Intersection Types and Computational Effects

Rowan Davies
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

rowan@cs.cmu.edu

ABSTRACT

We show that standard formulations of intersection type sys-
tems are unsound in the presence of computational effects,
and propose a solution similar to the value restriction for
polymorphism adopted in the revised definition of Standard
ML. It differs in that it is not tied to let-expressions and re-
quires an additional weakening of the usual subtyping rules.
We also present a bi-directional type-checking algorithm for
the resulting language that does not require an excessive
amount of type annotations and illustrate it through some
examples. We further show that the type assignment sys-
tem can be extended to incorporate parametric polymor-
phism. Taken together, we see our system and associated
type-checking algorithm as a significant step towards the in-
troduction of intersection types into realistic programming
languages. The added expressive power would allow many
more properties of programs to be stated by the programmer
and statically verified by a compiler.

Categories and Subject Descriptors

F.3.3 [Logics and Meanings of Programs|: Studies of
Program Constructs—type structure; D.3.3 [Programming
Languages|: Language Constructs and Features—polymor-
phism; F.3.1 [Logics and Meanings of Programs|: Spec-
ifying and Verifying and Reasoning about Programs

General Terms

Languages, Theory, Verification

1. INTRODUCTION

The advantages of statically typed programming lan-
guages are well known, and have been described many times

*This work was sponsored in part by the Advanced Research
Projects Agency CSTO under the title “The Fox Project:
Advanced Languages for Extensible Systems”, ARPA Order
No. C533.

Permission to make digital or hard copies of all or part of this work for

*

Frank Pfenning
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

fp@cs.cmu.edu

(see, for example, [3]). However, conventional type systems
for realistic programming languages can not express, and
therefore not check, many interesting program properties.
In prior research we have designed an extension of ML’s
type system to capture invariants of data structures. In
the resulting language of refinement types [7, 5, 4] we can
define subtypes of data types, essentially via regular tree
grammars. Experiments with refinement types and related
work on soft types [1, 21] have demonstrated the utility of
the additional expressive power to catch more programmer
errors and give stronger guarantees at module boundaries.
For practical purposes, refinements require at least some
form of intersection types, because a given function may
have more than one property. As a simple example (elabo-
rated in Section 5), consider the types nat of natural num-
bers and pos of positive natural numbers where pos < nat.
Then the function double maps natural numbers to nat-
ural numbers (nat — nat), but also maps positive num-
bers to positive numbers (pos — pos) and hence has type
(nat — nat) A(pos — pos).

In this paper we demonstrate that general intersection
types are unsound in the presence of computational effects
and make two major contributions towards the use of inter-
section types in practical programming languages:

1. We propose a simple type assignment system for a core
functional language with mutable references and inter-
section types and prove that it is sound, and

2. we design a corresponding source language that per-
mits bi-directional type-checking without being pro-
hibitively verbose.

We illustrate the resulting core language with some small
examples. Our restriction is similar to the value restriction
employed in ML [10] in order to avoid unsound uses of para-
metric polymorphism (see [17, 20]). However, in addition
to a value restriction on the introduction of intersections,
we also need to discard the distributivity law for subtyping,
leading to a system which is overall significantly simpler
than general intersection types without a noticeable loss in
expressive power or accuracy.

Refinement types differ from intersection types in that
the intersection A A B can only be formed if A and B are

personal or classroom use is granted without fee provided that copies arespecializations of the same simple type. We do not impose
not made or distributed for profit or commercial advantage and that copies this additional requirement here, since it is orthogonal to
bear this notice and the full citation on the first page. To copy otherwise, to hoth soundness in the presence of effects and the issue of bi-
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICFP '00, Montreal, Canada.

Copyright 2000 ACM 1-58113-202-6/00/00095.00

directional type checking. So our results apply, for example,
to operator overloading and even self-application. On the
other hand, we have chosen an inclusion interpretation of

subtyping which allows us to give an untyped operational
semantics without explicit coercions. This is sufficient for
refinement types and could easily be extended to a coercive
interpretation of subtyping and intersections [2, 15].

Finally, we show how our type assignment system can be
extended to include a value-restricted form of parametric
polymorphism. However, we do not show how to extend our
source language, since a generalization of bi-directional type
checking to local type inference [13] in the presence of poly-
morphism, subtyping, intersections, and a value restriction
does not appear straightforward.

We close the introduction with a simple example that il-
lustrates the unsoundness of intersection in the presence of
mutable references. Similar counterexamples can be con-
structed for other computational effects such as exceptions.
Assume, as above, that pos < nat. We work with a represen-
tation of natural numbers as bit strings so that e represents
0 and €1 represents 1.

let © = ref(el) : nat ref A pos ref
inlety=(z:=¢)

inlet z="!2

in z : pos

In this example, we create a new cell with initial contents
€1 and assign the type natref A pos ref. Certainly, both
of these are valid types for x, since the contents of the cell
is both of type nat and type pos. Then we assign € to z,
which is well-typed since x has type nat ref, among others.
Then we read the contents, requiring the result to have type
pos, which is valid since = has type pos ref, among others.
During evaluation, however, z will be bound to €, so the
type system is unsound: the whole expression has type pos,
but evaluates to € which represents zero and does not have
type pos.

The remainder of this paper is organized as follows. In
Section 2 we show that a value restriction on intersection
introduction leads to a sound type assignment system for a
small functional language including mutable references. In
Section 3 we present a corresponding source language and
a bi-directional type-checking algorithm. Our type system
is generalized to include parametric polymorphism in Sec-
tion 4 and illustrated by various examples in Section 5. We
conclude with some remarks about future work in Section 6.

2. A VALUE RESTRICTION FOR INTER-
SECTION TYPES

In this section we present a small language with functions,
mutable references, and intersection types. We also include
an example datatype bits for strings of bits, along with two
subtypes nat for natural numbers (bit-strings without lead-
ing zeroes) and pos for positive natural numbers. We place
a value restriction on the introduction of intersections, omit
the problematic distributivity rule from subtyping, and then
show that this leads to a sound system by proving an appro-
priate progress and type preservation theorem. An analysis
of the proof gives some insight as to why each of our restric-
tions is required.

The term language in this section does not contain types
for several reasons:

1. the typing rules are maximally general, admitting as
many programs as possible,

2. the progress theorem demonstrates that an untyped
operational semantics is sound (i.e., types may, but
need not be carried at runtime), and

3. formulating reduction rules directly on terms with
some type annotations as in Section 3 is awkward at
best.

Type inference for this language is most likely undecid-
able, and principal types do not exist. Therefore we present
a more practical source language which includes some type
information and an associated bi-directional type checking
algorithm in Section 3. The untyped terms in this section
can be obtained simply by erasure which would naturally
be part of the compilation process (see Theorem 7). We
avoid coercions by considering only subtype relations which
are inclusions, but this is not an essential restriction of our
approach.

2.1 Syntax

The syntax is relatively standard for a call-by-value lan-
guage in the ML family. We allow general fixed-points
with eager unrolling, which means we should distinguish two
kinds of variables: those bound in A, let and case expres-
sions which stand for values (denoted by z), and those bound
in fix expressions which stand for arbitrary terms (denoted
by u). As proposed by Leroy [9], we can also easily admit
a “by name” let expression. We further use identifiers [to
address cells in the store during evaluation.

We represent natural numbers as bit-strings in standard
form, with the least significant bit rightmost and no leading
zeroes. We view 0 and 1 as constructors written in postfix
form, and € stands for the empty string. For example, 6
would be represented as €110.

A=A — Ay | Aref | unit
| bits | nat | pos | A1 A A

Terms M =z | z. M | My M,
|letm:M1inM2
|u|fixu M
|l|ref M |!' M| M := M| ()
le|MO|M1
|case Mofe= M, | 20=M: | y1= M;s

Types

We use A, B for types and M, N for terms. We write
{M'/z}M for the result of substituting M’ for z in M, re-
naming bound variables as necessary to avoid the capture
of free variables in M’.

We distinguish the following terms as values:

Values V. u= z|Xe. M |l|()|e|VO|V1
For type-checking, we need to assign types to variables

and cells in contexts I and A, respectively. Moreover, dur-
ing execution of a program we need to maintain a store C.

Variable Contexts I' == .| x:A|T,uwA
Cell Contexts A = -|Al:A
Store C == -|C,(I=V)
Program States P = Cp> M

We assume that variables z,u and cells [can be declared
at most once in a context or store. We omit leading -’s from
contexts, and write I',T” for the result of appending two
variable disjoint contexts (and similarly for cell contexts and
stores).

2.2 Subtyping

The subtyping judgment for this language has the form:
A< B Type Ais a subtype of B.

It is defined by the following rules, which are standard
except for the omission of distributivity (see below) and the
addition of subtyping for the base types bits, nat and pos.
Note that function types are contra-variant in the argument
and co-variant in the result, while the ref type constructor
is non-variant.

pos < nat nat < bits

A1 <Ay Ax < As

A< A A < A3
A1 NAr < Ay A1 NAz < As
AgBl A§B2
AgBl/\BQ
31§A1 A2§B2

A1—>A2§Bl—>B2

A<B B<A

Aref < B ref

As mentioned earlier, we omit the following distributivity
rule since it leads to unsoundness when functions involve
effects:

(A= B)A(A—= B)< A— (BAB)

A counterexample is given by (Az. ref (e1)) () which
would have type (natref) A(posref) since

(Az. refe€) : (unit — natref) A(unit — posref)

and the above rule allows us to infer

(unit — natref) A(unit — posref)
< unit — (natref A posref)

In other words, distributivity would allow us to circum-
vent the value restriction on the introduction of intersec-
tions given in the next subsection. It is somewhat sur-
prising, however, that it is possible to simply drop the rule
and obtain a sensible system. The loss in expressive power
that results appears to be minimal in practice, since often
when we want to coerce type (A — B)A(A — B’) to type
A — (BAB’) we can replace the first type by the second
throughout the type derivation (possibly using n-expansion
to satisfy the value restriction on intersection introduction,
similar to [20]). Dropping distributivity has the interesting
effect that the subtyping rules for various type constructors
(—, ref, A) are now orthogonal. This persists, even when
further constructors such as products or lists are added.
The rules above do not immediately yield an algorithm
for deciding subtyping. We thus present the following algo-
rithmic subtyping judgment, and show that it is equivalent

to the above. We use the notation A° for an ordinary type,
namely one that is not an intersection, although it may con-
tain embedded intersections. Due to the absence of distribu-
tivity, our subtyping algorithm is quite different to previous
algorithms proposed for intersection types, such as that of
Reynolds [14].

A< B Type A is algorithmically a subtype of B.

pos < pos pos < nat pos < bits

nat <! nat nat < bits bits < bits

Bi <4 A A< B, A<B B<A

A1—>A2§]Bl—>Bg ArefﬂBref

unit < unit

A <4 B°
A1 NA2 4 B°

Ay < B°
A1 NA2 4 B°

A< B A< B

A< By AB;

We now prove some simple lemmas needed to show that
algorithmic and declarative subtyping coincide.

LEMMA 1 (ALGORITHMIC SUBTYPING).
The algorithmic subtyping judgment satisfies:

1. f A< B then ANA' < B and A NA 4 B.
2. A<A.
3. IfAl S] A2 and A2 S] A3 then A1 S] A3.

PROOF. By simple inductions on given types or deriva-
tions. Reflexivity (2) requires monotonicity (1). [

THEOREM 2. A < B if and only if A < B.

PROOF. In each direction, by induction on the given
derivation, using the properties in the preceding lemma. [

2.3 Typing
The typing judgment for terms has the form:

A;THM: A Term M has type A in cell context A
and variable context I

The typing rules are given in Figure 1. These rules are
standard for functions, definitions, fixed points, references,
and intersection types, with the exception that the intro-
duction rule for intersections is restricted to values.

There are three typing rules for case, depending on
whether the subject can be shown to have type bits, nat,
or pos. This illustrates that in a typical use of intersections
as refinements, we derive introduction as well as elimina-
tion rules for each type. Note that the branch for ¢ does
not need to be checked when the case subject has type pos.

z:Ain T A;T,z:A)F M : B ATFM:A—-B A TEN:A

— tp.var tp_lam tp-app
AiThz: A ATHMe. M:A— B A;THFMN: B
A;THEM: A A;(T,z:A)F N : B wAin T , A;(T,uw:A)F M : A
tp-let ————tpvar tp_fix
A;THletz=Min N :B AT wA A;THfixu. M: A
I:Ain A A;TEM: A A;T'- M : Aref
— tpcell tp_ref - tp-get
A;TH1: Aref A;T Fref M : Aref ATHIM:A
A;T'HM:Aref A;TEN:A)
tp_set —— tp_unit
A;T'F M:= N : unit A;TE () : unit
- tpe
A;TFe:nat
A;TF M : pos A;T'F M : bits
—tpz1 —tp22
A;T'H MO0 : pos A;T'F MO0 : bits
A;T'F M :nat A;T'+ M : bits
— tpol — tpo2
A;T'H M 1: pos A;T'F M 1: bits
A;TEM :bits A;TEM A Ay (T, xbits) - My : A A; (T, y:bits) - M3z : A
tp_casel
A;T'Fcase Mofe= M; |2 0= Na |l yl= Ms;: A
A;TEM:nat ATHM : A A;(Tyazipos) - My : A A;(T,ynat) F Mz : A
tp_case2

A;TFcase Mofe= M; |2 0= Na |l yl= Ms: A

A;TEM :pos A;(Tyzipos) - My : A A; (T, y:nat) F M3 : A
tp_case3

A;TFcase Mofe= M; |2 0= Na |l yl= Ms;: A

A THEV A A;THV:B ATHFM:A A4dB

tp_conj tpsubs
A;THEV:AANB A;THM: B

Figure 1: Typing Rules

We omit formal statement and proof of the trivial exchange,
weakening, and contraction properties.

This type system does not admit principal types. For
example, the term ref (e1) has the types bitsref, natref
and posref, but none of these is a subtype of the others.
Even if we add parametric polymorphism (as in Section 4),
this term has no principal type.

The value restriction on intersection introduction does not
appear to result in much loss of expressive power, particu-
larly since non-values may be n-expanded to values, just as
in [20]. This only alters the semantics of the program when
effects are involved.

LEMMA 3

1. If As\THEV 2 A and A; (T, z:A) - N : B
then A;T +{V/z}N : B.

(SUBSTITUTION).

2. If A\sTHEM: A and A;(T,u:A) - N : B
then A;T + {M/u}N : B.

PROOF. By a standard induction on the typing derivation
for N. O

Stores are typed using the following judgment:

AFC:A" Store C satisfies cell context A’

when checked against cell context A.
The rules simply type each value under an empty variable
context.
AFC A A;-FV A
AR (C1=V): (A 1:A)
The following judgment defines typing of program states:

F(Cv>M): (A>A) State (C»> M) satisfies
cell context A and type A.

AF-:.

It is defined directly from the previous typing judgments:
AFC:A A;-HM:A
F(CprM): (A> A)

2.4 Reduction Semantics

We now present a reduction style semantics for our lan-
guage, roughly following Wright and Felleisen [22]. We start
by defining evaluation contexts, namely expressions with a
hole [] within which a reduction may occur:

E == []|EM|VE
|letx =FEin M
|ref E|!E|E:=M|V:=E
|E0|E1
|case Eof e= My |2 0= Mz | y1= M;s

We write C' > M — C’ > M’ for a one-step computation,
defined by the reduction rules in Figure 2. We maintain the
invariant that M does not contain free variables or u and
that all cells [in M are defined in C.

Critical in the proof of progress are the following inversion
properties. These are generalizations of simpler properties in
languages without subtyping, intersections, or effects. They
are stated at a level of generality where each can be proved
directly by inducting on the given typing derivation.

LEMMA 4 (TYPING INVERSION).

1. IfA;-FV:Aand A< By — Bz thenV = X . M
and A; (z:B1) = M : Bs.

2. If A;-FV : A and A < B ref then V =1 and there
exists a B’ such that I:B' in A, B 4 B, and B < B’'.

3. If A;-FV : A and A < bits then we have one of the
following cases:
(a) V=¢
(b) V.= (Vo 0) and A;- + Vy : bits
(c) V=(Vi1) and A;-+ Vi : bits
4. If A;-+V : A and A < nat then we have one of the
following cases:
(a) V=¢
(b) V.= (Vo 0) and A;-+ Vo : pos
(c) V=(Vi1) and A;-+ Vi : nat
5. If A;-FV : A and A < pos then we have one of the
following cases:
(a) V=(V50) and A; -+ V, : pos
(b)) V=(Vi1) and A;-+ Vi : nat
We are now ready to prove our main theorem, namely
that our type system with mutable references and value-
restricted intersections satisfies progress and type preserva-

tion, i.e., that programs can’t go wrong as in the example
in the introduction.

THEOREM 5 (PROGRESS AND TYPE PRESERVATION).
If F(C> M): (A A) then either

1. M is a value, or

2. (C > M) — (C' > M') for some C', M’ and A’
satisfying = (C' > M') : (A, A’ > A).

PrOOF. By induction on the typing derivation for M.

e The case for subsumption is immediate, using the in-
duction hypothesis.

e The case for intersection introduction is trivial: the
value restriction forces M to be a value.

e For the remaining cases the typing rule matches the
top term constructor of M.

e The cases for the typing rules corresponding to A\z. M,
I, () and € are trivial, since they are values.

e The case for the typing rule corresponding to fix is
easy, since we can apply the substitution lemma to
construct the required typing derivation.

e In the other cases, we apply the induction hypothesis
to the subderivations for appropriate subterms NN; of
M which are in evaluation positions i.e. M = E[N;]
(in each case, there is at least one).

O

C > E[(Az. M) V]

Cv Ellet z =V in M]

C v Elfix u. M]

C > E[(ref V)]

Cl,(l:V),CQDE[!l]

Cl,(lzvl),CQDE[l:ZVQ]

Cv> Elcaseecof e= M | x 0= M | y1= Ms]
Cr Ejcase V0ofe= M | z0= M | y1= M;]
CrEjcaseV1ofe= M |z0= M |yl= Msi]

Cv E[{V/z}M)]

Cv E[{V/z}M)]

C v E[{fix u. M/u}M)|

C,(I1=V)p> E]] (I not in C or E)
Cl, (l = V),CQ > E[V]

C1, (1 =V2),C2 > E[()]

CDE[M1]

Cv E[{V/z}M,]

C v E[{V/y}Ms]

LTTTITIL

Figure 2: Reduction Rules

e Then, if for some N; the induction hypothesis yields
(C > N;) — (C' > Nj) with (C' > Nj) : (AA b
B) then we can construct the required reduction and
typing derivation for M.

e Otherwise, each immediate subterm N; with M =
E[N;] is a value.

e Then we apply the appropriate clause of the preceding
inversion lemma, using reflexivity of algorithmic sub-
typing. In each case we find that M can be reduced
and we can construct the required typing for the re-
sult of reduction, using the substitution lemma in some
cases.

All of our restrictions are needed in this proof:

e The case of E[!l] requires subtyping for A ref to be
co-variant.

e The case of E[l:=V] requires subtyping for A ref to
be contra-variant. With the previous point it means it
must be non-variant.

e The value restriction is needed because otherwise the
induction hypothesis is applied to the premises of the
intersection introduction rule

Ao M: A Ao M: Ay
A;-"M:Al/\Ag

which yields that for some C1, M7 and A,

(C> M) — (C1 > M)
and (Cl > Ml) : (A,Al > Al)

and also that for some C3, M3 and A,

(C> M) — (Cz2 > M)
and (Cg > Mg) : (A,Ag > Ag)

Even if we show that evaluation is deterministic (which
shows M1 = M, = M’ and C1 = C> = ('), we have
no way to reconcile A; and Az to a A’ such that

= (C/DM/) : (A,A/DAl/\Ag)

because a new cell allocated in Ci; and C> may be
assigned a different type in A; and Az. It is precisely
this observation which gives rise to the counterexample
in the introduction.

e The absence of distributivity is critical in the inversion
property for values V' : A for A < By — Bz which
relies on the property that if A1 A A2 < By — Bz then
either A1 S] Bl — Bg or A2 S] Bl — Bg.

The analysis above indicates that if we fix the cells in the
store and disallow new allocations by removing the ref M
construct, the language would be sound even without a value
restriction as long as the ref type constructor is non-variant.

Overall, this proof is not much more difficult than the case
without intersection types, but this is partially because we
have set up our definitions very carefully.

3. BIDIRECTIONAL TYPE CHECKING

In the previous section we presented a pure type assign-
ment system. This language is not directly suitable for pro-
gramming: for example, type inference is impractical and
principal types do not exist. In this section we present the
core of a programming language which allows the program-
mer to specify types, along with an algorithm for type check-
ing.

Previous proposals for explicitly typed languages with in-
tersection types have required types to be given for each
bound variable. This leads to a problem, since the program-
mer may wish to associate different types with a variable
in different branches of the intersection introduction rule.
This problem was solved by Reynolds [14] by introducing
a type declaration including many alternative types. This
was extended by Pierce [12] to a special form binding a type
variable to one of a set of alternative types. Neither of these
solutions is completely satisfactory. For example, there is
still no way to directly specify that a curried function has a
type like (pos — nat — pos) A(nat — pos — pos). Another
solution appears in [19] and uses an intersection introduc-
tion rule that explicitly includes two terms that are identical
except for type information. This solution is used for a com-
piler intermediate language, and does not seem suitable for
directly programming in, since maintaining nearly identical
code fragments would be very tedious.

Our proposal instead distinguishes terms for which a type
can be synthesized from terms which can be checked against
a given type. This schema can type only normal forms, so
we include an explicit type ascription C' : A which checks
C against A and then yields A as the synthesized type for
the whole expression. Unlike a cast operation in some dy-
namically typed languages, however, this ascription incurs
no run-time overhead. In practice, we mostly ascribe types
to function definitions which is a small step from ML where
“good style” already suggests explicit ascription of signa-
tures to structures.

3.1 Syntax

We use the same types as in the previous section. We omit
locations from the language of terms, since they are created
by the evaluation of terms ref C' and should not directly
occur in program source.

Inferable I:u=x|ul|IC|'I|I:=C|()
le|I0[I1
| C:A

Checkable C:u=1I|Xx.Clletz=1inC
| fix u. C | ref C

|case Jof e=C1 1 20=C2 |l yl=Cs
We distinguish the following terms as values:

Inferable I, == z|()|e|l, 0|, 1]|Cy:A
Checkable C, == I,|Az.C

We write I,, for an inferable term not of the form I,.

3.2 Typing
The typing judgments for inferable and checkable terms
have the form:

T'HFI1TA Term I has A as an inferable type.
T'HFC|A Term C checks against type A.

It is our intention that the rules for these judgments be in-
terpreted algorithmically: given I' and I, we can construct
all derivations of I' = I T A (also constructing A for each
derivation); given I'; C', and A we can check whether there is
a derivation of I' - C' | A. In an implementation, this could
lead to unacceptable non-determinism and further transfor-
mations are required to obtain an efficient algorithm. We
are currently investigating an algorithm which synthesizes
all types of an inferable term and tracks applicable ones
through the use of boolean constraints. In any case, the sys-
tem is much simpler than full intersection types previously
implemented in [6, 4] which have already demonstrated fea-
sibility in most practical cases.

The following judgment non-deterministically extracts or-
dinary types from a type (possibly an intersection).

A1 B° Type A has ordinary type B° as a conjunct.

——cnjctord
A° 1 A°

A 1 BY

—cnjct_left
(A1 AN As) t BY

A2 1 B3

—— cnjct_right
(A1 A A2) 1t B3

The type checking rules are given in Figure 3. Note that
there are two rules to check terms I against a type only
to avoid overlap with the rule to check terms C, against a
conjunction.

3.3 Soundness

We now show that the bi-directional checking algorithm is
sound with respect to the type assignment system in the pre-
vious section. Completeness is somewhat trickier: while we
can often directly annotate programs which are well-typed
according to the type assignment system in Section 2, we

may sometimes need to restructure it by lifting local func-
tion definitions. For example the following term

Ax.let f=MAy.zin fx

may be assigned the type (nat — nat) A (pos — pos) but
there is no annotation that we can add for the type of f that
allows us to type-check the term with this type. This could
also be solved, at some cost in elegance, by introducing a
type enumeration construct as in [12]. We will not pursue
this further; more experiments with our implementation are
needed to decide whether this is warranted and intuitive to
the programmer.

In order to relate the terms of this section with those of
the previous one, we define the erasure function |- | in the
obvious way, namely compositionally except that we remove
type ascriptions:

C: Al =|C]

LEMMA 6. If A1 B then A < B.

PRrROOF. By induction on the definition of A1 B. [

THEOREM 7 (SOUNDNESS OF TYPE CHECKING).

1. IfTEI1 A then Tk |I|: A.

2. IfT+C| A then T+ |C|: A.

PRrROOF. By induction on the typing derivations, using the
preceding lemma. []

4. PARAMETRIC POLYMORPHISM

We now show how to add parametric polymorphism to our
language. Our approach is to consider parametric polymor-
phism as the infinite analog of intersection polymorphism,
hence our typing and subtyping rules are infinite analogs of
those in Section 2. In particular we include a value restric-
tion on the introduction of polymorphism, and omit a rule
for distributivity with the function type constructor. We do
not consider type checking here, however we hope that some
of the ideas from local-type inference [13] for parametric
polymorphism may be incorporated into the type-checking
algorithm of Section 3 to obtain a practical programming
language.

4.1 Syntax

We add type variables and universal quantification to the
types of Section 2. The terms and values of the language
are as before.

Types A ==A; — Ay | Aref | unit
| bits | nat | pos | Ay A Az | a | Va. A

As usual, we allow tacit renaming of bound type variables.
We write {B/a}A for the capture-avoiding substitution of
B for a in A.

z:Ain T | wAin T

ti_var —— ti_var’
Tzt A TFut A
I'ItA AtBi—By T'HC| B: T'EFClA
ti_app —ti_type
T'HICT B2 FH(C:A)TA
THITA A1 Bref I'ItTA At Bref THC|B
ti_get ti_set —— ti_unit
r-!'71+B I't1:=C 1 unit 't () 1 unit
—tie
' e’ nat
'+ 171 pos '+ 171 nat '+ 11 bits
—tizl —tiz2 — i 23
T'HTI07pos T'F 107 bits T'F 107 bits
T'F1T1pos ' 171 nat '+ 11 bits
—tiol —ti 02 — tio3
I'FI17pos I'FTI17pos I'= 1171 bits
'+-1,T4A A4 B° T'FI,.,1TA A4dB T'EC, | A I'+C, .| B)
tc_subsv tc_subsnv tc_conj
re1,|B° I'tI,, B '+C, | ANB
I'Nz:A-C| B THITA I'N'zAFC|B T'wAFC Ll A
tc_lam tc_let — tcfix
I'tXe.Cl|A— B T'kletz=1IinC|B T'Hfixu. ClA

IOl A

——tc_ref
T'FrefC | Aref

T'HITB Bftbits THFCi1 | A T zbitstkCa | A T,ybitskCs | A
case [of e=>C1 | 20=>Ce lyl=Cs30 A

tc_casel

I'ItB Bftnat THC1JA T,ziposk-C: | A T,ynnatkCs5 | A
case [of e=>C1 | 20=>Ce lyl=Cs30 A

tc_case?

IT'ItB Btpos I'xziposk-C: | A T,ymnatECs| A
case [of e=>C1 | 20=>Co lyl=C3] A

tc_case3

Figure 3: Type Checking Rules

pos < nat pos < bits nat < bits

Bi < A A,<AB, A<B B<A

A1—>A2§]Bl—>32 ArefﬂBref
A1 < B°

A1 NAy 4 B°

Ay < B°
A NA2 4 B°

A< B: A< B

A< BiAB:
{A"/a}A < B°
Va. A< B°

A<B

—— (a not free in A)
A <dVa. B

Figure 4: Structural Subtyping Rules

4.2 Subtyping

We add the following subtyping rules for parametric poly-
morphism, which are infinite analogs of the rules for inter-
section polymorphism.

A<B

—— (a not free in A)
A <Va.B

Va. A< {B/a}A
Analogously with intersection polymorphism, we omit the

following distributivity rule since it leads to unsoundness
when functions involve effects:

(a not free in A)

Va. (A— B) <A —Va. B

If we were to include this rule, our subtyping relation for
the fragment containing functions and parametric polymor-
phism would be equivalent to that proposed by Mitchell [11].
Mitchell’s subtyping relation has been shown to be undecid-
able [18, 16], but the techniques used in these proofs do
not seem to apply directly in the absence of distributivity.
We therefore do not know at present whether our subtyping
relation is decidable.

As before, we present an more directed version of the sub-
typing relation. These rules are analogous to those for in-
tersection polymorphism, and allow the proof of progress to
be extended appropriately. Alas, they do not actually de-
scribe an algorithm, since they do not describe a method for
choosing the type used to instantiate a polymorphic param-
eter when this is required. We therefore refer to our relation
as structural subtyping.

We use the notation A° as before for an ordinary type,
that is, that is neither an intersection nor a quantified type.

A< B Type A is structurally a subtype of B.

The rules are given in Figure 4. We include a general
reflexivity rule here even though it is only strictly needed
for type variables and base types. This allows us to treat a

subtyping derivation of a conclusion involving an unbound
type variable as a judgment parametric in that variable, that
is, we may instantiate the variable with any type and obtain
a valid derivation.

As in the Section 2, we now prove some simple lemmas
needed to show that structural and declarative subtyping
coincide.

LEMMA 8 (STRUCTURAL SUBTYPING).
The structural subtyping judgment satisfies:

1. f A< B then ANA' < B and A’ NA 4 B.
2. If {A’/Ja}A < B thenVa. A 4 B.
3. If A1 S] A2 and A2 S] A3 then A1 S] A3.

PRrROOF. The first two are by simple inductions on the
supertype B. For transitivity we proceed by structural in-
duction on the two derivations. One interesting case arises
when the first and second derivations end in

Dl D2
! ! /! o
A < Ay (o not i A1) and {A"/a}Ay S A3

Ay <AVa. A Va. A, 4 AS

Here, we substitute A’ for o in the derivation D; to obtain an
instance with conclusion A; < {A’/a} A5 and then apply the
induction hypothesis to this derivation (which has the same
structure as D;) and D; to obtain the required result. [

THEOREM 9. A < B if and only if A < B.

PROOF. In each direction, by induction on the given
derivation, using the properties in the preceding lemma. [

4.3 Typing

We add the following typing rule for introducing para-
metric polymorphism with a value restriction. Instantiation
of polymorphic types is done via the existing subsumption
rule.

ATHEV A

—— tp_para (anot free in A, T)
A;THV :Va. A

The substitution lemma extends naturally to include this
rule. We treat typing derivations with free type variables as
parametric derivations, just as for subtyping.

THEOREM 10 (PROGRESS AND TYPE PRESERVATION).

In the type system extended by parametric polymorphism, if
F(Cv>M): (A A) then either

1. M is a value, or

2. (C > M) — (C" > M') for some C', M', and A’
satisfying = (C' > M') : (A, A" > A).

PRrROOF. The proof is structured exactly as before. The
main change is that we have additional cases in each part of
the Typing Inversion Lemma for the new typing rule, each
of which makes use of parametricity in a similar manner to
the proof of transitivity of structural subtyping. [

As before, all of our restrictions are needed in this proof:

e The value restriction on parametric polymorphism is
needed because otherwise the induction hypothesis is
applied to the premise of the introduction rule

A;-FM:A

————— a not free in A
A;-F M :Va. A

which yields that for some C’, M’ and A’

(C>M)— (C'> M)
and F (C'> M'): (A, A" > A)

But « may appear in A’, so we cannot apply the in-
troduction rule for parametric polymorphism.

e The absence of distributivity is critical in the inversion
property for values V : A for A < By — Bz which
relies on the property that if Va. A < By — By then
there exists A’ such that [A'/a]A < By — Ba.

5. EXAMPLES

We now show some examples, primarily ones manipu-
lating natural numbers represented as bit-strings without
leading zeroes. We have already given some counterexam-
ples to soundness in the absence of appropriate restrictions
above, so the code below mostly illustrates bi-directional
type-checking and the use of subtyping and intersection
types in a source language to enforce data representation
invariants.

We present examples as top-level definitions of the form
val z : A = M, which should be interpreted as syntactic
sugar for let z = (M : A) in ... with open-ended scope.
Here, M : A is inferable, which means M only needs to
be checkable. First, a function for incrementing a natural
number.

val inc (bits — bits) A(nat — pos)
= fix inc. An. casen

of e=e€l

| z0=z1

| z1 = (incz)0

Note that types for variables bound by A or in the
branches of the case expression do not have type labels.
In fact, it would be difficult to allow for this, since the body
of the fix expression will be checked twice: once against
bits — bits and once against nat — nat. In the first situa-
tion we analyze the body of the function with n : bits, in the
second with n : nat. Further notice that subsumption allows
us to derive additional types for inc, for example, using

(bits — bits) A(nat — pos)
(bits — bits) A(nat — pos)

< nat — nat
< pos — pos

Finally we remark that ascribing simply inc : nat — nat
instead of nat — pos would have been insufficient: in order
to see that the result of the last case of the function definition
is a valid natural number, we need to know that the result
of the recursive call (inc z) is positive.

Our second example is binary addition.

(nat — nat — nat)

A (pos — nat — pos)

A (nat — pos — pos)

= fix plus. A\n. Am. case n

of e=m

| 0= casem
of e= 20
| y0= (plus zy)0
| y1= (pluszy)l

| 1= casem
ofe=2x1
| y0= (plusz y)1l
| y1= (inc (plusz y))0

val plus

Again, for this definition to type-check we need to know
that inc : nat — pos. Application of plus to arguments of
type bits which can not be shown to have type nat or pos is
prohibited by type-checking. In this example, a weaker type
such as (nat — nat — nat) A(pos — pos — pos) would have
sufficed, but given subsequent calls to plus less information
about its behavior.

Next, we show how type-checking can catch errors which
could not be caught without subtyping:

val double (nat — nat) A(pos — pos)

= M.z 0

will fail to type-check for x : nat. Indeed, doublee evaluates
to €0 which is not a valid representation of zero. We leave
the simple fix to the reader.

We can also write and type-check a function to standard-
ize arbitrary bit-strings by erasing leading zeroes.

bits — nat
= fix stdize. \b. case b

of e = €

| 20 = case stdize x
of e = €
| y0O=1y00
| y1=y10

| 1= (stdizez)1

val stdize

The following example shows how references and intersec-
tions may be used together in a useful and sound way, and
also demonstrates the syntactic structuring that is some-
times needed for type-checking. Each call to the function
count with some initial value n generates a counter of type
unit — nat or unit — pos. This counter can be called
repeatedly, successively returning n, n+ 1, The type
of count reflects that the counter is always positive if it is
initialized with a positive number.

val count’ (nat ref — (unit — nat)) A
(pos ref — (unit — pos))
= Ac Az.
let r =!cin
let y = (ci=incr) inr

(nat — (unit — nat)) A
(pos — (unit — pos))
= An. count’ (ref n)

val count

Finally, an example not connected to refinements, but
more general uses of intersection types and parametric poly-
morphism which are accommodated by our system:

valw : Va. V8. (= B)Aa)— B
= Ar.xx

6. CONCLUSION AND FUTURE WORK

We are in the process of implementing a refinement-type
checker for a conservative extension of Standard ML based
on the algorithm in Section 3. To avoid much of the non-
determinism in this algorithm, we synthesize all types for
an inferable term, and generate boolean constraints to rep-
resent the choice between them. We can then detect type
errors by checking the satisfiability of the accumulated con-
straints, using an efficient representation such as Binary De-
cision Diagrams.

The combination of parametric polymorphism with inter-
section types should be investigated further. In particular it
seems that the local type inference of [13] could be integrated
with our bi-directional checking for intersection types. In
our work on refinement types for ML we place the restriction
that the only refinement of an ML type variable is a single
corresponding refinement type variable. This simplifies the
situation greatly and allows the refinement type checker to
be guided by the type derivation constructed using ordinary
ML type inference.

Our present examples do not indicate this, but it is con-
ceivable that the value restriction rejects too many natural
programs whose evaluation can be seen not to have effects
and could therefore be typed more loosely without com-
promising safety. In that case we could generalize our ap-
proach from a value restriction to a valuability restriction,
as proposed by Harper and Stone [8]. This would classify
some functions as being total and effect-free so that they
can essentially be treated as values for the purpose of type-
checking. Interestingly, if we make such function types sub-
types of the ordinary ML function types, then intersections
once again may arise naturally during type-checking. We
intend to investigate this further.

Acknowledgments. We would like to thank the anony-
mous referees for helpful suggestions and gratefully acknowl-
edge valuable discussions with Robert Harper.

7. REFERENCES

[1] A. Aiken, E. Wimmers, and T. K. Lakshman. Soft
typing with conditional types. In Twenty-First ACM
Symposium on Principles of Programming Languages
(POPL’94), pages 163-173, Portland, Oregon, Jan.
1994.

[2] V. Breazu-Tannen, T. Coquand, C. Gunter, and
A. Scedrov. Inheritance as implicit coercion.
Information and Computation, 93:172-221, 1991.

[3] L. Cardelli. Type systems. In A. B. Tucker, Jr., editor,
The Handbook of Computer Science and Engineering,
chapter 103, pages 2208-2236. CRC Press, 1997.

[4] R. Davies. A practical refinement-type checker for
Standard ML. In M. Johnson, editor, Algebraic
Methodology and Software Technology Sixzth
International Conference (AMAST’97), pages
565-566, Sydney, Australia, Dec. 1997.
Springer-Verlag LNCS 1349.

[5] R. Davies. Practical refinement-type checking. Thesis
Proposal, Carnegie Mellon University Computer
Science Department, Nov. 1997.
http://www.cs.cmu.edu/ "rowan/papers/proposal.ps

[6] T. Freeman. Refinement Types for ML. PhD thesis,
Carnegie-Mellon University, Mar. 1994. Available as
technical report CMU-CS-94-110.

[7] T. Freeman and F. Pfenning. Refinement types for
ML. In Proceedings of the SIGPLAN 91 Symposium
on Language Design and Implementation, Toronto,
Ontario, pages 268-277. ACM Press, June 1991.

[8] R. Harper and C. Stone. A type-theoretic
interpretation of Standard ML. In G. Plotkin,

C. Stirling, and M. Tofte, editors, Proof, Language,
and Interaction: Essays in Honour of Robin Milner.
MIT Press, 2000.

[9] X. Leroy. Polymorphism by name. In Twentieth ACM
Symposium on Principles of Programming Languages
(POPL’93), pages 220231, Charleston, South
Carolina, January 1993.

[10] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). MIT Press,
1997.

[11] J. C. Mitchell. Polymorphic type inference and
containment. Information and Computation,
76(2/3):211-249, 1988.

[12] B. C. Pierce. Intersection types and bounded
polymorphism. Mathematical Structures in Computer
Science, 7(2):129-193, Apr. 1997.

[13] B. C. Pierce and D. N. Turner. Local type inference.
In The 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’98),
pages 252-265, San Diego, California, 1998.

[14] J. C. Reynolds. Preliminary design of the
programming language Forsythe. Technical Report
CMU-CS-88-159, Carnegie Mellon University,
Pittsburgh, Pennsylvania, June 1988.

[15] J. C. Reynolds. Design of the programming language
Forsythe. Technical Report CMU-CS-96-146, Carnegie
Mellon University, Pittsburgh, Pennsylvania, June
1996.

[16] J. Tiuryn and P. Urzyczyn. The subtyping problem
for second-order types is undecidable. In Proceedings,
11" Annual IEEE Symposium on Logic in Computer
Science, pages 74-85, New Brunswick, New Jersey,
27-30 July 1996. IEEE Computer Society Press.

[17] M. Tofte. Type inference for polymorphic references.
Information and Computation, 89:1-34, November
1990.

[18] J. B. Wells. The undecidability of Mitchell’s subtyping
relation. Technical Report 95-019, Boston University,
Boston, Massachusetts, December 1995.

[19] J. B. Wells, A. Dimock, R. Muller, and F. Turbak. A
typed intermediate language for flow-directed
compilation. In TAPSOFT’97: Theory and Practice of
Software Development, Proc. 7th International Joint
Conference CAAP/FASE, pages 757771, Lille,
France, Apr. 1997. Springer-Verlag LNCS 1214.

[20] A. K. Wright. Simple imperative polymorphism.
Information and Computation, 8:343-55, 1995.

[21] A. K. Wright and R. Cartwright. A practical soft type
system for Scheme. In Proceedings of the 1994 ACM
Conference on LISP and Functional Programming,
pages 250-262, Orlando, Florida, June 1994.

[22] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115:38-94, 1994.

