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Abstract. We develop a system of type assignment with intersection
types, union types, indexed types, and universal and existential depen-
dent types that is sound in a call-by-value functional language. The com-
bination of logical and computational principles underlying our formu-
lation naturally leads to the central idea of type-checking subterms in
evaluation order. We thereby provide a uniform generalization and ex-
planation of several earlier isolated systems. The proof of progress and
type preservation, usually formulated for closed terms only, relies on a
notion of definite substitution.

1 Introduction

Conventional static type systems are tied directly to the expression constructs
available in a language. For example, functions are classified by function types
A → B, pairs are classified by product types A ∗ B, and so forth. In more
advanced type systems we find type constructs that are independent of any
particular expression construct. The best-known examples are parametric poly-
morphism ∀t.A and intersection polymorphism A ∧ B. Such types can be seen
as expressing more complex properties of programs. For example, if we read the
judgment e : A as e satisfies property A, then e : A ∧ B expresses that e satisfies
both property A and property B. We call such types property types. Our long-
term goal is to integrate a rich system of property types into practical languages
such as Standard ML [9], in order to express and verify detailed invariants of
programs as part of type-checking.

In this paper we design a system of property types specifically for call-by-
value languages. We show that the resulting system is type-safe, that is, satisfies
the type preservation and progress theorems. We include indexed types δ(i),
intersection types A ∧ B, a greatest type >, universal dependent types Πa:γ.A,
union types A ∨ B, an empty type ⊥, and existential dependent types Σa:γ.A.
We thereby combine, unify, and extend prior work on intersection types [6],
union types [11, 2] and dependent types [17].
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Several principles emerge from our investigation. Perhaps most important
is that type assignment may visit subterms in evaluation order, rather than
just relying on immediate subterms. We also confirm the critical importance of
a logically motivated design for subtyping and type assignment. The resulting
orthogonality of various property type constructs greatly simplifies the theory
and allows one to understand each concept in isolation. As a consequence, sim-
ple types, intersection types [6], and indexed and dependent types [17] are ex-
tended conservatively. There are also interesting technical aspects in our proof
of progress and preservation: Usually these can be formulated entirely for closed
expressions; here we needed to generalize the properties by allowing so-called
definite substitutions. Our type system is designed to allow effects (in particular,
mutable references), but in order to concentrate on more basic issues, we do not
include them explicitly in this paper (see [6] for the applicable techniques to
handle mutable references).

The results in this paper constitute the first step towards a practical type
system. The system of pure type assignment presented here is undecidable; to
remedy this, we have formulated another version based on bidirectional type-
checking (in the style of [6, 7]) of programs containing some type annotations,
where we variously check an expression against a type or else synthesize the
expression’s type. However, we do not yet have a formal proof of decidability,
nor any significant experience with checking realistic programs. Our confidence in
the practicality of the system rests on prior work on intersection and dependent
types in isolation.

The remainder of the paper is organized as follows. We start by defining a
small and conventional functional language with subtyping, in a standard call-
by-value semantics. We then add several forms of property types: intersection
types, indexed types, and universal dependent types. As we do so, we motivate
our typing and subtyping rules through examples, showing how our particular
formulation arises out of our demand that the theorems of type preservation and
progress hold. Then we add the indefinite property types: the empty type ⊥,
the union type ∨, and the existential dependent type Σ. To be sound, these
must visit subterms in evaluation order. After proving some novel properties of
judgments and substitutions, we prove preservation and progress. Finally, we
discuss related work and conclude.

2 The Base Language

We start by defining a standard call-by-value functional language (Figure 1) with
functions, a unit type (used in a few examples), and recursion, to which we will
add various constructs and types. Expressions do not contain types, because we
are formulating a pure type assignment system. We distinguish between variables
x that stand for values and variables f that stand for expressions, where the fs
arise only from fixed points. The form of the typing judgment is Γ ` e : A where
Γ is a context typing variables x and f . The typing rules here are standard
(Figure 2); the subsumption rule utilizes a subtyping judgment Γ ` A ≤ B
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A,B,C,D ::= 1 | A→ B

e ::= x | f | () | λx. e | e1(e2) | fix f. e

Fig. 1. Syntax of types and terms in the initial language

Γ ` B1 ≤ A1 Γ ` A2 ≤ B2

Γ ` A1 → A2 ≤ B1 → B2
(→)

Γ ` 1 ≤ 1
(1)

Γ (x) = A

Γ ` x : A
(var)

Γ (f) = A

Γ ` f : A
(fixvar)

Γ ` e : A Γ ` A ≤ B
Γ ` e : B

(sub)

Γ ` e1 : A→ B Γ ` e2 : A

Γ ` e1(e2) : B
(→E)

Γ, f :A ` e : A

Γ ` fix f. e : A
(fix)

Γ, x:A ` e : B

Γ ` λx. e : A→ B
(→I)

Γ ` () : 1
(1I)

Fig. 2. Subtyping and typing in the initial language

meaning that A is a subtype of B in context Γ . The interpretation is that the
set of values of type A is a subset of the set of values of type B. The context
Γ is not used in the subtyping rules of Figure 2, but we subsequently augment
the subtyping system with rules that refer to Γ . The rule (→) is the standard
subtyping rule for function types, contravariant in the argument and covariant in
the result; (1) is obvious. It is easy to prove that subtyping is decidable, reflexive
(Γ ` A ≤ A), and transitive (if Γ ` A ≤ B and Γ ` B ≤ C then Γ ` A ≤ C);
as we add rules to the subtyping system, we maintain these properties.

A call-by-value operational semantics defining a relation e 7→ e′ is given in
Figure 3. We use v for values, and write e value if e is a value. We write E for
an evaluation context—a term containing a hole []; E[e′] denotes E with its hole
replaced by e′.

3 Definite Property Types

Definite types accumulate positive information about expressions. For instance,
the intersection type A ∧ B expresses the conjunction of the properties A and B.
We later introduce indefinite types such as A ∨ B which encompass expressions
that have either property A or property B, although it is unknown which one.

3.1 Refined Datatypes

We now add datatypes with refinements (Figure 4). c(e) denotes a datatype
constructor c applied to an argument e; the destructor case e of ms denotes a
case over e with one layer of non-redundant and exhaustive matches ms. We
also add pairs so a constructor can take exactly one argument, but elide the
straightforward syntax and rules. Each datatype is refined, in the manner of [5],
by an atomic subtyping relation � over datasorts δ. Each datasort identifies a
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Values v ::= x | () | λx. e
Evaluation contexts E ::= [] | E(e) | v(E)

e′ 7→R e′′

E[e′] 7→ E[e′′]
(ev-context) (λx. e) v 7→R [v/x] e

fix f. e 7→R [fix f. e / f ] e

Fig. 3. A small-step call-by-value semantics

ms ::= · | c(x)⇒ e|ms

e ::= . . . | c(e) | case e of ms

v ::= . . . | c(v)

E ::= . . . | c(E) | case E of ms

Fig. 4. Extending the language with datatypes

subset of values of the form c(v), yielding definite information about a value.
For example, datasorts true and false identify singleton subsets of values of the
type bool.

A new subtyping rule defines subtyping for datasorts in terms of the atomic
subtyping relation � :

δ1� δ2
Γ ` δ1 ≤ δ2

(δ)

To maintain reflexivity and transitivity of subtyping, we require the same
properties of atomic subtyping: � must be reflexive and transitive.

Since we will subsequently further refine our datatypes by indices, we defer
discussion of the typing rules.

3.2 Intersections

The typing e : A ∧ B expresses that e has type A and type B. The subtyping
rules for ∧ capture this:

Γ ` A ≤ B1 Γ ` A ≤ B2

Γ ` A ≤ B1 ∧ B2
(∧R)

Γ ` A1 ≤ B
Γ ` A1 ∧ A2 ≤ B

(∧L1)
Γ ` A2 ≤ B

Γ ` A1 ∧ A2 ≤ B
(∧L2)

We omit the common distributivity rule

(A→ B) ∧ (A→ B′) ≤ A→ (B ∧ B′)

which Davies and Pfenning showed to be unsound in the presence of mutable
references [6]. Moreover, without the above rule, no subtyping rule contains more
than one type constructor: the rules are orthogonal. As we add type constructors
and subtyping rules, we will maintain this orthogonality.

On the level of typing, we can introduce an intersection with the rule

Γ ` v : A1 Γ ` v : A2

Γ ` v : A1 ∧ A2
(∧I)
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P ::= ⊥ | i .= j | . . .

Γ ::= · | Γ, x:A | Γ, a:γ | Γ, P

· = ·
Γ, x:A = Γ

Γ, a:γ = Γ , a:γ

Γ, P = Γ , P

Fig. 5. Propositions P , contexts Γ , and the restriction function Γ

and eliminate it with

Γ ` e : A1 ∧ A2

Γ ` e : A1
(∧E1)

Γ ` e : A1 ∧ A2

Γ ` e : A2
(∧E2)

Note that (∧I) can only type values v, not arbitrary expressions, following
Davies and Pfenning [6] who showed that in the presence of mutable references,
allowing non-values destroys type preservation.

The ∧-elimination rules are derivable via (sub) with the (∧L1) and (∧L2)
subtyping rules. However, we include them because they are not derivable in a
bidirectional system such as that of [7].

3.3 Greatest Type: >

It is easy to incorporate a greatest type >, which can be thought of as the 0-ary
form of ∧. The rules are simply

Γ ` A ≤ > (>R)
Γ ` v : > (>I)

There is no left subtyping rule. The typing rule is essentially the 0-ary version
of (∧I), the rule for binary intersection. If we allow (>I) to type non-values, the
progress theorem fails: ` ()() : >, but ()() is neither a value nor a redex.

3.4 Index Refinements and Universal Dependent Types Π

Now we add index refinements, which are dependent types over a restricted
domain, closely following Xi and Pfenning [17], Xi [15, 16], and Dunfield [7].
This refines datatypes not only by datasorts, but by indices drawn from some
constraint domain: the type δ(i) is the refinement by δ and index i.

To accommodate index refinements, several changes must be made to the
systems we have constructed so far. The most drastic is that Γ can include
index variables a, b and propositions P as well as program variables. Because the
program variables are irrelevant to the index domain, we can define a restriction
function Γ that yields its argument Γ without program variable typings (Figure
5). No variable may appear twice in Γ , but ordering of the variables is now
significant because of dependencies.

Our formulation, like Xi’s, requires only a few properties of the constraint
domain: There must be a way to decide a consequence relation Γ |= P whose
interpretation is that given the index variable typings and propositions in Γ ,
the proposition P must hold. There must be a relation i

.
= j denoting index
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equality. There must be a way to decide a relation Γ ` i : γ whose interpretation
is that i has sort γ in Γ . Note the stratification: terms have types, indices have
sorts; terms and indices are distinct. Our proofs require that |= be a consequence
relation, that

.
= be an equivalence relation, that · 6|= ⊥, and that both |= and `

have the obvious substitution and weakening properties; see [7] for details.
Each datatype has an associated atomic subtyping relation on datasorts, and

an associated sort whose indices refine the datatype. In our examples, we work
in a domain of integers N with

.
= and some standard arithmetic operations (+,

−, ∗, <, and so on); each datatype is refined by indices of sort N . Then Γ |= P
is decidable provided the inequalities in P are linear.

We add an infinitary definite type Πa:γ.A, introducing an index variable a
universally quantified over indices of sort γ. One can also view Π as a dependent
product restricted to indices (instead of arbitrary terms).

Example. Assume we define an datatype of integer lists: a list is either Nil() or
Cons(h, t) for some integer h and list t. Refine this type by a datasort odd if the
list’s length is odd, even if it is even. We also refine the lists by their length, so Nil
has type 1→ even(0), and Cons has type (Πa:N . int ∗ even(a)→ odd(a+ 1)) ∧
(Πa:N . int ∗ odd(a)→ even(a+ 1)). Then the function

fix repeat . λx. case x of Nil⇒ Nil |Cons(h, t)⇒ Cons(h,Cons(h, repeat(t)))

has type Πa:N . list(a)→ even(2 ∗ a).

To handle the indices, we modify the subtyping rule δ from Section 3.1 so
that it checks (separately) the datasorts δ1, δ2 and the indices i, j:

δ1� δ2 Γ ` i .= j

Γ ` δ1(i) ≤ δ2(j)
(δ)

We assume the constructors c are typed by a judgment Γ ` c : A → δ(i)
where A is any type and δ(i) is some refined type. The typing A → δ(i) need
not be unique; indeed, a constructor should often have more than one refined
type. The rule for constructor application is

Γ ` c : A→ δ(i) Γ ` e : A

Γ ` c(e) : δ(i)
(δI)

To type case e of ms, we check that all the matches in ms have the same
type, under a context appropriate to each arm; this is how propositions P arise.
The context Γ may be contradictory (Γ |= ⊥) if the case arm can be shown to
be unreachable by virtue of the index refinements of the constructor type and
the value cased upon. In order to not typecheck unreachable arms, we have

Γ |= ⊥
Γ ` e : A

(contra)

We also do not check case arms that are unreachable by virtue of the datasort
refinements. For a complete accounting of constructor typing and the rules for
typing case expressions, see [7].
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The subtyping rules for Π are

Γ ` [i/a]A ≤ B Γ ` i : γ

Γ ` Πa:γ.A ≤ B (ΠL)
Γ, b:γ ` A ≤ B
Γ ` A ≤ Πb:γ.B (ΠR)

The left rule allows one to instantiate a quantified index variable a to an
index i of appropriate sort. The right rule states that if A ≤ B regardless of an
index variable b, A is also a subtype of Πb:γ.B. Of course, b cannot occur free
in A.

The typing rules for Π are

Γ, a:γ ` v : A

Γ ` v : Πa:γ.A
(ΠI)

Γ ` e : Πa:γ.A Γ ` i : γ

Γ ` e : [i/a]A
(ΠE)

Like (∧I), and for similar reasons (to maintain type preservation), (ΠI) is
restricted to values. Moreover, if γ is an empty sort, progress would fail if the
rule were not thus restricted.

4 Indefinite Property Types

We now have a system with definite types ∧, >, Π; see [7] for a detailed account
of this system and its bidirectional version. The typing and subtyping rules are
both orthogonal and internally regular: no rule mentions both > and ∧, (>I)
is a 0-ary version of (∧I), and so on. However, one cannot express the types
of functions with indeterminate result type. A simple example is a filter f l
function on lists of integers, which returns the elements of l for which f returns
true. It has the ordinary type filter : (int→bool) → list → list. Indexing lists
by their length, the refined type should look like

filter : Πn:N . (int→bool)→ list(n)→ list( )

But we cannot fill in the blank. Xi’s solution [17, 15] was to add dependent sums
Σa:γ.A quantifying existentially over index variables. Then we can express the
fact that filter returns a list of some indefinite length m as follows1:

filter : Πn:N . (int→bool)→ list(n)→ (Σm:N . list(m))

For similar reasons, we also occasionally need 0-ary and binary indefinite types—
the empty type and union types, respectively. We begin with the binary case.

4.1 Unions

On values, the binary indefinite type should simply be a union in the ordinary
sense: if ` v : A ∨ B then either ` v : A or ` v : B. This leads to the following
subtyping rules which are dual to the intersection rules.

Γ ` A1 ≤ B Γ ` A2 ≤ B
Γ ` A1∨A2 ≤ B

(∨L)
Γ ` A ≤ B1

Γ ` A ≤ B1∨B2
(∨R1)

Γ ` A ≤ B2

Γ ` A ≤ B1∨B2
(∨R2)

1 The additional constraint m ≤ n can be expressed by a subset sort ; see Xi [16, 15].
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The introduction rules directly express the simple logical interpretation:

Γ ` e : A
Γ ` e : A ∨ B (∨I1) Γ ` e : B

Γ ` e : A ∨ B (∨I2)

The elimination rule is harder to formulate. It is clear that if e : A ∨ B and e
evaluates to a value v, then either v : A or v : B. So we should be able to reason
by cases, similar to the usual disjunction elimination rule in natural deduction.
However, there are several complications. The first is that A ∨ B is a property
type. That is, we cannot have a case construct in the ordinary sense since the
members of the union are not tagged.2

As a simple example, consider

f : (B → D) ∧ (C → D)
g : A→ (B ∨ C)
x : A

Then f(g(x)) should be type correct and have type D. At first this might seem
doubtful, because the type of f does not directly show how to treat an argument
of type B ∨ C. However, whatever g returns must be a closed value v, and must
therefore either have type B or type C. In both cases f(v) should be well-typed
and return a result of type D.

Note that we can distinguish cases on the result of g(x) because it is evaluated
before f is called.3 In general, we allow case distinction on the type of the next
expression to be evaluated. This guarantees both progress and preservation. The
rule is then

Γ ` e′ : A ∨ B
Γ, x:A ` E[x] : C
Γ, y:B ` E[y] : C

Γ ` E[e′] : C
(∨E)

The use of the evaluation context E[ ] guarantees that e′ is the next expression
to be evaluated, following our informal reasoning above. In the example, e′ =
g(x) and E[ ] = f [ ].

Several generalizations of this rule come to mind that are in fact unsound in
our setting. For example, allowing simultaneous abstraction over several occur-
rences of e′, as in a rule proposed in [2],

Γ ` e′ : A ∨ B
Γ, x:A ` e : C
Γ, x:B ` e : C

Γ ` [e′/x] e : C
(∨E′)

is unsound here: two occurrences of the identical e′ could return different results
(the first of type A, the second of type B), while the rule above assumes consis-
tency. Similarly, we cannot allow the occurrence of e′ to be in a position where

2 Pierce’s case [11] is a syntactic marker for where to apply the elimination rule.
Clearly, a pure type assignment system should avoid this. It appears we can avoid it
even in a bidirectional system; further discussion is beyond the scope of this paper.

3 If arguments were passed by name instead of by value, this would be unsound in a
language with effects: evaluation of the same expression e : A ∨ B could sometimes
return a value of type A and sometimes a value of type B.
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it might not be evaluated. That is, in (∨E′) it is not enough to require that
there be exactly one occurrence of x in e, because, for example, if we consider
the context

f : ((1→B)→ D) ∧ ((1→C)→ D),
g : A→ (B ∨ C),
x : A

and term f (λy. g(x)), then f may use its argument at multiple types, eventually
evaluating g(x) multiple times with different possible answers. Thus, treating it
as if all occurrences must all have type B or all have type C is unsound. If we
restrict the rule so that e′ must be a value, as in [13], we obtain a sound but
impractical rule—a typechecker would have to guess e′, and if it occurs more
than once, a subset of its occurrences.

A final generalization suggests itself: we might allow the subterm e′ to occur
exactly once, and in any position where it would definitely have to be evaluated
exactly once for the whole expression to be evaluated. Besides the difficulty of
characterizing such positions, even this apparently innocuous generalization is
unsound for the empty type ⊥.

4.2 The Empty Type

The 0-ary indefinite type is the empty or void type ⊥; it has no values. For > we
had one right subtyping rule; for ⊥, following the principle of duality, we have
one left rule:

Γ ` ⊥ ≤ A (⊥L)

For example, the term ω = (fix f.λx. f(x))() has type ⊥. For an elimination
rule (⊥E), we can proceed by analogy with (∨E):

Γ ` e′ : ⊥
Γ ` E[e′] : C

(⊥E)

As before, the expression typed must be an evaluation context E with redex e′.
Viewing ⊥ as a 0-ary union, we had two additional premises in (∨E), so we have
none now. (⊥E) is sound, but the generalization mentioned at the end of the
previous section violates progress (Theorem 3). This is easy to see through the
counterexample (()())(ω).

4.3 Existential Dependent Types: Σ

Now we add an infinitary indefinite type Σ. Just as we have come to expect, the
subtyping rules are dual to the rules for the corresponding definite type (in this
case Π):

Γ, a:γ ` A ≤ B
Γ ` Σa:γ.A ≤ B (ΣL)

Γ ` A ≤ [i/b]B Γ ` i : γ

Γ ` A ≤ Σb:γ.B (ΣR)

The typing rule that introduces Σ is simply
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Γ ` e : [i/a]A Γ ` i : γ

Γ ` e : Σa:γ.A
(ΣI)

For the elimination rule, we continue with a restriction to evaluation con-
texts:

Γ ` e′ : Σa:γ.A Γ, a:γ, x:A ` E[x] : C

Γ ` E[e′] : C
(ΣE)

Not only is the restriction consistent with the elimination rules for ⊥ and
∨, but it is required. The counterexample for ⊥ suffices: Suppose that the rule
were unrestricted, so that it typed any e containing some subterm e′. Let e′ = ω
and e = (()())(ω). Since e′ : ⊥, by subsumption e′ has type Σa:⊥. A for any A,
and by the (contra) rule, a:⊥, x:A ` (()())x : C (where ⊥ is the empty sort).
Now we can apply the unrestricted rule to conclude ` (()())e′ : C for any C,
contrary to progress.

4.4 Type-Checking in Evaluation Order

The following rule internalizes a kind of substitution principle for evaluation
contexts and allows us to type-check a term in evaluation order.

Γ ` e′ : A Γ, x:A ` E[x] : C

Γ ` E[e′] : C
(direct)

Perhaps surprisingly, this rule is not only admissible but derivable in our
system: from e′ : A we can conclude e′ : A ∨ A and then apply (∨E). However,
the corresponding bidirectional rule is not admissible, and so must be primitive
in a bidirectional system [7].

Thus, in either the type assignment or bidirectional systems, we can choose
to type-check the term in evaluation order. This has a clear parallel in Xi’s
work [15], which is bidirectional and contains both Π and Σ. There, the order in
which terms are typed is traditional, not guided by evaluation order. However,
Xi’s elaboration algorithm in the presence of Π and Σ transforms the term into
a let-normal form, which has a similar effect.

5 Properties of Subtyping

The rules of subtyping were formulated so that the premises are always smaller
than the conclusion. Since we assume that |= and ` in the constraint domain
are decidable, we obtain decidability immediately.

Theorem 1. Γ ` A ≤ B is decidable.

We omitted rules for reflexivity and transitivity of subtyping without loss of
expressive power, because they are admissible.

Lemma 1 (Reflexivity and Transitivity of ≤). For any context Γ , Γ `
A ≤ A. If Γ ` A ≤ B and Γ ` B ≤ C then Γ ` A ≤ C.
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Γ ′ ` · : ·
(empty-σ)

Γ ′ ` σ : Γ Γ ′ |= [σ]P

Γ ′ ` σ : Γ, P
(prop-σ)

Γ ′ ` σ : Γ Γ ′ ` i : γ

Γ ′ ` σ, i/a : Γ, a:γ
(ivar-σ)

Γ ′ ` σ : Γ Γ ′ ` v : [σ]A

Γ ′ ` σ, v/x : Γ, x:A
(pvar-σ)

Fig. 6. Substitution typing

Proof. For reflexivity, by induction on A. For transitivity, by induction on the
derivations; in each case at least one derivation becomes smaller. In the cases
(ΣR)/(ΣL) and (ΠR)/(ΠL) we substitute an index i for a parameter a in a
derivation. ut

In addition we have a large set of inversion properties, which are purely
syntactic in our system. We elide the lengthy statement of these properties here.

6 Properties of Values

For the proof of type safety, we need a key property: values are always definite.
That is, once we obtain a value v, even though v might have type A ∨ B, it
must be possible to assign a definite type to v. In order to make this precise,
we formulate substitutions σ that substitute values and indices, respectively, for
several program variables x and index variables a. First we prove a simple lemma
relating values and evaluation contexts.

Lemma 2 (Value monotonicity). If E[e′] value then: (1) e′ value; (2) for
any v value, E[v] value.

Proof. By structural induction on E. ut

6.1 Substitutions

Figure 6 defines a typing judgment for substitutions Γ ′ ` σ : Γ . It could be
more general; here we are only interested in substitutions of values for program
variables and indices for index variables that verify the logical assumptions of
the constraint domain. Note in particular that substitutions σ do not substitute
for fixed point variables. Application of a substitution σ to a term e or type A,
is in the usual (capture-avoiding) manner.

Lemma 3 (Substitution).

(i) If Γ ` A ≤ B and Γ ′ ` σ : Γ , then Γ ′ ` [σ]A ≤ [σ]B.
(ii) If D derives Γ ` e : A and Γ ′ ` σ : Γ , then there exists D′ deriving

Γ ′ ` [σ]e : [σ]A. Moreover, if Γ = Γ (that is, Γ contains only index
variables and index constraints), there is such a D′ not larger than D (that
is, the number of typing rules used in D′ is at most the number used in D).

(iii) If Γ ` e : B and Γ, f :B ` e′ : A then Γ ` [e/f ] e′ : A.

Similar properties hold for matches ms.

Proof. By induction on the respective derivations. ut
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6.2 Definiteness

We formalize definiteness as follows, for typing judgments with (possibly) non-
empty contexts:

Definition 1. A typing judgment Γ ` e : A is definite with respect to a substi-
tution ` σ : Γ if and only if

(i) ` [σ]A ≤ ⊥ is not derivable;
(ii) if ` [σ]A ≤ B1 ∨ B2 then ` [σ]e : B1 or ` [σ]e : B2;

(iii) if ` [σ]A ≤ Σb:γ.B, there exists an index ` i : γ where ` [σ]e : [i/b]B.

Definition 2. A substitution ` σ : Γ is definite iff for all A such that Γ (x) = A,
Γ ` x : A is definite with respect to σ.

To prove value definiteness (Theorem 2), which is central in the proof of
type safety, we first prove a weaker form of the theorem that depends on the
definiteness of the substitution σ. This weak form will allow us to show that
every well-typed substitution is definite, which will lead directly to a proof of
the theorem.

Lemma 4 (Weak value definiteness). If Γ ` v : A where σ is a definite
substitution and ` σ : Γ , then Γ ` v : A is definite with respect to σ, that is:

(i) it is not the case that Γ ` A ≤ ⊥;
(ii) if Γ ` A ≤ A1 ∨ A2 then ` [σ]v : [σ]A1 or ` [σ]v : [σ]A2;

(iii) if Γ ` A ≤ Σb:γ.B then there exists ` i : γ where ` [σ]v : [σ, i/b]B.

Proof. By induction on the derivation of Γ ` v : A. The term v is a value, so we
need not consider rules that cannot type values. Furthermore, the (contra) case
cannot arise. Most cases follow easily from the IH and properties of subtyping
(reflexivity, transitivity, inversion). For (var) we use the fact that σ is a definite
substitution. That leaves only the contextual rules, (⊥E), (∨E), (direct) and
(ΣE); we show the first two cases (the last two are similar to (∨E)):

– Case (⊥E): D =
Γ ` e′ : ⊥

Γ ` E[e′] : A
(⊥E)

E[e′] is a value. By Lemma 2, e′ is a value. Γ ` ⊥ ≤ ⊥, so by the IH (i), this
case cannot arise.

– Case (∨E):

D =
Γ ` e′ : C1∨C2 Γ, x:C1 ` E[x] : A Γ, y:C2 ` E[y] : A

Γ ` E[e′] : A
(∨E)

E[e′] value is given. By Lemma 2, E[x] value and e′ value. By the IH, either
` [σ]e′ : [σ]C1 or ` [σ]e′ : [σ]C2. Assume the first possibility, ` [σ]e′ : C1 (the
second is symmetric). Let σ′ = σ, [σ]e′/x; by (pvar-σ), ` σ′ : Γ, x:C1. By the
IH, Γ ` e′ : C1 ∨ C2 is definite, so σ′ is a definite substitution. E[x] value so
we can apply the IH to show that [σ′]E[x] has properties (i), (ii), (iii). But
[σ′]E[x] = [σ]E[e′], so [σ]E[e′] has properties (i), (ii), (iii).

ut
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Lemma 5. Every substitution σ such that ` σ : Γ is definite.

Proof. By induction on the derivation D of ` σ : Γ . The case for (empty-σ)
is trivial. The cases for (prop-σ) and (ivar-σ) follow easily from the IH. For
(pvar-σ) deriving ` σ, v/x : Γ, x:A, we have ` v : [σ]A as a subderivation. Since
v is closed, v = [σ]v = [σ, v/x]x, yielding ` [σ, v/x]x : [σ]A. The result follows
by Lemma 4 applied with an empty substitution. ut

Theorem 2 (Value definiteness). If ` σ : Γ and Γ ` v : A, then:

(i) it is not the case that Γ ` A ≤ ⊥;
(ii) if Γ ` A ≤ A1 ∨ A2 then ` [σ]v : [σ]A1 or ` [σ]v : [σ]A2;

(iii) if Γ ` A ≤ Σa:γ.A′, there exists an index ` i : γ where ` [σ] v : [σ, i/a]A′.

Proof. Follows immediately from Lemmas 4 and 5. ut

For each ordinary type (not property types) we have a value inversion lemma
(also known as genericity or canonical forms). We show only one example. Note
the necessary generalization to allow for substitutions.

Lemma 6 (Inversion on →).
If D derives Γ ` v : B and Γ ` B ≤ B1 → B2 and ` σ : Γ then v = λx. e

where ` [σ, v′/x] e : [σ]B2 for any ` v′ : [σ]B1.

Proof. By induction on D. ut

7 Type Preservation and Progress

Having proved value definiteness, we are ready to prove type safety. We prove the
preservation and progress theorems simultaneously; we could prove them sepa-
rately, but the proofs would share so much structure as to be more cumbersome
than the simultaneous proof. (Our semantics is deterministic, so the combined
form is meaningful.)

Theorem 3 (Type Preservation and Progress). If Γ ` e : C and σ is a
substitution over program variables such that ` σ : Γ and Γ = ·, then either

(1) e value and ` [σ] e : C, or
(2) there exists a term e′ such that [σ] e 7→ e′ and ` e′ : C.

(By ` σ : Γ , σ substitutes no fixed point variables, so Γ must contain no fixed
point variables. Moreover, Γ = · so Γ contains no index variables.)

Proof. By induction on the derivation D of Γ ` e : C. Note that since Γ contains
no index variables, [σ]A = A for all types A. If e value, the result follows by
Lemma 3. So suppose e is not a value. Rules (1I), (→I), (∧I), (>I), (ΠI) and
(var) can only type values. Γ types no fixed point variable, so (fixvar) cannot
have been used. ` σ : Γ , so Γ 6|= ⊥: The cases for (sub) and (fix) use Lemma 3.
The (→E) case requires Lemmas 6 and 3. For (∨I1), (∨I2), (ΣI), (∧E1), (∧E2)
simply apply the IH and reapply the rule. For (direct), (⊥E), (∨E) and (ΣE),
which type an evaluation context E[e′], we proceed thus:
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– If the whole term E[e′] is a value, just apply Lemma 3.
– If e′ is not a value:

(1) apply the IH to Γ ` e′ : D to obtain [σ] e′ 7→ e′′ with ` e′′ : D;
(2) from [σ] e′ 7→ e′′, use (ev-context) to show [σ]E[e′] 7→ [σ]E[e′′];
(3) reapply the rule, with premise ` e′′ : D, to yield ` [σ]E[e′′] : C.

– If e′ is a value (but E[e′] is not), use value definiteness (Theorem 2), yielding
a contradiction for (⊥E), or a new derivation for (direct), (∨E), (ΣE); in
the latter cases apply the IH with substitution [σ, [σ]e′/x].

The last subcase is the most interesting; we show it for (⊥E) and (∨E). The
(direct) and (ΣE) cases are similar.

– Case (⊥E): D =
Γ ` e′ : ⊥

Γ ` E[e′] : C
(⊥E)

e′ value and ` σ : Γ are given. We have Γ ` e′ : ⊥ as a subderivation. By
Theorem 2, Γ 6` e′ : ⊥, a contradiction.

– Case (∨E): D =
Γ ` e′ : A∨B Γ, x:A ` E[x] : C Γ, y:B ` E[y] : C

Γ ` E[e′] : C
(∨E)

e′ value is given. We have Γ ` e′ : A ∨ B as a subderivation. By Theorem 2,
either ` [σ]e′ : A or ` [σ]e′ : B. Since e′ value, [σ]e′ value. Assume ` [σ]e′ : A
(the other case is symmetric). Γ, x:A ` E[x] : C is a subderivation. Let
σ′ = σ, [σ]e′/x. It is given that ` σ : Γ and ` [σ] e′ : A. By (pvar-σ),
σ′ : Γ, x:A, so by the IH, [σ′]E[x] 7→ e′′ and ` e′′ : C. But [σ′]E[x] =
[σ, [σ′]e′/x]E[x] = [σ]E[e′], yielding [σ]E[e′] 7→ e′′.

ut

8 Related Work

The notion of datasort refinement combined with intersection types was intro-
duced by Freeman and Pfenning [8]. They showed that full type inference was
decidable under the so-called refinement restriction by using techniques from
abstract interpretation. Interaction with effects in a call-by-value language was
first addressed conclusively by Davies and Pfenning [6] which introduced the
value restriction on intersection introduction, pointed out the unsoundness of
distributivity, and proposed a practical bidirectional checking algorithm.

A different kind of refinement using indexed and dependent function types
with indices drawn from a decidable constraint domain was proposed by Xi and
Pfenning [17]. This language did not introduce pure property types, requiring
syntactic markers for elimination of the existentials. Since this was unrealistic for
many programs, Xi [15] presents an algorithm allowing existential elimination
at every binding site after translation to a let-normal form. One can see some of
the results in the current paper as a post hoc justification for this strategy (see
the remarks at the end of Section 4.4).

Intersection types [4] were first incorporated into practical languages by Rey-
nolds [12]. Pierce [11] gave examples of programming with intersection and union
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types in a pure λ-calculus using a type-checking mechanism that relied on syn-
tactic markers. The first systematic study of unions in a type assignment frame-
work by Barbanera, Dezani-Ciancaglini and de’Liguoro [2] identified a number of
problems, including the failure of type preservation even for the pure λ-calculus
when the union elimination rule is too unrestricted. It also provided a frame-
work for our more specialized study of a call-by-value language with possible
effects. van Bakel et al. [13] showed that the minimal relevant logic B+ yields
a type assignment system for the pure call-by-value λ-calculus; conjunction and
disjunction become intersection and union, respectively. In their ∨-elimination
rule, the subexpression may appear multiple times but must be a value; this rule
is sound but impractical (see Section 4.1).

Some work on program analysis in compilation uses forms of intersection and
union types to infer control flow properties [14, 10]. Because of the goals of these
systems for program analysis and control flow information, the specific forms
of intersection and union types are quite different from the ones considered
here. Systems of soft typing designed for type inference in dynamically typed
languages [3] are somewhat similar and also allow intersection, union, and even
conditional types [1]. Again, however, the different setting and goals mean that
the technical realization differs substantially from our proposal here.

9 Conclusion

We have designed a system of property types for the purpose of checking pro-
gram invariants in call-by-value languages. We have presented the system as it
was designed: incrementally, with each type constructor added orthogonally to
an intermediate system that is itself sound and logically motivated. For both the
definite and indefinite types, we have formulated rules that are not only sound
but internally regular: the differences among (∨E), (⊥E), (ΣE), (direct) are log-
ical consequences of the type constructor’s arity. The remarkable feature shared
by all four rules is that typing proceeds in evaluation order, constituting a less ad
hoc alternative to Xi’s conversion to let-normal form. Lastly, we have formulated
properties of definiteness of judgments, substitutions, and values, vital for our
proof of type safety.

The pure type assignment system presented here is undecidable. We are in
the process of developing a decidable bidirectional version (extending the system
in [7], which did not include ∨ and Σ). The present system can be used to verify
progress and preservation after erasure of all type annotations, and will be the
basis of soundness in the bidirectional system. In particular, it verifies that type-
checked programs do not need to carry types at runtime.

The major items of future work are the development of an efficient algorithm
for type-checking and the evaluation of the pragmatics of the system in a full-
scale language. While we have elided any explicit effects from the present system
for the sake of brevity, the analysis in [6] applies to this setting and the present
system. Moreover, since parametric polymorphism was orthogonal in the system
of [6], we expect polymorphism will be orthogonal here as well. Ultimately, the
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system must be justified not only by its soundness and internal design but by
its effectiveness in checking interesting properties of real programs.
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