Linear Logical Algorithms

Robert J. Simmons and Frank Pfenning

Carnegie Mellon University
{rjsimmon,fp}@cs.cmu.edu

Abstract. Bottom-up logic programming can be used to declaratively
specify many algorithms in a succinct and natural way, and McAllester
and Ganzinger have shown that it is possible to define a cost semantics
that enables reasoning about the running time of algorithms written as
inference rules. Previous work with the programming language Lollimon
demonstrates the expressive power of logic programming with linear logic
in describing algorithms that have imperative elements or that must
repeatedly make mutually exclusive choices. In this paper, we identify
a bottom-up logic programming language based on linear logic that is
amenable to efficient execution and describe a novel cost semantics that
can be used for complexity analysis of algorithms expressed in linear
logic.

Key words: Bottom-up logic programming, forward reasoning, linear
logic, deductive databases, cost semantics, abstract running time

1 Introduction

Logical inference rules are a concise and powerful tool for expressing many al-
gorithms in a declarative way. In the last decade, several lines of work have
advanced the argument that it is not only possible but convenient to formally
reason about the running time of algorithms expressed as inference rules.

Work on this topic can be broadly categorized into two groups: work that
takes a language similar to the pure bottom up logic programming language
presented by McAllester [1] and automates reasoning about the complexity of
algorithms expressed in that language [2, 3], and work aimed at allowing analysis
for logic programming languages with richer features [4-6].

This paper falls into the second category; we present a bottom-up logic
programming language based on intuitionistic linear logic [7] that cleanly inte-
grates a notion of state transition with the saturating forward reasoning present
in bottom-up logic programming. We follow the two-part approach taken by
McAllester and Ganzinger in [1, 4, 5]. First, we give the language a dynamic cost
semantics called the abstract running time that looks at a chain of logical infer-
ences as a computation and defines the cost of that computation, and then we
describe an interpreter that can be shown to execute those computations in time
proportional to the abstract running time. Both of these concepts are critical —
without the interpreter, there is no reason to believe that the notion of abstract

2 Robert J. Simmons and Frank Pfenning

running time is based in reality, and without the definition of abstract running
time, reasoning about the complexity of algorithms requires understanding the
intricacies of the interpreter’s implementation.

We start by briefly describing a pure logic programming language [1] in which
various graph algorithms and program analyses can be expressed concisely and
executed efficiently. One example is the program in Fig. 1 that computes con-
nectivity over an undirected graph.

edge(z,y)
edge(z,y) edge(z,y) path(y,)

1 2 —_—
edge(y, =) " path(z,y) " path(z, z) 3

Fig. 1. A simple pure, bottom-up program for computing graph connectivity.

Given a graph G = (E, V), this algorithm starts with a database that has a
fact edge(a, b) for every edge (a,b) € E. The intended meaning of this program
is that path(a,b) should hold if and only if there is a path between vertex a and
b in graph G. Here, and throughout the paper, we will represent constants as
a,b,c,... and variables as x, ¥, z, ..., and we will insist that all the terms in our
database be ground, meaning that they contain no free variables, and that all
rules be range-restricted, meaning that the variables in the conclusions (below
the line) are a subset of the variables in the premises (above the line). This last
restriction ensures that the database continues to contain only ground facts as
new facts are derived.

In order to calculate the path relation, rules are applied exhaustively in the
forward direction until saturation is reached; that is, until no possible forward
inference can cause us to learn anything new. The closure of an initial database
I' under the rules in a program P (written Clop(I”) or just Clo(I")) is the smallest
set containing I" closed under the rules in P. Unlike Datalog, the language con-
tains function symbols, so the closure may be infinite; however, we are interested
only in programs with a finite closure.

The pure bottom-up logic programming language sketched above and de-
scribed fully in [1] and elsewhere has great expressive power but also some ob-
vious limitations. We will briefly mention related work on efforts related to our
own.

Consider the way we encoded the graph G in Fig. 1. The collection of edges
was represented not as a matrix or an adjacency list, but merely as a collection of
facts — the data structure that we were working over was implicit in the database.
This idiom of database-as-data-structure is a strength of this declarative style of
programming, as details of underlying data structures can be omitted. However,
because the notion of database we use is one that incrementally “learns” all
derivable facts in an unspecified manner, it is difficult to describe algorithms
that have distinct states or phases. Several attempts at addressing this problem

Linear Logical Algorithms 3

amount to the identification of reasonable forms of locally stratified negation,
such as temporal [8] or XY [9] stratification. However, stratified negation cannot
easily describe algorithms that must repeatedly take only one of a number of
possible steps, and this can make specifying greedy algorithms difficult [6].

Several disconnected lines of research have approached this problem. Greco
and Zaniolo describe a variant of Datalog with an intrinsic notion of choice that
has a semantics based on stable models and can naturally express a number of
greedy algorithms [6]. They define an execution model for their system and
show a number of complexity results, but they do not give a cost semantics, so
all complexity results are based on directly reasoning about the interpreter.

Ganzinger and McAllester [5] do not explicitly consider the applicability of
their system to greedy algorithms, but they demonstrate that their system, based
on deletion of facts and priorities on rules, can express many of the same algo-
rithms that motivated Greco and Zaniolo, such as algorithms computing min-
imum spanning trees and shortest paths. Unfortunately, the expressiveness of
their system is hard to determine because they define an unusual notion of dele-
tion that does not have any clear logical justification.

Pfenning and Lépez et al. [10,11] propose linear logic as a more principled
foundation of Ganzinger and McAllester’s work. They show that their implemen-
tation of a linear logic programming language, Lollimon, is powerful enough to
express many of the algorithms shown in Ganzinger and McAllester’s previous
work. However, they cannot reason about the running time of such algorithms,
only their correctness, and complexity results would seem to be very difficult to
obtain in a language such as Lollimon that allows for almost arbitrary integration
of forward and backward chaining.

The primary contribution of this paper is the presentation of a programming
language based on bottom-up reasoning in linear logic — essentially a first-order,
Horn-like fragment of Lollimon — that is both useful for the specification of al-
gorithms and in the analysis of their running time. To our knowledge, this is
the first such result for a programming language based on linear logic. Section
2 describes the use of first-order linear logic in specifying a number of simple
algorithms. Section 3 defines the operational semantics and cost semantics of the
language, demonstrates the use of cost semantics in reasoning about complexity,
and briefly describes the interpreter that demonstrates that the cost semantics
are reasonable. Section 4 concludes and mentions a number of possible exten-
sions to the basic, pure language considered here.

2 Bottom-up Programming in Linear Logic

The pure bottom-up logic programming language introduced in the previous
section is built from atomic propositions like nat(n), edge(a,b), and path(v, u).
These facts represent truth in the usual, mathematical sense - the rule r2 in
Fig. 1 says that if we know that there is an edge between some vertices a and
b, we can also know that there is a path between them. However, after we learn
path(a,b), we still know edge(a, b), because we treat truth as persistent.

4 Robert J. Simmons and Frank Pfenning

Linear logic has a notion of persistent truth, but also has a notion of truth
that describes the current (and possibly changing) state of the world. We refer
to this notion of “truth in the current state of the system” as ephemeral truth,
and in addition to the persistent atomic propositions that we have previously
seen, we introduce ephemeral (or linear) atomic propositions that we distinguish
from persistent propositions by using an underline: linear(x).

wins(z, n)
wins(y, n)
wins(z, s(n))
won(z,y,n)

Fig. 2. A simple linear logic program describing arbitrary single-elimination tourna-
ments.

Rules with ephemeral propositions as premises introduce the possibility of
changing the state of the world. The rule given in Fig. 2 describes a single-
elimination tournament in which any team can play another team that has the
same number of wins. If we have two teams a and c that have both won zero
games, we can represent this as the two linear atomic propositions wins(a,z)
and wins(c,z). These atomic propositions satisfy the two premises of the rule
in Fig. 2. If we arbitrarily let = c and y = a, treating c as the “winning
team,” the rule represents the possibility of transitioning from a state where
both teams a and ¢ have won zero games and are still in the running to a state
where team ¢ has won one game and where team a is out of the running. There
is no wins(y,n) in the conclusion because the tournament is single-elimination
— after losing, a team cannot play any other teams. Applying this rule requires
consuming the two linear propositions we had before and replacing them with
a single new linear atomic proposition wins(c,s(z)). Applying the rule also adds
the persistent atomic proposition won(c, a, z) to the database, which represents
a persistent record of the fact that c defeated a in round z.

Changes to the state of a system are not necessarily reversible. While we
could imagine a backtracking semantics that would eventually consider team a
beating team c, or consider them playing other teams in the first round, we
instead read rules with linear premises as describing a committed choice — once
we apply a rule that consumes an ephemeral proposition, we will never consider
any other way that proposition could have been consumed. Put another way,
while our rules may describe a system that can evolve in many ways from an
initial state, when reading our rules as an algorithm, the algorithm will follow
one particular evolution of that system in a don’t-care nondeterministic manner.

We can use these ephemeral atomic propositions to support algorithms that
require certain actions to happen a fixed number of times, as well as algorithms
that require some actions to be mutually exclusive. The example in Fig. 3 is a

Linear Logical Algorithms 5

linear algorithm to compute a spanning tree of a connected, undirected graph
G = (E,V) that has some distinguished vertex root € V. The input to the
algorithm is a persistent atomic proposition edge(a,b) for every edge (a,b) € E
and a single ephemeral atomic proposition vert(a) for every vertex a € V. We
view the relation tree as a directed subgraph of G where tree(a, b) is true iff there
is an edge from a to b in the tree.

edge(z,y)

intree(z)

vert
cige(ny) vemoot) W)
wdgelr,2) T intreefroon T2 Ue(®Y)
edge(y, x) intree(root) introe(y)

Fig. 3. Finding a rooted spanning tree of an undirected graph.

Correctness of this spanning tree algorithm follows from invariants main-
tained by the rules. Take V' to be the set of all « such that intree(x) holds, and
take E’ to be the the set of all ordered pairs (z,y) such that tree(z,y) holds. We
have two state invariants, maintained by rule application:

1. E’is a subgraph of F and a spanning tree over V.
2. The set V/V' is always the set of variables 2’ such that vert(z’) holds.

The two examples in Fig. 4 are more imperative in nature; both take as
inputs some multiset of items represented by linear atomic propositions of the
form item(z) and place them into a data structure. The program on the left
requires an additional input of the form list(nil) and collects items into a list
represented by a structured term, using x :: [as a shorthand for cons(z,[). The
program on the right requires no additional inputs, and collects items into a forest
of binary-heap-like trees. Trees are represented as linear atomic propositions of
the form tree(n, t), where n is a natural number expressing the depth of the tree
and t is a structured term representing the actual tree, a term consisting of an
item and a list of subtrees.

item(z) tree(n, node(z, ts))
list () item () tree(n, t)
list(x :: 1) tree(z, node(z, nil)) tree(s(n), node(x, t :: ts))

Fig. 4. Arbitrarily collecting items in a list (left) or in a forest of trees (right).

These examples bring up another important property of linear/ephemeral
propositions. For the purposes of bottom-up logic programming, deriving a per-
sistent proposition twice is not any different than deriving it once; however, with

6 Robert J. Simmons and Frank Pfenning

linear propositions we are concerned with the multiplicity of those propositions:
having two copies of item(a) is different than having one. We will ensure that we
can unambiguously refer to linear propositions by labelling them uniquely. For
instance, the list-collection example on the left side of Fig. 4 could, from the mul-
tiset of atomic propositions {ly : list(nil),l; : item(a),ls : item(a),l3 : item(b)},
derive list(a :: b :: a :: nil) and list(a :: a :: b :: nil), but not list(a :: a :: a :: nil),
because there are only two linear resources item(a) and the derivation of that
proposition requires three such resources. Committed choice ensures that we
will only compute one of the three possible lists, or more generally one of the In
possible lists given n distinct items.

These examples demonstrate the power of linear logic to express algorithms
that would be difficult or inelegant to code in a system without linear resources.
In the next section, we will make this more formal by defining an operational
semantics based on linear logic and a cost semantics that allows us to reason
about running time and complexity without knowing the details of an interpreter
for the language.

3 Language Semantics

In this section, we will develop the tools for reasoning about the algorithms we
began to specify in the previous section. Two of the fundamental properties of
an algorithm are its run time behavior, specified by an operational semantics,
and its running time, specified by a cost semantics. We will describe both.

We have already presented a number of programs, but we will formally define
a program P as a series of rules. Each rule has one or more atomic propositions
Ag,...,A,_1 as premises and zero or more atomic propositions Cy,...,Cp_1
as conclusions; for example, in clause 72 of Fig. 3, Ay = vert(root) and Cy =
intree(root). There are two additional restrictions on the form of rules:

— Range restriction. The free variables in the conclusion must be a subset of
the free variables in the premises. This ensures that a ground database will
remain ground when inference rules are applied.

— Separation. The program must consistently identify some propositions as
linear and some as persistent; this was indicated before by writing linear
propositions as prop and persistent propositions as prop. Separation also
requires that in any rule with linear atomic propositions among the con-
clusions Cy,...,Cp,_1, at least one of the premises Ag,...,A,_1 must be
a linear atomic proposition. This requirement helps ensure that we will not
“flood” the database with unlimited copies of ephemeral propositions, and
also allows us to implement the saturation function Clo effectively.

3.1 Operational Semantics

In this section, we describe an operational semantics for the language we have
defined, noting that the operational semantics does not make much sense as an

Linear Logical Algorithms 7

implementation, as it makes transparently bad choices like running saturating
forward chaining redundantly. The input is a finite initial state (I'y, Ag) where
Iy is a set of persistent propositions and 4 is a set of labeled linear propositions;
a program trace is a finite list of states (I'y, Ag) ... (Iim, Am).

For each state (I, 4;), the operational semantics calculates the saturated
database Clo(I7) of all the persistent atomic facts that are implied by I'; in P
by exhaustive forward reasoning, not involving linear propositions in any way.
Assuming the process of saturated forward inference terminates, the operational
semantics picks an arbitrary rule r € P and a grounding substitution o (that
is, a substitution that maps every free variable x in the rule to a variable-free
term ¢) such that, for each premise A; of the rule r, A;o is in Clo(I5) (if it is
persistent) or A; (if it is linear). Applying that rule removes one or more linear
resources from A; and adds each conclusion Cjo to either I or A; depending
on whether C; is linear or persistent. This results in a new state (11, A;jy1),
and the trace is extended. If there is no rule r and substitution ¢ satisfying the
conditions described above, then the trace cannot be extended and is called a
complete trace.

The operational semantics separates treatment of monotonic deduction that
involves only persistent propositions and the committed choice reasoning that
involves consuming ephemeral propositions. This distinction will be reflected in
the definition of abstract running time, but we can already see that it is reflected
in the arguments about the termination of algorithms. It was mentioned in
Section 1 that we have to give an argument that the closure will be finite, as this
is not true in general; we also have to give a termination argument bounding the
length of the program trace by bounding the number of possible applications of
rules with linear premises.

3.2 Linear Logic

While many details are beyond the scope of this paper, we will sketch the de-
scription of the language and operational semantics in terms of intuitionistic
linear logic; our system is a fragment of the judgmental reconstruction of first
order intuitionistic linear logic described in [7,12]. The necessary fragment of
linear logic is roughly analogous to the Horn fragment of standard intuitionistic
logic.

Atomic propositions A
Basic propositions Q=AllA
S

State propositions =Q1|S®S
State transitions R:=S|S—-oR|Vz.R
Persistent hypotheses I' ::=-| I, R pers
Ephemeral hypotheses A ::= - | A, R eph
The translation of a rule r with premises Ag,...,A,_1 and conclusions
Co,...,Cp—1 is the persistent proposition

T VX().QO —©0...—° vxn—l-Qn—l —0 (Q6 X ... ®Q;n—1)

8 Robert J. Simmons and Frank Pfenning

with Q; = A; if A; is an ephemeral atomic proposition and Q; = !A4; if A; is a
persistent atomic proposition, and similarly for @, and C;. The “curried” form
is intended to clarify that the variables x; first occur in the premise Q;.

Judgments in the sequent calculus presentation of intuitionistic linear logic
have the form I'; A - R eph; we write R pers to indicate that R is persistent, and
we write R eph to indicate that R is ephemeral. We omit writing the translated
rules from the program P that are tacitly included in I'.

The concepts of polarity and focusing as described in [13] are useful in de-
scribing logic programming from a proof theoretic perspective. In particular,
focusing allows us to define derived rules in linear logic for any formula in the
fragment described above. If we have a rule with premises a and b, and with
conclusions ¢ and d, we express that rule in linear logic as a —o b —o (c ® !d).
If we treat every atomic proposition as having positive polarity, focusing on the
persistent proposition a —o b —o (c ® !d) gives this derived inference rule:

I';-+beph I, d pers; A, c eph -
I';Ava eph by

where y is an arbitrary conclusion.

What we see from these rules is that our “next state” actually appears in the
premise of the derived rule; this may seem a bit unnatural, but it is consistent
with Lollimon and other linear logic programming languages [11].

We have left out the details that allow us to actually prove the following the-
orems, but we can still state the soundness and (non-deterministic) completeness
of our language with respect to linear logic.

Theorem 1 (Soundness of operational semantics).

For any (separated and range-restricted) program P and for any program trace
(Lo, Ag) ... (I, A, given a sequent of the form Iy; Ay, b for an arbitrary
v, there exists a derivation of I'y; Ag - 7.

Proof. By induction on the length of the abstract trace. We need a lemma that
if A€ Clo(I), then I';- F A eph.

Theorem 2 (Nondeterministic completeness of operational semantics).

For any (separated and range-restricted) program P, if the sequent I'n; Ag F 7y
1s derivable using the sequent Ly,; Ay, b oy, where Iy, Ag, Iy, and A, contain
only ground, atomic propositions and 7y is an arbitrary conclusion, then there
exists some program trace (I'y, Ag) ... (I, Ap) where Clo(I,) = Clo(I7).

Proof. By induction on focused derivations. We need a lemma that if I';- +
A eph, then A € Clo(I').

Theorem 2 says that if we can “work on the left” in linear logic from a sequent
Io; Ag F v to a sequent I,; Ay, F v, then some trace obeying the operational
semantics follows an equivalent path; however, because the operational semantics
allows an arbitrary choice of which applicable rule with linear premises to apply,
a correct implementation of the operational semantics might never take such a
path.

Linear Logical Algorithms 9

3.3 Cost Semantics

We define, following Ganzinger and McAllester [4,5], a cost semantics called
the abstract running time. This cost semantics will allow us to reason about
algorithms written in this language, such as the ones in in Section 2, without
considering the details of the implementation. The abstract running time of a
trace (I'n, Ag) ... {(I'm, Am) is the sum of four components: |Iy| + |Ag| + m + .
The first two components, |Iy| and |Agl, are just the number of persistent and
linear resources (respectively) given as input. The other two components are
m, the number of transitions involving rules with linear premises, and @, the
number of unique prefiz firings — a quantity we will now define.

Definition 1 (Prefix firing). Let (I, Aog) ... (I, Awm) be a program trace of
a program P. A prefix firing is a triple (r,o,[lo,...,lk-1]) such that

— There is a rule r in P with premises Ag, ..., Ap_1.
— The substitution o assigns a ground term for every free variable in the
premises Ag, ..., Ax_1.

— There is some state (I, A;) where for all 0 < j < k, either Ajo € Clo(I5)
orl;: Ajo € Ay, and either
o All of Ag,...,Ar_1 are persistent atomic propositions, or else
e k < n and there is no substitution o’ that assigns the same terms as
o to the free variables in Ag, ..., Ax_1 and additionally assigns ground
terms to all the free variables in Ay such that Ago’ € Clo(I}) or such
that 1 : Ao’ € A}, where Al is A; with all the linear propositions labeled
lgy ..., lk_1 Temoved.

As mentioned previously, if multiple instances of the ground linear proposi-
tion appear in A;, they have distinct labels and can be used to form distinct
prefix firings. Because we don’t care about labels of persistent atomic propo-
sitions, and the definition doesn’t use them, we write them as an underscore

w7

The majority of the definition just expresses the fact that the order of
premises matters; the last bullet point is the complicated one. It describes the
conditions where we can ignore would-be prefix firings that include linear propo-
sitions; we can do so if we know that, in every state, we will always be able to
expand the prefix firing to a larger one.

3.4 Using the Abstract Running Time

Because the operational semantics is quite nondeterministic, and because our
cost semantics depends on the number of steps taken using of rules with linear
premises, we can expect reasoning in general about the running time of programs
to be undecidable. However, for well-designed programs it is usually still possible
to effectively reason about both the number of prefix firings and the length of
the program trace in order to get an informative abstract running time. We
give an example in this section, and the extended technical report [14] shows a

10 Robert J. Simmons and Frank Pfenning

similar analysis that gives the list collection and heap collection example in Fig.
4 running times in O(n) and O(nlogn), respectively, where n is the number of
input items.

We will show that the spanning tree algorithm in Fig. 3 has an abstract
running time in O(|E| + |V]), that is, proportional to the number of edges plus
the number of vertices. The abstract running time is [Iy| + [Ag| + m + . It is
obvious that |I| = |E| and |Ag| = |V| based on how the problem is set up;
also, because every linear transition consumes a linear resource corresponding
to some v € V, an abstract trace can have at most |V| transitions, which is to
say that m is bounded by |V|.

We consider the prefix firings for each of the three rules in turn. Rule r1
can have at most 2|F| prefix firings, as every edge (a,b) € E leads to two facts:
edge(a, b) and edge(b, a). Rule 72 has no prefix firings, as it has one linear propo-
sition that is either there or not. Rule 73 can have at most 4|E| prefix firings.
The first premise edge(x, y) effectively “grounds” the rest of the premises, lead-
ing to 2|E| prefix firings of the form (r3,o,[.]), and the final state will include
intree(a) for every vertex a, resulting in at most 2|E| prefix firings of the form
(r3,0,[., .]). However, there are no prefix firings of the form (r3,0,[, _]), be-
cause a prefix firing that covers all the premises does not meet the condition
that k& < n. This gives us an abstract running time bounded by 2|V| 4 7|E|, so
the abstract running time is in O(|E| + |V]).

3.5 Implementing the Operational Semantics

This theorem describes the relationship between the operational semantics, the
cost semantics, and the interpreter; it is a is a close analogue to the comparable
theorem in [5].

Theorem 3. For any terminating program P, there exists an interpreter run-
ning on a RAM machine extended with constant time hash table operations
such that for any initial state (Iy, Ag) the interpreter executes a complete trace
(I'o, Ao), - (I'my Ap) and returns Clo(Iy,) and A, in time proportional to the
abstract running time of the trace.

Theorem 3 establishes that reasoning about the behavior of algorithms de-
scribed in the language we have presented is a three-part process. First, we must
demonstrate that, for a given program, Clo(I") is always finite that no trace of
the operational semantics can have unbounded length. Second, we must give a
bound to the abstract running time of all possible complete traces in terms of
the initial state. Having done so, Theorem 3 ties the knot by ensuring that the
implementation will execute one of the possible complete traces and will do so
in time proportional to the abstract running time of that trace. Because we have
bounded the abstract running time of any arbitrary trace, we know that the
trace actually executed by the interpreter has an abstract running time within
that bound and is therefore executed in time proportional to that bound.

The interpreter that establishes Theorem 3 is sketched here and described
fully in the extended version of this paper [14]. Given a program, we create a

Linear Logical Algorithms 11

derived program where for each rule r with n premises in the original program,
the derived program has 2n rules and introduces 2n new atomic propositions
(referred to as derived propositions), one for each premise A; and one for each
prefix Ag, ..., A;. The derived propositions expose variables that are shared be-
tween premises of a rule, allowing an index to efficiently discover premises with
matching instantiations of those variables. Two work lists (queues) — one deal-
ing with persistent propositions and one dealing with ephemeral propositions —
together contain all the immediate consequences of the facts in the index.

The portion of the interpreter dealing with purely persistent propositions
is similar to the interpreter in [1]. When a fact is removed from the persistent
work queue and added to the index, the index is used to find all immediate
consequences of that fact and those already in the index; these consequences
are added to the queue. The treatment of linear atomic propositions is novel.
The index and linear work queues are allowed to temporarily contain multiple
derived propositions that are all consequences of 4A;, the current multiset of non-
derived atomic propositions, even if some cannot simultaneously be consequences
of A; because they require consuming the same ephemeral propositions. These
ephemeral propositions are only consumed when a rule from the original program
is applied, in the process removing all the derived propositions that depended
on the consumed propositions.

In order to avoid unnecessarily declaring and then deleting atomic propo-
sitions, upon removing an item from the linear work queue the index is recur-
sively used to find the first atomic proposition implied by the program and the
dequeued proposition, find the first atomic proposition implied by that proposi-
tion, and so on. Either this will succeed until we have shown that Ag,..., A,_1
are all derivable, in which case we apply that rule, or it will fail, in which case
backtracking, depth-first search looks for a different way to fully apply the rule.
Each failure corresponds to a prefix that cannot be extended; therefore, each
successful search can be charged against the number of linear transitions, and
each unsuccessful search can be charged against the number of prefix firings
resulting from non-extendable prefixes that include linear propositions.

4 Conclusion and Future Work

We have described a bottom-up logic programming language that has a notion
of ephemeral truth as well as the more familiar notion of persistent truth, and
we have defined a cost semantics that allows for reasoning about the running
time of programs written in this language. The language can be used to express
and analyze a number of algorithms that have a notion of stateful change or
nondeterministic update, and other algorithms are described in the extended
version [14]. Our system is unique among similar work in having a proof-theoretic
semantics based on focusing and linear logic. In the future, we are interested
in pursuing a number of extensions to the language described here, including
priorities similar to those in [5], temporal stratification and stratified negation
similar to [8], and a notion of equality to describe algorithms that use union-find.

12

Robert J. Simmons and Frank Pfenning

Acknowledgments. We would like to thank Michael Ashley-Rollman, Dan Licata,
and the three anonymous reviewers for their comments on earlier drafts of this
paper. This material is based upon work supported under a National Science
Foundation Graduate Research Fellowship by the first author.

We wish to dedicate this paper to Harald Ganzinger, with whom the second

author discussed some of the core ideas presented here, and whose untimely
passing prevented him from participating further in this research.

References

1.

2.

10.

11.

12.

13.

14.

McAllester, D.A.: On the complexity analysis of static analyses. J. ACM 49 (2002)
512-537

Nielson, F., Nielson, H.R., Seidl, H.: Automatic complexity analysis. In: ESOP
’02: Proceedings of the 11th European Symposium on Programming Languages
and Systems, London, UK, Springer-Verlag (2002) 243-261

Liu, Y.A., Stoller, S.D.: From Datalog rules to efficient programs with time and
space guarantees. In: PPDP ’03: Proceedings of the 5th ACM SIGPLAN inter-
national conference on Principles and practice of declaritive programming, New
York, NY, USA, ACM (2003) 172-183

Ganzinger, H., McAllester, D.A.: A new meta-complexity theorem for bottom-
up logic programs. In: IJCAR ’01: Proceedings of the First International Joint
Conference on Automated Reasoning, London, UK, Springer-Verlag (2001) 514—
528

Ganzinger, H., McAllester, D.A.: Logical algorithms. In: ICLP ’02: Proceedings of
the 18th International Conference on Logic Programming, London, UK, Springer-
Verlag (2002) 209-223

Greco, S., Zaniolo, C.: Greedy algorithms in Datalog. Theory Pract. Log. Program.
1 (2001) 381407

Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic.
Technical Report CMU-CS-03-131, Carnegie Mellon University (2003)

Nomikos, C., Rondogiannis, P., Gergatsoulis, M.: Temporal stratification tests for
linear and branching-time deductive databases. Theor. Comput. Sci. 342 (2005)
382-415

Arni, F., Ong, K., Tsur, S., Wang, H., Zaniolo, C.: The Deductive Database System
LDL++. Theory Pract. Log. Program. 3 (2003) 61-94

Pfenning, F.: Linear logical algorithms. In: Workshop on Programming Logics in
memory of Harald Ganzinger, Saarbriicken (2005) Invited talk.

Lépez, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic
programming. In: PPDP ’05: Proceedings of the 7th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, New York, NY,
USA, ACM (2005) 35-46

Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie
Mellon University (2006)

Chaudhuri, K., Pfenning, F., Price, G.: A Logical Characterization of Forward
and Backward Chaining in the Inverse Method. In: Automated Reasoning. Volume
4130. Springer Berlin / Heidelberg (2006) 97-111

Simmons, R.J., Pfenning, F.: Linear logical algorithms. Available at http://
www.cs.cmu.edu/~rjsimmon/drafts. To be published as CMU Technical Report
CMU-CS-08-104 (2008)

