
Foundations of Formal Program Development

�

Some Aspects of Research in the Ergo Project

y

School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

DRAFT IN PREPARATION | DO NOT DISTRIBUTE

Principal Investigators :

Dana Scott and John Reynolds.

Other Faculty:

Stephen Brookes, Robert Harper, Peter Lee,

Daniel Leivant, Frank Pfenning, and Eugene Rollins.

Gradute Students :

Ken Cline, Scott Dietzen, Conal Elliott, Tim Freeman, Nevin Heintze,

Spiro Michaylov, Robert Nord, Benjamin Pierce, Olin Shivers, Jean-Philippe Vidal.

Abstract

The Ergo Project at Carnegie Mellon University conducts a program of research

into the foundations of formal program development. The overall goal of the project is

to provide a framework for the development and maintenance of provably correct pro-

grams and demonstrate its utility through prototype implementations and examples.

In this report we describe some selected aspects of our research towards this goal.

�

This research was supported in part by the O�ce of Naval Research under contract N00014-84-K-0415

and in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 5404, monitored

by the O�ce of Naval Research under the same contract.

y

This report was prepared by Robert Harper, Peter Lee, and Frank Pfenning.



Ergo Report 1

1. Background

The central problem of software engineering is the development and maintenance of demon-

strably correct programs. In order to accomplish this goal, a wide variety of approaches

to the problem have been developed. These range from what might be called \software

management techniques," devoted primarily to addressing the practical questions of how

best to manage a software development project in order to improve the quality of the prod-

uct, to fundamental research programs that seek to develop a rigorous body of theory on

which software development methodologies may be based. These two approaches (among

many others) are not opposed to one another, but rather address two equally important

aspects of the problem: on the one hand, the question of what can be achieved now, and

on the other, the question of what might be achievable at some point in the future. Re-

search into the development of reliable and maintainable programs is an ongoing dialogue

between workers on these two approaches, with fundamental research results continually

being incorporated into the mainstream of software development, and with the problems

of practical software development providing the framework in which fundamental research

is being conducted.

The Ergo Project is a program of fundamental research in programming methodology

[9]. The central thesis of the project is that the future of correct software development

lies in the use of machine-assisted formal methods both to develop and maintain software.

This approach to the correctness problem in software development is based on two guiding

principles. First, any notion of correct program development can only be based on a

comprehensive and rigorous theory of programming. Such a theory must include not only

the design of programming notations, but also the design of logics and methodologies for

reasoning about them. Second, the process of correct program development on such a

basis must involve the manipulation of formal structures, including programs themselves,

arguments for their correctness, and their development histories. These manipulations can

only be made practical by the use of machine assistance.

2. Objectives

The overall objective of the Ergo Project is to develop a comprehensive theory of machine-

assisted formal program development. This overarching goal naturally decomposes into a

number of smaller objectives that we believe are crucial elements of the overall program

of research, and are relevant to the work of other researchers in the area. The short-term

objectives of the project include the following goals:

1. To consider the problem of the formal representation of structures that arise in

program development. These structures include, for example, programs, program

derivations, and proofs of correctness.



Ergo Report 2

2. To develop the tools and techniques necessary for the manipulation of these struc-

tures; in particular, to determine how best to write metaprograms for working with

these structures.

3. To experiment with these tools by conducting examples of formal program develop-

ments. These experiments serve not only to assess the feasibility of the methodolo-

gies under consideration, but also to test the tools and techniques developed for this

purpose.

3. Research Issues and Approaches

The work of the project focuses at present on three fundamental research issues that may

be summarized under the headings: representation, manipulation, and experimentation.

In this section we present a brief overview of each of these topics, and defer the technical

details to Section 4 where a summary of our research is presented.

Representation. Here the fundamental issue is to �nd a suitably general framework in

which a wide variety of formal structures may be represented. The principal aim here is

to choose a system of representation with su�cient structure to capture the uniformities

that arise in a wide variety of formal systems without overcommitment or excessive gen-

erality. In particular, a signi�cant portion of the implementation e�ort associated with

representing formal structures in a machine should be \factored out" into the represen-

tation language, and implemented once for all. Moreover, the representation should lend

itself to the sorts of manipulations needed for formal program development. Many of the

classical techniques seem inadequate for representing programs, assertions, and proofs.

For example, the representation of programs as trees (simpli�ed parse trees or terms in

an ML concrete data type) fails to capture the binding structure exhibited by most pro-

gramming languages: variables have scope, and their meaning is governed by the scoping

rules of the language. On the other hand, elaborations of the notion of abstract syntax

trees by the attachment of attributes and attribute-computation functions seems to be

excessively general. Although the relevant additional structure can be expressed using

attributes, no general structural features are modeled in an attributed tree, rather each

language is handled on a case-by-case basis. We were thus led to consider alternative rep-

resentations that are more expressive than unattributed trees, and more restrictive than

general attribution mechanisms, namely terms in a typed �-calculus. The idea is that

�-abstractions capture the elementary properties of a wide range of binding operators,

and the type structure is chosen so as to admit convenient expression of the combinatorial

properties of term constructors and inference rules. The result is that formal structures are

represented as well-typed �-terms, and a substantial amount of the machinery associated

with the implementation of proof and program development tools can be factored out into

the implementation of the representing �-calculus. This approach opens the way to the



Ergo Report 3

development of a variety of language-independent tools, allowing for rapid experimentation

with a variety of programming languages and formal systems.

Manipulation. In addition to issues of representation, there are also the general prob-

lems of �nding the appropriate means of handling the formal structures associated with

program development. Here we have in mind formal program derivation, construction of

formal proofs, the transformation of programs and proofs, and the construction and use

of tools for conducting formal proof and program derivations. A variety of problems may

be classi�ed under this heading, including the design of \metaprogramming languages"

and proof development environments. In connection with metaprogramming, issues such

as the trade-o�s between functional and logic programming and the choice of type struc-

ture seem particularly important. For example, the use of typed �-calculi to represent

formal structures immediately suggests two lines of research. In one direction it is natural

to exploit variations of higher-order uni�cation as the fundamental tool for manipulating

programs and proofs. This leads to consideration of logic programming languages that

employ such uni�cation algorithms in the search process. Our work on eLP, HOAS, and

Elf may be seen as developments along these lines. In another direction it is natural to

consider the incorporation of the type structures used to represent programs and proofs

into functional programming languages. A number of issues arise in the course of pursu-

ing this line of research, including questions about adding dependent types to an ML-like

language, adding a type of \intensional functions" that admit a decidable equality test,

and the use of higher-order impredicative types to represent data structures. Our work on

LEAP represents a signi�cant e�ort in this direction.

In connection with formal proof and program development, a number of related issues

arise. For example, logic programming languages that manipulate terms in variations of

the typed �-calculus seem to provide a convenient basis for building formal proof develop-

ment systems, but much more work is needed to assess the practicality of this approach.

Questions of modularity seem to be of central importance here, both from the point of

view of metaprogramming, and from the point of view of the program development pro-

cess. Just as the use of modularization constructs seems essential to the management of

large programs, some form of modularity also seems to be of central importance in formal

program development. For example, it seems important to provide the ability to organize

the logical structure of the correctness proof of a program, thereby allowing for localization

of proof obligations and control over the size of the search space associated with conduct-

ing formal proofs. Questions of modularity also impinge on the very notion of formal

program development, for the ideas of modular development and stepwise re�nement of

program modules seem to be of fundamental importance to the re�nement process. Since

complete formal program development involves considerable e�ort, the ability to reuse

earlier work is an important topic for research. Current work in this direction is concerned

with the development of methods of analogical reasoning and generalization to support

re-use of programs and their correctness proofs, and to allow the adaptation of program



Ergo Report 4

developments from one setting to another.

Experimentation. Here we include both the prototyping of tools for formal program

development and their application in test cases. A number of engineering issues arise

in the process of building prototype tools. For example, the use of rich type systems in

metaprogramming languages leads to such issues as type inference and compilation tech-

niques for these languages. There is a fundamental tension between the use of expressive

type systems to encode properties of programs and data structures, and the practical need

to alleviate the burden of supplying detailed type information in programs.

One of the crucial problems in building environments is that of communication among

the many tools that comprise such environments. The channels of communication, or ab-

stract interfaces, are very closely tied to the representation languages and success or failure

in the evolution of large systems may very well depend on whether abstract interfaces are

well-chosen and adaptable.

4. Progress

We now summarize the progress of our research in representations, manipulation, and

experimentation for formal program development.

Representation. There are two main focuses for our work on representations, higher-

order abstract syntax (HOAS) and the Logical Framework (LF).

HOAS [17] extends the classical notion of abstract syntax with a typed �-calculus. With

this simple extension, \higher-order" typed �-terms are used to represent in a uniform

way those constructs of a language that bind variables. Such uniformity facilitates the

development of tools and analysis techniques that are generally applicable to a wide range

of languages, independent of the manner in which variables are bound. For example, it

is relatively easy to implement pattern matchers and rewriting systems that respect the

scoping properties of any language represented in HOAS, since these problems can be

solved via higher-order matching and uni�cation. This idea is by no means new and is

exploited in a variety of ways in other systems. The Ergo project's contribution here is

two-fold: one is the realization that many practical problems with the use of the simply

typed �-calculus as a representation language can be solved by products and a simple form

of polymorphism, the other is the implementation of these concepts in our experimental

environment, the Ergo Support System (ESS) [10]: a central procedure in the ESS is a

higher-order uni�er, and HOAS is used as the standard representation for programs and

proofs. In this way, the ESS provides language-independent matching and rewriting of

programs and formulas.



Ergo Report 5

LF [6] adds power to the simply typed �-calculus as a representation language by using

dependent function types to represent families of objects and their types. This extension

is crucial for representing the syntax, and especially the inferential structure, of logical

sytems. In particular, the notions of axiom and rule schemes and the fundamental mech-

anisms of natural deduction, and hypothetical and general reasoning, may be succinctly

represented in LF. This leads to a particularly simple methodology for representing formal

systems in a machine: a formal system is presented as an LF signature declaring a se-

quence of constants that serve as generators for the syntactical structures of that system.

Under this methodology many \side conditions" on inference rules are eliminated, and

the remainder are axiomatized directly using \auxiliary" judgement forms. The signature

of a formal system is suitable for direct use by a \proof editor generator" or to induce

operators in a search space for proof and program synthesis.

Recently, Harper has developed the theory of logical relations for LF to prove con
uence

and strong normalization for a restricted form of �� reduction for the LF type theory. This

result, together with the subject reduction property, yields a proof of decidability of the LF

type system with full � and � conversion. This eliminates the need for a crucial assumption

in the completeness proof of the uni�cation algorithm for LF developed by Elliott [3,2]

(which is discussed below).

Related to this is Harper's joint research on Structure and Representation in the Logical

Framework [7] which is working towards a theory of modular and well-structured presenta-

tions of deductive systems in LF. This work is concerned with two forms of modularity in

LF: in the presentation of theories within a given logical system, and in the presentation

of logical systems themselves. The goal of this work is to develop a language for presenting

theories and logics in an organized way, and to consider the ways in which the structure

of a presentation may be exploited in the process of proof search.

Manipulation. To be useful in the activities surrounding formal program development

(such as proof development, formal derivation, and metaprogramming), a higher-order

abstract syntax representation requires both a higher-order uni�cation procedure and an

appropriate metalanguage. Our study of higher-order uni�cation began with Huet's algo-

rithm [8], but quickly we discovered the need to extend and improve it. This led us to

conduct a formal derivation (on paper) of a family of uni�cation algorithms [5,4] on which

our present implementation in the Ergo Support System is based.

As for the metalanguage, we are, as mentioned in the previous section, developing and

experimenting with both functional and logic programming languages. We experimented

�rst with Miller and Nadathur's language, �Prolog [11]. This language is based on higher-

order uni�cation and quite naturally supports the manipulation of HOAS representations

in the setting of logic programming. �Prolog is thus useful for the rapid prototyping and

elegant expression of many metaprograms. We implemented �Prolog as an important, but

also separately exportable component of the ESS. Our implementation (eLP) makes heavy



Ergo Report 6

use of many components of the ESS and is thus also a good test case for our environment.

Along similar lines, we have proposed Elf [14], a logic programming metalanguage which

combines ideas from �Prolog and LF. The implementation of this language makes use

of Elliott's work on higher-order uni�cation with dependent types [3,2]. Elf gives an

operational interpretation to types much in the same way that Prolog gives an operational

interpretation to Horn clauses. Unlike in logic programming languages, however, the proofs

that are built by the search process of the interpreter itself are �rst-class objects and can

be shown or transformed further. The next logical step is to connect Elf to the interaction

tools in the Ergo Support System to form a proof and program development environment

that allows interactive input and the invocation of metaprograms. In another direction it

is important to develop a theory of modularity for Elf programs. Ideas from �-Prolog and

on structured presentations in LF are relevant here.

Because of the central role of polymorphic and dependent types in representations, and

also the link between type inference for the polymorphic �-calculus and higher-order uni-

�cation (as shown by Pfenning in [15]), it seems that a polymorphic functional language

might also be appropriate for certain metaprogramming applications. Such a language

would constitute an e�cient alternative to the logic-programming-based metalanguages

discussed above. We have been developing and experimenting with such a language. Our

language, called LEAP, is an explicitly typed functional metalanguage in the ML tra-

dition, but based on the !-order polymorphic �-calculus [18]. Recent developments for

LEAP include the treatment of inductively de�ned data types [19], the development of

compilation techniques for inductive de�nitions and primitive recursion, and a tutorial on

programming in higher-order typed �-calculi prepared by Benjamin Pierce, Scott Dietzen,

and Spiro Michaylov [20]. An important and novel aspect of this work is that type infor-

mation is used to guide code generation, allowing a conceptually simple, explicitly typed

language to be compiled into e�cient code for conventional architectures.

Experimentation. Our experimentation can be divided into two categories: experi-

ments in formal program development, and the development of language implementation

techniques.

Our formal, on-paper derivation of an algorithm for higher-order uni�cation was in

part an experiment in formal program development, but it also led to signi�cant exten-

sions to Huet's higher-order uni�cation algorithm, culminating ultimately to Elliott's work

on uni�cation with dependent types [2]. Unfortunately, even though the derivation has

motivated many aspects of the implementation of the ESS, our environment is not yet

ready to support derivations at this level of complexity. The achievement of such environ-

mental support is one of the major milestones of our work in experimentation, and one

that we hope to achieve in the near future.

Frank Pfenning has been working on extending the traditional proofs-as-programs



Ergo Report 7

paradigm to include proof transformation as a signi�cant aspect of veri�ed program devel-

opment. He derived a number of algorithms for graph reachability [16] which were subse-

quently implemented in the Calculus of Constructions by Christine Paulin-Mohring [13].

On the subject of larger-scale derivations, Rod Nord and Peter Lee have been experi-

menting with extensions to Scherlis' specialization system [22] as they apply to data type

transformations [21] in order to handle the derivation of larger programs. Thus far they

have accomplished the derivation (again, on paper) of a simple display editor [12]. They

are currently considering collections of larger data types, and also considering extensions

to the ESS to support larger-scale program derivation.

Scott Dietzen and Frank Pfenning have completed a number of experiments on ex-

planation-based generalization in higher-order domains such as theorem proving and pro-

gram derivation. This work, which has been conducted in the ESS using mainly eLP, is

primarily directed towards the application of these techniques to the problem of analogy

in program development. This work is described in [1].

The implementation of LEAP has been an excellent test case for the basic system design

of the ESS, as our prototype LEAP compiler uses many components of the system: parsing

and unparsing of LEAP programs is handled by the ESS's syntax facility, name binding

information is speci�ed as an attribute grammar, and both type inference and the proto-

type compiler are written in eLP (using the algorithm in [15]). All of these components

communicate with eachother via standardized data structures provided primitively by the

ESS. As aspects of the LEAP compiler are developed, further re�nement of the ESS takes

place. Already, we have found in our experimentation with LEAP that metalanguages

such as eLP are an enormous aid in rapidly prototyping new ideas in compilation, type

inference, and type argument synthesis. With such prototyping support of the ESS, we ex-

pect to learn a great deal about the practicality of the representations and metalanguages

that we are developing.

Summary We are quite encouraged by our recent progress, as we believe we are moving

well toward our goal of building an integrated system for formal program development.

The work on LEAP, eLP, and Elf provide a spectrum of semantically based and logically

based languages for metaprogramming and speci�cation. These languages provide a great

deal of expressive power while still retaining the ability to analyze and transform programs.

Furthermore, implementing and integrating these languages into the Ergo Support System

has led to a signi�cant strengthening and enhancement of the various tools and abstract

interfaces. We now feel con�dent that export of the ESS to other research sites will result

in constructive feedback and further improvements.



Ergo Report 8

5. Directions

On the basis of the research results that have so far been obtained in the area of formal

program development (both by the present authors and others), we believe that research

into the mathematical foundations of formal program development is an essential com-

ponent of the overall program of building reliable and maintainable software. Although

fundamental research of this kind does not usually lead to immediate changes in the prac-

tice of software development, the results obtained at the foundational level have, and will

continue to, play a central role in the development of the �eld. To take a ready example,

it is by now accepted in both theory and practice that types play a central role in the

organization of programs and programming languages, and are crucially important to the

software development process. This development was strongly a�ected by years of research

into such seemingly remote topics as the typed �-calculus, intuitionistic mathematics, and

category theory. It is our opinion that fundamental research on the foundations of pro-

gram development is now reaching maturity, and can be expected to play an increasingly

signi�cant role in the future of software development.

On the other hand, the progress of research into formal program development does

not appear to proceed directly toward transferrable technology in the short run, although

there have been a number of examples of the relatively short-term transfer of theoretical

research to practical software development (the theory of context-free grammars leading to

parser generators, and the theory of automata to event-driven approaches to concurrency,

to take but two examples). We therefore think it important not to expect short-term

technology transfer, and that it is a mistake to place too much stress on concrete gains

for the near term in practical software development. It is only by taking the long-term

view that we can imagine what might be possible, thereby providing the basis for future

development of the �eld.

6. Grand Challenge

The grand challenge is to make large-scale formal program development feasible.

7. Research Transitions

As should be clear from the above discussion, the primary goal of research into the foun-

dations of formal program development is to improve the reliability and maintainability of

programs. The intended market for our results is therefore the software development com-

munity. It is our expectation that the in
uence of our work (and that of other researchers

in related areas) will not take the form of a direct \technology transfer," but will instead

have a less direct, yet signi�cant, in
uence on \programming culture." That is to say, it



Ergo Report 9

is to be expected on the basis of current experience that fundamental research will have

an important in
uence the practice of software development by providing the foundation

on which rigorous methodologies may be based. In this sense there is a \transfer gap"|a

signi�cant time lag between the time that in
uential research takes place and the time

that these ideas make their way into the practice of software development. Of course, not

all research ideas will in fact pan out. To separate the important developments from the

false steps takes a substantial amount of time that cannot (it seems) be shortened.

Still, we feel it is appropriate to consider what can be done to facilitate a greater

amount of \technology transfer." In our opinion, the implementation and distribution of

tools that embody ideas from foundational research form crucial links in the computer

science community in general. We have learned a great deal from both using the tools

distributed by others, as well as distributing our own and discussing the results of other's

experiments.

The real challenge in technology transfer, of course, is to achieve the adoption of formal

methods by the application community. Much \cultural" development will have to take

place, for we believe the teaching of new languages and new ideas is crucial.

8. Technological Impacts

The widespread use of workstations has been an important in
uence on the development

of many, if not most, �elds in computer science, not least in software development. Aside

from the expected growth in performance and capacity of these workstations, we do not

envision the need for computer technology of any remarkably di�erent character than is

currently available to further the aims of our research.

9. Societal Issues

As the number of research and faculty positions in computer science is stabilizing, the

need for support for post-doctoral research positions becomes increasingly important. We

have found on several occasions that we would like to have arranged for a one- or two-

year visiting position with the project, but were unable to do so for lack of funding for

such positions. Moreover, as positions become more scarce than in the past, new Ph.D.'s

more often �nd it attractive to take a temporary research position with a project in order

to establish a basis for future research. We therefore recommend that support for post-

doctoral research fellows be increased.

Our principal complaint with regard to the current funding situation is that we �nd

the reporting requirements to be excessively burdensome and insu�ciently bene�cial to

the research e�ort. At present we are required to �le quarterly reports and an annual



Ergo Report 10

report, plus a variety of progress reports and reviews that arise from time to time (and,

all too frequently, on very short notice). These requirements are all the more burdensome

because we receive no signi�cant feedback on the progress that we report. Without a

signi�cant response to our reports, the e�ort is, for us, essentially wasted. We therefore

strongly recommend that the reporting requirements and procedures be reviewed with an

eye toward requiring fewer reports, providing much longer advanced notice, and responding

to these reports with a nontrivial evaluation of the progress of the research.

10. Recommendations for Funding Agencies

In summary, we recommend that:

� Support for fundamental research in formal program development be at least main-

tained at the present levels.

� The requirement for immediate transfer of research results to practical software de-

velopment be de-emphasized.

� The system of project management be reviewed, especially with respect to the quan-

tity and nature of the reporting requirements.

References

[1] Dietzen, S. and Pfenning, F. Higher-Order and Modal Logic as a Framework for

Explanation-Based Generalization. In: Sixth International Workshop on Ma-

chine Learning, edited by A. M. Segre. Morgan Kaufmann Publishers, San Mateo,

California, 1989, pp. 447{449. Expanded version available as Technical Report CMU{

CS{89{160, Carnegie Mellon University, Pittsburgh.

[2] Elliott, C. Extensions and Applications of Higher-order Uni�cation. Carnegie Mellon

University, June 1989. To appear.

[3] Elliott, C. Higher-Order Uni�cation with Dependent Types. In: Rewriting Tech-

niques and Applications. Springer-Verlag LNCS 355, 1989, pp. 121{136.

[4] Elliott, C. Some Extensions and Applications of Higher-order Uni�cation: A Thesis

Proposal. Ergo Report, no. 88{061, Carnegie Mellon University, Pittsburgh, June

1988. Thesis to appear June 1989.

[5] Elliott, C. and Pfenning, F. A Family of Program Derivations for Higher-Order Uni-

�cation. Ergo Report, no. 87{045, Carnegie Mellon University, Pittsburgh, November

1987.



Ergo Report 11

[6] Harper, R., Honsell, F., and Plotkin, G. A Framework for De�ning Logics. In:

Symposium on Logic in Computer Science. IEEE, 1987, pp. 194{204.

[7] Harper, R., Sannella, D., and Tarlecki, A. Structure and Representation in LF. In:

Fourth Annual Symposium on Logic in Computer Science. IEEE, 1989,

pp. 226{237.

[8] Huet, G. A Uni�cation Algorithm for Typed �-Calculus. Theoretical Computer

Science, vol. 1 (1975), pp. 27{57.

[9] Lee, P., Pfenning, F., Reynolds, J., Rollins, G., and Scott, D. Research on Seman-

tically Based Program-Design Environments: The Ergo Project in 1988. Technical

Report, no. CMU-CS-88-118, Carnegie Mellon University, Pittsburgh, March 1988.

[10] Lee, P., Pfenning, F., Rollins, G., and Scherlis, W. The Ergo Support System: An

Integrated Set of Tools for Prototyping Integrated Environments. In: Proceedings

of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Environments, edited by P. Henderson. ACM

Press, 1988, pp. 25{34. Also available as Ergo Report 88{054.

[11] Miller, D. A. and Nadathur, G. Higher-Order Logic Programming. In: Proceedings

of the Third International Conference on Logic Programming. Springer

Verlag, 1986.

[12] Nord, R. L. Deriving and Manipulating Module Interfaces | Thesis Proposal. Ergo

Report, Carnegie Mellon University, Pittsburgh, 1989. In preparation.

[13] Paulin-Mohring, C. Extraction de programmes dans le Calcul des Constructions. Uni-

versit�e Paris VII, January 1989.

[14] Pfenning, F. Elf: A Language for Logic De�nition and Veri�ed Meta-Programming.

In: Fourth Annual Symposium on Logic in Computer Science. IEEE, 1989,

pp. 313{322. Also available as Ergo Report 89{067.

[15] Pfenning, F. Partial Polymorphic Type Inference and Higher-Order Uni�cation. In:

Proceedings of the 1988 ACM Conference on Lisp and Functional Pro-

gramming, Snowbird, Utah. ACM Press, 1988, pp. 153{163. Also available as

Ergo Report 88{048.

[16] Pfenning, F. Program Development through Proof Transformation. In: Logic and

Computation, edited by W. Sieg. Contemporary Mathematics, AMS, Provi-

dence, Rhode Island, 1988. To appear. Available as Ergo Report 88{047.

[17] Pfenning, F. and Elliott, C. Higher-Order Abstract Syntax. In: Proceedings of

the SIGPLAN '88 Symposium on Language Design and Implementation,

Atlanta, Georgia. ACM Press, 1988, pp. 199{208. Available as Ergo Report 88{036.



Ergo Report 12

[18] Pfenning, F. and Lee, P. LEAP: A Language with Eval and Polymorphism. In: TAP-

SOFT '89, Proceedings of the International Joint Conference on Theory

and Practice in Software Development, Barcelona, Spain. Springer-Verlag

LNCS 352, 1989, pp. 345{359. Also available as Ergo Report 88{065.

[19] Pfenning, F. and Paulin-Mohring, C. Inductively De�ned Types in the Calculus of

Constructions. In: Proceedings of the Fifth Conference on the Mathematical

Foundations of Programming Semantics. Springer Verlag LNCS, 1989. To

appear. Available as Ergo Report 88{069.

[20] Pierce, B., Dietzen, S., and Michaylov, S. Programming in Higher-order Typed

Lambda-Calculi. Technical Report, no. CMU-CS-89-111, Carnegie Mellon University,

Pittsburgh, Pennsylvania, March 1989.

[21] Scherlis, W. L. Abstract Data Types, Specialization and Program Reuse. In: Interna-

tional Workshop on Advanced Programming Environments. Springer-Verlag

LNCS 244, 1986.

[22] Scherlis, W. L. Program Improvement by Internal Specialization. In: Eighth Sym-

posium on Principles of Programming Languages, ACM. ACM, 1981, pp. 41{

49.


