
Chapter 17Logical FrameworksFrank PfenningSecond readers: Robert Harper, Don Sannella, and Jan Smith.Contents1 Introduction . 10652 Abstract syntax . 10672.1 Uni-typed representations . 10682.2 Simply-typed representation . 10703 Judgments and deductions . 10753.1 Parametric and hypothetical judgments . 10753.2 Natural deduction . 10763.3 Representing derivability . 10823.4 Deductions as objects . 10843.5 An axiomatic formulation . 10923.6 Higher-level judgments . 10934 Meta-programming and proof search . 10954.1 Sequent calculus . 10964.2 Tactics and tacticals . 10984.3 Uni�cation and constraint simpli�cation . 11014.4 Logic programming . 11024.5 Theory development . 11075 Representing meta-theory . 11085.1 Relational meta-theory . 11105.2 Translating axiomatic derivations to natural deductions 11115.3 The deduction theorem . 11155.4 Translating natural deductions to axiomatic derivations 11176 Appendix: the simply-typed �-calculus . 11197 Appendix: the dependently typed �-calculus . 11238 Conclusion . 11308.1 Framework extensions . 11328.2 Proof-carrying code . 11338.3 Further reading . 1135Bibliography . 1135Index . 1145HANDBOOK OF AUTOMATED REASONINGEdited by Alan Robinson and Andrei Voronkovc
 2001 Elsevier Science Publishers B.V. All rights reserved

Logical frameworks 10651. IntroductionDeductive systems, given via axioms and rules of inference, are a common concep-tual tool in mathematical logic and computer science. They are used to specifymany varieties of logics and logical theories as well as aspects of programminglanguages such as type systems or operational semantics. A logical framework isa meta-language for the speci�cation of deductive systems. A number of di�erentframeworks have been proposed and implemented for a variety of purposes. In addi-tion, general reasoning systems have been used to study deductions as mathematicalobjects, without speci�c support for the domain of deductive systems.In this chapter we highlight the major themes, concepts, and design choices forlogical frameworks and provide pointers to the literature for further reading. Weconcentrate on systems designed speci�cally as frameworks and among them onthose most immediately based on deduction: hereditary Harrop formulas (imple-mented in �Prolog and Isabelle) and the LF type theory (implemented in Elf). Webrie
y mention other approaches below and discuss them in more detail in Section 8.Logical frameworks are subject to the same general design principles as otherspeci�cation and programming languages. They should be simple and uniform,providing concise means to express the concepts and methods of the intended ap-plication domains. Meaningless expressions should be detected statically and itshould be possible to structure large speci�cations and verify that the components�t together. There are also concerns speci�c to logical frameworks. Perhaps mostimportantly, an implementation must be able to check deductions for validity withrespect to the speci�cation of a deductive system. Secondly, it should be feasible toprove (informally) that the representations of deductive systems in the frameworkare adequate so that we can trust formal derivations. We return to each of thesepoints when we discuss di�erent design choices for logical frameworks.Historically, the �rst logical framework was Automath [de Bruijn 1968, de Bruijn1980, Nederpelt, Geuvers and de Vrijer 1994] and its various languages, developedduring the late sixties and early seventies. The goal of the Automath project wasto provide a tool for the formalization of mathematics without foundational prej-udice. Therefore, the logic underlying a particular mathematical development wasan integral part of its formalization. Many of the ideas from the Automath lan-guage family have found their way into modern systems. The main experimentconducted within Automath was the formalization of Landau's Foundations ofAnalysis [Jutting 1977]. In the early eighties the importance of constructive typetheories for computer science was recognized through the pioneering work of Martin-L�of [Martin-L�of 1980, Martin-L�of 1985a, Martin-L�of 1985b]. On the one hand, thisled to a number of systems for constructive mathematics and the extraction offunctional programs from constructive proofs (beginning with Petersson's imple-mentation [Petersson 1982], followed by Nuprl [Nuprl 1999, Constable et al. 1986],Coq [Coq 1999, Dowek, Felty, Herbelin, Huet, Murthy, Parent, Paulin-Mohring andWerner 1993], PX [Hayashi and Nakano 1988], and LEGO [LEGO 1998, Luo andPollack 1992, Pollack 1994]). On the other hand, it strongly in
uenced the designof LF [Harper, Honsell and Plotkin 1987, Harper, Honsell and Plotkin 1993], some-

1066 Frank Pfenningtimes called the Edinburgh Logical Framework (ELF). Concurrent with the devel-opment of LF, frameworks based on higher-order logic and resolution were designedin the form of generic theorem provers [Paulson 1986, Paulson 1989, Nipkow andPaulson 1992] and logic programming languages [Nadathur and Miller 1988, Miller,Nadathur, Pfenning and Scedrov 1991]. The type-theoretic and logic programmingapproaches were later combined in the Elf language [Pfenning 1989, Pfenning1991a]. At this point, there was a pause in the development of new frame-works, while the potential and limitations of existing systems were explored innumerous experiments (see Section 8.3). The mid-nineties saw renewed activ-ity with implementations of frameworks based on inductive de�nitions such asFS0 [Feferman 1988, Matthews, Smaill and Basin 1993, Basin and Matthews 1996]and ALF [Nordstr�om 1993, Altenkirch, Gaspes, Nordstr�om and von Sydow 1994],partial inductive de�nitions [Halln�as 1991, Eriksson 1993a, Eriksson 1994], sub-structural frameworks [Schroeder-Heister 1991, Girard 1993, Miller 1994, Cervesatoand Pfenning 1996, Cervesato 1996], rewriting logic [Mart��-Oliet and Meseguer1993, Borovansk�y, Kirchner, Kirchner, Moreau and Ringeissen 1998], and labelleddeductive systems [Gabbay 1994, Basin, Matthews and Vigan�o 1998, Gabbay 1996].A full discussion of these is beyond the scope of this chapter|the reader can �ndsome brief remarks in Section 8.Some researchers distinguish between logical frameworks and meta-logical frame-works [Basin and Constable 1993], where the latter is intended as a meta-languagefor reasoning about deductive systems rather than within them. Clearly, any meta-logical framework must also provide means for specifying deductive systems, thoughwith di�erent goals. We therefore consider them here and discuss issues relatedto meta-theoretic reasoning in Section 5. Systems not based on type theory aresometimes called general logics . We do not attempt to delineate precisely whatcharacterizes general logics as a special case of logical frameworks, but we pointout some methodological di�erences between approaches rooted in type theory andlogic throughout this chapter. They are summarized in Section 8.The remainder of this chapter follows the tasks which arise in a typical applica-tion of a logical framework: speci�cation, search, and meta-theory. As an examplewe pick a fragment of predicate logic. In Section 2 we introduce techniques for therepresentation of formulas and other expressions of a given object logic. Section 3treats the representation of judgments and legal deductions. These two sectionstherefore illustrate how logical frameworks support speci�cation of deductive sys-tems. Section 4 sketches generic principles underlying proof search and how theyare realized in logical frameworks. It therefore covers reasoning within deductivesystems. Section 5 discusses approaches for formal reasoning about the propertiesof logical systems. Sections 6 and 7 summarize the formal de�nitions underlying theframeworks under consideration in this chapter. We conclude with remarks aboutcurrent lines of research and applications in Section 8.

Logical frameworks 10672. Abstract syntaxThe speci�cation of a deductive system usually proceeds in two stages: �rst we de�nethe syntax of an object language and then the axioms and rules of inference. In orderto concentrate on the meanings of expressions we ignore issues of concrete syntaxand parsing and concentrate on specifying abstract syntax. Di�erent frameworkimplementations provide di�erent means for customizing the parser in order toembed the desired object-language syntax.As an example throughout this chapter we consider formulations of intuitionis-tic and classical �rst-order logic. In order to keep this chapter to a manageablelength, we restrict ourselves to the fragment containing implication, negation, anduniversal quanti�cation. The reader is invited to test his or her understandingby extending the development to include a more complete set of connectives andquanti�ers. Representations of �rst-order intuitionistic and classical logic in vari-ous logical frameworks can be found in the literature (see, for example, [Felty andMiller 1988, Paulson 1990, Harper et al. 1993, Pfenning 2001]).Our fragment of �rst-order logic is constructed from individual variables, func-tion symbols, and predicate symbols in the usual way. We assume each functionand predicate symbol has a unique arity, indicated by a superscript, but generallyomitted since it will be clear from the context. Individual constants are functionsymbols of arity 0 and propositional constants are predicate symbols of arity 0.Function symbols fkPredicate symbols pkVariables xTerms t ::= x j fk(t1; : : : ; tk)Atoms P ::= pk(t1; : : : ; tk)Formulas A ::= P j A1 �A2 j :A j 8x:AWe assume that there is an in�nite number of variables x. The set of functionand predicate symbols is left unspeci�ed in the general development of logic. Wetherefore view our speci�cation as open-ended. A commitment, say, to arithmeticwould �x the available function and predicate symbols. We write x and y for vari-ables, t and s for terms, and A, B, and C for formulas. There are some importantoperations on terms and formulas required for the presentation of inference rules.Speci�cally, we need the notions of free and bound variable, the renaming of boundvariables, and the operations of substitution [t=x]s and [t=x]A, where the lattermay need to rename variables bound in A in order to avoid variable capture. Weassume that these operations are understood and do not de�ne them formally. Anassumption generally made in connection with variable names is the so-called vari-able convention [Barendregt 1980] (which goes back to Church and Rosser [Churchand Rosser 1936]) which states that expressions di�ering only in the names oftheir bound variables are considered identical. We examine to which extent variousframeworks support this convention.

1068 Frank Pfenning2.1. Uni-typed representationsAs the archetypical untyped representation language we choose �rst-order termsthemselves. Actually, it is more appropriate to think of it as a uni-typed language,that is, a language with a single type of individuals. For each function symbol f wehave a corresponding function symbol cf of the same arity in the representation.Similarly, each predicate symbol p is represented by a constant cp. The represen-tation of variables is more complex, since there are in�nitely many of them. Forsimplicity, we assume variables are enumerated and the nth variable xn is repre-sented by var(n), where the natural numbers n are either meta-language constantsor constructed from constants for zero and successor. We write p�q for the repre-sentation function which maps expressions of an object language to objects in themeta-language. We use sans-serif font for constants in various logical frameworkswe consider. pxnq = var(n)pfk(t1; : : : ; tk)q = ckf (pt1q; : : : ; ptkq)ppk(t1; : : : ; tk)q = ckp(pt1q; : : : ; ptkq)pA�Bq = imp(pAq; pBq)p:Aq = not(pAq)p8x:Aq = forall(pxq; pAq)However, our task is not yet complete: we need to be able to check, for example,if a given meta-language term represents a formula. For this we use Horn clausesto axiomatize the atomic proposition formula(t) which expresses that the meta-language term t represents a formula of the object language. This requires severalauxiliary predicates to recognize representations of variables and terms. The spec-i�cation below is e�ective in the sense that it can be executed in pure Prolog tocheck if a given term represents a well-formed formula. For our purposes, we thinkof Horn clauses as generated by the following grammar.Horn clauses D ::= P j > j D1 ^D2 j P1 ^ : : : ^ Pn � P j 8x:Dwhere P stands for atomic propositions and > stands for the true proposition. Werefer to a collection of closed Horn clauses as a Horn theory and write T H̀ P ifthe Horn theory T entails P . Natural numbers are represented in unary form withz representing 0 and s representing the successor function.nat(z)8n: nat(n)� nat(s(n))8n: nat(n)� variable(var(n))8t: variable(t)� term(t)8A:8B: formula(A) ^ formula(B)� formula(imp(A;B))8A: formula(A) � formula(not(A))8x:8A: variable(x) ^ formula(A)� formula(forall(x;A))

Logical frameworks 1069We have to add clauses for particular function and predicate symbols. For example,if an equality predicate eq2 is available in the object logic, we add the clause8x:8y: term(x) ^ term(y)� formula(eq(x; y))Arities of the function symbols and predicates are thus built into the representation.A drawback with this and related �rst-order, uni-typed methods is that we have toprove formula(t) to verify that t represents a formula of the object language; it isan external rather than an internal property of the representation. More precisely,if we denote the theory above by F , then we have the following representationtheorem.2.1. Theorem (Adequacy).1. F H̀ variable(t0) i� t0 = pxnq for a variable xn.2. F H̀ term(t0) i� t0 = ptq for a term t.3. F H̀ formula(t0) i� t0 = pAq for a formula A.Proof. In one direction this follows by an easy induction on n and the structureof t and A.In the other direction we need a deep semantic or proof-theoretic understandingof Horn logic. For example, we use the structure of the least Herbrand model, orwe can take advantage of the fact that a Horn theory inductively de�nes its atomicpredicates.Adequacy theorems play a critical role in logical frameworks. They guaranteethat we can translate expressions from the object language to objects in the meta-language, compute with them, and then interpret the results back in the objectlanguage. This will be particularly important when we consider the adequacy of theencoding of inference rules (Theorem 3.1) and deductions (Theorem 3.2), becausethey ensure that formal reasoning in the logical framework is correct with respectto the object logic under consideration. Generally, we would like the representationfunction to be a bijection, but this is not always necessary as long as we can translatesafely in both directions.For the particular adequacy theorem above it is irrelevant whether the proposi-tions of the meta-logic are interpreted classically or intuitionistically, since classicaland intuitionistic provability coincide on Horn clauses. We can also view a �xedset of Horn clauses as an inductive de�nition of the atomic predicates involved.In our example, the predicates nat, variable, term, and formula are all inductivelyde�ned by the clauses given above. The fact that Horn clauses allow such diverseinterpretations is one reason why they constitute a stable and frequently used basisfor logical frameworks.The �rst-order representation above does not support the variable conven-tion: renaming of bound variables must be implemented explicitly. For example,the representations of 8x1: p(x1) and 8x3: p(x3) are not identi�ed in the meta-language. Instead we can de�ne a binary predicate id such that id(A1; A2) holds

1070 Frank Pfenningi� A1 and A2 represent formulas which di�er only in the names of their boundvariables. The technique of de Bruijn indices [de Bruijn 1972] eliminates thisshortcoming without requiring a change in the expressive power of the meta-language. There, a variable is represented by a natural number n, which indi-cates that the variable is bound by the nth enclosing abstraction. For example,8x1:8x5: p(x5) � p(x1) and all alphabetic variants of it would be represented asforall (forall (imp(p(var(1)); p(var(2))))). De Bruijn indices have been employed asthe basic representation for many implementation and veri�cation e�orts for de-ductive systems (see, for example, [de Bruijn 1972, Shankar 1988]).2.2. Simply-typed representationA standard method for transforming an external validity condition (given here by aHorn theory) into an internal property of the representation is to introduce types.By designing the type system so that type checking is decidable, we turn a dynamicproperty into a static property. We begin with simple types. The idea is to introducetype constants i and o for object-level terms and formulas, respectively. Implication,for example, is then represented by a constant of type o ! (o ! o), that is,a formula constructor taking two formulas as arguments employing the standardtechnique of Currying. This idea can be directly applied to the representation in theprevious section if we also introduce a type constant for variables. We can improveupon this by enriching the representation language to include higher-order terms,which leads us to the simply-typed �-calculus, �!. We brie
y summarize it here;for more complete discussion, see Section 6.Types A ::= a j A1 ! A2Objects M ::= c j x j �x:A:M jM1 M2We use a to range over type constants, c over object constants, and x over objectvariables. We follow the usual syntactic conventions: ! associates to the right,and application to the left. Parentheses group subexpressions, and the scope of a�-abstraction extends to the innermost enclosing parentheses or to the end of theexpression. We allow tacit �-conversion (renaming of bound variables) and write[M=x]N for capture-avoiding substitution ofM for x in N . Constants and variablesare declared and assigned types in a signature � and context �, respectively. Neitheris permitted to declare constants or variables more than once.Using the simply-typed �-calculus �! as a representation language requires usto distinguish between arbitrary well-typed objects and canonical forms. Canonicalforms directly represent object-language entities, while the meaning of arbitrarywell-typed objects is computed by converting them to canonical form. This is similarto most programming languages where values represent data and the meaning ofan expression is determined by evaluation. This point of view leads to the followingprincipal judgments. They are parametrized by a signature � that declares typeand object constants and a context � that declares the type of variables free in M

Logical frameworks 1071and M 0. � �̀ M : A M is an object of type A� �̀ M 0 * A M 0 is a canonical object of type A� �̀ M *M 0 : A M has canonical form M 0 at type AThe formal de�nition of the language and these judgments can be found in Sec-tion 6. The appropriate notion for canonical forms are long ��-normal forms, thatis, �-reduced and �-expanded objects. Given a syntactic category in the objectlanguage and its representation type A, canonical forms of type A are in bijectivecorrespondence with object-language expressions in the appropriate syntactic cate-gory (see Theorem 2.2 and the subsequent discussion). Since every valid object hasa unique type and canonical form (see Theorem 6.1), the meaning of an arbitraryvalid object is unambiguously determined.Two objects are de�nitionally equal if they have the same canonical form.� �̀ M � N : A M is de�nitionally equal to N at type A.This is equivalent to stipulating that two objects are de�nitionally equal if they canbe transformed into each other by �- and �-conversion. Since canonical forms de-pend on types, de�nitional equality also depends on types, although we sometimesabbreviate it asM � N . Formulations of typed �-calculi as the foundation for func-tional programming normally do not include �-conversion, since it does not preserveobservational equivalence under the usual operational semantics. For example, thePure Type Systems reviewed in [Barendregt and Geuvers 2001] (Chapter 18 of thisHandbook) typically do not include �-conversion.Returning to the representation of �rst-order logic, we introduce two declarationsi : typeo : typefor the types of representations of terms and formulas, respectively. For every func-tion symbol f of arity k, we add a corresponding declarationf : i! � � � ! i!| {z }k i:One of the central ideas in using a �-calculus for representation is to representobject-language variables by meta-language variables. Through �-abstraction at themeta-level we can properly delineate the scopes of variables bound in the objectlanguage. For simplicity, we give corresponding variables the same name in the twolanguages. pxq = xpf(t1; : : : ; tk)q = f pt1q : : : ptkqPredicate symbols are dealt with like function symbols. We add a declaration

1072 Frank Pfenningp : i! � � � ! i!| {z }k ofor every predicate symbol p of arity k. Here are the remaining cases of the repre-sentation function.pp(t1; : : : ; tk)q = p pt1q : : : ptkqpA1 �A2q = imp pA1q pA2q imp : o! o! op:Aq = not pAq not : o! op8x:Aq = forall (�x:i: pAq) forall : (i! o)! oThe last case in the de�nition introduces the concept of higher-order abstract syntax.If we represent variables of the object language by variables in the meta-language,then variables bound by a construct in the object language must be bound in therepresentation as well. The simply-typed �-calculus has a single binding operator �,so all variable binding is mapped to binding by �. This idea goes back to Church'sformulation of classical type theory, see [Andrews 2001] (Chapter 15 of this Hand-book), and Martin-L�of's system of arities [Nordstr�om, Petersson and Smith 1990].In programming environments this was proposed by Huet and Lang [1978] anddeveloped further by Pfenning and Elliott [1988].This leads to the �rst important representation principle of logical frameworksemploying higher-order abstract syntax: Bound variable renaming in the object lan-guage is modeled by �-conversion in the meta-language. Since we follow the variableconvention in the meta-language, the variable convention in the object language isautomatically supported in a framework using the representation technique above.Consequently, it cannot be used directly for binding operators for which renaming isnot valid such as occur, for example, in module systems of programming languages.The variable binding constructor \8" of the object language is translated into asecond-order constructor forall in the meta-language, since delineating the scope ofx introduces a function (�x:i: pAq) of type i! o. What does it mean to apply thisfunction? This question leads to the concept of compositionality, a crucial propertyof higher-order abstract syntax. First we note that(�x:i: pAq) ptq � [ptq=x]pAq;since �-conversion is an admissible rule for de�nitional equality. We can furtherprove (by a simple induction) that[ptq=x]pAq = p[t=x]Aq:Here, substitution (both at the object and meta-level) are de�ned to rename boundvariables as necessary in order to avoid the capturing of variables free in t. Com-positionality also plays a very important role in the representation of deductionsin Section 3; we summarize it as: Substitution in the object language is modeled by�-reduction in the meta-language.

Logical frameworks 1073The declarations of the basic constants above are open-ended in the sense that wecan always add further constants without destroying the validity of earlier represen-tations. In logic programming, this is called the open-world assumption. However,the de�nition also has an inductive character in the sense that the validity judgmentof the meta-language (�!, in this case) is de�ned inductively by some axioms andrules of inference. Therefore we can state and prove that there is a compositionalbijection between well-formed formulas and canonical objects of type o. Since aterm or formula may have free individual variables, and they are represented bycorresponding variables in the meta-language, we must take care to declare themwith their proper types in the meta-language context. We refer to the particularsignature with the declarations for term and formula constructors as F .2.2. Theorem (Adequacy).1. We have x1:i; : : : ; xn:i F̀ M * i i� M = ptq;where the free variables of term t are among x1; : : : ; xn.2. We have x1:i; : : : ; xn:i F̀ M * o i� M = pAq;where the free variables of formula A are among x1; : : : ; xn.3. The representation function p�q is a compositional bijection in the sense that[ptq=x]psq = p[t=x]sq and [ptq=x]pAq = p[t=x]AqProof. In one direction we proceed by an easy induction on the structure of termsand formulas. Compositionality can also be established directly by an induction onthe structure of s and A, respectively.In the other direction we carry out an induction over the structure of the deriva-tions of M * i and M * o. To prove that the representation function is a bijection,we write down its inverse on canonical forms and prove that both compositions areidentity functions.An important aspect of this theorem is that it establishes a bijection betweencanonical forms of a given type (i and o) and the object-language entities we aretrying to represent (terms and formulas, respectively). It is clear that not everywell-typed object of type i or o lies in the image of the representation function.The next two examples show that canonical forms and not just �-normal forms areactually required. We assume we have one unary predicate p and a correspondingconstant p:i! o. ` forall (�x:i: ((�q:o: q) (px))) : o` forall p : oBoth of these object have type o but are not in the image of the representationfunction p�q. Their meaning can be determined by conversion to canonical form.

1074 Frank PfenningWe calculate ` forall (�x:i: ((�q:o: q) (p x))) * forall (�x:i: px) : o` forall p * forall (�x:i: px) : oand thus both objects represent 8x: P (x) (or an alphabetic variant, of course).Similar examples exist for the representation of derivations in Section 3. This showsthat canonical forms play the role of observable values in a functional language, andconversion to canonical form the role of evaluation. A simple �-normal form wouldnot be suÆcient, as the second example illustrates.We summarize the concepts and techniques introduced in this section. We notedthe tension between external and internal validity of representations. The for-mer arises if we write a general (logical) speci�cation that allows us to provethat meta-language objects represent well-formed object-language expressions. Thelatter arises from a typed meta-language where well-typed meta-language objectscorrespond to well-formed expressions of the object language. Validity of internalrepresentations are decidable by design, while this issue has to be reexamined ineach case for external validity.A central issue in the representation of syntax is the treatment of variables.An encoding where variables are represented by constants in the meta-languageis awkward and requires a signi�cant machinery to handle the frequently requiredoperations of bound variable renaming and substitution. The more advanced tech-nique of de Bruijn indices represents occurrences of bound variables by pointersto their binding occurrence, drastically simplifying many operations. Substitutionmust still be axiomatized explicitly. The technique of higher-order abstract syn-tax represents object language variables by meta-language variables. It requires �-abstraction in the meta-language in order to properly delineate the scope of boundvariables, which suggests the use of the simply-typed �-calculus as a representa-tion language. In this approach, variable renaming is modeled by �-conversion, andcapture-avoiding substitution is modeled by �-reduction, both of which preservede�nitional equality.Languages such as the formulas of �rst-order logic are essentially open-endedin the sense that we may obtain speci�c theories by making a commitment to aparticular set of function and predicate symbols. On the other hand they are alsoinductive in the sense that in order to prove a meta-theoretic property, we mayneed to proceed by induction over the structure of formulas, which is only possibleif we know that we are considering all possible cases. The compositionality of therepresentation function is a simple example of such an inductive proof. This tensionis re
ected in the simply-typed �-calculus as a representation language. On theone hand, it is open-ended in the sense that we can always declare new constantswithout invalidating any prior typing or equality judgments. On the other hand,the canonical objects constructed over a �xed signature are inductively de�ned,since the meta-language has an inductive de�nition. Some frameworks, such asFS0 [Feferman 1988, Matthews et al. 1993] or ALF [Nordstr�om 1993] make theinductive nature of these de�nitions explicit, at the price of giving up higher-order

Logical frameworks 1075abstract syntax. On the other hand one can then reason internally about propertiesof deductive systems by induction. We will come back to inductive meta-reasoningin Section 5.3. Judgments and deductionsAfter designing the representation of terms and formulas, the next step is to encodethe axioms and inference rules of the logic under consideration. There are severalstyles of deductive systems which can be found in the literature. There is the ax-iomatic style (originated by Frege [1879] and in its modern form by Hilbert andBernays [1934]) where a logical system is given by axioms and a minimal number ofinference rules. Gentzen [1935] developed natural deduction in which the meaning ofeach logical symbol is explained by means of its introduction and elimination rules.Natural deductions were developed to model mathematical reasoning practices moreclosely than axiomatic derivations while still remaining completely formal. Gentzenalso introduced sequent calculi in which certain properties of derivations (such asthe subformula property) are explicit. Sequent calculi form the basis of many proofsearch procedures today. Yet another style of presentation is based on categorytheory [Lambek and Scott 1986].Logical frameworks are typically designed to deal particularly well with someof these systems, while being less appropriate for others. The Automath languageswere designed to re
ect and promote good informal mathematical practice. It shouldthus be no surprise that they were particularly well-suited to systems of naturaldeduction. The same is true for hereditary Harrop formulas and the LF type theory,so we discuss the problem of representing natural deduction �rst. We return toaxiomatic systems in Section 3.5. Other systems, including sequent calculi, can alsobe directly encoded [Pfenning 1995, Pfenning 2000].3.1. Parametric and hypothetical judgmentsFirst, we introduce some terminology used in the presentation of deductive systemsintroduced with their modern meaning by Martin-L�of [Martin-L�of 1985a]. We willgenerally interpret the notions as formal and syntactic, rather than semantic, sincewe would like to tie them closely to logical frameworks and their implementations. Ajudgment is de�ned by inference rules. An inference rule has zero or more premisesand a conclusion; an axiom is an inference rule with no premises. A judgment isevident or derivable if it can be deduced using the given rules of inference. Mostinference rules are schematic in that they contain meta-variables. We obtain in-stances of a schematic rule by replacing meta-variables with concrete expressionsof the appropriate syntactic category. Each instance of an inference rule may beused in derivations. We write D :: J or DJ

1076 Frank Pfenningwhen D is a derivation of judgment J . All derivations we consider must be �nite.Natural deduction further employs hypothetical judgments. We writeuJ1...J2to express that judgment J2 is derivable under hypothesis J1 labelled u, where thevertical dots may be �lled by a hypothetical derivation. Hypotheses have scope,that is, they may be discharged so that they are not available outside a given sub-derivation. We annotate the discharging inference with the label of the hypothesis.The meaning of a hypothetical judgment can be explained by substitution: We cansubstitute an arbitrary deduction E :: J1 for each occurrence of a hypothesis J1labelled u in D :: J2 and obtain a derivation of J2 that no longer depends on u. Wewrite this substitution as [E=u]D :: J2. For this to be meaningful we assume thatmultiple occurrences of a label annotate the same hypothesis, and that hypothesessatisfy the structural properties of exchange (the order in which hypotheses aremade is irrelevant), weakening (a hypothesis need not be used) and contraction (ahypothesis may be used more than once).An important related concept is that of a parametric judgment. Evidence for ajudgment J that is parametric in a variable a is given by a derivation D :: J thatmay contain free occurrences of a. We refer to the variable a as a parameter anduse a and b to range over parameters. We can substitute an arbitrary object Oof the appropriate syntactic category for a throughout D to obtain a deduction[O=a]D :: [O=a]J . Parameters also have scope and their discharge is indicated by asuperscript as for hypothesis labels.3.2. Natural deductionNatural deduction is de�ned via a single judgmentǸ A formula A is trueand the mechanisms of hypothetical and parametric deductions explained in theprevious section.In natural deduction each logical symbol is characterized by its introduction ruleor rules which specify how to infer a conjunction, disjunction, implication, univer-sal quanti�cation, etc. The elimination rule or rules for the connective then specifyhow we can use a conjunction, disjunction, etc. Underlying the formulation of theintroduction and elimination rules is the principle of orthogonality : each connectiveshould be characterized purely by its rules, and the rules should only use judg-mental notions and not other logical connectives. Furthermore, the introductionand elimination rules for a logical connective cannot be chosen freely|as explained

Logical frameworks 1077below, they should match up in order to form a coherent system. We call theseconditions local soundness and local completeness.Local soundness expresses that we should not be able to gain information byintroducing a connective and immediately eliminating it. That is, if we introduceand then eliminate a connective we should be able to reach the same judgmentwithout this detour. We show that this is possible by exhibiting a local reductionon derivations. The existence of a local reduction shows that the elimination rulesare not too strong|they are locally sound.Local completeness expresses that we should not lose information by introducinga connective. That is, given a judgment there is some way to eliminate its principalconnective and then re-introduce it to arrive at the original judgment. We showthat this is possible by exhibiting a local expansion on derivations. The existenceof a local expansion shows that the elimination rules are not too weak|they arelocally complete.Under the Curry-Howard isomorphism between proofs and programs [Howard1980], local reduction correspond to �-reduction and local expansion correspondsto �-expansion. We express local reductions and expansions via judgments whichrelate derivations of the same judgment.D̀N A =)R D0Ǹ A D locally reduces to D0D̀N A =)E D0Ǹ A D locally expands to D0In the framework of partial inductive de�nitions [Halln�as 1991] when used as ameta-logic [Halln�as 1987, Schroeder-Heister 1991, Eriksson 1992, Eriksson 1993b,Eriksson 1993a, Eriksson 1994] the speci�cation of introduction rules for a con-nective automatically leads to the proper elimination rules by virtue of generalproperties of the framework. We do not presuppose such a mechanism, but explic-itly describe both introduction and elimination rules. In the spirit of orthogonality,we proceed connective by connective, discussing introduction and elimination rulesand local reductions and expansions.Implication. To derive Ǹ A � B we assume Ǹ A to derive Ǹ B. Written as ahypothetical judgment: uǸ A...Ǹ B �IuǸ A�BThe hypothetical derivation describes a construction by which we can transform aderivation of Ǹ A into a derivation of Ǹ B. This is accomplished by substituting

1078 Frank Pfenningthe derivation of Ǹ A for every use of the hypothesis Ǹ A labelled u in thederivation of Ǹ B. The elimination rule expresses just that: if we have a derivationof Ǹ A�B and also a derivation of Ǹ A, then we can obtain a derivation of Ǹ B.Ǹ A�B Ǹ A �EǸ BThe local reduction carries out the substitution of derivations explained above.uǸ AD̀N B �IuǸ A�B ÈN A �EǸ B =)R E uǸ AD̀N BThe derivation on the right depends on all the hypotheses of E and D except u,for which we have substituted E . The reduction described above may signi�cantlyincrease the overall size of the derivation, since the deduction E is substituted foreach occurrence of the assumption labeled u in D and may therefore be replicated.Local expansion is speci�ed in a similar manner.DǸ A�B =)E DǸ A�B uǸ A �EǸ B �IuǸ A�BHere, u must be a new label, that is, it cannot already be used in D.Negation. In order to derive Ǹ :A we assume Ǹ A and try to derive a contra-diction. This is the usual formulation, but has the disadvantage that it requiresfalsehood (?) as a logical symbol, thereby violating the orthogonality principle.Thus, in intuitionistic logic, one ordinarily thinks of :A as an abbreviation forA � ?. An alternative rule sometimes proposed assumes Ǹ A and tries to deriveǸ B and Ǹ :B for some B. This also breaks the usual pattern by requiring thelogical symbol we are trying to de�ne (:) in a premise of the introduction rule.However, there is another possibility to explain the meaning of negation withoutrecourse to implication or falsehood. We specify that Ǹ :A should be derivableif we can conclude Ǹ p for any formula p from the assumption Ǹ A. In otherwords, the deduction of the premise is hypothetical in the assumption Ǹ A and

Logical frameworks 1079parametric in the formula p.uǸ A...̀N p :Ip;uǸ :A Ǹ :A Ǹ A :EǸ CAccording to our intuition, the parametric judgment should be derivable if wecan substitute an arbitrary concrete formula C for the parameter p and obtaina valid derivation. Thus, p may not already occur in the conclusion :A, or inany undischarged hypothesis. The reduction rule for negation follows from thisinterpretation and is analogous to the reduction for implication.uǸ AD̀N p :Ip;uǸ :A ÈN A :EǸ C =)R E uǸ A[C=p]DǸ CThe local expansion is also similar to that for implication.DǸ :A =)E DǸ :A uǸ A :EǸ p :Ip;uǸ :AUniversal quanti�cation. Under which circumstances should we be able to deriveǸ 8x:A? This clearly depends on the domain of quanti�cation. For example, if weknow that x ranges over the natural numbers, then we can conclude Ǹ 8x:A ifwe can derive Ǹ [0=x]A, Ǹ [1=x]A, etc. Such a rule is not e�ective, since it hasin�nitely many premises. Thus one usually uses induction principles as inferencerules. However, in a general treatment of predicate logic we would like to provestatements which are true for all domains of quanti�cation. Thus we can only saythat Ǹ 8x:A should be derivable if Ǹ [a=x]A is derivable for an arbitrary newparameter a. Conversely, if we know Ǹ 8x:A, we know that Ǹ [t=x]A for any termt. Ǹ [a=x]A 8IaǸ 8x:A Ǹ 8x:A 8EǸ [t=x]AThe superscript a is a reminder about the proviso for the introduction rule: the pa-rameter a must be \new", that is, it may not occur in any undischarged hypothesis

1080 Frank Pfenningin the derivation of [a=x]A or in 8x:A itself. In other words, the derivation of thepremise is parametric in a. If we know that Ǹ [a=x]A is derivable for an arbitrarya, we can conclude that Ǹ [t=x]A should be derivable for any term t. Thus we havethe reduction DǸ [a=x]A 8IaǸ 8x:A 8EǸ [t=x]A =)R [t=a]DǸ [t=x]AHere, [t=a]D is our notation for the result of substituting t for the parameter athroughout the deduction D. For this to be sensible, we must know that a does notalready occur in A, because otherwise the conclusion of [t=a]D would be [t=a][t=x]A.Similarly, we would change the assumptions if a occurred free in any of the undis-charged hypotheses. This might render a larger derivation incorrect. As an example,consider the judgment Ǹ 8x:8y: p(x)� p(y) which should clearly not be derivablefor an arbitrary predicate p. The following is not a deduction of this judgment.uǸ P (a) 8Ia?Ǹ 8x: P (x) 8EǸ P (b) �IuǸ P (a)� P (b) 8IbǸ 8y: P (a)� P (y) 8IaǸ 8x:8y: P (x)� P (y)The
aw is at the inference marked with \?," where a is free in the assumptionu. Applying a local proof reduction to the (incorrect) 8I inference followed by 8Eleads to the assumption [b=a]P (a) which is equal to P (b). The resulting derivationuǸ P (b) �IuǸ P (a)� P (b) 8IbǸ 8y: P (a)� P (y) 8IaǸ 8x:8y: P (x)� P (y)is once again incorrect since the hypothesis labelled u should be P (a), not P (b).The local expansion just introduces and immediately discharges the parameter.DǸ 8x:A =)E DǸ 8x:A 8EǸ [a=x]A 8IaǸ 8x:A

Logical frameworks 1081Classical logic. The inference rules so far only model intuitionistic logic, and someclassically true formulas such as Peirce's law ((A � B) � A) � A (for arbitrary Aand B) or double negation (::A)�A (for arbitrary A) are not derivable. There area number of equivalent ways to extend the system to full classical logic, typicallyusing negation (for example, the law of excluded middle, proof by contradiction, ordouble negation elimination). In the fragment without disjunction or falsehood, wemight choose either a rule of double negation or proof by contradiction.
Ǹ ::A dbnegǸ A

uǸ :A...Ǹ A contruǸ AThe rule for classical logic (whichever we choose to adopt) breaks the pattern ofintroduction and elimination rules. One can still formulate some reductions forclassical derivations, but natural deduction is at heart an intuitionistic calculus.The symmetries of classical logic are better exhibited in sequent calculi.Here is a simple example of a natural deduction showing that Ǹ A � ::A isderivable in intuitionistic logic. We attempt to show the process by which such adeduction may have been generated, as well as the �nal deduction. The three verticaldots indicate a gap in the derivation we are trying to construct, with hypothesesshown above and the desired conclusion below the gap. A trace of this process whenthe search is carried out in a logical framework is given in Section 4.4....Ǹ A�::A ; uǸ A...Ǹ ::A �IuǸ A�::A
; uǸ A wǸ :A...̀N p :Ip;wǸ ::A �IuǸ A�::A ; wǸ :A uǸ A :EǸ p :Ip;wǸ ::A �IuǸ A�::AThe symbol A in this deduction stand for an arbitrary formula; we can thus viewthe derivation above as parametric in A. In other words, every instance of thisderivation (replacing A by an arbitrary formula) is a valid derivation.

1082 Frank PfenningBelow is a summary of the rules of intuitionistic natural deduction. The use ofhypotheses is implicit in this formulation, using our understanding of hypotheticaljudgments. Introduction Rules Elimination RulesuǸ A...Ǹ B �IuǸ A�B Ǹ A�B Ǹ A �EǸ BuǸ A...̀N p :Ip;uǸ :A Ǹ :A Ǹ A :EǸ CǸ [a=x]A 8IaǸ 8x:A Ǹ 8x:A 8EǸ [t=x]A3.3. Representing derivabilityThere are several approaches to the representation of natural deductions in logi-cal frameworks. We can introduce a predicate nd such that nd(pAq) holds in themeta-logic if and only if Ǹ A has a derivation. This does not require an explicitrepresentation of natural deductions as objects in the meta-language. Another pos-sibility is to introduce an explicit representation for natural deductions and encodethe property \D is a deduction of Ǹ A".We �rst consider the encoding of derivability via axioms in a meta-logic. In orderto take advantage of higher-order abstract syntax in the representation, we need togo beyond Horn clauses as introduced in Section 2.1. An appropriate language is thelanguage of hereditary Harrop formulas [Miller et al. 1991] which form the basisboth of the logic programming language �Prolog [�Prolog 1997] and the generictheorem prover Isabelle [Paulson 1994]. Variations of this approach to encodingderivability have been devised by Paulson [1986] and Felty and Miller [1988, 1989].Quanti�ers in the meta-logic have type labels and range over simply-typed �-terms.Since it is unnecessary for our purposes, we exclude quanti�cation over formulasin the meta-logic and omit some logical connectives that are easily de�nable. Themeta-variable A ranges here over simple types as in Section 6 and should not be

Logical frameworks 1083confused with the formulas of �rst-order logic in the preceding section.Hereditary Harrop formulas H ::= P j > j H1 ^H2 j H1 �H2 j 8x:A:HThere are two important di�erences to Horn logic: the addition of types so thatquanti�ers now range over simply-typed �-terms, and the generalization which al-lows the body of clauses to contain implications and universal quanti�cations (so-called embedded implication and embedded universal quanti�cation). On this frag-ment classical and intuitionistic logic diverge, so it is crucial that the meta-logic isintuitionistic. A theory T is a collection of closed hereditary Harrop formulas.T H̀H H theory T intuitionistically entails proposition HThe extension to allow embedded implications also means that theories consistingof hereditary Harrop formulas no longer constitute inductive de�nitions the wayHorn clauses do.Derivability by natural deductions is represented by a predicate nd on represen-tations of formulas, that is, meta-level terms of type o. The inference rules are thentranslated into meta-level axioms concerning the predicate nd. For example, therule �E is implemented by8A:o:8B:o: (nd (impAB) ^ ndA)� ndBIn order to represent hypothetical judgments we take advantage of embedded impli-cation. This is correct only because the meta-logic is intuitionistic and a completestrategy for proving a formula H1�H2 is to prove H2 under assumption H1. Usingthis fact, one can prove that the following axiom is an adequate representation ofthe �I rule.8A:o:8B:o: (ndA� ndB)� nd (impAB)For parametric judgments we can use a similar encoding with embedded universalquanti�cation. We state the remaining rules here for completeness; the same ideais employed in the type-theoretic treatment in Section 3.4 and explained there indetail.8A:o: (8p:o: nd(A)� nd(p))� nd(:A)8A:o: nd(:A) � 8C:o: (nd(A)� nd(C))8A:i! o: (8x:i: nd (Ax)) � nd (forall (�x:i: A x))8A:i! o: nd (forall (�x:i: A x))� (8x:i: nd (Ax))We summarize the representation principle in the phrase judgments-as-propositions :judgments of the object language (e.g., Ǹ A) are represented by a proposition in themeta-logic (e.g., nd(pAq)). The adequacy theorem of this representation is ratherdirect. We refer to the theory consisting of the type declarations and the six axiomsabove as ND .

1084 Frank Pfenning3.1. Theorem (Adequacy).ND H̀H nd(pAq) i� Ǹ AIn order to prove this theorem, we need to generalize it to account for hypotheticaljudgments. One possible form employs meta-level implication.ND H̀H nd(pA1q)� � � � � nd(pAnq)� nd(pAq) i� u1Ǹ A1 � � � unǸ An...Ǹ AAnother form, given for the related type-theoretic interpretation in the next section,directly uses hypothetical reasoning in the meta-language.3.4. Deductions as objectsIf we have a general reasoning tool for hereditary Harrop formulas we can nowreason in intuitionistic logic by using the axioms in the theory ND , and in classi-cal logic if we assume an additional axiom modelling double negation elimination.Isabelle [Paulson 1994, Nipkow and Paulson 1992] is such a general tool. Proofsearch can be programmed externally by using a language of tactics and tacti-cals to construct derivations using these axioms and derived rules of inference.The meta-programming language in this case is ML, whose type system togetherwith a correct implementation of hereditary Harrop formulas guarantees that onlywell-formed meta-derivations can be constructed. More on this style of reasoningwith the aid of a logical framework implementation can be found in Section 4. Asmentioned above, this is an implementation of derivability and explicit deductionsneed never be constructed. If they are maintained, they are only an internal datastructure.There are many circumstances where we are interested in deductions as explicitobjects. For example, we may want to extract functional programs from construc-tive (or even classical) derivations. Or we may want to implement proof trans-formation and presentation tools in a theorem proving environment. If we do nottrust a complex theorem prover, we may construct it so that it generates proofobjects which can be independently veri�ed. In the architecture of proof-carryingcode [Necula 1997], deductions represented in LF are attached to mobile code tocertify safety (see Section 8.2). Another class of applications is the implementationof the meta-theory of the deductive systems under consideration. For example, wemay want to show that natural deductions and axiomatic derivations de�ne thesame theorems and exhibit translations between them (see Sections 5.2 and 5.4).The simply-typed �-calculus, which we used to represent the terms and formulasof �rst-order logic, is also a good starting point for the representation of naturaldeductions. As we will see below we need to re�ne it further in order to allow an

Logical frameworks 1085internal validity condition for deductions. This leads us to ��, the dependentlytyped �-calculus underlying the LF logical framework [Harper et al. 1993].We begin by introducing a new type nd of natural deductions instead of thepredicate introduced in the previous section. An inference rule is a constant functionfrom deductions of the premises to a deduction of the conclusion. For example,impe : nd! nd! ndmight be used to represent implication elimination. A hypothetical deduction isrepresented as a function from a derivation of the hypothesis to a derivation of theconclusion.impi : (nd! nd)! ndOne can clearly see that this representation requires an external validity conditionsince it does not carry the information about the conclusion of a derivation. Forexample, we have ` impi (�u:nd: impeuu) * ndbut this term does not represent a valid natural deduction. An external validitypredicate can be speci�ed using hereditary Harrop formulas and is executable in�Prolog [Felty and Miller 1988, Felty 1989]. However, it is dynamic (rather thanstatic) and not prima facie decidable. Furthermore, during search external mecha-nisms must be put into place in order to prevent invalid deductions. This is relatedto the problem of invalid tactics in ML/LCF [Gordon, Milner andWadsworth 1979].Through data abstraction, tactics are guaranteed to generate only valid deductions,but the type system cannot enforce that they have the expected conclusion.Fortunately, it is possible to re�ne the simply-typed �-calculus so that validity ofthe representation of derivations becomes an internal property, without destroyingthe decidability of the type system. This is achieved by introducing indexed types.Consider the following encoding of the elimination rule for implication.impe : nd (impAB)! ndA! ndBIn this speci�cation, nd (impAB) is a type, the type representing derivations ofA � B. Thus we speak of the judgments-as-types principle. The type family nd isindexed by objects of type o.nd : o! typeWe call o ! type a kind . Secondly, we have to consider the status of the freevariables A and B in the declaration. Intuitively, impe represents a whole family ofconstants, one for each choice of A and B. Schematic declarations like the one givenabove are desirable in practice, but they lead to an undecidable type checking prob-lem [Dowek 1993]. We can recover decidability by viewing A and B as additionalarguments in the representation of �E. Thus impe has four arguments representingA, B, a derivation of A � B and a derivation of A. It returns a derivation of B.With the usual function type constructor we could only write

1086 Frank Pfenningimpe : o! o! nd (impAB)! ndA! ndB:This does not express the dependencies between the �rst two arguments and thetypes of the remaining arguments. Thus we name the �rst two arguments A andB, respectively, and writeimpe : �A:o:�B:o: nd (impAB)! ndA! ndB:This is a closed type, since the dependent function type constructor � binds thefollowing variable. From the consideration above we can see that the typing rulefor application of a function with dependent type should be� �̀ M : �x:A:B � �̀ N : A app� �̀ M N : [N=x]BFor example, given a variable p:o we havep:o �̀ impe (not p) p : nd (imp (not p) p)! nd (not p)! nd pwhere the signature � contains the declarations for formulas and inferences rulesdeveloped above. The counterexample impi (�u:ndA: impeuu) from above is nowno longer well-typed: the instance of A would have to be of the form A1�A2 (�rstoccurrence of u) and simultaneously be equal to A1 (second occurrence of u). Thisis clearly impossible. The rule for �-abstraction does not change much from thesimply-typed calculus. � �̀ A : type �; x:A �̀ M : B lam� �̀ �x:A:M : �x:A:BThe variable x may now appear free in B, whereas without dependencies it couldonly occur free inM . From these two rules it can be seen that the rules for �x:A:Bspecialize to the rules for A! B if x does not occur in B. Thus A! B is generallyconsidered a derived notation that stands for �x:A:B for a variable x not free inB.Dependent types further create the need for a rule of type conversion. This isrequired, for example, in the representation of 8I below. We take a brief excursioninto the realm of functional programming to illustrate the nature of dependenttypes and the need for type conversion. Consider a type family vector indexed by anatural number representing its length. Then concatenation of vectors would havetypeconcat : �n:nat:�m:nat: vectorn! vectorm! vector (n+m):Using the inference rules for application we �ndconcat2 3 [1; 2] [1; 3; 5] : vector(2 + 3); andconcat3 2 [1; 2; 1] [3; 5] : vector(3 + 2):

Logical frameworks 1087Since both expressions compute to the same value, namely[1; 2; 1; 3; 5] : vector(5);we would expect that in a sensible type system all three expressions would havethe same type. Evidently they do not, unless we identify the types vector(2 + 3),vector(3 + 2), and vector(5). All of them represent the type of vectors of length5, so identifying them makes sense intuitively. In general, we add a rule of typeconversion that allows us to apply de�nitional equalities in a type.� �̀ M : A � �̀ A � B : type conv� �̀ M : BThe example above also shows that adding dependent types to a functional lan-guage can quickly lead to an undecidable type checking problem, since we need tocompare expressions in the program language for equality (which is undecidablein general). The LF type theory contains no recursion at the level of objects andtype-checking remains decidable since de�nitional equality remains decidable. Thisis an important illustration of the design principle that the framework should beas weak as possible. Adding recursion, while it may occasionally seem desirable,can easily destroy decidability of de�nitional equality and therefore typing. In anundecidable type system, validity of the representations for deductions then wouldno longer be a static, internal property.A full complement of rules for the �� type theory is given in Section 7. A versionwith a weaker notion of de�nitional equality is given in [Barendregt and Geuvers2001] (Chapter 18 of this Handbook)With dependent function types, we can now give a representation for naturaldeductions with an internal validity condition. This is summarized in Theorem 3.2below. We �rst introduce a type family nd that is indexed by a formula. The LFtype nd pAq is intended to represent the type of natural deductions of the formulaA. nd : o! typeEach inference rule is represented by an LF constant which can be thought ofas a function from a derivation of the premises of the rule to a derivation of theconclusion. The constant further depends on the schematic variables that occur inthe speci�cation of the inference rule.Implication. The introduction rule for implication employs a hypothetical judg-ment. The derivation of the hypothetical judgment in the premise is represented asa function which, when applied to a derivation of A, yields a derivation of B.p uǸ AD̀N B �IuǸ A�B
q = impi pAq pBq (�u:nd pAq: pDq)

1088 Frank PfenningThe assumption A labelled by u which may be used in the derivation D is repre-sented by the LF variable u which ranges over derivations of A.p uǸ A q = uFrom this we can deduce the type of the impi constant.impi : �A:o:�B:o: (ndA! ndB)! nd (impAB)The elimination rule is simpler, since it does not involve a hypothetical judgment.The representation of a derivation ending in the elimination rule is de�ned byp DǸ A�B ÈN A �EǸ B q = impe pAq pBq pDq pEqwhereimpe : �A:o:�B:o: nd (imp A B)! nd A! nd B:As an example we consider a derivation of A� (B �A).uǸ A �IwǸ B �A �IuǸ A� (B �A)Note that the assumption Ǹ B labelled w is not used and therefore does not appearin the derivation. This derivation is represented by the LF objectimpi pAq (imp pBq pAq) (�u:nd pAq: impi pBq pAq (�w:nd pBq: u))which has type nd (imp pAq (imp pBq pAq)):This example shows clearly some redundancies in the representation of the de-duction (there are many occurrence of pAq and pBq). Fortunately, it is possible toanalyze the types of constructors and eliminate much of this redundancy throughterm reconstruction [Pfenning 1991a, Necula and Lee 1998b]. Section 8.2 has someadditional brief remarks on this issue.

Logical frameworks 1089Negation. The introduction and elimination rules for negation and their represen-tation follow the pattern of the rules for implication.p uǸ AD̀N p :Ip;uǸ :A
q = noti pAq (�p:o: �u:nd pAq: pDq)The judgment of the premise is parametric in p and hypothetical in u. It is thusrepresented as a function of two arguments, accepting both a formula p and adeduction of A.noti : �A:o: (�p:o: nd A! nd p)! nd (not A)The representation of negation eliminationp DǸ :A ÈN A :EǸ C q = note pAq pDq pCq pEqleads to the following declarationnote : �A:o: nd (not A)! �C:o: nd A! nd CThis type just inverts the second argument and result of the noti constant, whichis the reason for the chosen argument order. Clearly,note0 : �A:o:�C:o: nd (not A)! nd A! nd Cis an equivalent declaration.Universal quanti�cation. Recall that p8x:Aq = forall (�x:i: pAq) and that thepremise of the introduction rule is parametric in a.p DǸ [a=x]A 8IaǸ 8x:A q = foralli (�x:i: pAq) (�a:i: pDq)Note that pAq, the representation of A, has a free variable x which must be boundin the meta-language, so that the representing object does not have a free variablex. Similarly, the parameter a is bound at this inference and must be correspondinglybound in the meta-language. The representation determines the type of the constantforalli.

1090 Frank Pfenningforalli : �A:i! o: (�a:i: nd (A a))! nd (forall A)In an application of this constant, the argument labelled A will be �x:i: pAq and(A a) will be (�x:i: pAq) a which is equivalent to [a=x]pAq which in turn is equiva-lent to p[a=x]Aq by the compositionality of the representation.The elimination rule does not employ a hypothetical judgment.p DǸ 8x:A 8EǸ [t=x]A q = foralle (�x:i: pAq) pDq ptqThe substitution of t for x in A is representation by the application of the function(�x:i: pAq) (the �rst argument to foralle) to ptq.foralle : �A:i! o: nd (forall A)! �t:i: nd (A t)We now check that p DǸ 8x:A 8EǸ [t=x]A q : nd p[t=x]Aq;assuming that pDq : nd p8x:Aq. This is a part in the proof of adequacy of thisrepresentation of natural deductions. At each step we verify that the argumentshave the expected type and compute the type of the application.foralle : �A:i! o: nd (forall A)! �t:i: nd (A t)foralle (�x:i: pAq) : nd (forall (�x:i: pAq))! �t:i: nd ((�x:i: pAq) t)foralle (�x:i: pAq) pDq : �t:i: nd ((�x:i: pAq) t)foralle (�x:i: pAq) pDq ptq : nd ((�x:i: pAq) ptq)foralle (�x:i: pAq) pDq ptq : nd ([ptq=x]pAq)The last step follows by type conversion, noting that(�x:i: pAq) ptq � [ptq=x]pAq:Furthermore, by the compositionality of the representation we have[ptq=x]pAq = p[t=x]Aqwhich yields the desiredforalle (�x:i: pAq) pDq ptq : nd (p[t=x]Aq):The representation theorem relates canonical objects constructed in certain con-texts to natural deductions. The restriction to canonical objects is once again cru-cial, as are the restrictions on the form of the context. We call the signature con-sisting of the declarations for �rst-order terms, formulas, and natural deductionsND.

Logical frameworks 10913.2. Theorem (Adequacy).1. If D is a derivation of A from hypotheses Ǹ A1; : : : ; Ǹ An labelled u1; : : : ; un,respectively, with all free individual parameters among a1; : : : ; am and proposi-tional parameters among p1; : : : ; pk thena1:i; : : : ; am:i; p1:o; : : : ; pk:o; u1:nd pA1q; : : : ; un:nd pAnq ǸD pDq * nd pAq2. If a1:i; : : : ; am:i; p1:o; : : : ; pk:o; u1:nd pA1q; : : : ; un:nd pAnq ǸD M * nd pAqthen M = pDq for a derivation D as in part 1.3. The representation function is a bijection, and is compositional in the sensethat the following equalities hold.p[t=a]Dq = [ptq=a]pDqp[C=p]Dq = [pCq=p]pDqp[E=u]Dq = [pEq=u]pDqProof. The proof proceeds by induction on the structure of natural deductionsone direction and on the de�nition of canonical forms in the other direction.Each of the rules that may be added to obtain classical logic can be easily repre-sented with the techniques from above. They are left as an exercise to the reader.We summarize the LF encoding of natural deductions. We make a few cosmeticchanges which re
ect common practice in the use of logical frameworks. The �rstis the use of in�x and pre�x notation for logical connectives. According to our con-ventions, implication is right associative, and negation is a pre�x operator bindingmore tightly than implication.i : type.o : type.imp : o ! o ! o.not : o ! o.forall : (i ! o) ! o.The second simpli�cation in the concrete presentation is to omit some �-quanti�ers. Free variables in a declaration are then interpreted as a schematic vari-ables whose quanti�ers remain implicit. The types of such free variables must bedetermined from the context in which they appear. In practical implementationssuch as Twelf [Pfenning and Sch�urmann 1998b, Pfenning and Sch�urmann 1998c],type reconstruction will issue an error message if the type of free variables is am-biguous.nd : o ! type.impi : (nd A ! nd B) ! nd (A imp B).impe : nd (A imp B) ! nd A ! nd B.noti : (�p:o. nd A ! nd p) ! nd (not A).note : nd (not A) ! (�C:o. nd A ! nd C).

1092 Frank Pfenningforalli : (�a:i. nd (A a)) ! nd (forall A).foralle : nd (forall A) ! (�T:i. nd (A T)).When constants with implicitly quanti�ed types are used, arguments correspond-ing to the omitted quanti�ers are also left implicit. Again, in practical implemen-tations these arguments are inferred from context. For example, the constant impinow appears to take only two arguments (of type ndA and ndB for some A andB) rather than four, like the fully explicit declarationimpi : �A:o:�B:o: (ndA! ndB)! nd (A impB):The derivation of A� (B �A) from above has this very concise representation:impi (�u:nd A. impi (�v:nd B. u)) : nd (A imp (B imp A)).In summary, the basic representation principle underlying LF is the represen-tation of judgments as types. A deduction of a judgment J is represented as acanonical object M whose type is the representation of J . This basic scheme isextended to represent hypothetical judgments as simple function types and para-metric judgments as dependent function types. This encoding reduces the questionof validity for a derivation to the question of well-typedness for its representation.Since type-checking in the LF type theory is decidable, the validity of derivationshas been internalized as a decidable property in the logical framework.3.5. An axiomatic formulationA second important style of deductive system is axiomatic: rather than explainingthe meaning of quanti�ers and connectives by inference rules, we use mostly axiomschemas and as few inference rules as possible. The following is the system H1-IQC[Troelstra and van Dalen 1988]. It consists of the following axiom schemas, and thetwo rules of inference below.À A� (B �A) (K)À (A� (B � C))� ((A �B)� (A� C)) (S)À (A�:B)� ((A �B)�:A) (N1)À :A� (A�B) (N2)À (8x:A)� [t=x]A (F1)À (8x: (B �A))� (B � 8x:A) (F2)�with the proviso that x must not be free in B in the rule (F2). The two rules ofinference are modus ponens MP and universal generalization UG.À A�B À A MPÀ B À [a=x]A UGaÀ 8x:AThe universal generalization rule carries the proviso that a must be a new param-eter, that is, may not already occur in A. The representation of the propositional

Logical frameworks 1093axioms and modus ponens is straightforward, following the ideas in the representa-tion of natural deduction. We introduce a type family hil for axiomatic deductions,indexed by the conclusion of the derivation. In order to improve readability, we usein�x notation for implication. Also, we have chosen constant names in lower caseso that the presentation of the translations in Section 5.2 will be easier to read.hil : o ! type.k : hil (A imp B imp A).s : hil ((A imp B imp C) imp (A imp B) imp A imp C).n1 : hil ((A imp not B) imp (A imp B) imp not A).n2 : hil (not A imp A imp B).For rule (F1) we need to implement substitution, which is done as usual in higher-order abstract syntax by application, here of A to T.f1 : �T:i. hil (forall (�x:i. A x) imp A T).For the rule (F2) we must capture the side-condition that x is not free in theantecedent of the implication. The following achieves this directly.f2 : hil (forall (�x:i. B imp A x) imp B imp forall (�x:i. A x)).Since substitution in the meta-language will rename bound variables to avoid vari-able capture, we cannot instantiate B in this declaration with an object that con-tains a free occurrence of x (x would be renamed). Thus, using higher-order abstractsyntax, one can concisely represent simple variable occurrence conditions. The rulesof inference are isomorphic to ones we have seen for natural deduction.mp : hil (A imp B) ! hil A ! hil B.ug : (�a:i. hil (A a)) ! hil (forall (�x:i. A x)).The adequacy theorem for axiomatic derivations is straightforward and left tothe reader.3.6. Higher-level judgmentsNext we turn to the local reduction judgment for natural deductions introduced inSection 3.2. D̀N A =)R D0Ǹ ARecall that this judgment witnesses the local soundness of the elimination ruleswith respect to the introduction rules. We refer to this as a higher-level judgmentsince it relates derivations. The representation techniques underlying LF supportthis directly, since deductions are represented as objects which can in turn indextype families representing higher-level judgments.In this particular example, reduction is de�ned only by axioms, one each for im-plication, negation, and universal quanti�cation. The representing type family inLF must be indexed by the representation of two deductions D and D0, and conse-quently also by the representation of A. This shows that there may be dependenciesbetween indices to a type family so that we need a dependent constructor � forkinds in order to represent judgments relating derivations.

1094 Frank Pfenning=)R : �A:o: nd A! nd A! type:As in the representation of inference rules in Sections 3.4 and 3.5, we omit theexplicit quanti�er on A and determine A from context.=)R : nd A ! nd A ! type.We show the representation of the reduction rules for each connective in turn,writing =)R as an in�x constant.Implication. This reduction involves a substitution of a derivation for an assump-tion. uǸ AD̀N B �IuǸ A�B ÈN A �EǸ B =)R E uǸ AD̀N BThe representation of the left-hand side isimpe (impi (�u:nd A. D u)) Ewhere E = pEq : ndA and D = (�u:nd pAq: pDq) : ndA! ndB. The derivation onthe right-hand side can be written more succinctly as [E=u]D. Compositionality ofthe representation (Theorem 3.2, part 3) and �-conversion in LF yieldp[E=u]Dq = [pEq=u]pDq � (�u:nd pAq: pDq) pEq:Thus the representation of the right-hand side will be de�nitionally equal to DEand we can formulate the rule concisely asredl imp : impe (impi (�u:nd A. D u)) E =)R D E.Negation. This is similar to implication. The required substitution of C for p in Dis implemented by application and �-reduction at the meta-level.uǸ AD̀N p :Ip;uǸ :A ÈN A :EǸ C =)R E uǸ A[C=p]DǸ Credl not : note (noti (�p:o. �u:nd A. D p u)) C E =)R D C E.

Logical frameworks 1095Universal quanti�cation. The universal introduction rule involves a parametricjudgment. Consequently, the substitution to be carried out during reduction re-places a parameter by a term.DǸ [a=x]A 8IaǸ 8x:A 8EǸ [t=x]A =)R [t=a]DǸ [t=x]AIn the representation we once again exploit the compositionality.p[t=a]Dq = [ptq=a]pDq � (�a:i: pDq) ptqThis gives rise to the declarationredl forall : foralle (foralli (�a:i. D a)) T =)R D T.The adequacy theorem states that canonical LF objects of type pDq =)R pD0qconstructed over the appropriate signature and in an appropriate parameter contextare in bijective correspondence with derivations of D =)R D0. We leave the preciseformulation and simple proof to the diligent reader.The encoding of the local expansions employs the same techniques. We summarizeit below without going into further detail.=)E : nd A ! nd A ! type.expl imp : �D:nd (A imp B).D =)E impi (�u:nd A.impe D u).expl not : �D:nd (not A).D =)E noti (�p:o.�u:nd A.note D p u).expl forall : �D:nd (forall (�x:i.A x)).D =)E foralli (�a:i.foralle D a).In summary, the representation of higher-level judgments continues to follow thejudgments-as-types technique. The expressions related by higher-level judgments arenow deductions and therefore dependently typed in the representation. Substitutionat the level of deductions is implemented by �-reduction at the meta-level, takingadvantage of the compositionality of the representation. Further examples of higher-level judgments can be found in Section 5.4. Meta-programming and proof searchAn important motivation underlying the development of logical frameworks is tofactor the e�ort required to build a theorem proving environment for speci�c logics.The idea is to build one generic environment for deriving judgments in the logicalframework and use this for particular logical systems whose judgments are speci�edin the framework. Each logic is still likely to require a signi�cant amount of devel-opment, but the goal is to reduce this e�ort as much as possible. Furthermore, byo�ering a high-level notation for the judgments of an object logic, one can increasethe con�dence in the correctness of an implementation, especially if the frameworko�ers a notation for derivations independent of proof search. The practical evidence

1096 Frank Pfenninggathered through many experiments with Isabelle in a variety of logics indicatesthat this is indeed feasible and fruitful.This raises two related questions: which are the common concepts in theoremproving shared among di�erent logics, and how do we perform search in the logicalframework? We concentrate on the latter question in the hope that the almostuniversal applicability of the ideas becomes apparent.4.1. Sequent calculusMany forms of proof search are based on sequent calculi. A sequent generally hasthe form J =) J where J is a context of available labelled hypotheses u1 ::J1; : : : ; un :: Jn and J is the judgment we are trying to derive. This is just a lesscumbersome notation for hypothetical judgments as introduced in Section 3.1. Werefer to each Ji as an antecedent and J as the succedent of the sequent.Fully automatic theorem proving for practically interesting logics is rarely feasi-ble, so framework implementations such as Isabelle are based on partially automatedsearch. In this case, it is most intuitive to think of the construction of a derivationas proceeding bottom-up, where a sequent J =) J represents the goal of derivingJ from J . We describe the possible goal reductions in the form of inference rules forthe sequent judgment. Since this view of search is a shared feature between manydi�erent logics, it is natural to base the generic search in the logical frameworkon the same principle, thereby directly supporting this view for a variety of objectlogics. The use of sequents for the top-down construction of derivations is the basisof the inverse method discussed in [Degtyarev and Voronkov 2001b] (Chapter 4 ofthis Handbook).We describe here a sequent calculus for LF. A substantially similar and slightlysimpler presentation can be given for hereditary Harrop formulas and related log-ical frameworks. The formulation below is based on work by Pym and Wallen[1990, 1991]. The presentation of LF motivated in Section 3.4 and summarized inSection 7 is highly economical in that the simple function type A ! B is consid-ered an abbreviation for a dependent function type �x:A:B where x does not occurin B. During search, however, these two are treated di�erently: A ! B behaveslike an implication, while �x:A:B behaves like a universal quanti�er. Already inthe description of our representation technique we have informally distinguishedbetween them: A ! B corresponded to a hypothetical judgment while �x:A:Bcorresponded to a parametric judgment. Our sequents have the form� LF=)M : Awhere � is a context of parameter declarations and hypotheses and M is a proofterm for A. During search we think of � and A as given, while M is �lled in whena proof succeeds. We �x a signature � which encodes the expressions and inferencerules of the object language under consideration and omit it from the judgmentsince it never changes. We maintain the following invariants:

Logical frameworks 10971. ` � Ctx2. � ` A : type3. � `M : AWe use h to range over either a constant c declared in � or variable declared in �.We have initial sequents and so-called right and left rules for each type constructor(! and �).Initial sequents. We have solved a goal if a hypothesis matches the succedent, mod-ulo de�nitional equality.h:A0 in � or � � ` A0 � A : type init� LF=) h : AHypothetical judgments. To derive the representation A ! B of a hypotheticaljudgment, we simply introduce a hypothesis A with a new label u.�; u:A LF=)M : B !Ru� LF=) �u:A:M : A! BIf we have an assumption A ! B we are allowed to assume B if we can derive A.The conclusion C does not change in this rule.h:A! B in � or � � LF=)M : A �; u:B LF=) N : C !Lu� LF=) [(hM)=u]N : CParametric judgments. To derive the representation �x:A:B of a parametric judg-ment, we simply introduce a new parameter (for convenience also called x).�; x:A LF=)M : B �Rx� LF=) �x:A:M : �x:A:BTo use a parametric assumption �x:A:B we instantiate x with an object of thecorrect type.h:�x:A:B in � or � � `M * A �; u:[M=x]B LF=) N : C �Lu� LF=) [(hM)=u]N : CNote that we fall back on the ordinary typing judgment for LF to check that thesubstitution term M is well-typed in the appropriate context. The calculus shownabove is sound and complete, as shown by Pym and Wallen [1991]. As usual, weassume a �xed valid signature � and that � is valid in �.

1098 Frank Pfenning4.1. Theorem (Properties of LF sequent calculus).1. If � LF=)M : A then � `M : A.2. If � `M * A then � LF=)M : A.Proof. The �rst property is easy to see by induction on the sequent derivation.The second can be proved by induction on the de�nition of canonical forms, afterappropriate generalization for atomic forms (de�ned in Section 7).We can sharpen this theorem if we restrict initial sequents to atomic types P . Inthat case � LF=) M : A implies that � ` M * A (see [Pinto and Dyckho� 1998]).The additional rule of Cut which is sometimes allowed in sequent calculi plays aspecial role. It corresponds to the introduction of a lemma during proof search,which is very diÆcult to automate. Its discussion is left to Section 4.5.When constructing a sequent derivation upwards from the conclusion, one isconfronted with a variety of choices. In particular, we have to decide which rule toapply and, for the left rules, which hypothesis to use. Usually one takes advantageof additional properties of the logic to eliminate some of the choices. For example,in the sequent calculus for LF the conclusion of !R is derivable if and only if thepremise is derivable. Therefore it is always safe to apply this rule when the succedenthas the form A! B. Implementations of logical frameworks take advantage of suchinversion properties to eliminate non-determinism in search. However, some choicesclearly will always remain|they have to be addressed either via user interaction orsome form of meta-programming. This is the topic of the next section.4.2. Tactics and tacticalsIn this section we address the question which choices arise during search withina sequent calculus, and how the non-determinism inherent in these choices can beresolved. We assume a meta-level control structure of so-called tactics and tacticals.As a �rst approximation, a tactic transforms a partial proof structure with someunproven leaf sequents to another, while a tactical is a (higher-order) function tocombine tactics to form more complex tactics. At the top level, the user can choosewhich tactic to apply, and which unproven sequent to apply it to. We analyze thestructure of tactics and tacticals in more detail when discussing the kind of choicesthey have to resolve.Tactics and tacticals arose out of the LCF theorem proving e�ort [Gordonet al. 1979, Paulson 1983] and are used in such diverse systems as HOL [Gordon andMelham 1993], Nuprl [Nuprl 1999, Constable et al. 1986], Coq [Coq 1999, Paulin-Mohring 1993], Isabelle [Paulson 1994, Paulson 1994], and �Prolog [�Prolog 1997,Nadathur and Miller 1988, Felty 1993]. In all but �Prolog, they are programmed inML which was originally developed to support theorem proving for LCF. Correct-ness for tactics is ensured dynamically through data abstraction. The basic idea isthat at the core of the implementation is an abstract type of Theorem with con-structors which implement and check the correct application of the primitive rules

Logical frameworks 1099of inference for a judgment. Since the type is abstract, only the given rules canbe used, thereby reducing the correctness problem for a complex theorem provingenvironment to the correctness of the implementation of the basic inference rules.In a logical framework with dependent types the correctness of deductions mayinstead be enforced by type-checking alone, as we have seen in Section 3.4. Wetherefore skip more detailed discussion of the validation of tactics and consider howthey deal with choices that arise during search in a sequent calculus. In the ELANlogical framework [ELAN 1998, Borovansk�y et al. 1998] the strategy language hasindependent status, rather than being embedded in a general-purpose functionallanguage such as ML. Besides individual tactic combinators to address variousaspects of search, tactic languages provide general mechanisms for composition oftactics and iteration or recursion.Conjunctive choice. A conjunctive choice arises when a sequent rule has severalpremises. Each of these premises must be derived to derive the conclusion. The!Lu rule has this character: to derive the judgment C we derive A, and also Cunder the additional hypothesis B. A tactic can choose any unproven leaf from apartial proof structure to work on, usually the leftmost pending sequent. Tacticlanguages provide a tactical MAP such that MAP t is a tactic which applies t to allpending sequents in turn. In an interactive setting the user can navigate betweenunproven sequents.Disjunctive choice. A disjunctive choice arises when there are several rules whichcould be applied, or several di�erent ways in which a particular rule might beapplied. For example, in the !Lu rule we have to pick a hypothesis h:A! B from� or � when there may be several such assumptions. When tactics are employedfor proof search, this is handled by backtracking . A tactic may apply sequent rules(from the bottom up) to reduce an unproven sequent, or it might fail. Failure fora tactic to apply signals that an alternative should be tried for an earlier choice.In the language of tacticals this is expressed with the ORELSE combinator. Thetactic t1 ORELSE t2 tries to apply t1 and returns its result if successful. If t1 failsit tries to apply t2 instead and returns its result. In particular, if t2 also fails, then t1ORELSE t2 fails. We refer to this as shallow backtracking because when t1 succeedsthe alternative t2 will never be reconsidered. We discuss deep backtracking below,when we examine the interaction between disjunctive choice and meta-variables.Universal choice. This arises, for example, in the �Ra rule where we have to choosea new parameter a. Since the only relevant criterion is that a is new, this does notlead to any undesirable non-determinism: any new a suÆces.Existential choice. This arises when we have to pick a term as, for example, theobject M in the rule �L. Early implementations of tactics typically either guesseda plausible term or required the user to supply it. Since there often are an in�nitenumber of choices, more recent implementations usually postpone a commitment

1100 Frank Pfenninguntil further search uncovers information about which terms might lead to a suc-cessful derivation. We achieve this postponement by using a place-holder X for M ,called a meta-variable or logical variable. In order to guarantee soundness whenmeta-variables are instantiated we record its type AX and the context �X whichcontains the parameters which are allowed to occur in the instantiation term forX . The latter constraint on X replaces Skolemization as used in classical �rst-ordertheorem proving, which does not work for all object logics and would therefore bea poor choice in a logical framework.Postponed existential choices are resolved when initial sequents are reached.Rather than check if a hypothesis matches the succedent modulo de�nitional equal-ity, we have to decide if there is a way to instantiate the meta-variables in a hypoth-esis and the succedent so that the resulting judgments are de�nitionally equal. Thisproblem is called uni�cation and discussed in the Section 4.3 and in more detail in[Dowek 2001] (Chapter 16 of this Handbook). The introduction of meta-variablesinto search also interacts strongly with conjunctive and disjunctive choices, whichwe now revisit.Conjunctive choice with meta-variables. Meta-variables may be shared among sev-eral unproven leaf sequents. Since uni�cation instantiates these variables globallyin a partial proof structure, the order in which unproven sequents are reduced is nolonger irrelevant. Tactics have to be aware of this interaction, although there areno simple and general recipes.Disjunctive choice with meta-variables. Deriving an unproven sequent often requiresa commitment to a particular instantiation for meta-variables as determined by uni-�cation at the leaves. This commitment could make it impossible to derive anothersequent which shares some of the meta-variables. This means that even after suc-cessfully deriving a particular sequent, we might have to reexamine the choicesmade during this derivation in case another sequent turns out to be unprovable.This leads to deep backtracking which revisits disjunctive choices even though analternative had previously been successful.Under the simpli�ed functional model for tactics introduced above, a tactic re-turns either no result (it fails) or a single result (the new partial proof structure).Deep backtracking requires that a tactic can return a potentially unbounded numberof alternatives, where zero alternatives indicate failure. This can be done by usinga lazily computed sequence of alternatives which can be incrementally expanded asnecessary during backtracking. The Isabelle logical framework implementation usesthis technique, since its meta-programming language ML is functional. In ELANthe operator dk (for don't know choose) achieves this behavior.The �Prolog and Elf implementations provide an alternative by using a logicprogramming interpretation of the logical framework to program search. Since logicprogramming inherently supports logical variables, uni�cation, and deep backtrack-ing, signi�cantly less machinery is needed to implement tactics (see [Felty 1993]).On the other hand, don't-care non-determinism requires additional programming

Logical frameworks 1101or extra-logical constructs such as the cut operator \!", since the operational in-terpretation of logic programs is based on don't-know non-determinism. We comeback to this in Section 4.4.We use t1 THEN t2 to denote the sequential composition of tactics and REPEATt for the iterator which applies t until it fails and then returns the last result.REPEAT t is an example of an unfailing tactic which always succeeds, thoughsubgoals may of course remain. The interaction of possibly failing and unfailingtactics is one of the diÆculties in tactic programming.As a simple example, assume we have basic tactics Init, ArrowR, and PiR whichapply the rules init, !R and �R, respectively. Then the tacticRight* = REPEAT (ArrowR ORELSE PiR ORELSE Init)repeatedly applies the right rules to a sequent until the succedent is atomic. Theatomic goal is solved if it uni�es with a hypothesis; otherwise it remains as a subgoal.This tactic is safe, that is, if the original sequent is derivable, the resulting sequentwill still be derivable. Right* is safe, despite the fact that we use a committed choicetactical ORELSE, since the right rules of the sequent calculus for �� are invertible:the premise is derivable if and only if the conclusion is derivable. The interactionof safe and unsafe tactics is another complicated aspect of tactic programming.4.3. Uni�cation and constraint simpli�cationAs sketched above, uni�cation is a central and indispensable mechanism in tradi-tional �rst-order theorem provers and logic programming languages. It allows thesearch algorithm to postpone existential choices until more information becomesavailable about which instances may be useful. Most logical frameworks go beyond�rst-order terms in two ways: they employ types and they employ �-abstraction.Consequently, �rst-order uni�cation is insuÆcient. In this section we brie
y re-view the aspects of higher-order uni�cation most relevant to the practice of logicalframeworks. For more information see [Dowek 2001] (Chapter 16 of this Handbook).One can identify the simply-typed �-calculus (�!) as motivated in Section 2.2as an important base language. Fortunately, de�nitional equality (��-conversion) isdecidable. On the other hand, the general uni�cation problem is undecidable [Huet1973] even for the second-order fragment [Goldfarb 1981], and most general uni�ersmay not exist. To appreciate some of the problems of higher-order uni�cation,consider the equation (�x:i: F (sx)) = (�x:i: s (F x))where s:i ! i is a constant, and F is a meta-variable we are trying to solve for.Note that F itself may not contain free occurrences of x according to the de�nitionof capture avoiding substitution. There are in�nitely many di�erent solutions forF , namely (�y:i: s : : : (s y))for any number of applications of s, including zero.

1102 Frank PfenningDespite the undecidability, Huet [1975] devised a practical algorithm for higher-order pre-uni�cation, a form of uni�cation which postpones certain solvable equa-tions instead of enumerating their solutions. The resulting semi-decision procedureis non-deterministically complete, that is, if there is a uni�er a less committed pre-uni�er can in principle always be found. Moreover, when used to compute multiplesolutions, it is guaranteed to enumerate non-redundant pre-uni�ers to a given setof equations. With the addition of a modi�ed version of the occurs-check, it coin-cides with �rst-order uni�cation when called on �rst-order terms. Huet's algorithmhas been used extensively in �Prolog and Isabelle and generally seems to havegood computational properties. Both languages must therefore manage constraintsduring search or execution of programs [Kirchner, Kirchner and Vittek 1993].The practical success of Huet's algorithm seemed to be in part due to the fact thatdiÆcult, higher-order uni�cation problems rarely arise in practice. An analysis ofthis observation led Miller [1991] to discover higher-order patterns, a sublanguage ofthe simply-typed �-calculus with restricted variable occurrences. For this fragment,most general uni�ers exist. In fact, the theoretical complexity of this problem islinear [Qian 1993], just as for �rst-order uni�cation. Miller proposed it as the basisfor a lower-level language L� similar to �Prolog, but one where uni�cation doesnot branch since only higher-order patterns are permitted as terms. An empiricalstudy of this restriction by Michaylov and Pfenning [1992, 1993] showed that mostdynamically arising uni�cation problems lie within this fragment, while a staticrestriction rules out some useful programming idioms.The Elf language therefore makes no syntactic restriction to higher-order pat-terns, nor does it use Huet's algorithm for higher-order uni�cation as generalized to�� (discovered independently by Elliott [1989, 1990] and Pym [1990, 1992]). Instead,it employs a constraint solving algorithm [Pfenning 1991a, Pfenning 1991b, Dowek,Hardin, Kirchner and Pfenning 1996] where uni�cation problems within the decid-able fragment proposed by Miller are solved directly, while all others (solvable ornot) are postponed as constraints. This can drastically reduce backtracking com-pared to higher-order pre-uni�cation and imposes no restrictions on variable oc-currences. On the other hand, unsolvable constraints may remain until the endof the computation, in which case the answer is conditional: Each solution to theremaining constraints gives rise to a solution of the original equations, and eachsolution to the original equations will be an instance of the remaining constraints.In most practical applications, these somewhat weaker soundness and completenesstheorems are suÆcient.4.4. Logic programmingLogic programming o�ers a di�erent approach to meta-programming in a log-ical framework than ML or a separate strategy language. Rather than meta-programming in a language in which the logical framework itself is implemented(typically ML), we endow the logical framework with an operational interpretationin the spirit of Prolog. It should be clear that a speci�cation of a logic under this

Logical frameworks 1103approach does not automatically give rise to a theorem prover, but that theoremprovers may be programmed in the meta-language. Two frameworks to date havepursued this approach: �Prolog [�Prolog 1997, Nadathur and Miller 1988], whichgives an operational interpretation of hereditary Harrop formulas, and Elf [Pfenningand Sch�urmann 1998b, Pfenning 1994a], which gives an operational interpretationto ��.In logic programming the basic computational mechanism is proof search follow-ing a speci�c search strategy. Since the search strategy is �xed, the computationalbehavior of a program can be predicted and exploited by the programmer. Thispredictability comes at the price of completeness: programs may never terminateeven if there is a proof. On the other hand, we are careful to preserve at least weakcompleteness, which means that if search fails then no proof can exist. Thus wecan rely on success due to soundness and failure due to weak completeness, whilewe have no information if the program does not terminate. This summarizes someessential di�erences between logic programming and general theorem proving.The idea of logical framework implementations such as �Prolog and Elf is touse the operational reading of speci�cations to implement algorithms for proofsearch and related problems. In many cases, the original speci�cation itself canbe used algorithmically. For example, a natural semantics speci�cation of Mini-ML [Hannan 1991, Michaylov and Pfenning 1991] can be used directly for evaluationor type-checking, one of the original motivations for natural semantics [Kahn 1987,Hannan 1993].We base our operational understanding of logic programming on the sequentcalculus. The operational interpretation of a logical speci�cation is based on twoprinciples: goal-directed search [Miller et al. 1991] and focusing [Andreoli 1992].Goal-directed search expresses that we always �rst apply the right rules bottom-up to derive a given sequent until the succedent is atomic. An atomic succedentshould now result in an analogue to procedure call. This is achieved by focusing ona particular hypothesis and applying a succession of left rules until it is atomic. Ifit then happens to unify with the atomic succedent we next attempt to derive thepending premises of the left rules; otherwise we fail and backtrack. In a slight abuseof terminology we refer to derivations which are both goal-directed and focused asuniform. If every derivable judgment has a uniform derivation we claim to havean abstract logic programming language because search following this operationalspeci�cation will be sound and weakly complete.We now specify uniform derivations more concretely, in the form of two mutuallyrecursive judgments for LF.� uni=)M : A A is uniformly derivable� uni=) u:A� N : P A immediately entails PIn these judgments, M and N are proof terms for A and P , respectively. In theimmediate entailment judgment, A is the hypothesis we have focused on and u itslabel. When viewed operationally, we think of �, A and P as given, while M andN are computed together with the derivation. We presuppose and maintain the

1104 Frank Pfenningfollowing invariants:1. ` � Ctx in both judgments;2. � ` A : type and3. � `M : A for uniform derivability, and4. � ` P : type and5. �; u:A ` N : P for immediate entailment.Actually, the restricted form of search guarantees a stronger invariant, namely thatM is always canonical and N always atomic.Atomic judgments. � ` Q � P : type init� uni=) u:Q� u : Ph:A in � or � � uni=) u:A� N : P callu� uni=) [h=u]N : PHypothetical judgments. �; u:A uni=)M : B !Ru� uni=) �u:A:M : A! B� uni=) u:B � N : C � uni=)M : A!Lu� uni=) w:A! B � [(wM)=u]N : CParametric judgments. �; x:A uni=)M : B �Rx� uni=) �x:A:M : �x:A:B� `M * A � uni=) u:[M=x]B � N : C �Lu� uni=) w:�x:A:B � [(wM)=u]N : CUniform derivations are sound and complete with respect to sequent deriva-tions. In fact, we can prove a stronger theorem that there is a bijection betweencanonical objects M of a given type A and the objects such that uni=) M : Ais derivable [Pfenning 1991a, Dyckho� and Pinto 1994, Pfenning 2001, Pinto andDyckho� 1998].4.2. Theorem (Properties of LF uniform derivations).

Logical frameworks 11051. If � uni=)M : A then � `M * A.2. If � `M * A then � uni=)M : A.Proof. The �rst property is easy to see by induction on the uniform derivation.The second can be proved by induction on the de�nition of canonical forms, afterappropriate generalization for atomic forms (see [Pfenning 2001]). An alternativeproof examines the permutability of inference rules in the sequent calculus for LFfrom Section 4.1.We now revisit the remaining non-deterministic choices we examined in the dis-cussion of tactics in Section 4.2.Conjunctive choice. We always solve the subderivations in the multiple premise rule!L from left to right. This means that when a hypothesis u:A! (B ! C) is usedto derive C, the �rst subgoal to be solved is B and the second A. If we rewrite thesame declaration with the arrows reversed, we obtain u : (C B) A which lendsitself to a natural reading as a labelled program clause in logic programming. Usingthe convention that \ " is left-associative, we can write this even more concisely asu : C B A. It is important to derive the premises of!L in this order since wedo not want to solve subgoals until we know if the target type (C in the example)matches the atomic goal. In Prolog terminology conjunctive choice is called subgoalselection.Disjunctive choice. We employ deep backtracking as indicated in Section 4.2. Sinceonly one inference rule applies to any sequent, disjunctive choices arise only in twocircumstances: we have to decide which constant or hypothesis to use for one ofthe call rules, and uni�cation may allow more than one possibility (see the noteson existential choice below). We �rst try constants from �rst to last in the �xedsignature �, then the parameters and hypotheses from � from right to left (themost recently introduced hypothesis is tried �rst).Universal choice. Just as before, we simply introduce new parameters or hypothesislabels.Existential choice. In the �L rule we introduce a fresh meta-variable X , record �and A and proceed. When we try to complete a branch of the derivation with theinit rule, we use uni�cation instead of equality. �Prolog employs Huet's uni�cationalgorithms to enumerate pre-uni�ers, while Elf uses constraint simpli�cation basedon patterns [Dowek et al. 1996].To illustrate uniform derivations we reconsider the example at the end of Sec-tion 3.2 with its encoding in LF from Section 3.4. We omit the proof terms for thesake of brevity.

1106 Frank Pfenning� uni=) �A:o: nd(A imp not notA)�RA which leavesA:o uni=) nd(A imp not notA)call with impi which leavesA:o uni=) (�A:o:�B:o: (nd(A)! nd(B))! nd(A impB))� nd(A imp not notA)�L with A which leavesA:o uni=) (�B:o: (nd(A)! nd(B))! nd(A impB))� nd(A imp not notA)�L with not notA which leavesA:o uni=) ((nd(A)! nd(not notA))! nd(A imp not notA))� nd(A imp not notA)!L which leaves two subgoalsA:o uni=) nd(A imp not notA)� nd(A imp not notA)init which is solved, leaving one subgoalA:o uni=) nd(A)! nd(not notA)In the remainder we omit the immediate entailment steps.A:o uni=) nd(A)! nd(not notA) !RuA:o; u:nd(A) uni=) nd(not notA) call with notiA:o; u:nd(A) uni=) �p:o: (nd(notA)! nd(p)) �RpA:o; u:nd(A); p:o uni=) (nd(notA)! nd(p)) !RwA:o; u:nd(A); p:o; w:nd(notA) uni=) nd(p) call with note, leaving subgoalsA:o; u:nd(A); p:o; w:nd(notA) uni=) nd(notA) call with w, solved, andA:o; u:nd(A); p:o; w:nd(notA) uni=) nd(A) call with u, solvedTo compute the proof term we proceed through the sequents, assigning proofterms at each step. At the root, this yields the sequentA:o uni=) (impi (�u:nd A. noti (�p:o. �w:nd (not A). note w p u))): nd (A imp not not A).There are some advantages and some disadvantages to the logic programmingapproach to meta-programming. Perhaps the most important advantage is unifor-mity of language for speci�cation and implementation. Speci�c algorithms such aevaluation, type inference, or certain theorem proving strategies can easily be im-plemented at a very high level. On the other hand, the logic programming paradigmdoes not lend itself very well to interactive theorem proving since the state of thesearch and user commands are inherently imperative in nature. In �Prolog this isaddressed with extra-logical constructs which augment the logical foundation, justas Prolog extends Horn logic in numerous ways. Furthermore, the current state

Logical frameworks 1107of the art in implementation of �Prolog is such that complex tactics or decisionprocedures can be much faster in a functional meta-language. An ongoing e�ortin compiler design and implementation might change this situation in the nearfuture [Nadathur and Mitchell 1999].Elf remains pure and is therefore diÆcult to use for interactive theorem proving.However the purity of the language has an important bene�t, namely that we canexpress proofs of meta-theorems to a certain extent. In particular, we can writemeta-programs in Elf which translate traces of a search algorithm written in Elf todeductions as speci�ed in LF. We will see an example for this kind of applicationin the Section 5.4.5. Theory developmentIn practical applications one is usually interested in more than just proving onetheorem, but in the development of a whole theory consisting of declarations, de�-nitions, lemmas, and theorems. Moreover, theories are often organized into subthe-ories related in a variety of ways.At the most fundamental level, the logical framework calculus LF can be ex-tended by global de�nitions of the form c:A =M or by local de�nitions in the formlet x:A = M in N . These can be viewed as either introducing syntactic abbrevia-tions (if the type A represents a syntactic category) or introducing a derived ruleA with derivation M (if the type A represents a judgment). One can either viewsuch an extension as semantically completely transparent so that the let above istreated as syntactic sugar for (�x:A:N)M , or one can introduce a new typing rule� `M : A �; x:A ` N : C let� ` let x:A =M in N : Cand a new rule of de�nitional equalitylet x:A =M in N � [M=x]N:The canonical form theorem and decidability of type-checking continue to hold,but the search operations underlying both tactics and logic programming are com-plicated. The problem is that expansion of all de�nitions is rarely feasible, whilenot expanding them jeopardizes weak completeness. A solution of this problemfor LF based on a simple form of strictness analysis is proposed in [Pfenning andSch�urmann 1998a].In the sequent calculus, the introduction of a lemma into the derivation duringsearch corresponds to an application of the cut rule.� LF=)M : A �; u : A LF=) N : C Cutu� LF=) let u:A =M in N : C

1108 Frank PfenningOne could also choose the proof term [M=u]N in the conclusion in order to avoida language extension. The cut rule for LF is admissible, which means that anyinstance of this rule can be eliminated from a derivation.For further discussion of modularity mechanisms in logical frameworks, see Sec-tion 8.1.5. Representing meta-theoryLogical frameworks are designed to admit a direct and natural representation ofdeductive systems at a very high level of abstraction. In Section 3 we showed thatchecking the validity of a derivation can be reduced to type-checking in the frame-work which is decidable. In Section 4 we indicated how generic ideas for proofsearch in a logical framework can support theorem proving in particular logics,and how a logic programming interpretation of a framework can be used for theimplementation of speci�c algorithms related to deductive systems.This leaves the question if we can take advantage of the conciseness and eleganceof the encodings to also mechanize the meta-theory of deductive systems. For exam-ple, we might want to prove that the natural deduction formulation of intuitionisticlogic in Section 3.2 and the axiomatic formulation in Section 3.5 have the same the-orems. Other examples from the area of logic include admissibility of inference rulessuch as cut in a sequent system, or the correctness of logical interpretations. In thearea of programming languages we think of properties such as type preservation,correctness of type inference algorithms, or compiler correctness.The answer is a quali�ed \yes". Some frameworks such as FS0 are speci�cally de-signed for meta-theoretic reasoning, but they give up techniques such as static proofchecking, higher-order abstract syntax, or hypothetical judgments as functions. Aswe explain below, there are some diÆculties with encodings utilizing higher-orderabstract syntax with a number of possible solutions. In many ways the potential oflogical frameworks for meta-theoretic reasoning has not yet been fully explored.Just as we isolated the notions of variable binding, parametric, and hypotheticaljudgments as central in the presentation of deductive systems, we should analyzethe proof techniques used to carry out the meta-theory of deductive systems andthen consider how a framework might support them. By far the most commonproof technique is induction, both over the structure of expressions and derivations.Thus one naturally looks towards frameworks that permit inductive de�nitions ofjudgments and allow the corresponding induction principles. Unfortunately, thereis a con
ict between induction and the representation techniques of higher-orderabstract syntax and functional representation of hypothetical judgments. The issueis complicated further by dependent types, so we consider �rst the implicationalfragment of the simply-typed representation of deductions.nd : typeimpi : (nd! nd)! ndimpe : nd! nd! nd

Logical frameworks 1109Even if we considered the above signature as complete (rather than open-ended),the type nd would not be inductively de�ned in the usual sense, because of thenegative occurrence of nd in the type of impi. Straightforward attempts to formulatea valid induction principle for the type nd fail. Informally, at least one diÆcultyis clear: when we try to prove a theorem about natural deductions, we invariablyhave to generalize over all possible collection of hypotheses. Since they are notrepresented explicitly in our technique, we cannot directly formulate the requiredinduction proofs. We consider an example below.There is a further diÆculty with induction in the framework which stems fromthe essential open-endedness of representations. For example, assume we declareconstants z for zero and s for successor in the formulation of �rst-order logic, but wedo not assume an induction principle for natural numbers in our object logic. If theframework permitted an induction principle over the representation type i, we wouldno longer have an adequate encoding of �rst-order logic with two uninterpretedfunction constants. The encoding of the universal introduction rule,foralli : �A:i! o: (�a:i: nd (A a))! nd (forall A)now represents an !-rule, since objects of type �a:i: nd (A a) allow case analysis ona and are therefore no longer necessarily parametric in a. Depending on the strengthof the induction principle in the meta-language we would be able to derive variouspropositions in the object language that are not actually derivable in pure �rst-order logic and the adequacy of the representation is destroyed. A similar problemalready arises at the level of syntax if we permit primitive recursion into the logicalframework.Several options have been explored to escape this dilemma. The �rst is to rejectthe notion of higher-order abstract syntax and use inductive representations di-rectly (see, for example, [Matthews et al. 1993, Basin and Constable 1993, Feferman1988, Magnusson and Nordstr�om 1994]). This engenders a complication of the en-coding and consequently of the meta-theory, which now has to deal with manylemmas regarding variable naming. This can be alleviated by using de Bruijn in-dices [de Bruijn 1972], yet formalizations are still substantially more complex thaninformal proofs. There are many examples of formal developments along these lines.A second possibility is to relax the conditions on inductive de�nitions, whichleads to partial inductive de�nitions [Halln�as 1991]. They allow inversion principlesbut not a direct generalization of proofs by induction. Partial inductive de�nitionshave been used as the basis for a logical framework [Halln�as 1987, Eriksson 1993a],implemented in the Pi derivation editor [Eriksson 1994]. Their potential for formal-izing meta-theory is currently being explored by McDowell and Miller [1997] (seealso [McDowell 1997]); more on their approach below.A third option is to employ re
ection with some restrictions to ensure sound-ness. In [Despeyroux, Pfenning and Sch�urmann 1997] this was achieved by amodal type operator satisfying the laws of S4. However, the practicality ofthese and some related proposals [Despeyroux and Hirschowitz 1994, Despey-roux, Felty and Hirschowitz 1995, Leleu 1998] has never been demonstrated. Dif-

1110 Frank Pfenningferent re
ection mechanisms have been employed in the Calculus of Construc-tion [Rue� 1996, Rue� 1997] and Nuprl [Allen, Constable, Howe and Aitken 1990].These last two do not use higher-order abstract syntax.A fourth option is to externalize the induction. This leads to a three-level architec-ture: the object logic, the logical framework in which it is speci�ed, and a meta-logicfor reasoning about the logical framework. Variations of this are currently pursuedby McDowell and Miller [1997] and Sch�urmann and Pfenning [1995, 1998]. In prin-ciple, any meta-logic could be used for reasoning about the logical framework, butthe e�ort required to develop the theory of the framework and then apply it toindividual signatures would be prohibitive unless the meta-logic was speci�callydesigned for meta-theoretic reasoning. Brie
y, the logic of McDowell and Miller isbased on de�nitional re
ection [Schroeder-Heister 1993] and natural number in-duction, while that of Sch�urmann and Pfenning admits only 89 formulas wherethe quanti�ers range over closed LF objects and uses explicit termination order-ings [Rohwedder and Pfenning 1996]. Recently, this approach has been generalizedby Sch�urmann [2000].A more detailed discussion of such meta-logical frameworks is beyond the scopeof this chapter. In the next section we present another approach where the meta-theory is only partially veri�ed, but where the computational contents of the meta-theoretic proofs is directly available for execution.5.1. Relational meta-theoryAs alluded to above, it is diÆcult to soundly extend the logical framework to includeinduction. However, it is possible to encode the computational contents of proofsof meta-theoretic properties in Elf and thereby partially verify them. Moreover,they can be executed for a number of di�erent purposes. The technique employshigher-level judgments as introduced in Section 3.6.As an example we consider the equivalence between natural deduction and ax-iomatic formulations of the fragment of �rst-order logic introduced in Sections 3.2and 3.5. In one direction this is expressed simply as:If À A then Ǹ A.Recall that formulasA are represented as objects of type o, while derivations of À Aare represented by objects of type hil pAq and derivations of Ǹ A as objects of typend pAq. Expressed in a meta-logic for LF, we can use adequacy of the encodings toreformulate the theorem.For any LF objects A : o and H : hilA there exists an LF object D : ndA.If we ignore the issues of parameters for the moment, the quanti�ers range overclosed objects with respect to the signature that encodes natural and axiomaticformulations of intuitionistic logic. From a constructive proof of this propositionwe can extract a function which maps a formula A and a derivation of À A to adeduction of Ǹ A. If this function were representable in the logical framework, itwould have type �A:o: hilA! ndA:

Logical frameworks 1111Since the proof proceeds by induction over the structure of the axiomatic derivationH of À A, such a function would be de�ned by induction over its second argument|something the framework does not allow. However, we can specify this function asa higher-level judgment relating H and the natural deduction D. This higher-leveljudgment is declared as a type family hilnd.hilnd : �A:o: hilA! ndA! typeThis relation can be speci�ed in LF and executed as a logic program in Elf. Querieshave the form hilndAHD, where A and H are given closed objects of appropriatetype, while D is a free variable which will be computed during logic programmingsearch.It is important to realize, however, that type-checking the signature declaringhilnd does not guarantee the validity of the meta-theorem we were trying to prove.For this, some additional conditions have to be satis�ed: mode correctness whichexpresses that the logic programming interpretation of hilnd respects the desiredinput/output interpretation, termination which guarantees that each call of hilndof the form above terminates, and coverage which guarantees that for each possiblecombination of input values a case in the de�nition of hilnd will be applicable. Someaspects of this check are discussed in [Pfenning and Rohwedder 1992, Rohwedderand Pfenning 1996].A similar idea in the area of functional programming without the notion of higher-order abstract syntax has been explored in the ALF system [Magnusson 1995, Mag-nusson and Nordstr�om 1994, Coquand and Smith 1993, Coquand, Nordstr�om,Smith and von Sydow 1994] and the Foetus system [Abel 1999]. The empiricalevidence suggests that this shortens developments considerably and allows the for-mulations of functions in a manner which is closer to functional programming prac-tice [Coquand 1992, Gaspes and Smith 1992, Magnusson 1993]. In these systems,termination and coverage has also been externalized, rather than forcing adherenceto an in
exible schema of primitive recursion.5.2. Translating axiomatic derivations to natural deductionsIn this section we illustrate the relational representation of proofs by relating deriva-tions in the axiomatic system to natural deductions. As a �rst step we prove thatevery axiomatic deduction may be transformed into a natural deduction.5.1. Theorem. If À A then Ǹ A.Proof. The proof proceeds by a simple structural induction over the derivationH :: À A. In each case we exhibit the corresponding natural deduction. Ourrepresentation of this proof introduces a new judgment relating, for any formulaA, the Hilbert derivations of A to the natural deductions of A. This judgment isrepresented by the type familyhilnd : hilA! ndA! type

1112 Frank Pfenningwhere we have left a quanti�er over A implicit as explained in Section 3.4.As explained in the preceding section, this relation implements a total function�A:o: hilA! ndA which is not directly expressible in the framework.Each case in the induction argument turns into a declaration of a correspondinghigher-level judgment.Case: H = KÀ A� (B �A)In this case we have to supply a natural deduction of Ǹ A � (B � A), which wehave already seen at the end of Section 3.4. Recall that k implements the axiom K.hnd k : hilnd k (impi (�u:nd A. impi (�v:nd B. u))).Case: H = SÀ (A� (B � C))� ((A�B)� (A� C))A natural deduction of the conclusion isuǸ A� (B � C) wǸ A �EǸ B � C vǸ A�B wǸ A �EǸ B �EǸ C �IwǸ A� C �IvǸ (A�B)� (A� C) �IuǸ (A� (B � C))� ((A�B)� (A� C))This deduction can now be represented in LF by the usual method.hnd s :hilnd s(impi (�u:nd (A imp B imp C).impi (�v:nd (A imp B).impi (�w:nd A. impe (impe u w) (impe v w))))).Case: H = N1À (A�:B)� ((A �B)� (:A))

Logical frameworks 1113This is similar to the previous case.uǸ A�:B wǸ A �EǸ :B vǸ A�B wǸ A �EǸ B :EǸ p :Ip;wǸ :A �IvǸ (A�B)�:A �IuǸ (A�:B)� ((A�B)�:A)In the formalization, the propositional parameter p appears as a bound variable.hnd n1 :hilnd n1(impi (�u:nd (A imp not B).impi (�v:nd (A imp B).noti (�p:o. �w:nd A. note (impe u w) p (impe v w))))).The remaining axioms are easy to prove, and we only show their encodingshnd n2 :hilnd n2 (impi (�u:nd (not A). impi (�v:nd A. note u B v))).hnd f1 :hilnd (f1 T) (impi (�u:nd (forall (�x:i. A x)). foralle u T)).hnd f2 :hilnd f2(impi (�u:nd (forall (�x:i. B imp A x)).impi (�v:nd B. foralli (�a:i. impe (foralle u a) v)))).Case: H = H1À A�B H2À A MPÀ BBy induction hypothesis onH1 andH2 there exist natural deductions D1 :: Ǹ A�Band D2 :: Ǹ A, respectively. Using the rule of implication elimination �E, we obtainD = D1Ǹ A�B D2Ǹ A �EǸ BIn the representation we emphasize the operational reading of the implementationby using the arrow that points to the left. It associates to the left, and thereforeA3 A2 A1 is equivalent to A1 ! A2 ! A3.

1114 Frank Pfenninghnd mp : hilnd (mp H1 H2) (impe D1 D2) hilnd H1 D1 hilnd H2 D2.Note that hilnd H1 D1 will be the �rst subgoal to be solved, and hilnd H2 D2 thesecond, according to the operational semantics sketched in Section 4.4.Case: H = H1À [a=x]A UGaÀ 8x:AThis case corresponds directly to universal introduction (8I) in natural deduction.By induction hypothesis on H1 there exists a natural deduction D1 :: Ǹ [a=x]A.Since the deduction D1 is not hypothetical, the side condition on UG that a notappear in A is suÆcient to guarantee the corresponding side condition on 8I andwe can form D = D1Ǹ [a=x]A 8IaǸ 8x:AIn the representation, H1 is a function from a to a deduction of [a=x]A. Thus thehigher-level judgment relating H1 to D1 is parametric in a. Parametric judgmentsare represented by functions as usual, so a dependent function type will appear inthe premise.hnd ug : hilnd (ug H1) (foralli D1) (�a:i. hilnd (H1 a) (D1 a)).Operationally in Elf, solving the subgoal introduces a new parameter a and sub-stitutes it for the variable bound in H1. The resulting deduction is translated toa natural deduction that may contain a. Matching this against the pattern (D1 a)creates the correct functional representation of the judgment that is hypotheticalin a, and which is the premise of 8I and thus the argument to foralli.The proof above describes a method for translating axiomatic derivations tonatural deductions. Under the Curry-Howard isomorphism [Howard 1980], this cor-responds to a translation from typed combinators (based on S and K and others)to typed �-terms. As a sample execution of this program, consider the queryhilnd (mp (mp s k) k) Dwhere D is a free variable of type nd (A impA). This will compute the followinginstantiation for D, which is an indirect way of deriving Ǹ A�A.

Logical frameworks 1115impe(impe(impi(�u:nd (A imp (B imp A) imp A).impi(�v:nd (A imp B imp A).impi (�w:nd A. impe (impe u w)(impe v w)))))(impi (�u:nd A. impi (�v:nd (B imp A). u))))(impi (�u:nd A. impi (�v:nd B. u))).5.3. The deduction theoremOne crucial step in proving the other direction (natural deductions can be translatedto axiomatic derivations) is the deduction theorem. In its simplest form it concernsa hypothetical derivation: if we can prove B assuming A (written as A À B), thenwe can derive À A�B. This is not quite enough for our application, since duringa natural deduction many hypotheses may arise. So we let � range over collectionsof hypotheses A1; : : : ; An and write � À B. An implementation of a proof of thededuction theorem using FS0 is described in [Basin and Matthews 1996] and maybe compared to the relational implementation below.5.2. Theorem (Deduction Theorem). If �; A À B then � À A�B.Proof. The proof proceeds by induction on the structure of the derivation H ::�; A À B. In the implementation of the proof the extraneous hypotheses � willbe represented by hypotheses in LF and can therefore be left implicit in the mainjudgment. Thus the proof is implemented as a higher-level judgment, relating therepresentation of the hypothetical derivation of A À B to the derivation of ÀA�B. Recall that a hypothetical derivation is represented as an LF function fromderivations of the hypothesis to derivations of the conclusion. Thus we arrive at thetype familyded : (hil A ! hil B) ! hil (A imp B) ! typewhere A and B are implicitly quanti�ed.Case: H = �; A À A, that is, H consists of a use of the hypothesis A. Then we needto show that � À A � A. This follows by two applications of Modus Ponens from(S) and (K). Written in linear form instead of the more awkward tree we have1 (A� ((B �A)�A))� ((A� (B �A)) � (A�A)) S2 (A� ((B �A)�A)) K3 (A� (B �A))� (A�A) MP 1 24 A� (B �A) K5 A�A MP 3 4

1116 Frank PfenningAs an LF term, this is represented succinctly by mp (mp s k) k, a term alreadyfamiliar from the sample query at the end of the previous section. The LF func-tion �u:hil A. u represents the immediate use of the hypothesis À A, labelledinternally by u. Thus we haveded id : ded (�u:hil A. u) (mp (mp s k) k).Case: H = �; A À Ai, where Ai occurs in �. In this case we have to give aderivation of � À A � Ai. But this follows from an application of Modus Ponensand K. 1 � À Ai � (A�Ai) K2 � À Ai (hyp)3 � À A�Ai MP 1 2There is no corresponding case in the implementation of the type family ded. In-stead, we need to make the assumption that the deduction theorem applied to anew hypothesis labelled w yields mp k w wherever w is introduced. This techniquewill be illustrated in the next section.Case: H = K�; A À B1 � (B2 �B1)Then we proceed as follows:1 � À (B1 � (B2 �B1))� (A� (B1 � (B2 �B1))) K2 � À B1 � (B2 �B1) K3 � À A� (B1 � (B2 �B1)) MP 1 2ded k : ded (�u:hil A. k) (mp k k).Cases: All remaining axioms (S, N1, N2, F1, F2) are handled as in the previouscase. We only show their implementations.ded n1 : ded (�u:hil A. n1) (mp k n1).ded n2 : ded (�u:hil A. n2) (mp k n2).ded f1 : ded (�u:hil A. f1 T) (mp k (f1 T)).ded f2 : ded (�u:hil A. f2) (mp k f2).Case: H = H1�; A À B1 �B2 H2�; A À B1 MP�; A À B2

Logical frameworks 11171 � À A� (B1 �B2) Ind. hyp. on H12 � À (A� (B1 �B2))� ((A�B1)� (A�B2)) S3 � À (A�B1)� (A�B2) MP 2 14 � À A�B1 Ind. hyp. on H25 � À A�B2 MP 3 4Appeals to induction hypotheses are implemented in the premises of the higherlevel judgment, generating H 01 and H 02, respectively. Note how the premises H1 andH2 of H are once again hypothetical, that is, they may depend on the assumptionA. This is implemented as (H1 u) and (H2 u) in the declaration below.ded mp :ded (�u:hil A. mp (H1 u) (H2 u)) (mp (mp s H10) H20) ded H1 H10 ded H2 H20.Case: H = H1�; A À [a=x]B1 UGa�; A À 8x:B11 � À A� [a=x]B1 Ind. hyp. on H12 � À 8x: (A�B1) UGa 13 � À (8x: (A�B1))� (A� 8x:B1) F24 � À A� 8x:B1 MP 3 2The side conditions on UGa and F2 are satis�ed by virtue of the proviso that a notoccur in �, A, or 8x:B1, that is, that H1 be parametric in a. In the implementationwe simply create a new parameter a.ded ug :ded (�u:hil A. ug (H1 u)) (mp f2 (ug H10)) (�a:i. ded (�u:hil A. H1 u a) (H10 a)).The declarations for the higher-level judgment ded can be executed as a logicprogram, thus capturing the computational contents of the deduction theorem. Thiscorresponds to the algorithm for bracket abstraction in combinatory logic [Curryand Feys 1958].5.4. Translating natural deductions to axiomatic derivationsObtaining a translation from natural deductions to axiomatic derivations is nowstraightforward. Note that we must allow for hypotheses, since the �I rule intro-

1118 Frank Pfenningduces them (if viewed from the bottom up).5.3. Theorem. If Ǹ A follows from hypotheses Ǹ A1; : : : ; Ǹ An, then there existsa hypothetical axiomatic derivation of A1; : : : ; An À A.Proof. By induction on D :: Ǹ A. We abbreviate A1; : : : ; An by �. In the imple-mentation we deal with each hypothesis as it is introduced, rather than globally.Thus the type family that implements the meta-proof just relates a natural deduc-tion to a Hilbert derivation.ndhil : �A:o. nd A ! hil A ! type.Case: D = uiǸ AiThis constitutes application of a hypothesis. Then H is a one-step derivation us-ing the corresponding the hypothesis. It is implemented wherever hypotheses areintroduced, which are the cases for �I and :I.Case:
D = uǸ A1D1Ǹ A2 �IuǸ A1 �A2By induction hypothesis on D1, there exists a derivation H1 of �; A1 À A2. Hence,by the deduction theorem, there exists a derivation H01 of � À A1 � A2, which iswhat we needed to show. The implementation combines this and the previous caseby introducing hypotheses u:ndA1 and v:hilA1 and assuming that the translationof u should be v. Since this rule introduces a new hypothesis À A1, we must alsoindicate how the deduction theorem behaves on the new assumption. This may begleaned from the second case in the proof of the deduction theorem.ndh impi :ndhil (impi D1) H10 (�u:nd A1. �v:hil A1.(�C:o. ded (�w:hil C. v) (mp k v))! ndhil u v! ndhil (D1 u) (H1 v)) ded H1 H10.

Logical frameworks 1119Case: D = D1Ǹ 8x:A1 8EǸ [t=x]A1By induction hypothesis on D1 there exists a derivation H1 of � À 8x:A1. Bymodus ponens from an instance of axiom schema F1 and H1 we can then constructa derivation H of � À [t=x]A1.ndh foralle : ndhil (foralle D1 T) (mp (f1 T) H1) ndhil D1 H1.Cases: We omit the remaining cases which are similar to the two given above. It isan instructive exercise to reconstruct the informal argument from the implementa-tion given below.ndh impe : ndhil (impe D1 D2) (mp H1 H2) ndhil D1 H1 ndhil D2 H2.ndh noti :ndhil (noti D1) (mp (mp n1 H10) H100) (�p:o. �u:nd A1. �v:hil A1.(�C:o. ded (�w:hil C. v) (mp k v))! ndhil u v! ndhil (D1 p u) (H1 p v)) ded (H1 (not A)) H10 ded (H1 A) H100.ndh note : ndhil (note D1 C D2) (mp (mp n2 H1) H2) ndhil D1 H1 ndhil D2 H2.ndh foralli : ndhil (foralli D1) (ug H1) (�a:i. ndhil (D1 a) (H1 a)).In summary, we can represent some aspects of constructive meta-theoretic proofsas higher-level judgments in LF. These higher-level judgments can be executed inElf with the operational semantics from Section 4.4 to translate derivations betweendeductive systems. While the result of each individual computation of this form isguaranteed to be correct, the higher-level judgment is only partially veri�ed sincetermination and coverage of all possible cases are properties outside the scope ofthe type-checker.6. Appendix: the simply-typed �-calculusFor the representation of the abstract syntax of a language, the simply-typed �-calculus (�!) is usually adequate. When we tackle the task of representing inference

1120 Frank Pfenningrules, we will have to re�ne the type system by adding dependent types. The readershould bear in mind that �! should not be considered as a functional programminglanguage, but as a representation language. In particular, the absence of recursionwill be crucial in order to guarantee adequacy of representations. Our formulation ofthe simply-typed �-calculus has two levels: the level of types and the level of objects,where types classify objects. Furthermore, we have signatures which declare typeand object constants, and contexts which assign types to variables. The presentationis in the style of Church: Every valid object has a unique type. This requires thattypes appear in the syntax of objects to resolve the inherent ambiguity of certainfunctions such as the identity function. We let a range over type constants, c overobject constants, x over variables.Types A ::= a j A1 ! A2Objects M ::= c j x j �x:A:M jM1 M2Signatures � ::= � j �; a:type j �; c:AContexts � ::= � j �; x:AWe make the general restriction that constants and variables can occur at mostonce in a signature or context, respectively. We use A and B to range over types, andM and N to range over objects. We refer to type constants a as atomic types andtypes of the form A! B as function types . We also consider terms that di�er onlyin the names of their bound variables as identical and use the variable conventionas for �rst-order logic in Section 2.The judgments de�ning �! are�̀ A : type A is a valid type� �̀ M : A M is a valid object of type A in context ��̀ � Ctx � is a valid context` � Sig � is a valid signatureNote that the �rst three of these judgments depend on a signature � which wepresuppose to be valid. Similarly, we assume that � is always valid in the judgment� �̀ M : A. The judgments are de�ned via the following inference rules.Valid objects c:A in � con� �̀ c : A x:A in � var� �̀ x : A�̀ A : type �; x:A �̀ M : B lam� �̀ �x:A:M : A! B� �̀ M : A! B � �̀ N : A app� �̀ M N : B

Logical frameworks 1121Valid types a:type in � con�̀ a : type �̀ A : type �̀ B : type arrow�̀ A! B : typeValid signatures sigemp` � Sig ` � Sig sigtyp` �; a:type Sig` � Sig �̀ A : type sigobj` �; c:A SigValid contexts ctxemp�̀ � Ctx �̀ � Ctx �̀ A : type ctxobj�̀ �; x:A CtxThe rules for valid objects are somewhat non-standard in that they contain nocheck whether the signature � or the context � are valid, which we presuppose.Furthermore, the rules guarantee that if we have a derivation D of � �̀ M : A and� is valid, then every context appearing in D is also valid. This is because the typeA in the lam rule is checked for validity as it is added to the context.Our formulation of the simply-typed �-calculus above is parametrized by a sig-nature in which new constants can be declared; only variables, �-abstraction, andapplication are built into the language itself. The analogue of observable values infunctional programming languages is the notion of canonical form, since they arein one-one correspondence with the data we are trying to represent. Unlike in func-tional languages, every well-typed object will have an equivalent canonical formwhich can be calculated with a simple algorithm. For the de�nition of canonicalforms as a deductive system we need two mutually recursive judgments: canonicaland atomic forms. For the sake of brevity, we elide the �xed signature � from thisjudgment. � `M * A object M is canonical of type A� `M # A object M is atomic of type AAn atomic form is a variable or constant applied to some number of arguments,each of which is in canonical form. A canonical form of functional type must bea �-abstraction; a canonical form of atomic type a must itself be atomic. This is

1122 Frank Pfenningcaptured with the following inference rules.�; x:A `M * B arrow� ` �x:A:M * A! B � `M # a coerce� `M * ax:A in � var� ` x # A c:A in � con� ` c # A� `M # B ! A � ` N * B app� `MN # AThe algorithm for conversion to canonical and atomic forms introduces �-abstractions if the object is of functional type, essentially applying �-expansion.At base type we check if the object has the form of a variable or constant appliedto some arguments. If so, we convert the arguments to canonical form. If not, werepeatedly apply weak head reduction until the other case applies. This methodof de�nition of a typed �-calculus corresponds to an operational semantics for afunctional language and is very much in the spirit of the method of algorithmicde�nition for type theories [de Bruijn 1993]. Related systems have been describedin [Felty and Miller 1990, Coquand 1991]. The algorithm is given as a deductivesystem consisting of three judgments which may be interpreted as a logic program.M whr�!M 0 M weak head reduces to M 0� `M *M 0 : A M converts to canonical form M 0 at type A� `M #M 0 : A M converts to atomic form M 0 at type AFirst, the rules for weak head reduction. We write [N=x]M for the result of substi-tuting N for x in M , possibly renaming bound variables to avoid variable capture.whr beta(�x:A:M)N whr�! [N=x]M M whr�!M 0 whr appMN whr�!M 0NThe rules for conversion to canonical and atomic form mutually depend on eachother. Note how the rules for canonical form are type-directed, while the rules for

Logical frameworks 1123atomic form are object-directed.�; x:A `M x *M 0 : B arrow� `M * (�x:A:M 0) : A! BM whr�!M 0 � `M 0 *M 00 : a whr� `M *M 00 : a� `M #M 0 : a coerce� `M *M 0 : a x:A in � var� ` x # x : A c:A in � con� ` c # c : A� `M #M 0 : A! B � ` N * N 0 : A app� `MN #M 0N 0 : BThe following properties of the simply-typed �-calculus follow easily from knownresults for more conventional representations. The last is the most diÆcult and canbe established rather elegantly using logical relations [Pfenning 2001].6.1. Theorem (Properties of �!).1. If � `M * A then � `M : A.2. If � `M # A then � `M : A.3. If � `M *M 0 : A then � `M 0 * A.4. If � `M #M 0 : A then � `M 0 # A.5. If � `M : A then there exists a unique N such that � `M * N : A.Two objects M and M 0 are de�nitionally equal at type A (written as � ` M �M 0 : A) if they have the same canonical form at type A. This coincides with anotion of de�nitional equality based on �- and �-conversions. In particular, �- and�-conversion are admissible rules of inference to determine de�nitional equality ofobjects. We may omit the context, signature, and type and just write M � M 0.Systems are often de�ned based on a notion of conversion, in which case the systemabove could be considered as specifying an algorithm for deciding equality. Thenext section provides an example of this kind.7. Appendix: the dependently typed �-calculusThe typing rules for LF can be found under the name �P in [Barendregt andGeuvers 2001] (Chapter 18 of this Handbook), except that the rule of type con-version for LF is based on ��-conversion rather than just �-conversion. Because��-conversion is not con
uent on ill-typed terms, the standard approach to provingtheoretical properties does not work in the context of LF, even though it may beadapted with some e�ort [Geuvers 1992, Ghani 1997, Goguen 1999].

1124 Frank PfenningWe prefer a formulation with typed equality judgments in the style of Martin-L�of [Harper 1988] as presented in a slightly richer framework [Coquand 1991]. Wecall the resulting type theory ��. First we de�ne its basic judgments, which in-clude typing and de�nitional equality. Coquand [1991] proves the correctness ofan untyped algorithm for conversion which demonstrates decidability of the judg-ments de�ning LF. From this one can conclude easily that canonical (that is, long��-normal) forms exist and are unique, which is critical for the adequacy theo-rems throughout this chapter. An alternative proof using an erasure interpretationfor dependencies is given by Harper and Pfenning [2000]. We give an inductivede�nition of canonical forms which can be used directly in adequacy proofs to es-tablish a compositional bijection between canonical objects of �� and expressionsor deductions in an object logic. This part is analogous to the development forthe simply-typed �-calculus in the preceding section. We also have eliminated thenon-dependent function type A! B since we can think of it as an abbreviation for�x:A:B where x does not occur in B.�� is predicative calculus with three levels: kinds, families, and objects. We alsode�ne signatures and contexts as they are needed for the judgments.Kinds K ::= type j �x:A:KFamilies A ::= a j A M j �x:A1: A2Objects M ::= c j x j �x:A:M jM1 M2Signatures � ::= � j �; a:K j �; c:AContexts � ::= � j �; x:ABesides the typed notion of equality, this language di�ers from the one given byHarper et al. [1993] in that we do not allow families to be formed by explicit ab-straction. Since such families never occur in canonical forms, this does not lead toany loss in expressive power. Unlike in �!, we can no longer introduce typing inde-pendently of de�nitional equality, because of the rule of type conversion motivatedin Section 3.4.� �̀ M : A M has type A� �̀ M �M 0 : A M is de�nitionally equal to M 0 at type A� �̀ A : K A has kind K� �̀ A � A0 : K A is de�nitionally equal to A0 at kind K� �̀ K : kind K is a valid kind� �̀ K � K 0 : kind K is de�nitionally equal to K 0` � Sig � is a valid signature�̀ � Ctx � is a valid contextThese judgment are de�ned by the rules given below. For the typing and equalityjudgments we presuppose that the signature � and the context � are valid, so we

Logical frameworks 1125do not check this in the rules for variables and constants. Furthermore, we do nothave an explicit rule for �-conversion, since it, together with a congruence rule for�-abstraction, is equivalent to the extensionality rule eq lam for functional equality.Valid objects � �̀ A : type �; x:A �̀ M : B lam� �̀ �x:A:M : �x:A:B� �̀ A : type �; x:A �̀ M x �M 0 x : B eq lam� �̀ M �M 0 : �x:A:Bc:A in � con� �̀ c : A x:A in � var� �̀ x : A� �̀ M : �x:A:B � �̀ N : A app� �̀ M N : [N=x]B� �̀ M �M 0 : �x:A:B � �̀ N � N 0 : A eq app� �̀ M N �M 0N 0 : [N=x]B�; x:A �̀ M : B � �̀ N : A beta� �̀ (�x:A:M)N � [N=x]M : [N=x]BValid types � �̀ A : type �; x:A �̀ B : type pi� �̀ �x:A:B : type� �̀ A � A0 : type �; x:A �̀ B � B0 : type eq pi� �̀ �x:A:B � �x:A0: B0 : typea:K in � con� �̀ a : K� �̀ A : �x:B:K � �̀ M : B app� �̀ A M : [M=x]K� �̀ A � A0 : �x:B:K � �̀ M �M 0 : B eq app� �̀ AM � A0M 0 : [M=x]K

1126 Frank PfenningValid kinds type� �̀ type : kind� �̀ A : type �; x:A �̀ K : kind pi� �̀ �x:A:K : kind� �̀ A � A0 : type �; x:A �̀ K � K 0 : kind eq pi� �̀ �x:A:K � �x:A0:K 0 : kindEquality rules. We present the equality rules for all three levels in abbreviatedform, where U , V , and W range over objects, types, kinds, or the symbol kind asappropriate for the equality judgments shown above.� �̀ U : V re
� �̀ U � U : V � �̀ U1 � U2 : V sym� �̀ U2 � U1 : V� �̀ U1 � U2 : V � �̀ U2 � U3 : V trans� �̀ U1 � U3 : V� �̀ U : V � �̀ V � V 0 :W conv� �̀ U : V 0� �̀ U1 � U2 : V � �̀ V � V 0 :W eq conv� �̀ U1 � U2 : V 0Valid signatures sigemp` � Sig ` � Sig �̀ K : kind sigfam` �; a:K Sig` � Sig �̀ A : type sigobj` �; c:A SigValid contexts ctxemp�̀ � Ctx �̀ � Ctx � �̀ A : type ctxobj�̀ �; x:A CtxWe can obtain the decidability of the judgments constituting this formulationof LF via a sequence of lemmas culminating in an argument via Kripke-logical

Logical frameworks 1127relations and an untyped algorithm for testing equality as given by Coquand [1991].The version of this theorem for �-conversion only (where the eq lam rule is replacedby a congruence rule for �-abstraction) is due to Harper et al. [1993].7.1. Theorem (Properties of LF).1. If �1; x:A; y:B;�2 �̀ M : C and �1 �̀ B : type then �1; y:B; x:A;�2 �̀ M : C.2. If � �̀ M : C and � �̀ A : type then �; x:A �̀ M : C.3. If �1; x:A;�2 �̀ M : C and �1 �̀ N : Athen �1; [N=x]�2 �̀ [N=x]M : [N=x]C.4. All judgments de�ning the �� type theory are decidable.We single out the properties of exchange, weakening, and substitution, sincethey are at the core of the judgments-as-types representation technique. Note thatcontraction is a simple consequence of substitution in our formulation. Paramet-ric and hypothetical judgments can be implemented as functions in �� becausethese properties match the properties of hypotheses. Logics such as linear logic inwhich assumptions do not satisfy these properties must be represented with di�er-ent techniques. This has led, for example, to the development of the linear logicalframework [Cervesato and Pfenning 1996] which provides more control over prop-erties of assumptions.We continue by presenting the notions of canonical and atomic form as a judg-ment, generalizing the analogous judgments from the simply-typed �-calculus inSection 6. � �̀ M * A M is canonical of type A� �̀ M # A M is atomic of type A� �̀ A * K A is canonical of kind K� �̀ A # K A is atomic of kind KThese judgments are de�ned via the following inference rules. We use P for abase type, that is, one which has the form aM1 : : :Mn rather than �x:A:B.Canonical objects� �̀ A * type �; x:A �̀ M * B � �̀ A � A0 : type pi� �̀ �x:A:M * �x:A0: B� �̀ M # P � �̀ P � P 0 : type coerce� �̀ M * P 0

1128 Frank PfenningAtomic objects c:A in � con� �̀ c # A x:A in � var� �̀ x # A� �̀ M # �x:A:B � �̀ N * A atmapp� �̀ M N # [N=x]BCanonical types � �̀ A * type �; x:A �̀ B * type pi� �̀ �x:A:B * type� �̀ P # type coerce� �̀ P * typeAtomic types a:K in � con� �̀ a # K� �̀ A # �x:B:K � �̀ M * B app� �̀ A M # [M=x]KIt is easy to see that canonical forms are well-typed.7.2. Theorem (Properties of canonical forms).1. If � �̀ M * A then � �̀ M : A.2. If � �̀ M # A then � �̀ M : A.3. If � �̀ A * K then � �̀ A : K.4. If � �̀ A # K then � �̀ A : K.Proof. By straightforward induction on the structure of the canonical and atomicforms.Finally we come to algorithms for conversion to canonical form. They are designedso that two terms are de�nitionally equal if they have the same canonical form.M whr�!M 0 M weak head reduces to M 0� �̀ M *M 0 : A M has canonical form M 0 at type A� �̀ M #M 0 : A0 M has atomic form M 0 at type A0� �̀ A * A0 : K A has canonical form A0 at kind K� �̀ A # A0 : K 0 A has atomic form A0 at kind K 0

Logical frameworks 1129To read these judgments as algorithms we apply the logic programming interpre-tation of these rules for the bottom-up construction of a derivation. In weak headreduction we assume that M is given and M 0 is constructed. In the judgments forconversion to canonical form we assume that �, �, M , A, and K are given whilewe construct M 0 and A0. In the judgments for atomic forms we assume �, �, M ,and A to be given and construct M 0, A0 and K 0.Weak head reduction whr beta(�x:A:M)N whr�! [N=x]MM whr�!M 0 whr appMN whr�!M 0NConversion to canonical objects� �̀ A * A0 : type �; x:A0 �̀ M x *M 0 : B pi� �̀ M * �x:A0:M 0 : �x:A:B� �̀ M #M 0 : P � �̀ P � P 0 atm� �̀ M *M 0 : P 0M whr�!M 0 � �̀ M 0 *M 00 : P whr� �̀ M *M 00 : PConversion to atomic objectsc:A in � con� �̀ c # c : A x:A in � var� �̀ x # x : A� �̀ M #M 0 : �x:A:B � �̀ N * N 0 : A app� �̀ M N #M 0 N 0 : [M 0=x]BConversion to canonical types� �̀ A * A0 : type �; x:A0 �̀ B * B0 : type pi� �̀ �x:A:B * �x:A0: B0 : type� �̀ P # P 0 : type atm� �̀ P * P 0 : type

1130 Frank PfenningConversion to atomic types a:K in � con� �̀ a # a : K� �̀ A # A0 : �x:B:K � �̀ M *M 0 : B app� �̀ A M # A0M 0 : [M 0=x]KWe show only the relevant properties for canonical forms on objects|atomicforms, types, and kinds satisfy similar properties.7.3. Theorem (Convertibility).1. If � �̀ M *M 0 : A then � �̀ M 0 * A.2. If � �̀ M *M 0 : A then � �̀ M �M 0 : A.3. If � �̀ M : A then there is a unique M 0 such that � �̀ M *M 0 : A.4. � �̀ M �M 0 : A i� � �̀ M * N : A and � �̀ M 0 * N : A for some N .Proof. The �rst two properties follow by simple structural inductions. The lasttwo follow from Coquand's algorithm [Coquand 1991] by additional �-expansions.Related proofs are given by Harper and Pfenning [2000] and Virga [1999].8. ConclusionWe have provided an introduction to the techniques of logical frameworks with anemphasis on LF which is based on the dependently typed �-calculus ��. We nowsummarize the basic choices that arise in the design of logical frameworks.Equational vs. deductive encodings. Logical frameworks based on rewriting logic[Mart��-Oliet and Meseguer 1993] (variations of which are implemented in Maude[Maude 1999] and ELAN [ELAN 1998, Kirchner et al. 1993, Haberstrau 1994,Borovansk�y et al. 1998]) are based on equational reasoning, rewriting, and con-straints, while others discussed in this chapter (LF, hereditary Harrop formulas,FS0, ALF) are based on deductive reasoning. It is clear that each approach canbe simulated in the other, but usually with some loss of clarity, eÆciency andelegance for certain classes of applications. Rewriting logic, for example, deals par-ticularly well with concurrency, while it does not seem well suited for situationswhere deductions themselves need to be rei�ed in the meta-language. First stepsfor combining ideas from these classes of frameworks are the rewriting mechanismsin Isabelle [Nipkow 1989] and the study of term rewriting in higher-order languageswith dependent types [Virga 1996, Virga 1999]. For more on rewriting logic and itsuse as a logical framework, see [Meseguer 1998, Kirchner and Kirchner 1998]. Thesemantic origin of this work is institutions [Goguen and Burstall 1992]; a connectionis made by Meseguer [1987].

Logical frameworks 1131Strong vs. weak frameworks. De Bruijn, the founder of the �eld of logical frame-works, argues in [de Bruijn 1991a] that logical frameworks should be foundationallyuncommitted and as weak as possible. This allows simple proofs of adequacy forencodings, eÆcient checking of the correctness of derivations, and allows e�ectivealgorithms for uni�cation and proof search in the framework which are otherwisediÆcult to design (for example, in the presence of iterated inductive de�nitions).This is also important if we use explicit proofs as a means to increase con�dence inthe results of a theorem prover: the simpler the logical framework, the more trustedits implementation is likely to be. While most frameworks are based on weak frag-ments of intuitionistic logic or type theory, labelled deductive systems as proposedby Gabbay [1994, 1996] are a notable exception. They are based essentially onclassical, �rst-order logic where deductions are restricted through the use of labelsendowed with an equational theory. Proof search can proceed, for example, by clas-sical resolution techniques. For more on this approach, see [Ohlbach et al. 2001](Chapter 21 of this Handbook). This encoding is well-suited for modal logics, butit appears less immediately applicable to other deductive systems, especially thosearising in the theory of programming languages.Inductive representations vs. higher-order abstract syntax. This is related to the pre-vious question. Inductive representations of logics are supported in FS0 [Feferman1988] and ALF [Magnusson and Nordstr�om 1994] and many logics not explic-itly designed as logical frameworks such as Nuprl [Basin and Constable 1993],LEGO [Pollack 1994], Coq [Dowek, Felty, Herbelin, Huet, Murthy, Parent, Paulin-Mohring and Werner 1993], and Isabelle/HOL [Paulson 1993]. They allow a for-mal development of the meta-theory of the deductive system in question, butthe encodings are less direct than for frameworks employing higher-order ab-stract syntax and functional representations of hypothetical derivations. These arethe foundation of LF (underlying Elf) and hereditary Harrop formulas (underly-ing �Prolog and Isabelle). Present work on combining advantages of both eitheremploy re
ection [Despeyroux et al. 1997, Leleu 1998] or formal meta-reasoningabout the logical framework itself [McDowell and Miller 1997, Sch�urmann andPfenning 1998, Sch�urmann 2000].Logical vs. type-theoretic meta-languages. A logical meta-language such as onebased on hereditary Harrop formulas encodes judgments as propositions. Searchfor a derivation in an object logic is reduced to proof search in the meta-logic.In addition, type-theoretical meta-languages such as LF o�er a representation forderivations as objects. Checking the correctness of a derivation is reduced to type-checking in the meta-language. This is a decidable property that enables the use ofa logical framework for applications such as proof-carrying code, where an explicitrepresentation for deductions is required (see Section 8.2).Functional vs. logical meta-programming. ML has originally been designed as ameta-language to program theorem provers for complex logics. It is still used in this

1132 Frank Pfenningcapacity in many theorem proving environments and logical frameworks, includingIsabelle. The strategy language of ELAN is similar, but has rich primitives for non-deterministic search which have to be programmed in ML, a sequential language.The functional meta-language approach has the disadvantage that the programmermust deal with many languages: the object logic, the logical framework, and theimplementation language of the logical framework. A more uniform approach isto directly give an operational semantics to the logical framework in the spiritof abstract logic programming [Miller et al. 1991]. This makes it quite easy toprogram algorithms, but this approach has some drawbacks when it comes to userinteraction.8.1. Framework extensionsLogical framework languages are judged along many dimensions, as the discus-sions above indicate. Three of the most important concerns are how directly objectlanguages may be encoded, how easy it is to prove the adequacies of these encod-ings, and how simple the proof checker for a logical framework can be. A greatdeal of practical experience has been accumulated, for example, through the useof �Prolog, Isabelle, and Elf. These experiments have also identi�ed certain short-comings in the logical frameworks, some of them have even led to explicit negativeresults [Gardner 1992]. We brie
y summarize some of the current research on re�n-ing or extending logical frameworks. Any proposed extension must carefully weighthe bene�ts for classes of applications against the complications it introduces intothe meta-theory.Substructural extensions. Frameworks such as hereditary Harrop formulas or LFcan encode linear and other substructural logics [Girard 1987], but their encodingsare not as direct as one might hope. The reason is that linear assumptions (each ofwhich must be used exactly once) can not be modeled as hypotheses in the meta-language (which satisfy weakening and contraction). For similar reasons, the storein the encoding of an imperative programming language cannot be modeled via hy-potheses on the values of the cells in the store. The linear frameworks Forum andlinear LF have been designed to overcome these limitations. Forum [Miller 1994]is based on classical linear logic and extends hereditary Harrop formulas. Chirimar[1995] shows how to apply Forum to the theory of imperative programming lan-guages. Linear LF [Cervesato and Pfenning 1997] is a conservative extension of LFwith linear hypotheses. The desirable properties of LF are retained when the newconnectives are restricted to linear implication, additive conjunction, and additivetruth. Unlike Forum, the connectives are interpreted intuitionistically, which allowsproof terms with decidable equality and type-checking relations to reify linear de-ductions and imperative computations. Applications to imperative programmingcan be found in [Cervesato 1996], applications to cut-elimination in both classicaland intuitionistic sequent calculi are given in [Pfenning 1994b].

Logical frameworks 1133Subtyping. In many cases an object language or logic exhibits natural subtypingrelationships. For example, deductions in normal form may be considered a subtypeof arbitrary natural deductions. In the absence of subtyping, these can be codedeither as explicit higher-level judgments or via explicit coercions, in both casesoften signi�cantly complicating the representation. In [Pfenning 1993], we haveproposed an extension of LF to permit a simple and decidable subtyping judgment.Despite its relative simplicity it complicates uni�cation and proof search [Kohlhaseand Pfenning 1993] and the pragmatic consequences are unclear at present. Otherapproaches for general type theories have also been proposed recently [Aspinalland Compagnoni 1996], but their practicality in the context of logical frameworksis untested.Polymorphism. Both Isabelle and �Prolog allow polymorphism in the presentationof logics; in the case of Isabelle this includes sort restrictions on type variables. Likesubtyping, polymorphism signi�cantly complicates uni�cation and proof search.Adequacy of encodings using higher-order abstract syntax is also more diÆcult toprove, since the notion of �-long form is more complex [Dowek, Huet and Werner1993, Ghani 1997] and not preserved under substitution for type variables. Onthe other hand, polymorphism avoids code duplication|a similar e�ect might beachieved with module systems instead.Module languages. The modular presentation of logical systems has always beenconsidered important. For Automath, de Bruijn has proposed the notion oftelescope [de Bruijn 1991b] as a modularity mechanism. For pure type sys-tems [Barendregt 1992] (which include �� as a subcalculus) Courant [1997, 1999]has described a general module calculus. The modular presentation of logics hasbeen investigated in [Harper, Sannella and Tarlecki 1989a, Harper, Sannella andTarlecki 1989b, Harper, Sannella and Tarlecki 1994] and cast in a concrete modulelanguage for Elf in [Harper and Pfenning 1998] following the ideas of signatures andfunctors in ML. Rewriting logic also explicitly supports logic morphisms within a
exible module language based on [Meseguer 1987]. The notion of theory in Isabelleprovides another structuring mechanism [Nipkow 1993]. The module language for�Prolog is more concerned with the operational semantics and search spaces whileremaining based on solid logical foundations [Miller 1986, Miller 1989, Nadathurand Tong 1999].8.2. Proof-carrying codeAn important recent application of logical frameworks is the notion of proof-carryingcode (PCC) [Necula 1997] and certifying compilation [Necula 1998, Necula and Lee1998a]. Proof-carrying code is a safety infrastructure for mobile code and operatingsystem extension. A code producer supplies not only a binary executable but alsoa proof of its safety according to some predetermined safety policy. This proof is

1134 Frank Pfenningexpressed as an object in the LF logical framework, although other type-theoreticframeworks could be used as well. The code consumer downloads the binary andproof object and checks the safety proof against the binary. This is accomplishedby generating a veri�cation condition A from the binary in a single, linear sweepand then checking the proof object M against the veri�cation condition by simpleLF type-checking, M : A.A safety policy is expressed by a veri�cation condition generator and an LFsignature which encodes the proof rules for veri�cation conditions. Examples ofsuch safety policies are type safety and memory safety, guaranteeing that a programwill not access memory outside its address space [Necula 1998]. Another example isresource bounds in operating systems extensions such as packet �lters [Necula andLee 1996].Since both the veri�cation condition generator and the LF type-checker are rel-atively small (compared to compilers or theorem provers), the trusted computingbase of this architecture is quite small. The use of a logical framework where de-ductions are rei�ed as objects allows one single implementation to support multiplesafety policies and proof rules, increasing trust in the reliability of the architecture,especially since the properties of LF are well understood and thoroughly investi-gated.The realization of proof-carrying code raised some interesting directions for thedevelopment of logical frameworks. Here we consider two: how do we generate proofobjects and how can we eliminate redundancy from LF objects to achieve compactencodings of proofs?The generation of proof objects is the task of a certifying compiler which takesadvantage of properties of the source language to generate annotations on the as-sembly code. In case of the Touchstone compiler [Necula 1998], this is a safe subsetof C. The annotations guarantee that a specialized theorem prover has enough infor-mation to derive the veri�cation condition for the binary. The specialized theoremprover maintains enough information to generate LF proof objects with respect tothe axioms and inference rules available for the given safety policy. For type andmemory safety, this has been shown to be practical, including a proof-generatingversion of the simplex algorithm described in [Necula 1998]. Thus, the theoremprover as a whole does not need to be trusted, since it generates derivations whichcan be veri�ed independently.The second question concerns the elimination of redundancy in the LF represen-tation of derivations. A �rst proposal in this direction for the Elf logic programminglanguage was made in [Michaylov and Pfenning 1992]. In PCC, the representationcan be further optimized [Necula and Lee 1998b] since the main operation we areconcerned with is type-checking, while Elf has to support uni�cation and proofsearch. The principle, however is the same and goes back to the notion of strict-ness in functional languages. This has been analyzed by Pfenning and Sch�urmann[1998a].

Logical frameworks 11358.3. Further readingThere have been numerous case studies and applications carried out with the aid oflogical frameworks or generic theorem provers, too many to survey them here. Theprincipal application areas lie in the theory of programming languages and logics,reasoning about speci�cations, programs, and protocols, and the formalization ofmathematics. We refer the interested reader to [Pfenning 1996] for some further in-formation on applications of logical frameworks. A survey with deeper coverage ofmodal logics and inductive de�nitions can be found in [Basin and Matthews 2000].The textbook [Pfenning 2001] provides a gentler and more thorough introduction tothe pragmatics of the LF logical framework and its use for the study of programminglanguages. The author also maintains a home page on logical frameworks [LogicalFrameworks 1994] at http://www.cs.cmu.edu/~fp/lfs.htmlwhich is periodicallyupdated, and which contains a more extensive bibliography and pointers to imple-mentations, mailing lists, and related material.BibliographyAbel A. [1999], A semantic analysis of structural recursion, Master's thesis, Ludwig-Maximilians-Universit�at M�unchen.Allen S. F., Constable R. L., Howe D. J. and Aitken W. E. [1990], The semantics ofre
ected proof, in `Proceedings of the Fifth Annual Symposium on Logic in Computer Science(LICS'90)', IEEE Computer Society Press, pp. 95{105.Altenkirch T., Gaspes V., Nordstr�om B. and von Sydow B. [1994], A User's Guide to ALF,Chalmers University of Technology, Sweden.Andreoli J.-M. [1992], `Logic programming with focusing proofs in linear logic', Journal ofLogic and Computation 2(3), 297{347.Andrews P. [2001], Classical type theory, in A. Robinson and A. Voronkov, eds, `Handbook ofAutomated Reasoning', Vol. II, Elsevier Science, chapter 15, pp. 965{1007.Aspinall D. and Compagnoni A. [1996], Subtyping dependent types, in E. Clarke, ed., `Pro-ceedings of the 11th Annual Symposium on Logic in Computer Science', IEEE ComputerSociety Press, New Brunswick, New Jersey, pp. 86{97.Barendregt H. and Geuvers H. [2001], Proof-assistants using dependent type systems, inA. Robinson and A. Voronkov, eds, `Handbook of Automated Reasoning', Vol. II, ElsevierScience, chapter 18, pp. 1149{1238.Barendregt H. P. [1980], The Lambda-Calculus: Its Syntax and Semantics, North-Holland.Barendregt H. P. [1992], Lambda calculi with types, in S. Abramsky, D. Gabbay andT. Maibaum, eds, `Handbook of Logic in Computer Science', Vol. 2, Oxford University Press,chapter 2, pp. 117{309.Basin D. A. and Constable R. L. [1993], Metalogical frameworks, in G. Huet and G. Plotkin,eds, `Logical Environments', Cambridge University Press, pp. 1{29.Basin D. and Matthews S. [1996], Structuring metatheory on inductive de�nitions, inM. McRobbie and J. Slaney, eds, `Proceedings of the 13th International Conference on Au-tomated Deduction (CADE-13)', Springer-Verlag LNAI 1104, New Brunswick, New Jersey,pp. 171{185.Basin D. and Matthews S. [2000], Logical frameworks, in D. Gabbay and F. Guenthner, eds,`Handbook of Philosophical Logic', 2nd edn, Kluwer Academic Publishers. In preparation.

1136 Frank PfenningBasin D., Matthews S. and Vigan�o L. [1998], A modular presentation of modal logics in alogical framework, in `The Tbilisi Symposium on Language, Logic and Computation: SelectedPapers', CSLI Publications.Borovansk�y P., Kirchner C., Kirchner H., Moreau P.-E. and Ringeissen C. [1998], Anoverview of ELAN, in C. Kirchner and H. Kirchner, eds, `Proceedings of the InternationalWorkshop on Rewriting Logic and its Applications', Vol. 15 of Electronic Notes in TheoreticalComputer Science, Elsevier Science, Pont-�a-Mousson, France.URL: http://www.elsevier.com/locate/entcs/volume15.htmlCervesato I. [1996], A Linear Logical Framework, PhD thesis, Dipartimento di Informatica,Universit�a di Torino.Cervesato I. and Pfenning F. [1996], A linear logical framework, in E. Clarke, ed., `Proceedingsof the Eleventh Annual Symposium on Logic in Computer Science', IEEE Computer SocietyPress, New Brunswick, New Jersey, pp. 264{275.Cervesato I. and Pfenning F. [1997], Linear higher-order pre-uni�cation, in G. Winskel, ed.,`Proceedings of the Twelfth Annual Sumposium on Logic in Computer Science (LICS'97)',IEEE Computer Society Press, Warsaw, Poland, pp. 422{433.Chirimar J. L. [1995], Proof Theoretic Approach to Speci�cation Languages, PhD thesis, Uni-versity of Pennsylvania.Church A. and Rosser J. [1936], `Some properties of conversion', Transactions of the AmericanMathematical Society 39(3), 472{482.Constable R. L. et al. [1986], Implementing Mathematics with the Nuprl Proof DevelopmentSystem, Prentice-Hall, Englewood Cli�s, New Jersey.Coq [1999], Project home page. Version 6.2.3.URL: http://pauillac.inria.fr/coq/Coquand C. [1992], A proof of normalization for simply typed lambda calculus written in ALF,in `Proceedings of the Workshop on Types for Proofs and Programs', B�astad, Sweden, pp. 85{92.Coquand T. [1991], An algorithm for testing conversion in type theory, in G. Huet andG. Plotkin, eds, `Logical Frameworks', Cambridge University Press, pp. 255{279.Coquand T., Nordstr�om B., Smith J. M. and von Sydow B. [1994], `Type theory and pro-gramming', Bulletin of the European Association for Theoretical Computer Science 52, 203{228.Coquand T. and Smith J. M. [1993], What is the status of pattern matching in type theory?, in`Proceedings of the Workshop on Types for Proofs and Programs', Nijmegen, The Netherlands,pp. 91{94.Courant J. [1997], A module calculus for pure type systems, in P. de Groote and R. Hindley,eds, `Proceedings of the Third International Conference on Typed Lambda Calculus andApplications (TLCA'97)', Springer-Verlag LNCS, Nancy, France, pp. 112{128.Courant J. [1999], MC: a modular calculus for Pure Type Systems, Rapport de Recherche 1217,CNRS Universit�e Paris Sud.Curry H. B. and Feys R. [1958], Combinatory Logic, North-Holland, Amsterdam.de Bruijn N. [1968], The mathematical language AUTOMATH, its usage, and some of itsextensions, in M. Laudet, ed., `Proceedings of the Symposium on Automatic Demonstration',Springer-Verlag LNM 125, Versailles, France, pp. 29{61.de Bruijn N. [1972], `Lambda-calculus notation with nameless dummies: a tool for automatic for-mula manipulation with application to the Church-Rosser theorem', Indag. Math. 34(5), 381{392.de Bruijn N. [1980], A survey of the project AUTOMATH, in J. Seldin and J. Hindley, eds,`To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism', AcademicPress, pp. 579{606.de Bruijn N. [1991a], A plea for weaker frameworks, in G. Huet and G. Plotkin, eds, `LogicalFrameworks', Cambridge University Press, pp. 40{67.

Logical frameworks 1137de Bruijn N. [1991b], `Telescopic mappings in typed lambda calculus', Information and Com-putation 91(2), 189{204.de Bruijn N. [1993], Algorithmic de�nition of lambda-typed lambda calculus, in G. Huet andG. Plotkin, eds, `Logical Environment', Cambridge University Press, pp. 131{145.Degtyarev A. and Voronkov A. [2001], The inverse method, in A. Robinson and A. Voronkov,eds, `Handbook of Automated Reasoning', Vol. I, Elsevier Science, chapter 4, pp. 179{272.Despeyroux J., Felty A. and Hirschowitz A. [1995], Higher-order abstract syntax in Coq, inM. Dezani-Ciancaglini and G. Plotkin, eds, `Proceedings of the International Conference onTyped Lambda Calculi and Applications', Springer-Verlag LNCS 902, Edinburgh, Scotland,pp. 124{138.Despeyroux J. and Hirschowitz A. [1994], Higher-order abstract syntax with induction in Coq,in F. Pfenning, ed., `Proceedings of the 5th International Conference on Logic Programmingand Automated Reasoning', Springer-Verlag LNAI 822, Kiev, Ukraine, pp. 159{173.Despeyroux J., Pfenning F. and Sch�urmann C. [1997], Primitive recursion for higher-orderabstract syntax, in R. Hindley, ed., `Proceedings of the Third International Conference onTyped Lambda Calculus and Applications (TLCA'97)', Springer-Verlag LNCS 1210, Nancy,France, pp. 147{163. An extended version is available as Technical Report CMU-CS-96-172,Carnegie Mellon University.Dowek G. [1993], The undecidability of typability in the lambda-pi-calculus, in M. Bezem andJ. Groote, eds, `Proceedings of the International Conference on Typed Lambda Calculi andApplications', Springer-Verlag LNCS 664, Utrecht, The Netherlands, pp. 139{145.Dowek G. [2001], Higher-order uni�cation and matching, in A. Robinson and A. Voronkov, eds,`Handbook of Automated Reasoning', Vol. II, Elsevier Science, chapter 16, pp. 1009{1062.Dowek G., Felty A., Herbelin H., Huet G., Murthy C., Parent C., Paulin-Mohring C.and Werner B. [1993], The Coq proof assistant user's guide, Rapport Techniques 154, INRIA,Rocquencourt, France. Version 5.8.Dowek G., Hardin T., Kirchner C. and Pfenning F. [1996], Uni�cation via explicit substi-tutions: The case of higher-order patterns, in M. Maher, ed., `Proceedings of the Joint In-ternational Conference and Symposium on Logic Programming', MIT Press, Bonn, Germany,pp. 259{273.Dowek G., Huet G. and Werner B. [1993], On the de�nition of the eta-long normal form intype systems of the cube, in H. Geuvers, ed., `Informal Proceedings of the Workshop on Typesfor Proofs and Programs', Nijmegen, The Netherlands.Dyckhoff R. and Pinto L. [1994], Uniform proofs and natural deduction, in D. Galmiche andL. Wallen, eds, `Proceedings of the Workshop on Proof Search in Type-Theoretic Languages',Nancy, France, pp. 17{23.ELAN [1998], System home page. Version 3.3.URL: http://www.loria.fr/ELANElliott C. [1989], Higher-order uni�cation with dependent types, in N. Dershowitz, ed., `Rewrit-ing Techniques and Applications', Springer-Verlag LNCS 355, Chapel Hill, North Carolina,pp. 121{136.Elliott C. M. [1990], Extensions and Applications of Higher-Order Uni�cation, PhD thesis,School of Computer Science, Carnegie Mellon University. Available as Technical Report CMU-CS-90-134.Eriksson L.-H. [1992], A �nitary version of the calculus of partial inductive de�nitions, in L.-H.Eriksson, L. Halln�as and P. Schroeder-Heister, eds, `Proceedings of the Second InternationalWorkshop on Extensions of Logic Programming', Springer-Verlag LNAI 596, Stockholm, Swe-den, pp. 89{134.Eriksson L.-H. [1993a], Finitary Partial Inductive De�nitions and General Logic, PhD thesis,Department of Computer and System Sciences, Royal Institute of Technology, Stockholm.

1138 Frank PfenningEriksson L.-H. [1993b], Finitary partial inductive de�nitions as a general logic, in R. Dyckho�,ed., `Proceedings of the 4th International Workshop on Extensions of Logic Programming',Springer-Verlag LNAI 798.Eriksson L.-H. [1994], Pi: An interactive derivation editor for the calculus of partial inductivede�nitions, in A. Bundy, ed., `Proceedings of the 12th International Conference on AutomatedDeduction', Springer Verlag LNAI 814, Nancy, France, pp. 821{825.Feferman S. [1988], Finitary inductive systems, in R. Ferro, ed., `Proceedings of Logic Collo-quium '88', North-Holland, Padova, Italy, pp. 191{220.Felty A. [1989], Specifying and Implementing Theorem Provers in a Higher-Order Logic Pro-gramming Language, PhD thesis, University of Pennsylvania. Available as Technical ReportMS-CIS-89-53.Felty A. [1993], `Implementing tactics and tacticals in a higher-order logic programming lan-guage', Journal of Automated Reasoning 11(1), 43{81.Felty A. and Miller D. [1988], Specifying theorem provers in a higher-order logic programminglanguage, in E. Lusk and R. Overbeek, eds, `Proceedings of the Ninth International Conferenceon Automated Deduction', Springer-Verlag LNCS 310, Argonne, Illinois, pp. 61{80.Felty A. and Miller D. [1990], Encoding a dependent-type �-calculus in a logic program-ming language, in M. Stickel, ed., `10th International Conference on Automated Deduction',Springer-Verlag LNCS 449, Kaiserslautern, Germany, pp. 221{235.Frege G. [1879], Begri�sschrift, eine der arithmetischen nachgebildete Formelsprache des reinenDenkens, Verlag von Louis Nebert. English translation Begri�sschrift, a formula language,modeled upon that of arithmatic, for pure thought in J. van Heijenoort, editor, From Fregeto G�odel; A Source Book in Mathematical Logic, 1879{1931, pp. 1{82, Harvard UniversityPress, 1967.Gabbay D. M. [1994], Classical vs non-classical logic, in D. Gabbay, C. Hogger and J. Robinson,eds, `Handbook of Logic in Arti�cial Intelligence and Logic Programming', Vol. 2, OxfordUniversity Press, chapter 2.6.Gabbay D. M. [1996], Labelled Deductive Systems, Vol. 1, Oxford University Press.Gardner P. [1992], Representing Logics in Type Theory, PhD thesis, University of Edinburgh.Available as Technical Report CST-93-92.Gaspes V. and Smith J. M. [1992], Machine checked normalization proofs for typed combinatorcalculi, in `Proceedings of the Workshop on Types for Proofs and Programs', B�astad, Sweden,pp. 177{192.Gentzen G. [1935], `Untersuchungen �uber das logische Schlie�en', Mathematische Zeitschrift39, 176{210, 405{431. English translation Investigations into logical deductions in M. E. Sz-abo, editor, The Collected Papers of Gerhard Gentzen, pp. 68{131, North-Holland PublishingCo., 1969.Geuvers H. [1992], The Church-Rosser property for ��-reduction in typed �-calculi, in A. Sce-drov, ed., `Seventh Annual IEEE Symposium on Logic in Computer Science', Santa Cruz,California, pp. 453{460.Ghani N. [1997], Eta-expansions in dependent type theory | the calculus of constructions, inP. de Groote and J. Hindley, eds, `Proceedings of the Third International Conference on TypedLambda Calculus and Applications (TLCA'97)', Springer-Verlag LNCS 1210, Nancy, France,pp. 164{180.Girard J.-Y. [1987], `Linear logic', Theoretical Computer Science 50, 1{102.Girard J.-Y. [1993], `On the unity of logic', Annals of Pure and Applied Logic 59, 201{217.Goguen H. [1999], Soundness of the logical framework for its typed operational semantics, inJ.-Y. Girard, ed., `Proceedings of the 4th International Conference on Typed Lambda Calculiand Applications (TLCA'99)', Springer-Verlag LNCS 1581, L'Aquila, Italy, pp. 177{197.Goguen J. A. and Burstall R. M. [1992], `Institutions: Abstract model theory for speci�cationand programming', Journal of the ACM 39(1), 95{146.

Logical frameworks 1139Goldfarb W. D. [1981], `The undecidability of the second-order uni�cation problem',TheoreticalComputer Science 13, 225{230.Gordon M. J., Milner R. and Wadsworth C. P. [1979], Edinburgh LCF, Springer-VerlagLNCS 78.Gordon M. and Melham T. [1993], Introduction to HOL: A Theorem Proving Environmentfor Higher Order Logic, Cambridge University Press.Haberstrau M. [1994], ECOLOG: An environment for constraint logics, in J.-P. Jouannaud, ed.,`Proceedings of the First International Conference on Constraints in Computational Logics',Springer-Verlag LNCS 845, Munich, Germany, pp. 237{252.Halln�as L. [1987], A note on the logic of a logic program, in `Proceedings of the Workshop onProgramming Logic', University of G�oteborg and Chalmers University of Technology, ReportPMG-R37.Halln�as L. [1991], `Partial inductive de�nitions', Theoretical Computer Science 87(1), 115{142.Hannan J. [1993], `Extended natural semantics', Journal of Functional Programming 3(2), 123{152.Hannan J. J. [1991], Investigating a Proof-Theoretic Meta-Language for Functional Programs,PhD thesis, University of Pennsylvania. Available as Technical Report MS-CIS-91-09.Harper R. [1988], An equational formulation of LF, Technical Report ECS-LFCS-88-67, Uni-versity of Edinburgh.Harper R., Honsell F. and Plotkin G. [1987], A framework for de�ning logics, in `Symposiumon Logic in Computer Science', IEEE Computer Society Press, pp. 194{204.Harper R., Honsell F. and Plotkin G. [1993], `A framework for de�ning logics', Journal ofthe Association for Computing Machinery 40(1), 143{184.Harper R. and Pfenning F. [1998], `A module system for a programming language based onthe LF logical framework', Journal of Logic and Computation 8(1), 5{31.Harper R. and Pfenning F. [2000], On equivalence and canonical forms in the LF type the-ory, Technical Report CMU-CS-00-148, Department of Computer Science, Carnegie MellonUniversity.Harper R., Sannella D. and Tarlecki A. [1989a], Logic representation, in D. Pitt, D. Ryde-heard, P. Dybjer, A. Pitts and A. Poigne�e, eds, `Proceedings of the Workshop on CategoryTheory and Computer Science', Springer-Verlag LNCS 389, Manchester, UK, pp. 250{272.Harper R., Sannella D. and Tarlecki A. [1989b], Structure and representation in LF, in`Fourth Annual Symposium on Logic in Computer Science', IEEE Computer Society Press,Paci�c Grove, California, pp. 226{237.Harper R., Sannella D. and Tarlecki A. [1994], `Structured presentations and logic repre-sentations', Annals of Pure and Applied Logic 67, 113{160.Hayashi S. and Nakano H. [1988], PX: A Computational Logic, Foundations of ComputingSeries, MIT Press.Hilbert D. and Bernays P. [1934], Grundlagen der Mathematik, Springer-Verlag, Berlin.Howard W. A. [1980], The formulae-as-types notion of construction, in J. P. Seldin and J. R.Hindley, eds, `To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-ism', Academic Press, pp. 479{490. Hitherto unpublished note of 1969.Huet G. [1973], `The undecidability of uni�cation in third order logic', Information and Control22(3), 257{267.Huet G. [1975], `A uni�cation algorithm for typed �-calculus', Theoretical Computer Science1, 27{57.Huet G. and Lang B. [1978], `Proving and applying program transformations expressed withsecond-order patterns', Acta Informatica 11, 31{55.Isabelle [1998], System home page. Version 98-1.URL: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/Jutting L. [1977], Checking Landau's \Grundlagen" in the AUTOMATH System, PhD thesis,Eindhoven University of Technology.

1140 Frank PfenningKahn G. [1987], Natural semantics, in `Proceedings of the Symposium on Theoretical Aspectsof Computer Science', Springer-Verlag LNCS 247, pp. 22{39.Kirchner, C. and Kirchner, H., eds [1998], Proceedings of the International Workshop onRewriting Logic and its Applications, Vol. 15 of Electronic Notes in Theoretical ComputerScience, Elsevier Science, Pont-�a-Mousson, France.URL: http://www.elsevier.com/locate/entcs/volume15.htmlKirchner C., Kirchner H. and Vittek M. [1993], Implementing computational systems withconstraints, in P. van Hentenryck and V. Saraswat, eds, `Proceedings of the First Workshopon Principles and Practice of Constraints Programming', MIT Press, Newport, Rhode Island.Kohlhase M. and Pfenning F. [1993], Uni�cation in a �-calculus with intersection types, inD. Miller, ed., `Proceedings of the International Logic Programming Symposium', MIT Press,Vancouver, Canada, pp. 488{505.Lambek J. and Scott P. [1986], Introduction to Higher-Order Categorical Logic, CambridgeUniversity Press.LEGO [1998], System home page. Version 1.3.1.URL: http://www.dcs.ed.ac.uk/home/legoLeleu P. [1998], Induction et Syntaxe Abstraite d'Ordre Sup�erieur dans les Th�eories Typ�ees,PhD thesis, Ecole Nationale des Ponts et Chaussees, Marne-la-Vallee, France.Logical Frameworks [1994], Home page. Includes bibliography and pointers to implementations.Last updated June 1997.URL: http://www.cs.cmu.edu/~fp/lfs.htmlLuo Z. and Pollack R. [1992], The LEGO proof development system: A user's manual, Tech-nical Report ECS-LFCS-92-211, University of Edinburgh.Magnusson L. [1993], Re�nement and local undo in the interactive proof editor ALF, in `Pro-ceedings of the Workshop on Types for Proofs and Programs', Nijmegen, The Netherlands,pp. 191{208.Magnusson L. [1995], The Implementation of ALF|A Proof Editor Based on Martin-L�of'sMonomorphic Type Theory with Explicit Substitution, PhD thesis, Chalmers University ofTechnology and G�oteborg University.Magnusson L. and Nordstr�om B. [1994], The ALF proof editor and its proof engine, inH. Barendregt and T. Nipkow, eds, `Types for Proofs and Programs', Springer-Verlag LNCS806, pp. 213{237.Mart��-Oliet N. and Meseguer J. [1993], Rewriting logic as a logical and semantical framework,Technical Report SRI-CSL-93-05, SRI International.Martin-L�of P. [1980], Constructive mathematics and computer programming, in `Logic,Methodology and Philosophy of Science VI', North-Holland, pp. 153{175.Martin-L�of P. [1985a], On the meanings of the logical constants and the justi�cations of thelogical laws, Technical Report 2, Scuola di Specializzazione in Logica Matematica, Diparti-mento di Matematica, Universit�a di Siena. Reprinted in the Nordic Journal of PhilosophicalLogic, 1(1), 11-60, 1996.Martin-L�of P. [1985b], Truth of a proposition, evidence of a judgement, validity of a proof.Notes to a talk given at the workshop Theory of Meaning, Centro Fiorentino di Storia eFiloso�a della Scienza.Matthews S., Smaill A. and Basin D. [1993], Experience with FS0 as a framework theory, inG. Huet and G. Plotkin, eds, `Logical Environments', Cambridge University Press, pp. 61{82.Maude [1999], System home page. Version 1.00.URL: http://maude.csl.sri.comMcDowell R. [1997], Reasoning in a Logic with De�nitions and Induction, PhD thesis, Univer-sity of Pennsylvania.McDowell R. and Miller D. [1997], A logic for reasoning with higher-order abstract syntax,in G. Winskel, ed., `Proceedings of the Twelfth Annual Symposium on Logic in ComputerScience', IEEE Computer Society Press, Warsaw, Poland, pp. 434{445.

Logical frameworks 1141Meseguer J. [1987], General logics, in H.-D. Ebbinghaus, ed., `Logic Colloquium '87', North-Holland, Granada, Spain, pp. 275{329.Meseguer, J., ed. [1998], Proceedings of the First International Workshop on Rewriting Logicand its Applications, Vol. 4 of Electronic Notes in Theoretical Computer Science, ElsevierScience, Paci�c Grove, California.URL: http://www.elsevier.com/locate/entcs/volume4.htmlMichaylov S. and Pfenning F. [1991], Natural semantics and some of its meta-theory inElf, in L.-H. Eriksson, L. Halln�as and P. Schroeder-Heister, eds, `Proceedings of the SecondInternational Workshop on Extensions of Logic Programming', Springer-Verlag LNAI 596,Stockholm, Sweden, pp. 299{344.Michaylov S. and Pfenning F. [1992], An empirical study of the runtime behavior of higher-order logic programs, in D. Miller, ed., `Proceedings of the Workshop on the �Prolog Pro-gramming Language', University of Pennsylvania, Philadelphia, Pennsylvania, pp. 257{271.Available as Technical Report MS-CIS-92-86.Michaylov S. and Pfenning F. [1993], Higher-order logic programming as constraint logic pro-gramming, in `Position Papers for the First Workshop on Principles and Practice of ConstraintProgramming', Brown University, Newport, Rhode Island, pp. 221{229.Miller D. [1986], A theory of modules for logic programming, in R. M. Keller, ed., `ThirdAnnual IEEE Symposium on Logic Programming', Salt Lake City, Utah, pp. 106{114.Miller D. [1989], `A logical analysis of modules in logic programming', Journal of Logic Pro-gramming 6(1-2), 79{108.Miller D. [1991], `A logic programming language with lambda-abstraction, function variables,and simple uni�cation', Journal of Logic and Computation 1(4), 497{536.Miller D. [1994], A multiple-conclusion meta-logic, in S. Abramsky, ed., `Ninth Annual Sympo-sium on Logic in Computer Science', IEEE Computer Society Press, Paris, France, pp. 272{281.Miller D., Nadathur G., Pfenning F. and Scedrov A. [1991], `Uniform proofs as a foundationfor logic programming', Annals of Pure and Applied Logic 51, 125{157.Nadathur G. and Miller D. [1988], An overview of �Prolog, in K. A. Bowen and R. A. Kowal-ski, eds, `Fifth International Logic Programming Conference', MIT Press, Seattle, Washington,pp. 810{827.Nadathur G. and Mitchell D. J. [1999], System description: Teyjus|a compiler and abstractmachine based implementation of lambda Prolog, in H. Ganzinger, ed., `Proceedings of the16th International Conference on Automated Deduction (CADE-16)', Springer-Verlag LNCS,Trento, Italy, pp. 287{291.Nadathur G. and Tong G. [1999], `Realizing modularity in lambdaProlog', Journal of Func-tional and Logic Programming 1999(9).Necula G. C. [1997], Proof-carrying code, in N. D. Jones, ed., `Conference Record of the 24thSymposium on Principles of Programming Languages (POPL'97)', ACM Press, Paris, France,pp. 106{119.Necula G. C. [1998], Compiling with Proofs, PhD thesis, Carnegie Mellon University. Availableas Technical Report CMU-CS-98-154.Necula G. C. and Lee P. [1996], Safe kernel extensions without run-time checking, in `Proceed-ings of the Second Symposium on Operating System Design and Implementation (OSDI'96)',Seattle, Washington, pp. 229{243.Necula G. C. and Lee P. [1998a], The design and implementation of a certifying compiler,in K. D. Cooper, ed., `Proceedings of the Conference on Programming Language Design andImplementation (PLDI'98)', ACM Press, Montreal, Canada, pp. 333{344.Necula G. C. and Lee P. [1998b], EÆcient representation and validation of logical proofs, inV. Pratt, ed., `Proceedings of the 13th Annual Symposium on Logic in Computer Science(LICS'98)', IEEE Computer Society Press, Indianapolis, Indiana, pp. 93{104.

1142 Frank PfenningNederpelt, R., Geuvers, J. and de Vrijer, R., eds [1994], Selected Papers on Automath, Vol.133 of Studies in Logic and the Foundations of Mathematics, North-Holland.Nipkow T. [1989], `Equational reasoning in Isabelle', Science of Computer Programming 12, 123{149.Nipkow T. [1993], Order-sorted polymorphism in Isabelle, in G. Huet and G. Plotkin, eds,`Logical Environments', Cambridge University Press, pp. 164{188.Nipkow T. and Paulson L. C. [1992], Isabelle-91, in D. Kapur, ed., `Proceedings of the 11thInternational Conference on Automated Deduction', Springer-Verlag LNAI 607, SaratogaSprings, NY, pp. 673{676. System abstract.Nordstr�om B. [1993], The ALF proof editor, in `Proceedings of the Workshop on Types forProofs and Programs', Nijmegen, pp. 253{266.Nordstr�om B., Petersson K. and Smith J. M. [1990], Programming in Martin-L�of's TypeTheory: An Introduction, Oxford University Press.Nuprl [1999], Project home page. Version 4.2.URL: http://simon.cs.cornell.edu/Info/Projects/NuPrl/nuprl.htmlOhlbach H., Nonnengart A., de Rijke M. and Gabbay D. [2001], Encoding two-valuednonclassical logics in classical logic, in A. Robinson and A. Voronkov, eds, `Handbook ofAutomated Reasoning', Vol. II, Elsevier Science, chapter 21, pp. 1403{1486.Paulin-Mohring C. [1993], Inductive de�nitions in the system Coq: Rules and properties, inM. Bezem and J. Groote, eds, `Proceedings of the International Conference on Typed LambdaCalculi and Applications', Springer-Verlag LNCS 664, Utrecht, The Netherlands, pp. 328{345.Paulson L. [1983], Tactics and tacticals in Cambridge LCF, Technical Report 39, University ofCambridge, Computer Laboratory.Paulson L. C. [1986], `Natural deduction as higher-order resolution', Journal of Logic Program-ming 3, 237{258.Paulson L. C. [1989], `The foundation of a generic theorem prover', Journal of AutomatedReasoning 5(3), 363{397.Paulson L. C. [1990], Isabelle: The next 700 theorem provers, in P. Odifreddi, ed., `Logic andComputer Science', Academic Press, pp. 361{386.Paulson L. C. [1993], Isabelle's object-logics, Technical Report 286, University of Cambridge,Computer Laboratory.Paulson L. C. [1994], Isabelle: A Generic Theorem Prover, Springer-Verlag LNCS 828.Petersson K. [1982], A programming system for type theory, PMG Report 9, Chalmers Uni-versity of Technology.Pfenning F. [1989], Elf: A language for logic de�nition and veri�ed meta-programming, in`Fourth Annual Symposium on Logic in Computer Science', IEEE Computer Society Press,Paci�c Grove, California, pp. 313{322.Pfenning F. [1991a], Logic programming in the LF logical framework, in G. Huet and G. Plotkin,eds, `Logical Frameworks', Cambridge University Press, pp. 149{181.Pfenning F. [1991b], Uni�cation and anti-uni�cation in the Calculus of Constructions, in `SixthAnnual IEEE Symposium on Logic in Computer Science', Amsterdam, The Netherlands,pp. 74{85.Pfenning F. [1993], Re�nement types for logical frameworks, in H. Geuvers, ed., `InformalProceedings of the Workshop on Types for Proofs and Programs', Nijmegen, The Netherlands,pp. 285{299.Pfenning F. [1994a], Elf: A meta-language for deductive systems, in A. Bundy, ed., `Proceedingsof the 12th International Conference on Automated Deduction', Springer-Verlag LNAI 814,Nancy, France, pp. 811{815. System abstract.Pfenning F. [1994b], Structural cut elimination in linear logic, Technical Report CMU-CS-94-222, Department of Computer Science, Carnegie Mellon University.

Logical frameworks 1143Pfenning F. [1995], Structural cut elimination, in D. Kozen, ed., `Proceedings of the TenthAnnual Symposium on Logic in Computer Science', IEEE Computer Society Press, San Diego,California, pp. 156{166.Pfenning F. [1996], The practice of logical frameworks, in H. Kirchner, ed., `Proceedings of theColloquium on Trees in Algebra and Programming', Springer-Verlag LNCS 1059, Link�oping,Sweden, pp. 119{134. Invited talk.Pfenning F. [2000], `Structural cut elimination I. Intuitionistic and classical logic', Informationand Computation 157(1/2), 84{141.Pfenning F. [2001], Computation and Deduction, Cambridge University Press. In preparation.Draft from April 1997 available electronically.URL: http://www.cs.cmu.edu/~twelf/notes/cd.psPfenning F. and Elliott C. [1988], Higher-order abstract syntax, in `Proceedings of theACM SIGPLAN '88 Symposium on Language Design and Implementation', Atlanta, Georgia,pp. 199{208.Pfenning F. and Rohwedder E. [1992], Implementing the meta-theory of deductive systems, inD. Kapur, ed., `Proceedings of the 11th International Conference on Automated Deduction',Springer-Verlag LNAI 607, Saratoga Springs, New York, pp. 537{551.Pfenning F. and Sch�urmann C. [1998a], Algorithms for equality and uni�cation in the presenceof notational de�nitions, in T. Altenkirch, W. Naraschewski and B. Reus, eds, `Types forProofs and Programs', Springer-Verlag LNCS 1657, Kloster Irsee, Germany, pp. 179{193.Pfenning F. and Sch�urmann C. [1998b], `Twelf', Project home page. Version 1.2.URL: http://www.cs.cmu.edu/~twelfPfenning F. and Sch�urmann C. [1998c], Twelf User's Guide, 1.2 edn. Available as TechnicalReport CMU-CS-98-173, Carnegie Mellon University.Pinto L. and Dyckhoff R. [1998], Sequent calculi for the normal terms of the ��- and ���-calculi, in D. Galmiche, ed., `Proceedings of the Workshop on Proof Search in Type-TheoreticLanguages', Vol. 17 of Electronic Notes in Theoretical Computer Science, Elsevier Science,Lindau, Germany.URL: http://www.elsevier.com/locate/entcs/volume17.htmlPollack R. [1994], The Theory of LEGO: A Proof Checker for the Extended Calculus of Con-structions, PhD thesis, University of Edinburgh.�Prolog [1997], Home page. Indexes lambda Prolog implementations.URL: http://www.cse.psu.edu/~dale/lProlog/Pym D. [1990], Proofs, Search and Computation in General Logic, PhD thesis, University ofEdinburgh. Available as CST-69-90, also published as ECS-LFCS-90-125.Pym D. [1992], `A uni�cation algorithm for the ��-calculus', International Journal of Founda-tions of Computer Science 3(3), 333{378.Pym D. and Wallen L. [1990], Investigations into proof-search in a system of �rst-order depen-dent function types, in M. Stickel, ed., `Proceedings of the 10th International Conference onAutomated Deduction', Springer-Verlag LNCS 449, Kaiserslautern, Germany, pp. 236{250.Pym D. and Wallen L. A. [1991], Proof search in the ��-calculus, in G. Huet and G. Plotkin,eds, `Logical Frameworks', Cambridge University Press, pp. 309{340.Qian Z. [1993], Linear uni�cation of higher-order patterns, inM.-C. Gaudel and J.-P. Jouannaud,eds, `Proceedings of the Colloquium on Trees in Algebra and Programming', Springer-VerlagLNCS 668, Orsay, France, pp. 391{405.Rohwedder E. and Pfenning F. [1996], Mode and termination checking for higher-order logicprograms, in H. R. Nielson, ed., `Proceedings of the European Symposium on Programming',Springer-Verlag LNCS 1058, Link�oping, Sweden, pp. 296{310.Rue� H. [1996], Re
ection of formal tactics in a deductive re
ection framework, inM. McRobbieand J. Slaney, eds, `Proceedings of the 13th International Conference on Automated Deduc-tion', Springer-Verlag LNAI 1104, New Brunswick, New Jersey, pp. 628{642.

1144 Frank PfenningRue� H. [1997], Computational re
ection in the calculus of constructions and its application totheorem proving, in P. de Groote and R. Hindley, eds, `Proceedings fo the Third InternationalConference on Typed Lambda Calculus and Applications (TLCA'97)', Springer-Verlag LNCS,Nancy, France, pp. 319{335.Schroeder-Heister P. [1991], Structural frameworks, substructural logics, and the role of elimi-nation inferences, in G. Huet and G. Plotkin, eds, `Logical Frameworks', Cambridge UniversityPress, pp. 385{403.Schroeder-Heister P. [1993], Rules of de�nitional re
ection, in M. Vardi, ed., `Proceedingsof the Eighth Annual IEEE Symposium on Logic in Computer Science', Montreal, Canada,pp. 222{232.Sch�urmann C. [1995], A computational meta logic for the Horn fragment of LF, Master's thesis,Carnegie Mellon University. Available as Technical Report CMU-CS-95-218.Sch�urmann C. [2000], Automating the Meta Theory of Deductive Systems, PhD thesis, De-partment of Computer Science, Carnegie Mellon University. Available as Technical ReportCMU-CS-00-146.Sch�urmann C. and Pfenning F. [1998], Automated theorem proving in a simple meta-logic forLF, in C. Kirchner and H. Kirchner, eds, `Proceedings of the 15th International Conference onAutomated Deduction (CADE-15)', Springer-Verlag LNCS 1421, Lindau, Germany, pp. 286{300.Shankar N. [1988], `A mechanical proof of the Church-Rosser theorem', Journal of the Associ-ation for Computing Machinery 35(3), 475{522.Troelstra A. S. and van Dalen D. [1988], Constructivism in Mathematics, Vol. 121 of Studiesin Logic and the Foundations of Mathematics, North-Holland, Amsterdam.Virga R. [1996], Higher-order superposition for dependent types, in H. Ganzinger, ed., `Proceed-ings of the 7th International Conference on Rewriting Techniques and Applications', Springer-Verlag LNCS 1103, New Brunswick, New Jersey, pp. 123{137. Extended version available asTechnical Report CMU-CS-95-150, May 1995.Virga R. [1999], Higher-Order Rewriting with Dependent Types, PhD thesis, Department ofMathematical Sciences, Carnegie Mellon University. Available as Technical Report CMU-CS-99-167.

Logical frameworks 1145Index Aabstract syntax .1067higher-order 1072, 1074, 1093adequacy . . . 1069, 1073, 1083, 1090, 1109admissible rule . 1108ALF . 1066, 1131�-conversion . 1070antecedent . 1096atomic form 1121, 1127Automath . 1065, 1075axiomatic system 1075, 1092, 1110in LF . 1093axioms . 1075Bbacktracking 1099, 1100, 1105base type . 1127��-conversion . 1123��-normal form . 1071bound variable . 1067bracket abstraction 1117Ccanonical form 1070, 1073, 1121, 1127certifying compiler 1134classical logic .1081combinator .1114compositionality .1072conclusion .1075constraints . 1102context .1120, 1124contraction .1076conversionto atomic form 1129to canonical form1129Coq . 1065, 1098, 1131coverage . 1111cut elimination . 1132cut rule . 1107Dde Bruijn index 1070, 1074deduction theorem 1115deductions as objects 1084, 1131deductive system . 1065deep backtracking 1100, 1105de�nitional equality 1071, 1123, 1124de�nitional re
ection 1110dependent kind .1093dependently typed rewriting 1130

derived rule . 1107EEdinburgh LF .see LFELAN1099, 1130, 1132Elf . 1066, 1103, 1131elimination rule . 1076embedded implication 1083embedded universal quanti�cation . . . 1083equalityde�nitional 1071, 1123, 1124�-conversion .1122exchange . 1076Ffailure .1099�rst-order logic . 1067focused search .1103formula . 1067Forum . 1132free variable . 1067FS0 . 1066, 1108, 1131function type .1120Ggeneral logic .1066goal-directed search 1103Hhereditary Harrop formula 1082, 1131higher-level judgment 1110higher-order abstract syntax . . 1072, 1074,1093higher-order pattern1102Hilbert system see axiomatic systemHOL . 1098Horn clauses . 1068hypothesis . 1076hypothetical judgment . . .1076, 1083, 1127Iimplication 1077, 1087, 1094embedded . 1083implicit argument 1091implicit quanti�er 1091induction .1108inductive de�nition 1069, 1108inference rule .1075introduction rule . 1076invalid tactic . 1085

1146 Frank PfenningIsabelle1082, 1098, 1131Jjudgment .1075higher-level1093, 1110hypothetical1076, 1083, 1127parametric 1076, 1083, 1127judgments as propositions 1083, 1131judgments as types 1085Kkind .1085, 1124dependent .1093Llabelled deductive system1066, 1131�! . 1070, 1119�-calculusdependently typed 1085, 1123simply typed 1070, 1119�� . 1085, 1123�Prolog 1082, 1103, 1107, 1131LCF . 1098LEGO . 1065, 1131LF . 1065, 1085, 1123linear LF . 1127, 1132local completeness1077local reduction . 1077in LF . 1095local soundness .1077logic programming 1102, 1132logical variable . 1100long normal form .1071MMaude . 1130meta-program . 1095meta-variable1075, 1100ML . 1098, 1131modality . 1109modes .1111module system 1107, 1133Nnatural deduction . 1075, 1076, 1082, 1110in HHF . 1083in LF . 1091natural semantics 1103negation1078, 1088, 1094Nuprl 1065, 1098, 1131Oobject . 1120, 1124observable value 1074, 1121

open-world assumption 1073, 1109orthogonality .1076Pparameter . 1076parametric judgment 1076, 1083, 1127partial inductive de�nition 1066, 1077,1109Pi . 1109polymorphism . 1133pre-uni�cation . 1102premise . 1075proof-carrying code1133PX .1065Rre
ection . 1110, 1131rewriting logic1066, 1130rule of inference see inference ruleSsafe tactic . 1101sequent calculus 1075, 1096shallow backtracking 1099signature . 1120, 1124Skolemization . 1100strategy language 1099strictness .1107subgoal selection . 1105substitution 1067, 1070, 1072substructural framework1066, 1132subtype . 1133succedent . 1096Ttactic .1098invalid . 1085safe . 1101unfailing . 1101tactical .1098term . 1067termination . 1111type conversion . 1086type family .1085, 1124type theory . 1065Uunfailing tactic . 1101uni�cation . 1100, 1101for �� .1102for �! . 1101uniform derivations1103universal quanti�cation . . 1079, 1089, 1095embedded . 1083

Logical frameworks 1147untyped representation 1068Vvariable convention 1067variable renaming 1067Wweak head reduction 1122, 1129weakening . 1076

