits ⊢ c : ⃝bits
c ← d)

c ← empty =
when? c ; % · ⊢ c : N{. . .}
case c (inc⇒ tick ; % · ⊢ c : ctr

e ← empty ; % e : ctr ⊢ c : ctr
c ← bit1← e

| val⇒ tick ; c .$; % · ⊢ c : ⃝1
delay ; close c)

4.4 Interactions Between Temporal Modalities
Just as ⃝A and 3A interacted in the rules since their semantics is based on the same underlying

notion of time, so do ⃝A and 2A. If we execute a delay, we can allow any channel of type 2A that

we use and leave its type unchanged because we are not obligated to communicate along it at any

particular time. It is a little awkward to formulate this because among the channels used there may

be some of type ⃝B and some of type 2B.

2Ω,Ω′ ⊢ P :: (x : A)

2Ω, ⃝Ω′ ⊢ (delay ; P) :: (x : ⃝A)
⃝

In the example of bit1 at the end of the previous section, we have already seen two lines where this

generalization was crucial, observing that ctr = 2N{. . .}.
But even this rule does not cover all possibilities, because the channel x could be of type 3A. We

introduce a new notation, writing [A]−1L and [A]−1R on types and extend it to contexts. Depending

on one’s point of view, this can be seen as stepping forward or backward by one unit of time.

[⃝A]−1L = A [⃝A]−1R = A [x : A]−1L = x : [A]−1L
[2A]−1L = 2A [2A]−1R = undefined [x : A]−1R = x : [A]−1R
[3A]−1L = undefined [3A]−1R = 3A [·]−1L = ·

[S]−1L = undefined [S]−1R = undefined [Ω,Ω′]−1L = [Ω]−1L , [Ω
′]−1L

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:16 Ankush Das, Jan Hoffmann, and Frank Pfenning

[Ω]−1L ⊢ P :: [x : A]−1R

Ω ⊢ (delay ; P) :: (x : A)
⃝LR

⃝∗2A delayed2 ⃝∗3A delayed3

Ω ⊢ P :: (x : A)

Ω ⊢ (now! x ; P) :: (x : 3A)
3R

Ω delayed2 Ω,x :A ⊢ Q :: (z : C) C delayed3

Ω,x :3A ⊢ (when? x ; Q) :: (z : C)
3L

Ω delayed2 Ω ⊢ P :: (x : A)

Ω ⊢ (when? x ; P) :: (x : 2A)
2R

Ω,x :A ⊢ Q :: (z : C)

Ω,x :2A ⊢ (now! x ; Q) :: (z : C)
2L

Fig. 5. Explicit Temporal Typing Rules

Here, S stands for any basic session type constructor as in Figure 1. We use this notation in the

general rule ⃝LR which can be found in Figure 5 together with the final set of rules for 2A and3A.
In conjunction with the rules in Figure 3 this completes the system of temporal session types where

all temporal actions are explicit. The rule ⃝LR only applies if both [Ω]−1L and [x : A]−1R are defined.

We call a typeA patient if it does not force communication along a channel x : A at any particular

point in time. Because the direction of communication is reversed between the two sides of a

sequent, a type A is patient if it has the form ⃝∗2A′ if it is among the antecedents, and ⃝
∗3A′ if it

is in the succedent. We write A delayed2 and A delayed3 and extend it to contexts Ω delayed2 if

for every declaration (x : A) ∈ Ω, we have A delayed2.

5 PRESERVATION AND PROGRESS
The main theorems that exhibit the deep connection between our type system and the timed opera-

tional semantics are the usual type preservation and progress, sometimes called session fidelity and

deadlock freedom, respectively. Compared to other recent treatments of linear session types [Balzer

and Pfenning 2017; Pfenning and Griffith 2015], new challenges are presented by abstract time and

the temporal modalities.

5.1 Configuration Typing
A key question is how we type configurations C. Configurations consist of multiple processes

and messages, so they both use and provide a collection of channels. And even though we treat a

configuration as a multiset, typing imposes a partial order on the processes and messages where a

provider of a channel appears to the left of its client.

Configuration C ::= · | C C′ | proc(c, t , P) | msg(c, t ,M)

We say proc(c, t , P) and msg(c, t ,M) provide c . We stipulate that no two distinct processes or

messages in a configuration provide the same channel c . Also recall that messagesM are simply

processes of a particular form and are typed as such. We can read off the possible messages (of

which there is one for each type constructor) from the operational semantics. They are summarized

here for completeness.

M ::= (c .k ; c ← c ′) | (c .k ; c ′← c) | close c | (send c d ; c ′← c) | (send c d ; c ← c ′)

The typing judgment has the form Ω′ ⊨ C :: Ω meaning that if composed with a configuration

that provides Ω′, the result will provide Ω.

Ω ⊨ (·) :: Ω
empty

Ω0 ⊨ C1 :: Ω1 Ω1 ⊨ C2 :: Ω2

Ω0 ⊨ (C1 C2) :: Ω2

compose

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:17

To type processes and messages, we begin by considering preservation: we would like to achieve

that if Ω′ ⊨ C :: Ω and C 7→ C′ then still Ω′ ⊨ C′ :: Ω. Without the temporal modalities, this is

guaranteed by the design of the sequent calculus: the right and left rules match just so that cut

reduction (which is the basis for reduction in the operational semantics) leads to a well-typed

deduction. The key here is what happens with time. Consider the special case

Ω ⊢ P :: A

⃝Ω ⊢ (delay ; P) :: (x : ⃝A)
⃝LR proc(c, t , delay ; P) 7→ proc(c, t + 1, P)

Note that, inevitably, the type of the channel c changes in the transition, from c : ⃝A to c : A and

similarly for all channels used by P . So if in proc(c, t ,Q) we were to use the type of Q as the type

of the semantic process object, preservation would fail. But while the type changes from ⃝A to A,
time also advances from t to t + 1. This suggests the following rule should keep the configuration

type invariant:

Ω ⊢ P :: (c : A)

⃝tΩ ⊨ proc(c, t , P) :: (c : ⃝tA)
proc⃝

When we transition from delay ; P to P we strip one ⃝ modality from Ω and A, but because we
also advance time from t to t + 1, the ⃝ modality is restored, keeping the interface type invariant.

When we also consider types 2A and 3A the situation is a little less straightforward because of

their interaction with ⃝, as we have already encountered in Section 4.4. We reuse the idea of the

solution, allowing the subtraction of time from a type, possibly stopping when we meet a 2 or 3.

[A]−0L = A [A]−0R = A

[A]−(t+1)L = [[A]−tL]
−1
L [A]−(t+1)R = [[A]−tR]

−1
R

This is extended to channel declarations in the obvious way. Additionally, the imprecision of 2A
and 3Amay create temporal gaps in the configuration that need to be bridged by a weak form of

subtyping A <: B (not to be confused with the much stronger form A ≤ B in Section 6.1),

m ≤ n

⃝m2A <: ⃝n2A
2weak

m ≥ n

⃝m3A <: ⃝n3A
3weak

A <: A
refl

This relation is specified to be reflexive and clearly transitive. We extend it to contexts Ω in the

obvious manner. In our final rules we also account for some channels that are not used by P orM
but just passed through.

Ω′ <: Ω [Ω]−tL ⊢ P :: [c : A]−tR A <: A′

Ω0,Ω
′ ⊨ proc(c, t , P) :: (Ω0, c : A

′)
proc

Ω′ <: Ω [Ω]−tL ⊢ M :: [c : A]−tR A <: A′

Ω0,Ω
′ ⊨ msg(c, t ,M) :: (Ω0, c : A

′)
msg

5.2 Type Preservation
With the four rules for typing configurations (empty, compose, proc andmsg), type preservation is

relatively straightforward. We need some standard lemmas about being able to split a configuration

and be able to move a provider (whether process or message) to the right in a typing derivation

until it rests right next to its client. Regarding time shifts, we need the following properties.

Lemma 5.1 (Time Shift).

(i) If [A]−tL = [B]
−t
R and both are defined then A = B.

(ii) [[A]−tL]
−s
L = [A]

−(t+s)
L and if either side is defined, the other is as well.

(iii) [[A]−tR]
−s
R = [A]

−(t+s)
R and if either side is defined, the other is as well.

Theorem 5.2 (Type Preservation). If Ω′ ⊨ C :: Ω and C 7→ D then Ω′ ⊨ D :: Ω.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:18 Ankush Das, Jan Hoffmann, and Frank Pfenning

Proof. By case analysis on the transition rule, applying inversion to the given typing derivation,

and then assembling a new derivation of D. □

Type preservation on basic session types is a simple special case of this theorem.

5.3 Global Progress
We say a process or message is poised if it is trying to communicate along the channel that it

provides. A poised process is comparable to a value in a sequential language. A configuration is

poised if every process or message in the configuration is poised. Conceptually, this implies that

the configuration is trying to communicate externally, i.e. along one of the channel it provides.

The progress theorem then shows that either a configuration can take a step or it is poised. To

prove this we show first that the typing derivation can be rearranged to go strictly from right to

left and then proceed by induction over this particular derivation. This much is standard, even for

significantly more complicated session-typed languages [Balzer and Pfenning 2017].

The question is how canwe prove that processes are either at the same time (for most interactions)

or that the message recipient is ready before the message arrives (for when?, now!, and some

forwards)? The key insight here is in the following lemma.

Lemma 5.3 (Time Inversion).

(i) If [A]−sR = [A]
−t
L and either side starts with a basic session type constructor then s = t .

(ii) If [A]−tL = 2B and [A]−sR , ⃝(−) then s ≤ t and [A]−sR = 2B.
(iii) If [A]−tR = 3B and [A]−sL , ⃝(−) then s ≤ t and [A]−sL = 3B.

Theorem 5.4 (Global Progress). If · ⊨ C :: Ω then either
(i) C 7→ C′ for some C′, or
(ii) C is poised.

Proof. By induction on the right-to-left typing of C so that either C is empty (and therefore

poised) or C = (D proc(c, t , P)) or C = (D msg(c, t ,M)). By induction hypothesis, D can either

take a step (and then so can C), or D is poised. In the latter case, we analyze the cases for P andM ,

applying multiple steps of inversion and Lemma 5.3 to show that in each case either C can take a

step or is poised. □

6 TIME RECONSTRUCTION
The process expressions introduced so far have straightforward syntax-directed typing rules. This

requires the programmer to write a significant number of explicit delay,when?, and now! constructs
in their code. This in turn hampers reuse: we would like to be able to provide multiple types for

the same process definition so it can be used in different contexts, with different types, even under

a single, fixed cost model.

In this section we introduce an implicit system which may be thought of as a temporal refinement
of the basic session type system in Section 2. The delay, when?, and now! constructs never appear
in the source, and, as before, tick is added before type-checking and never by the programmer.

The rules for the new judgment Ω ⊢i P :: (x : A) are shown in Figure 6; the other rules remain the

same (except for def, see below). We still need an explicit rule for the tick synonym of delay which

captures the cost model.

These rules are trivially sound and complete with respect to the explicit system in Section 4

because from an implicit type derivation we can read off the explicit process expression and vice

versa. They are also manifestly decidable because the types in the premises are smaller than those

in the conclusion, with one possible exception: In the ⃝LR rule the premise may be equal to the

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:19

[Ω]−1L ⊢
i P :: [x : A]−1R

Ω ⊢i P :: (x : A)
⃝LR

[Ω]−1L ⊢
i P :: [x : A]−1R

Ω ⊢i (tick ; P) :: (x : A)
⃝LR′

Ω ⊢i P :: (x : A)

Ω ⊢i P :: (x : 3A)
3R

Ω delayed2 Ω,x :A ⊢i Q :: (z : C) C delayed3

Ω,x :3A ⊢i Q :: (z : C)
3L

Ω delayed2 Ω ⊢i P :: (x : A)

Ω ⊢i P :: (x : 2A)
2R

Ω,x :A ⊢i Q :: (z : C)

Ω,x :2A ⊢i Q :: (z : C)
2L

Fig. 6. Implicit Temporal Rules

A ≤ A
refl

A ≤ B

⃝A ≤ ⃝B
⃝⃝

2A ≤ B

2A ≤ ⃝B
2⃝

A ≤ 3B

⃝A ≤ 3B
⃝3

⃝n2A ≤ B

⃝n2A ≤ 2B
2R

A ≤ B

2A ≤ B
2L

A ≤ B

A ≤ 3B
3R

A ≤ ⃝n3B

3A ≤ ⃝n3B
3L

Fig. 7. Subtyping Rules

conclusion if neither Ω nor A contain a type of the form ⃝(−). In this case, B = 2B′ for every y : B
in Ω and A = 3A′ and there P can delay by any finite number of time steps. Time reconstruction

avoids such an arbitrary delay.

Our examples revealed a significant shortcoming in these rules: when calling upon a process

definition, the types in the antecedent and succedent often do not match the types of the process to

be spawned. For example, the process skip1s in Section 4.1 we have

bits = ⊕{b0 : ⃝bits, b1 : ⃝bits, $: ⃝1}
sbits = ⊕{b0 : ⃝sbits, b1 : ⃝3sbits, $: ⃝1}

y : bits ⊢ compress :: (x : ⃝sbits)
y : bits ⊢ skip1s :: (x : ⃝3sbits)

x ← skip1s← y =
case y (b1⇒ tick ; % y : bits ⊢ x : 3sbits

x ← skip1s← y % does not type-check!
| . . .)

The indicated line does not type-check (neither in the explicit nor the implicit system presented so

far) since the type ⃝3sbits offered by skip1s does not match 3sbits. We had to write a process idle
to account for this mismatch:

x ′ : ⃝3A ⊢ idle :: (x : 3A)
x ← idle← x ′ = delay ; x ← x ′

In the implicit system the version with an explicit identity can in fact be reconstructed:

x ← skip1s← y =
case y (b1⇒ tick ; % y : bits ⊢i x : 3sbits

x ′← skip1s← y % x ′ : ⃝3sbits ⊢i x : 3sbits
% x ′ : 3sbits ⊢i x : 3sbits using rule ⃝LR

x ← x ′

| . . .)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:20 Ankush Das, Jan Hoffmann, and Frank Pfenning

6.1 Subtyping
Extrapolating from the example of skip1s above, we can generalize process invocations by allowing

subtyping on all used channels. The implicit rule for process invocation then reads

Ω′ ≤ Ωf (Ωf ⊢
i f = Pf :: (x : A)) ∈ Σ Ω,x :A ⊢i Q :: (z : C)

Ω,Ω′ ⊢i (x ← f ← Ω′ ; Q) :: (z : C)
def

But how do we define subtyping A ≤ B? We would like the coercion to be an identity on basic

session types and just deal with temporal mismatches through appropriate delay, when?, and now!
actions. In other words, A should be a subtype of B if and only if y : A ⊢i x ← y :: (x : B). Given
this desired theorem, we can just read off the subtyping rules from the implicit typing rules in

Figure 6 by using the forwarding process x ← y as the subject in each rule! This form of subtyping

is independent from subtyping between basic session types [Gay and Hole 2005], which we believe

can be added to our system in a sound way, even if it would not be complete for asynchronous

communication [Lange and Yoshida 2017].

This approach yields the rules in Figure 7, where we have split the ⃝LR rule into three different

cases. We have expanded the definitions of patient types to make it syntactically more self-contained.

Theorem 6.1 (Subtyping Identity). A ≤ B iff y : A ⊢i x ← y :: (x : B)

Proof. In each direction by induction over the structure of the given deduction. □

The subtyping rules are manifestly decidable. In the bottom-up search for a subtyping derivation,

the rules ⃝⃝, 2R, and3L can be applied eagerly without losing completeness. There is a nontrivial

decision point between the 2⃝ and 2L rules. The examples 2S ≤ ⃝2S and 2⃝S ≤ ⃝S for a basic

session type S show that sometimes 2⃝ must be chosen and sometimes 2L when both rules apply.

A dual non-deterministic choice exists between ⃝3 and 3R. The cost of backtracking is minimal

in all examples we have considered.

We already know that subtype coercions are identities. To verify that we have a sensible subtype

relation it remains to prove that transitivity is admissible. For this purpose we need two lemmas

regarding patient types, as they appear in the 2R and 3L rules.

Lemma 6.2 (Patience).

(i) If A ≤ ⃝n2B then A = ⃝k2A′ for some k and A′.
(ii) If ⃝n3A ≤ B then B = ⃝k3B′ for some k and B′.

Proof. By separate inductions over the structure of the given deductions. □

Lemma 6.3 (Impatience).

(i) If ⃝⃝n2A ≤ B then ⃝n2A ≤ B.
(ii) If A ≤ ⃝⃝n3B then A ≤ ⃝n3B.

Proof. By separate inductions over the structure of the given deductions. □

Theorem 6.4 (Transitivity of Subtyping).

If A ≤ B and B ≤ C then A ≤ C .

Proof. By simultaneous induction on the structure of the deductions D of A ≤ B and E of

B ≤ C with appeals to the preceding lemmas in four cases. □

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:21

7 FURTHER EXAMPLES
In this section we present example analyses of some of the properties that we can express in the

type system, such as the message rates of streams, the response time of concurrent data structures,

and the span of a fork/join parallel program.

In some examples we use parametric definitions, both at the level of types and processes. For

example, stackA describes stacks parameterized over a type A, listA[n] describes lists of n elements,

and tree[h] describes binary trees of height h. Process definitions are similarly parameterized.

We think of these as families of ordinary definitions and calculate with them accordingly, at the

metalevel, which is justified since they are only implicitly quantified across whole definitions. This

common practice (for example, in work on interaction nets Gimenez and Moser [2016]) avoids

significant syntactic overhead, highlighting conceptual insight. It is of course possible to internalize

such parameters (see, for example, work on refinement of session types [Griffith and Gunter 2013]

or explicitly polymorphic session types [Caires et al. 2013; Griffith 2016]).

7.1 Response Times: Stacks andQueues
To analyze response times, we study concurrent stacks and queues. A stack data structure provides

a client with a choice between a push and a pop. After a push, the client has to send an element,

and the provider will again behave like a stack. After a pop, the provider will reply either with the

label none and terminate (if there are no elements in the stack), or send an element and behave

again like a stack. In the cost-free model, this is expressed in the following session type.

stackA = N{ push : A ⊸ stackA,
pop : ⊕{ none : 1, some : A ⊗ stackA } }

We implement a stack as a chain of processes. The bottom to the stack is defined by the process

empty, while a process elem holds a top element of the stack as well as a channel with access to the

top of the remainder of the stack.

x : A, t : stackA ⊢ elem :: (s : stackA)
· ⊢ empty :: (s : stackA)

The cost model we would like to consider here is RS where both receives and sends cost one

unit of time. Because a receive costs one unit, every continuation type must be delayed by one tick

of the clock, which we have denoted by prefixing continuations by the ⃝ modality. This delay is

not an artifact of the implementation, but an inevitable part of the cost model—one reason we have

distinguished the synonyms tick (delay of one, due to the cost model) and delay (delay of one, to

correctly time the interactions). In this section of examples we will make the same distinction for

the next-time modality: we write ‘A for a step in time mandated by the cost model, and ⃝A for a

delay necessitated by a particular set of process definitions.

As a first approximation, we would have

stackA = N{ push : ‘(A ⊸ ‘stackA),
pop : ‘⊕{ none : ‘1, some : ‘(A ⊗ ‘stackA) } }

There are several problems with this type. The stack is a data structure and has little or no control

over when elements will be pushed onto or popped from the stack. Therefore we should use a type

2stackA to indicate that the client can choose the times of interaction with the stack. While the

elements are held by the stack time advances in an indeterminate manner. Therefore, the elements

stored in the stack must also have type 2A, not A (so that they are always available).

stackA = N{ push : ‘(2A ⊸ ‘2stackA),
pop : ‘⊕{ none : ‘1, some : ‘(2A ⊗ ‘2stackA) } }

x : 2A, t : 2stackA ⊢ elem :: (s : 2stackA)

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:22 Ankush Das, Jan Hoffmann, and Frank Pfenning

· ⊢ empty :: (s : 2stackA)

This type expresses that the data structure is very efficient in its response time: there is no additional

delay after it receives a push and then an element of type 2A before it can take the next request,

and it will respond immediately to a pop request. It may not be immediately obvious that such an

efficient implementation actually exists in the RS cost model, but it does. We use the implicit form

from Section 6 omitting the tick constructs after each receive and send, and also the when? before
each case that goes along with type 2A.

s ← elem← x t =
case s (push⇒ y ← recv s ;

s ′← elem← x t ; % previous top of stack, holding x
s ← elem← y s ′ % new top of stack, holding y

| pop⇒ s .some ;
send s x ; % send channel x along s
s ← t) % s is now provided by t , via forwarding

s ← empty =
case s (push⇒ y ← recv s ;

e ← empty ; % new bottom of stack
s ← elem← y e

| pop⇒ s .none ;
close s)

The specification and implementation of a queue is very similar. The key difference in the

implementation is that when we receive a new element we pass it along the chain of processes

until it reaches the end. So instead of

s ′← elem← x t ; % previous top of stack, holding x
s ← elem← y s ′ % new top of stack, holding y

we write

t .enq ;

send t y ; % send y to the back of the queue
s ← elem← x t

These two send operations take two units of time, which must be reflected in the type: after a

channel of type 2A has been received, there is a delay of an additional two units of time before the

provider can accept the next request.

queueA = N{ enq : ‘(2A ⊸ ‘⃝⃝2queueA),
deq : ‘⊕{ none : ‘1, some : ‘(2A ⊗ ‘2queueA) } }

x : 2A, t : ⃝⃝2queueA ⊢ elem :: (s : 2queueA)
· ⊢ empty :: (s : 2queueA)

Time reconstruction will insert the additional delays in the empty process through subtyping,

using 2queueA ≤ ⃝⃝2queueA. We have syntactically expanded the tail call so the second use of

subtyping is more apparent.

s ← empty =
case s (enq⇒ y ← recv s ; % y : 2A ⊢ s : ⃝⃝2queueA

e ← empty ; % y : 2A, e : 2queueA ⊢ s : ⃝⃝2queueA
s ′← elem← y e ; % 2queueA ≤ ⃝⃝2queueA (on e)
s ← s ′ % 2queueA ≤ ⃝⃝2queueA (on s ′)

| deq⇒ s .none ;

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:23

close s)

The difference between the response times of stacks and queues in the cost model is minimal: both

are constant, with the queue being two units slower. This is in contrast to the total work [Das et al.

2017] which is constant for the stack but linear in the number of elements for the queue.

This difference in response times can be realized by typing clients of both stacks and queues. We

compare clients Sn andQn that insert n elements into a stack and queue, respectively, send the result

along channel d , and then terminate. We show only their type below, omitting the implementations.

x1 : 2A, . . . ,xn : 2A, s : 2stackA ⊢ Sn :: (d : ⃝
2n (2stackA ⊗ ‘1))

x1 : 2A, . . . ,xn : 2A, s : 2queueA ⊢ Qn :: (d : ⃝
4n (2queueA ⊗ ‘1))

The types demonstrate that the total execution time of Sn is only 2n + 1, while it is 4n + 1 for

Qn . The difference comes from the difference in response times. Note that we can infer precise

execution times, even in the presence of the 2 modality in the stack and queue types.

7.2 Parametric Rates: Lists and Streams
Lists describe an interface that sends either nil and ends the session, or sends cons followed by a

channel of some type A and then behaves again like a list. In the cost-free setting:

listA = ⊕{ cons : A ⊗ listA, nil : 1 }
Here is the straightforward definition of append.

l1 : listA, l2 : listA ⊢ append : (l : listA)

l ← append← l1 l2 =
case l1 (cons⇒ x ← recv l1 ; % receive element x from l1

l .cons ; send l x ; % send x along l
l ← append← l1 l2 % recurse

| nil⇒ wait l1 ; % wait for l1 to close

l ← l2) % identify l and l2

In this example we are interested in analyzing the timing of several processes precisely, but

parametrically over an arrival rate. Because it takes two units of time to copy the inputs to the

outputs, the arrival rate needs to be at least 2, which we represent by writing it as r + 2. Since we
append the two lists, the second list will be idle while we copy the elements from the first list to

the output. We could give this list type 2(−), but we can also precisely determine the delay if we

index lists by the number of elements. We write listA[n] for a list sending exactly n elements. We

have the following types in the RS cost model:

listA[0] = ⊕{ nil : ‘1 }
listA[n + 1] = ⊕{ cons : ‘(2A ⊗ ‘⃝

r+2 listA[n]) }

As before, the tick marks account for the delay mandated by the cost model. The ⃝
r+2

accounts

for the arrival rate of r + 2. We use type 2A for the elements since they will be in the lists for an

indeterminate amount of time. The precise type of append then becomes

l1 : listA[n], l2 : ⃝(r+4)n+2 listA[k] ⊢ append :: (l : ⃝⃝listA[n + k])

It expresses that the output list has the same rate as the input lists, but with a delay of 2 cycles

relative to l1. The channel l2 has to sit idle for r + 4 cycles for each element of l1, accounting for the
two inputs along l1 and two outputs along l2. It takes 2 further cycles to input the nil and the end

token for the list.

With our type system and just a little bit of arithmetic we can verify this type, checking the

definition twice: once for a list of length 0 and once for n + 1. We show here the latter, where

l1 : listA[n + 1].

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:24 Ankush Das, Jan Hoffmann, and Frank Pfenning

l ← append← l1 l2 =
case l1 (cons⇒ % l1:2A ⊗ ‘⃝

r+2 listA[n], l2 : [⃝(r+4)(n+1)+2 listA[k]]−1L ⊢ l : ⃝listA[(n + 1) + k]
x ← recv l1 ; % x :2A, l1:⃝

r+2 listA[n], l2 : [⃝(r+4)(n+1)+2 listA[k]]−2L ⊢ l : listA[(n + 1) + k]
l .cons ; % x :2A, l1:⃝

r+1 listA[n], l2 : [⃝(r+4)(n+1)+2 listA[k]]−3L ⊢ l : 2A ⊗ ‘⃝
r+2 listA[n + k]

send l x ; % l1:⃝
r listA[n], l2 : [⃝(r+4)(n+1)+2 listA[k]]−4L ⊢ l : ⃝

r+2 listA[n + k]
% delayr % l1:listA[n], l2 : [⃝(r+4)(n+1)+2 listA[k]]−4−r ⊢ l : ⃝2 listA[n + k]

% l1:listA[n], l2 : ⃝(r+4)n+2 listA[k] ⊢ l : ⃝⃝listA[n + k]
l ← append← l1 l2
| nil⇒ . . .)

We showed only the one delay by r units inserted by time reconstruction since it is the critical step.

The case for nil does not apply for l1 : listA[n + 1]. Here is the typing derivation when l1 : listA[0]
where the cons branch does not apply.

l ← append← l1 l2 =
case l1 (cons⇒ . . .

| nil⇒ % l1 : 1, l2 : ⃝listA[k] ⊢ l : ⃝listA[k]
wait l1 ; % l2 : listA[k] ⊢ l : listA[k]
l ← l2)

As a related example we consider a process that alternates the elements between two infinite

input streams. At first we might expect if the two input streams come in with a rate of 2 then the

output stream will have a rate of 1. However, in the RS cost model one additional tick is required

for sending on the messages which means that the input streams need to have rate 3 and be offset

by 2 cycles. We parameterize the type of stream by its rate k

streamk
A = 2A ⊗ ‘⃝

k streamk
A

l1 : stream3

A, l2 : ⃝
2 stream3

A ⊢ alternate :: (l : ⃝
1 stream1

A)

l ← alternate← l1 l2 =
x ← recv l1 ; % x : 2A, l1 : ⃝

3 stream3

A, l2 : ⃝
1 stream3

A ⊢ l : stream
1

A
send l x ; % l1 : ⃝

2 stream3

A, l2 : stream
3

A ⊢ l : ⃝
1 stream1

A
l ← alternate← l2 l1)

A more general parametric type for the same code would be

l1 : stream2k+3
A , l2 : ⃝

k+2 stream2k+3
A ⊢ alternate :: (l : ⃝1 streamk+1

A)

from which we can recover the more specialized one with k = 0.

7.3 Span Analysis: Trees
We use trees to illustrate an example that is typical for fork/join parallelism and computation of

span. In order to avoid integers, we just compute the parity of a binary tree of height h with boolean

values at the leaves. We do not show the obvious definition of xor, which in the RS cost model

requires a delay of four from the first input.

bool = ⊕{ b0 : ‘1, b1 : ‘1 }

a : bool,b : ⃝
2 bool ⊢ xor :: (c : ⃝4 bool)

In the definition of leaf and node we have explicated the delays inferred by time reconstruction,

but not the tick delays. The type of tree[h] gives the span of this particular parallel computation as

5h + 2. This is the time it takes to compute the parity under maximal parallelism, assuming that xor
takes 4 cycles as shown in the type above.

tree[h] = N{ parity : ‘⃝
5h+2 bool }

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:25

· ⊢ leaf :: (t : tree[h])

t ← leaf =
case t (parity⇒ % · ⊢ t : ⃝5h+2 bool

% delay5h+2 % · ⊢ t : bool
t .b0 ; % · ⊢ t : 1
close t)

l : ⃝1tree[h], r : ⃝3 tree[h] ⊢ node :: (t : tree[h + 1])

t ← node← l r =
case t (parity⇒ % l : tree[h], r : ⃝2 tree[h] ⊢ t : ⃝5(h+1)+2 bool

l .parity ; % l : ⃝5h+2 bool, r : ⃝1tree[h] ⊢ t : ⃝5(h+1)+1 bool
% delay % l : ⃝5h+1 bool, r : tree[h] ⊢ t : ⃝5h+5 bool
r .parity ; % l : ⃝5h bool, r : ⃝5h+2 bool ⊢ t : ⃝5h+4 bool
% delay5h % l : bool, r : ⃝2 bool ⊢ t : ⃝4 bool
t ← xor← l r)

The type l : ⃝1 tree[h] comes from the fact that, after receiving a parity request, we first send out

the parity request to the left subtree l . The type r : ⃝
3 tree[h] is determined from the delay of 2

between the two inputs to xor. The magic number 5 in the type of tree was derived in reverse from

setting up the goal of type-checking the node process under the constraints already mentioned. We

can also think of it as 4+1, where 4 is the time to compute the exclusive or at each level and 1 as

the time to propagate the parity request down each level.

As is often done in abstract complexity analysis, we can also impose an alternative cost model.

For example, we may count only the number of calls to xor while all other operations are cost free.
Then we would have

a : bool,b : bool ⊢ xor :: (c : ⃝bool)
tree[h] = N{ parity : ⃝

h bool }
· ⊢ leaf :: (t : tree[h])
l : tree[h], r : tree[h] ⊢ node :: (t : tree[h + 1])

with the same code but different times and delays from before. The reader is invited to reconstruct

the details.

7.4 A Higher-Order Example
As an example of higher-order programming we show how to encode a process analogue of a fold

function. Because our language is purely linear the process to fold over a list has to be recursively

defined. In the cost-free setting we would write

folderAB = N{ next : A ⊸ (B ⊸ (B ⊗ folderAB)), done : 1 }

l : listA, f : folderAB ,b : B ⊢ fold :: (r : B)

r ← fold← l f b =
case l (cons⇒ x ← recv l ;

f .next ; send f x ; send f b ; % send x and b to folder f
y ← recv f ; r ← fold← l f y % receive y from f and recurse

| nil⇒ wait l ; f .done ; wait f ; r ← b)

If we want to assign precise temporal types to the fold process then the incoming list should have a

delay of at least 4 between successive elements. Working backwards from the code we obtain the

following types.

listA[0] = ⊕{ nil : ‘1 }
listA[n + 1] = ⊕{ cons : ‘(2A ⊗ ‘⃝

k+4 listA[n]) }

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:26 Ankush Das, Jan Hoffmann, and Frank Pfenning

folderAB = N{ next : ‘(2A ⊸ ‘(B ⊸ ‘⃝
k (⃝5B ⊗ ‘⃝

2 folderAB))), done : ‘1 }

l : listA[n], f : ⃝
2 folderAB ,b : ⃝

4B ⊢ fold :: (r : ⃝(k+5)n+4 B)

The type of fold indicates that if the combine function of folderAB takes k time units to compute,

the result r is produced after (k + 5)n + 4 time units in the RS cost model.

8 RELATION TO THE STANDARD SEMANTICS
While our temporal semantics stands on its own, one may ask precisely in which way it captures

properties of the standard semantics. We analyze this here for the fragment with only the next-time

modality ⃝A; the general case including 2A and 3A is just slightly more complicated. We proceed

in several steps.

Step 1: Standard Semantics. The standard operational semantics for basic session types (without

temporal modalities) is precisely that in Figure 4 where the time t always remains at 0.

Step 2: Measuring Span.We are interested in capturing the span of a standard computation, which

is the number of steps required to completion under the assumption that any action takes place

as soon as possible, subject only to its dependencies. We can measure this by instrumenting the

standard semantics, as was done by Silva et al. [2016], except that we increment time on every step

instead of just when messages are received. We write proc∗(c, t , P) and msg∗(c, t ,M) to distinguish

them because the time t has a different interpretation, namely the earliest time the process could

have arrived at this point in the computation under an asynchronous model of communication. We

show the two rules for internal choice to illustrate this semantics.

proc∗(c, t , c .k ; P) 7→ proc∗(c ′, t + 1, [c ′/c]P),msg∗(c, t + 1, c .k ; c ← c ′) (c ′ fresh)
msg∗(c, t , c .k ; c ← c ′), proc∗(d, t ′, case c (ℓ ⇒ Qℓ)ℓ∈L) 7→ proc∗(d,max(t , t ′ + 1), [c ′/c]Qk)

Step 3: Relating Computations.We define |A| and |P | as the result of erasing all next-timemodalities

from A and delay actions from |P |, respectively. We would like to relate computations of Ω ⊢ P : A
to those of |Ω | ⊢ |P | :: (c : |A|). However, we have to ensure that there are enough delay operators

in P to account for the fact that the cost model for standard computations counts every step. To

this end, we define two mutually recursive relations P ≥ Q and P > Q where Q = |P | but there are
further constraints on P . P ≥ Q expresses that P and Q start with the same action (which cannot

be a delay) and the continuations P ′ and Q ′ are related with P ′ > Q ′. This in turn requires one or

more initial delays in P ′ with its continuation P ′′ ≥ Q ′. These relations embody the idea that a

delay of the cost model precedes each action, which is necessary since close and forwarding actions
have no continuation. We only show the rules for sending and receiving labels.

P > Q

c .k ; P ≥ c .k ; Q

(∀ℓ ∈ L) Pℓ > Qℓ

case c (ℓ ⇒ Pℓ)ℓ∈L ≥ case c (ℓ ⇒ Qℓ)ℓ∈L

P > Q

delay ; P > Q

P ≥ Q

delay ; P > Q

We then extend this relation to all semantic objects, expressing that the temporal semantics may be

an over-approximation of the standard semantics because it may contain arbitrarily many additional

delay actions. This is expressed formally in the conditions on the time stamps of corresponding

processes and messages.

proc(c, s, P) ≥ proc∗(c, t ,Q) if (P > Q and s ≥ t) or (P ≥ Q and s > t)

msg(c, s,M) ≥ msg∗(c, t ,M) if s ≥ t

We then extend this compositionally to full configurations, C ≥ D.

Bisimulation. The ≥ relation is a weak bisimulation in the following sense, where 7→≤1 means

at most one transition and 7→≥1 means at least one transition. Note that the approximation prop-

erty comes from the relation between time stamps in the two configurations, not the number of

transitions.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:27

Theorem 8.1. Assume · ⊨ C :: Ω and · ⊨ D :: |Ω |.
(i) If C ≥ D and C 7→ C′ then D 7→≤1 D ′ for some D ′ with C′ ≥ D ′.
(ii) If C ≥ D and D 7→ D ′ then C 7→≥1 C′ for some C′ with C′ ≥ D ′.

Proof. In each direction, by analyzing each case of the given reduction, with a case analysis or

induction over the definition of ≥. □

The treatment of 2A and3A is slightly more complicated. We obtain the simplest generalization

by defining |2A| = N{now : |A|} and |3A| = ⊕{now : |A|} with the corresponding erasure in the

process expressions. If we want to avoid such “administrative messages” we can instead fully erase

all temporal constructs but enforce a normal form on process expressions where every when? x
action is always immediately followed by another receive action along x .

9 FURTHER RELATEDWORK
In addition to the related work already mentioned, we highlight a few related threads of research.

Session types and process calculi. In addition to the work on timedmultiparty session types [Bocchi

et al. 2014; Neykova et al. 2014], time has been introduced into the π -calculus (see, for example,

Saeedloei and Gupta [2014]) or session-based communication primitives (see, for example, López

et al. [2009]) but generally these works do not develop a type system. Kobayashi [2002] extends a

(synchronous) π -calculus with means to count parallel reduction steps. He then provides a type

system to verify time-boundedness. This is more general in some dimension than our work because

of a more permissive underlying type and usage system, but it lacks internal and external choice,

genericity in the cost model, and provides bounds rather than a fine gradation between exact and

indefinite times. Session types can also be derived by a Curry-Howard interpretation of classical
linear logic [Wadler 2012] but we are not aware of temporal extensions. We conjecture that there is

a classical version of our system where 2 and 3 are dual and ⃝ is self-dual.

Reactive programming. Synchronous data flow languages such as Lustre [Halbwachs et al. 1991],

Esterel [Berry and Gonthier 1992], or Lucid Synchrone [Pouzet 2006] are time-synchronous with

uni-directional flow and thus may be compared to the fragment of our language with internal

choice (⊕) and the next-time modality (⃝A), augmented with existential quantification over basic

data values like booleans and integers (which we have omitted here only for the sake of brevity).

The global clock would map to our underlying notion of time, but data-dependent local clocks

would have to be encoded at a relatively low level using streams of option type, compromising the

brevity and elegance of these languages. Furthermore, synchronous data flow languages generally

permit sharing of channels, which, although part of many session-typed languages [Balzer and

Pfenning 2017; Caires and Pfenning 2010], require further investigation in our setting. On the

other hand, we support a number of additional types such as external choice (N) for bidirectional

communication and higher-order channel-passing (A ⊸ B, A ⊗ B). In the context of functional

reactive programming, a Nakano-style [Nakano 2000] temporal modality has been used to ensure

productivity [Krishnaswami and Benton 2011]. A difference in our work is that we consider

concurrent processes and that our types prescribe the timing of messages.

Computational interpretations of ⃝A. A first computational interpretation of the next-time modal-

ity under a proofs-as-programs paradigm was given by Davies [1996]. The basis is natural deduction

for a (non-linear!) intutionistic linear-time temporal logic with only the next-time modality. Rather

than capturing cost, the programmer could indicate staging by stipulating that some subexpressions

should be evaluated “at the next time”. The natural operational semantics then is a logically-

motivated form of partial evaluation which yields a residual program of type ⃝A. This idea was

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

91:28 Ankush Das, Jan Hoffmann, and Frank Pfenning

picked up by Feltman et al. [2016] to instead split the program statically into two stages where

results from the first stage are communicated to the second. Again, neither linearity (in the sense

of linear logic), nor any specific cost semantics appears in this work.

Other techniques. Inferring the cost of concurrent programs is a fundamental problem in resource

analysis. Hoffmann and Shao [2015] introduce the first automatic analysis for deriving bounds on

the worst-case evaluation cost of parallel first-order functional programs. Their main limitation

is that they can only handle parallel computation; they don’t support message-passing or shared

memory based concurrency. Blelloch and Reid-Miller [1997] use pipelining [Paul et al. 1983] to

improve the complexity of parallel algorithms. However, they use futures [Halstead 1985], a parallel

language construct to implement pipelining without the programmer having to specify them

explicitly. The runtime of algorithms is determined by analyzing the work and depth in a language-

based cost model. The work relates to ours in the sense that pipelines can have delays, which can

be data dependent. However, the algorithms they analyze have no message-passing concurrency

or other synchronization constructs. Albert et al. [2015] devised a static analysis for inferring the

parallel cost of distributed systems. They first perform a block-level analysis to estimate the serial

cost, then construct a distributed flow graph (DFG) to capture the parallelism and then obtain the

parallel cost by computing the maximal cost path in the DFG. However, the bounds they produce

are modulo a points-to and serial cost analysis. Hence, an imprecise points-to analysis will result in

imprecise parallel cost bounds. Moreover, since their technique is based on static analysis, it is not

compositional and a whole program analysis is needed to infer bounds on each module. Recently,

a bounded linear typing discipline [Ghica and Smith 2014] modeled in a semiring was proposed

for resource-sensitive compilation. It was then used to calculate and control execution time in a

higher-order functional programming language. However, this language did not support recursion.

10 CONCLUSION
We have developed a system of temporal session types that can accommodate and analyze con-

current programs with respect to a variety of different cost models. Types can vary in precision,

based on desired and available information, and includes latency, rate, response time, and span

of computations. It is constructed in a modular way, on top of a system of basic session types,

and therefore lends itself to easy generalization. We have illustrated the type system through a

number of simple programs on streams of bits, binary counters, lists, stacks, queues, and trees.

Time reconstruction and subtyping go some way towards alleviating demands on the programmer

and supporting program reuse. In ongoing work we are exploring an implementation with an eye

toward practical aspects of time reconstruction and, beyond that, automatic resource analysis based

on internal measures of processes such as the length of a list or the height of a tree—so far, we have

carried out these analyses by hand.

ACKNOWLEDGMENTS
This article is based on research that has been supported, in part, by AFRL under DARPA STAC

award FA8750-15-C-0082 and in part by the NSF Foundation under Grants No. 1718267 and 1812876.

Any opinions, findings, and conclusions contained in this document are those of the authors and

do not necessarily reflect the views of the sponsoring organizations.

REFERENCES
Elvira Albert, Jesús Correas, Einar Broch Johnsen, and Guillermo Román-Díez. 2015. Parallel Cost Analysis of Distributed

Systems. In Static Analysis, Sandrine Blazy and Thomas Jensen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

275–292.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

Parallel Complexity Analysis with Temporal Session Types 91:29

Martin Avanzini, Ugo Dal Lago, and Georg Moser. 2015. Analysing the Complexity of Functional Programs: Higher-Order

Meets First-Order. In 29th Int. Conf. on Functional Programming (ICFP’15).
Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. In International Conference on Functional

Programming (ICFP). ACM, 37:1–37:29.

Gérard Berry and Georges Gonthier. 1992. The ESTEREL Synchronous Programming Language: Design, Semantics,

Implementation. Sci. Comput. Program. 19, 2 (Nov. 1992), 87–152. https://doi.org/10.1016/0167-6423(92)90005-V

Guy E. Blelloch and Margaret Reid-Miller. 1997. Pipelining with Futures. In Proceedings of the Ninth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA ’97). ACM, New York, NY, USA, 249–259. https://doi.org/10.1145/258492.

258517

Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. 2014. Timed Multiparty Session Types. In CONCUR 2014 – Concurrency
Theory, Paolo Baldan and Daniele Gorla (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 419–434.

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behavioral Polymorphism and Parametricity in

Session-Based Communication. In Proceedings of the European Symposium on Programming (ESOP’13), M.Felleisen and

P.Gardner (Eds.). Springer LNCS 7792, Rome, Italy, 330–349.

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In Proceedings of the 21st
International Conference on Concurrency Theory (CONCUR 2010). Springer LNCS 6269, Paris, France, 222–236.

Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear Logic Propositions as Session Types. Mathematical
Structures in Computer Science 26, 3 (2016), 367–423.

Iliano Cervesato and Andre Scedrov. 2009. Relating State-Based and Process-Based Concurrency through Linear Logic.

Information and Computation 207, 10 (Oct. 2009), 1044–1077.

Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. 2015. Denotational Cost Semantics for Functional Languages with

Inductive Types. In 29th Int. Conf. on Functional Programming (ICFP’15).
Ankush Das, Jan Hoffmann, and Frank Pfenning. 2017. Work Analysis with Resource-Aware Session Types. CoRR

abs/1712.08310 (2017). arXiv:1712.08310 http://arxiv.org/abs/1712.08310

Rowan Davies. 1996. A Temporal Logic Approach to Binding-Time Analysis. In Proceedings of the Eleventh Annual
Symposium on Logic in Computer Science, E. Clarke (Ed.). IEEE Computer Society Press, New Brunswick, New Jersey,

184–195. http://www.cs.cmu.edu/afs/cs/user/rowan/www/papers/multbta.ps.Z

Nicolas Feltman, Carlo Angiuli, Umut Acar, and Kayvon Fatahalian. 2016. Automatically Splitting a Two-Stage Lambda

Calculus. In Proceedings of the 25th European Symposium on Programming (ESOP), P. Thiemann (Ed.). Springer LNCS

9632, Eindhoven, The Netherlands, 255–281.

Jérôme Fortier and Luigi Santocanale. 2013. Cuts for Circular Proofs: Semantics and Cut Elimination. In 22nd Conference on
Computer Science Logic (LIPIcs), Vol. 23. 248–262.

Simon J. Gay and Malcolm Hole. 2005. Subtyping for Session Types in the π -Calculus. Acta Informatica 42, 2–3 (2005),

191–225.

Dan R. Ghica and Alex I. Smith. 2014. Bounded Linear Types in a Resource Semiring. In Proceedings of the 23rd European
Symposium on Programming Languages and Systems - Volume 8410. Springer-Verlag New York, Inc., New York, NY, USA,

331–350. https://doi.org/10.1007/978-3-642-54833-8_18

Stéphane Gimenez and Georg Moser. 2016. The Complexity of Interaction. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’16). ACM, New York, NY, USA, 243–255. https:

//doi.org/10.1145/2837614.2837646

Dennis Griffith. 2016. Polarized Substructural Session Types. Ph.D. Dissertation. University of Illinois at Urbana-Champaign.

Dennis Griffith and Elsa L. Gunter. 2013. Liquid Pi: Inferrable Dependent Session Types. In Proceedings of the NASA Formal
Methods Symposium. Springer LNCS 7871, 186–197.

Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. 2009. SPEED: Precise and Efficient Static Estimation of Program

Computational Complexity. In 36th ACM Symp. on Principles of Prog. Langs. (POPL’09). 127–139.
N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous data flow programming language LUSTRE. Proc.

IEEE 79, 9 (Sep 1991), 1305–1320. https://doi.org/10.1109/5.97300

Robert H. Halstead, Jr. 1985. MULTILISP: A Language for Concurrent Symbolic Computation. ACM Trans. Program. Lang.
Syst. 7, 4 (Oct. 1985), 501–538. https://doi.org/10.1145/4472.4478

Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In 44th
Symposium on Principles of Programming Languages (POPL’17).

Jan Hoffmann and Zhong Shao. 2015. Automatic Static Cost Analysis for Parallel Programs. In Proceedings of the 24th
European Symposium on Programming on Programming Languages and Systems - Volume 9032. Springer-Verlag New York,

Inc., New York, NY, USA, 132–157. https://doi.org/10.1007/978-3-662-46669-8_6

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for Structured

Communication-Based Programming. In 7th European Symposium on Programming Languages and Systems (ESOP’98).
Springer LNCS 1381, 122–138.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/258492.258517
https://doi.org/10.1145/258492.258517
http://arxiv.org/abs/1712.08310
http://arxiv.org/abs/1712.08310
http://www.cs.cmu.edu/afs/cs/user/rowan/www/papers/multbta.ps.Z
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1145/2837614.2837646
https://doi.org/10.1145/2837614.2837646
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/4472.4478
https://doi.org/10.1007/978-3-662-46669-8_6

91:30 Ankush Das, Jan Hoffmann, and Frank Pfenning

Naoki Kobayashi. 2002. A Type System for Lock-Free Processes. Information and Computation 177 (2002), 122–159.

Neelakantan R. Krishnaswami and Nick Benton. 2011. Ultrametric Semantics of Reactive Programs. In 26th IEEE Symposium
on Logic in Computer Science, (LICS’11). 257–266.

Ugo Dal Lago and Marco Gaboardi. 2011. Linear Dependent Types and Relative Completeness. In 26th IEEE Symp. on Logic
in Computer Science (LICS’11). 133–142.

Julien Lange and Nobuko Yoshida. 2017. On the Undecidability of Asynchronous Session Subtyping. In Proceedings of the
20th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS). Springer LNCS
10203, 441–457.

Hugo A. López, Carlos Olarte, and Jorge A. Pérez. 2009. Towards a Unified Framework for Declarative Structure Communi-

cations. In Proceedings of the Workshop on Programming Language Approaches to Concurrency and Communication-Centric
Software (PLACES), A. Beresford and S. Gay (Eds.). EPTCS 17, 1–15.

Hiroshi Nakano. 2000. A Modality for Recursion. In 15th IEEE Symposium on Logic in Computer Science (LICS’00). 255–266.
Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2014. Timed Runtime Monitoring for Multiparty Conversations. In

3rd International Workshop on Behavioural Types (BEAT 2014).
W. Paul, U. Vishkin, and H. Wagener. 1983. Parallel dictionaries on 2–3 trees. In Automata, Languages and Programming,

Josep Diaz (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 597–609.

Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In Proceedings of the 18th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2015), A. Pitts (Ed.). Springer LNCS
9034, London, England, 3–22. Invited talk.

Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th Symposium on Foundations of Computer
Science (FOCS’77). IEEE Computer Society, 46–57.

Marc Pouzet. 2006. Lucid Synchrone Release, version 3.0 Tutorial and Reference Manual. (2006).

Neda Saeedloei and Gopal Gupta. 2014. Timed π -Calculus. In 8th International Symposium on Trustworthy Global Computing
- Volume 8358 (TGC 2013). Springer-Verlag New York, Inc., New York, NY, USA, 119–135. https://doi.org/10.1007/

978-3-319-05119-2_8

Miguel Silva, Mário Florido, and Frank Pfenning. 2016. Non-Blocking Concurrent Imperative Programming with Session

Types. In Fourth International Workshop on Linearity.
Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic

Integration. In Proceedings of the European Symposium on Programming (ESOP’13), M.Felleisen and P.Gardner (Eds.).

Springer LNCS 7792, Rome, Italy, 350–369.

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2014. Corecursion and Non-Divergence in Session-Typed Processes. In

Proceedings of the 9th International Symposium on Trustworthy Global Computing (TGC 2014), M. Maffei and E. Tuosto

(Eds.). Springer LNCS 8902, Rome, Italy, 159–175.

Philip Wadler. 2012. Propositions as Sessions. In Proceedings of the 17th International Conference on Functional Programming
(ICFP 2012). ACM Press, Copenhagen, Denmark, 273–286.

Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017. Relational Cost Analysis. In 44th
Symposium on Principles of Programming Languages (POPL’17).

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 91. Publication date: September 2018.

https://doi.org/10.1007/978-3-319-05119-2_8
https://doi.org/10.1007/978-3-319-05119-2_8

	Abstract
	1 Introduction
	2 The Base System of Session Types
	2.1 Internal Choice
	2.2 Termination
	2.3 Forwarding
	2.4 Process Definitions
	2.5 Recursive Types

	3 The Temporal Modality Next (A)
	3.1 Modeling a Cost Semantics
	3.2 The Interpretation of a Configuration

	4 The Temporal Modalities Always (A) and Eventually (A)
	4.1 Eventually A
	4.2 Interactions of A and A
	4.3 Always A
	4.4 Interactions Between Temporal Modalities

	5 Preservation and Progress
	5.1 Configuration Typing
	5.2 Type Preservation
	5.3 Global Progress

	6 Time Reconstruction
	6.1 Subtyping

	7 Further Examples
	7.1 Response Times: Stacks and Queues
	7.2 Parametric Rates: Lists and Streams
	7.3 Span Analysis: Trees
	7.4 A Higher-Order Example

	8 Relation to the Standard Semantics
	9 Further Related Work
	10 Conclusion
	Acknowledgments
	References

