
Structural Cut Elimination in Linear Logic

Frank Pfenning

December 1994

CMU-CS-94-222

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present a new proof of cut elimination for linear logic which proceeds by three nested structural
inductions, avoiding the explicit use of multi-sets and termination measures on sequent derivations.
The computational content of this proof is a non-deterministic algorithm for cut elimination which
is amenable to an elegant implementation in Elf. We show this implementation in detail.

This work was supported by NSF Grant CCR-9303383
The views and conclusions contained in this document are those of the author and should not be interpreted as

representing the official policies, either expressed or implied, of NSF or the U.S. government.

Keywords: Linear Logic, Cut Elimination, Logical Framework

Contents

1 Introduction 1

2 CLL: A Traditional Sequent Calculus for Linear Logic 1

3 LV: Another Sequent Calculus for Linear Logic 3

4 Linear Proof Terms 8

5 Representation in LF 11
5.1 Formulas . 11
5.2 Proof Terms . 12
5.3 Linearity Constraints . 14

6 Admissibility of Cut 24

7 Cut Elimination 32

8 Representation in a Linear Meta-Language 33

9 Conclusion 36

Acknowledgments 36

A Complete Implementation 38
A.1 Formulas . 38
A.2 Sequent Calculus LV . 38
A.3 Linearity Constraints . 40
A.4 Admissibility of Cut . 45
A.5 Example Execution of Admissibility Algorithm . 52
A.6 Sequent Calculus LV+ with Cuts . 56
A.7 Cut Elimination for LV+ . 58

References 60

2 CLL: A TRADITIONAL SEQUENT CALCULUS FOR LINEAR LOGIC 1

1 Introduction

The property of cut elimination [Gen35] is a central property of logical systems in a sequent
formulation. It usually yields consistency as an easy corollary and forms the basis for efficient
proof search procedures [Wal90] and logic programming languages [MNPS91]. In linear logic, the
algorithm for cut elimination may also be given a computational interpretation [Abr93]. Traditional
sequent formulations of linear logic [Gir87] are not well-suited to a deep analysis of cut elimination
because of the disturbing effects of weakening and contraction of modal formulas of the form !A
and ?A. This led to the discovery of proof nets, but the question of cut elimination for a more
syntactic sequent calculus remains important for applications of linear logic in computer science.

In the literature one can find formulations of linear logic in which applications of structural rules
are more controlled than in CLL, a system with explicit weakening, contraction, and dereliction
for modal formulas. This is achieved by dividing a sequent into linear and non-linear zones whose
constituents are treated differently in the sequent rules. Examples of such calculi are Andreoli’s
Σ2 [And92], Girard’s LU [Gir93], and Hodas & Miller’s L [HM94, Hod94]. We take a two-sided
version of classical linear logic quite close to Σ2 with three rules of Cut as in LU and endow the
resulting calculus LV with proof terms. We then prove admissibility of the cut rules in LV by
three nested structural inductions. Cut elimination follows by an additional structural induction
on sequent derivations possibly containing cuts. The seeds for this proof may already be found
in [Hod94], where cut elimination is proven for L, a fragment of intuitionistic linear logic.

We show how linear sequent derivations may be represented faithfully in the logical frame-
work LF [HHP93] and how this representation may be improved if the framework itself already
possesses linear features. We also present an elegant implementation of the algorithm for cut elim-
ination implicit in our constructive proof of the cut elimination theorem. This implementation is
in Elf [Pfe91], a constraint logic programming language based on LF.

2 CLL: A Traditional Sequent Calculus for Linear Logic

In this section we present a traditional sequent calculus CLL for linear logic. There are so-called
one-sided formulations (in which the involutive negation is defined except on atomic formulas) and
two-sided formulation, where negation is sometimes defined via linear implication and falsehood.
Here we chose a slightly different two-sided presentation, where negation is primitive, but where
we restrict ourselves to one multiplicative and additive connective and constant. This is sufficient
to define all other connectives; taking them as primitive would only add tedium, but nothing
essentially new to the calculus. We use x and y for variables, a for parameters (that is, variables
occuring free in derivations), t for first-order terms, and P for atomic formulas p(t1, . . . , tn).

Formulas A ::= P | A1 ⊗A2 | 1 | A1NA2 | > | A⊥ | ∀x. A | !A | ?A
Sequences Γ ::= · | Γ, A

We use A, B, and C for formulas, Γ, ∆ and later Ψ and Θ for sequences of formulas. We
overload the comma and write Γ = Γ′, A or Γ = A,Γ′ if Γ is the result of adding one occurrence
of A at any position in Γ′. Similarly, Γ = Γ1,Γ2 consists of all formula occurrences from Γ1 and
Γ2. We also omit a leading · for the sake of brevity. Another way of expressing these conventions
is to state that we treat sequences Γ of formulas as multi-sets. A sequent of CLL has the form
Γ =⇒ ∆. We refer to formulas in Γ as hypotheses or negative formulas, to those in ∆ as conclusions

2 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

or positive formulas. We consider a sequent a judgment defined by the following inferences rules.
We avoid explicit exchange rules by the conventions stated above.

Axioms.

I
A =⇒ A

Multiplicative Connectives.

Γ1 =⇒ A,∆1 Γ2 =⇒ B,∆2
⊗R

Γ1,Γ2 =⇒ A⊗ B,∆1,∆2

Γ, A, B =⇒ ∆
⊗L

Γ, A⊗ B =⇒ ∆

1R
· =⇒ 1

Γ =⇒ ∆
1L

Γ, 1 =⇒ ∆

Additive Connectives.

Γ =⇒ A,∆ Γ =⇒ B,∆
NR

Γ =⇒ ANB,∆

Γ, A =⇒ ∆
NL1

Γ, ANB =⇒ ∆

Γ, B =⇒ ∆
NL2

Γ, ANB =⇒ ∆

>R
Γ =⇒ >,∆ No >L rule

Involution.

Γ, A =⇒ ∆
¬R

Γ =⇒ A⊥,∆

Γ =⇒ A,∆
¬L

Γ, A⊥ =⇒ ∆

Quantification.

Γ =⇒ [a/x]A,∆
∀Ra

Γ =⇒ ∀x. A,∆

Γ, [t/x]A =⇒ ∆
∀L

Γ, ∀x. A =⇒ ∆

Exponentials.

!Γ =⇒ A, ?∆
!R

!Γ =⇒ !A, ?∆

Γ, A =⇒ ∆
!L

Γ, !A =⇒ ∆

3 LV: ANOTHER SEQUENT CALCULUS FOR LINEAR LOGIC 3

Γ =⇒ A,∆
?R

Γ =⇒ ?A,∆

!Γ, A =⇒ ?∆
?L

!Γ, ?A =⇒ ?∆

Structural Rules.

Γ =⇒ ∆
W !

Γ, !A =⇒ ∆

Γ =⇒ ∆
W?

Γ =⇒ ?A,∆

Γ, !A, !A =⇒ ∆
C!

Γ, !A =⇒ ∆

Γ =⇒ ?A, ?A,∆
C?

Γ =⇒ ?A,∆

In the rule ∀R the parameter a must be new, that is, it may not occur in Γ, ∀x. A, or ∆. The
notation !Γ and ?∆ In the !R and ?L rules expresses the side conditions that all formulas in these
sequences must have the form !B and ?C, respectively. The rule of Cut below turns out to be
admissible and thus does not need to be included as a primitive. We eventually establish this by a
detour via the system LV introduced in the next section.

Cut.

Γ1 =⇒ A,∆1 Γ2, A =⇒ ∆2
Cut

Γ1,Γ2 =⇒ ∆1,∆2

Exploiting the symmetries of classical linear logic, we can define the remaining linear connectives
that are ordinarily used.

A(B ≡ (A⊗ B⊥)⊥

AOB ≡ (A⊥ ⊗B⊥)⊥

⊥ ≡ 1⊥

A⊕B ≡ (A⊥NB⊥)⊥

0 ≡ >⊥
∃x. A ≡ (∀x. A⊥)⊥

3 LV: Another Sequent Calculus for Linear Logic

In this section we present a formulation of a sequent calculus for linear logic, called LV very close to
Andreoli’s dyadic system Σ2 [And92] and similar to Girard’s LU [Gir93]. It may also be considered
a complete classical analogue of Hodas & Miller’s L [HM94, Hod94], a formulation of a fragment
of intuitionistic linear logic. LV will be amenable to a structural proof of cut elimination following
ideas from an analysis of intuitionistic and classical sequent calculi [Pfe94]. Andreoli’s goal is to
study a paradigm of concurrent computation as search for restricted linear derivations, so he does
not endow Σ2 with proof terms, nor does he prove cut elimination for it. However, he analyzes
its relationship to CLL. Hodas gives an explicit proof of cut elimination for L in [Hod94], which
contains many of the same basic ideas we employ here. However, his proof cannot be structural,
since he does not introduce proof terms.

Constructive cut elimination in a sequent formulation is difficult due to the nature of the
structural rules, especially contraction. Girard [Gir87] uses proof nets (instead of a sequent calculus)

4 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

for his strong normalization theorem partly for that reason. Galmiche and Perrier [GP] give a
syntactic analysis of permutabilities of rules in a sequent calculus and apply it to cut elimination;
our own analysis does not go quite as far, but we have a simpler proof of cut elimination. We
conjecture that their presentation could be streamlined using our linear sequent calculus.

The main challenge is to isolate the non-linear reasoning and the associated structural rules.
Assume we attempt to prove that the conclusion of the cut rule has a cut-free derivation by nested
inductions on the size of the cut formula and the sizes of the cut-free derivations of the premises.
In the case where the cut formula is contracted we encounter some difficulties.

D
Γ1 =⇒ !A,∆1

E1

Γ2, !A, !A =⇒ ∆2

C!
Γ2, !A =⇒ ∆2

Cut
Γ1,Γ2 =⇒ ∆1,∆2

It follows from the induction hypothesis that one copy of !A can be eliminated from E1 by a cut of
D and E1 yielding a cut-free derivation of

E ′1
Γ1,Γ2, !A =⇒ ∆1,∆2,

but how do we proceed from here? We cannot apply the induction hypothesis to D and E ′1, since
the size of the cut formula !A is still the same, but E ′1 may be much larger than E1. Moreover, due
to the multiplicative nature of the cut, we would obtain a derivation of Γ1,Γ1,Γ2 =⇒ ∆1,∆1,∆2

and not of Γ1,Γ2 =⇒ ∆1,∆2 as needed. Since contraction is not valid in general, but only for
modal formulas, this second problem cannot be easily repaired as in the case of classical logic.

The solution is to eliminate the structural rules (in the example above contraction) as much
as possible. To this end we divide a sequent into linear and non-linear zones as in Andreoli’s
Σ2 [And92] and Girard’s LU [Gir93]. Contraction and weakening are no longer required, since
the non-linear zones are maintained monotonically: In each inference rule arbitrary non-linear
side formulas are permitted and copied to all premises, thus eliminating the need for contraction.
Moreover, arbitrary non-linear side formulas are permitted for axioms, eliminating the need for
explicit weakening. What remains is a form of the structural rule of dereliction combined with
contraction: We must be able to copy formulas in the non-linear zones into the linear zones. This
copying is controlled enough to allow a structural proof of admissibility of cut (and cut elimination
as a corollary).

We continue to use the following complete fragment of classical linear logic; the remaining
connectives can easily be defined. P stands for atomic formulas.

Formulas A ::= P | A1 ⊗ A2 | 1 | A1NA2 | > | A⊥ | ∀x. A | !A | ?A

A sequent has the form
Ψ; Γ −→ ∆; Θ

which may be interpreted as !Ψ,Γ −→ ∆, ?Θ in ordinary linear sequent calculus. Thus the outer
zones in the sequents represent non-linear hypotheses and conclusions, the inner zones must be
treated linearly. Note that formulas of the form !A and ?A may occur freely in Γ and ∆. We omit
the non-linear zones Ψ and Θ if they are empty and simply write Γ −→ ∆ for ·; Γ −→ ∆; ·. On our
connectives the calculus is defined by the following rules.

3 LV: ANOTHER SEQUENT CALCULUS FOR LINEAR LOGIC 5

Axioms.

I
Ψ;A −→ A; Θ

Multiplicative Connectives.

Ψ; Γ1 −→ A,∆1; Θ Ψ; Γ2 −→ B,∆2; Θ
⊗R

Ψ; Γ1,Γ2 −→ A⊗ B,∆1,∆2; Θ

Ψ; Γ, A, B −→ ∆; Θ
⊗L

Ψ; Γ, A⊗B −→ ∆; Θ

1R
Ψ; · −→ 1; Θ

Ψ; Γ −→ ∆; Θ
1L

Ψ; Γ, 1 −→ ∆; Θ

Additive Connectives.

Ψ; Γ −→ A,∆; Θ Ψ; Γ −→ B,∆; Θ
NR

Ψ; Γ −→ ANB,∆; Θ

Ψ; Γ, A −→ ∆; Θ
NL1

Ψ; Γ, ANB −→ ∆; Θ

Ψ; Γ, B −→ ∆; Θ
NL2

Ψ; Γ, ANB −→ ∆; Θ

>R
Ψ; Γ −→ >,∆; Θ No >L rule

Involution.

Ψ; Γ, A −→ ∆; Θ
¬R

Ψ; Γ −→ A⊥,∆; Θ

Ψ; Γ −→ A,∆; Θ
¬L

Ψ; Γ, A⊥ −→ ∆; Θ

Quantification.

Ψ; Γ −→ [a/x]A,∆; Θ
∀Ra

Ψ; Γ −→ ∀x. A,∆; Θ

Ψ; Γ, [t/x]A −→ ∆; Θ
∀L

Ψ; Γ, ∀x. A −→ ∆; Θ

Exponentials.

Ψ; · −→ A; Θ
!R

Ψ; · −→ !A; Θ

(Ψ, A); Γ −→ ∆; Θ
!L

Ψ; (Γ, !A) −→ ∆; Θ

Ψ; Γ −→ ∆; (A,Θ)
?R

Ψ; Γ −→ (?A,∆); Θ

Ψ;A −→ ·; Θ
?L

Ψ; ?A −→ ·; Θ

6 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

Structural Rules.

(Ψ, A); (Γ, A) −→ ∆; Θ
!D

(Ψ, A); Γ −→ ∆; Θ

Ψ; Γ −→ (A,∆); (A,Θ)
?D

Ψ; Γ −→ ∆; (A,Θ)

In the rule ∀R the parameter a must be new, that is, it may not occur in Ψ, Γ, ∀x. A, ∆, or Θ.
There are three rules of cut, which we show to be admissible rather than taking them as primitive.

Cut.

Ψ; Γ1 −→ A,∆1; Θ Ψ; Γ2, A −→ ∆2; Θ
Cut

Ψ; Γ1,Γ2 −→ ∆1,∆2; Θ

Ψ; · −→ A; Θ (Ψ, A); Γ −→ ∆; Θ
Cut!

Ψ; Γ −→ ∆; Θ

Ψ; Γ −→ ∆; (A,Θ) Ψ;A −→ ·; Θ
Cut?

Ψ; Γ −→ ∆; Θ

This system satisfies weakening and contraction in the non-linear zones: We can adjoin a formula
to the non-linear zones of each sequent in a derivation to achieve weakening, or substitute the use
of one formula for another to achieve contraction. In either case the structure of the derivation
does not change.

Lemma 1 (Elementary Properties of LV)

1. (WL) If Ψ; Γ −→ ∆; Θ then (Ψ, A); Γ−→ ∆; Θ.

2. (WR) If Ψ; Γ −→ ∆; Θ then Ψ; Γ −→ ∆; (A,Θ).

3. (CL) If (Ψ, A, A); Γ−→ ∆; Θ then (Ψ, A); Γ−→ ∆; Θ.

4. (CR) If Ψ; Γ −→ ∆; (A,A,Θ) then Ψ; Γ −→ ∆; (A,Θ).

Proof: By simple inductions over the structure of the derivations of the assumption. Note that the
constructed derivation differs from the one in the assumption only in that a non-linear hypothesis
or conclusion has been added or erased. 2

We can now show the equivalence of LV and CLL.

Theorem 2 (Equivalence of LV and CLL)

1. If Ψ; Γ −→ ∆; Θ then !Ψ,Γ =⇒ ∆, ?Θ.

2. If !Ψ,Γ =⇒ ∆, ?Θ where formulas in Γ and ∆ are not of the form !A and ?A, respectively,
then Ψ; Γ −→ ∆; Θ.

Proof: By structural inductions over the derivation in the assumption, using non-linear weakening
and contraction from Lemma 1.

3 LV: ANOTHER SEQUENT CALCULUS FOR LINEAR LOGIC 7

Soundness of LV. The proof proceeds by induction over the structure of D :: (Ψ; Γ −→ ∆; Θ).
This is the simpler of the two directions. We only show a few cases; all others are similar.

Case:

D = I.
Ψ;A −→ A; Θ

Then

I :: (A =⇒ A) Axiom
E :: (!Ψ, A =⇒ A, ?Θ) By weakenings (W ! and W?) from I .

Case:

D =

D1

Ψ; Γ1 −→ A,∆1; Θ
D2

Ψ; Γ1 −→ B,∆2; Θ
⊗R.

Ψ; Γ1,Γ2 −→ A⊗ B,∆1,∆2; Θ

Then

E1 :: (!Ψ,Γ1 =⇒ A,∆1, ?Θ) By ind. hyp. on D1

E2 :: (!Ψ,Γ2 =⇒ B,∆2, ?Θ) By ind. hyp. on D2

E ′ :: (!Ψ, !Ψ,Γ1,Γ2 =⇒ A⊗B,∆1,∆2, ?Θ, ?Θ) By ⊗R from E1 and E2

E :: (!Ψ,Γ1,Γ2 =⇒ A⊗ B,∆1,∆2, ?Θ) By contractions (C! and C?) from E ′

Case:

D =

D1

(Ψ, A); Γ, A −→ ∆; Θ
!D.

(Ψ, A); Γ −→ ∆; Θ

Then

E1 :: (!Ψ, !A,Γ, A =⇒ ∆, ?Θ) By ind. hyp. on D1

E ′1 :: (!Ψ, !A,Γ, !A =⇒ ∆, ?Θ) By !L from E1

E :: (!Ψ, !A,Γ =⇒ ∆, ?Θ) By contraction (C!) from E ′1

Completeness of LV. The proof of this direction proceeds by induction on the structure of
E :: (!Ψ,Γ =⇒ ∆, ?Θ). Recall that Γ may not contain a formula of the form !A, and ∆ may not
contain a formula of the form ?A. We have to construct a D :: (Ψ; Γ −→ ∆; Θ). We only show a
few cases; the others are similar.

Case:

E = I
A =⇒ A

There are three subcases, depending on whether the principal connective of A is !, ?, or
neither. We show the case where A = !A′. We construct

D =

I
A′;A′ −→ A′; ·

D!
A′; · −→ A′; ·

!R
A′; · −→ !A′; ·

to satisfy the requirement of the theorem.

8 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

Case:

E =

E1

!Ψ1,Γ1 =⇒ A,∆1, ?Θ1

E2

!Ψ2,Γ2 =⇒ B,∆2, ?Θ2
⊗R.

!Ψ1, !Ψ2,Γ1,Γ2 =⇒ A⊗ B,∆1,∆2, ?Θ1, ?Θ2

Then there are four similar subcases, depending on whether A and B are of the form ?A′ and
?B′, respectively. Assume that A = ?A′ and B = ?B′; the remaining subcases are similar.
then

D1 :: (Ψ1; Γ1 −→ ∆1; (A′,Θ1)) By ind. hyp. on E1

D′1 :: (Ψ1; Γ1 −→ A,∆1; Θ1) By ?R from D1

D′′1 :: (Ψ1,Ψ2; Γ1 −→ A,∆1; Θ1,Θ2) By weakenings WL (Lemma 1) from D′1
D′′2 :: (Ψ1,Ψ2; Γ2 −→ B,∆2; Θ1,Θ2) Similarly from E2

D :: (Ψ1,Ψ2; Γ1,Γ2 −→ A⊗B,∆1,∆2; Θ1,Θ2) By ⊗R from D′′1 and D′′2 .

2

We could prove admissibility of the cut rules in LV simulteneously by three nested inductions
on the complexity of the cut formula, the length of the left derivation of the left premise and the
length of the derivation of the right premise. The rule Cut would be considered smaller that Cut!
and Cut? when the cut formula itself does not change. However, for the purpose of implementation
we would like the proof to be structural. To this end we introduce proof terms to label derivations
in the next section.

4 Linear Proof Terms

In this section we introduce proof terms so that the required weakening for formulas in the non-
linear zones does not destroy the structural induction and to resolve ambiguities in the informal
presentation (the formula labels track occurrences). It is helpful to think of proof terms as part of
a linear λ-calculus. For our purposes, proof terms for the Lolli fragment of linear logic [HM94] are
sufficient, which is important since it satisfies a stronger normal form theorem than the full calculus.
In this fragment, we have linear (() and intuitionistic (→) implication, additive conjunction (N),
top (>) and corresponding proof constructors. Note that we define a calculus of natural deduction
rather than a sequent calculus.

Linear Types A ::= P | A1(A2 | A1NA2 | > | A1 → A2

Linear Terms M ::= c | x
| λx:A. M | M1M2 for A1(A2

| 〈M1,M2〉 | π1M | π2M for A1NA2

| 〈 〉 for >
| λωx:A. M | M1 ·M2 for A1 → A2

We do not formally define this calculus here since it would lead us too far afield. Endowing a
sequent derivation with a linear proof term, however, is suggestive for an encoding of LV in a linear
logical framework that is more concise than the one we present here. We return to this issue in
Section 8.

4 LINEAR PROOF TERMS 9

The proof terms must refer to the hypotheses and conclusions in a sequent in a unique way.
We therefore label each formula in each zone. The proof term annotates the whole sequent, and,
for lack of a better place, we write it above the sequent arrow.

(nω1 :A1, . . . , n
ω
j :Aj); (n1:B1, . . . , nk:Bk)

d−→ (p1:C1, . . . , pl:Cl); (pω1 :D1, . . . , p
ω
m:Dm)

We systematically introduce exactly one proof term constructor for each inference rule and give it
a mnemonic name. This avoids confusion with different proof term assignments from the literature
(e.g. [Abr93]). The purpose of the proof terms here is not immediately computational—they record
enough information about the structure of the proof that it may be reconstructed up to insertion
or removal of some unused hypotheses or conclusions.

Axioms.

I

Ψ;n:A
axiomnp−→ p:A; Θ

Multiplicative Connectives.

Ψ; Γ1
d1−→ p1:A,∆1; Θ Ψ; Γ2

d2−→ p2:B,∆2; Θ
⊗R

Ψ; Γ1,Γ2
timesr (λp1:A. d1) (λp2:B. d2) p−→ p:A⊗ B,∆1,∆2; Θ

Ψ; Γ, n1:A, n2:B
d−→ ∆; Θ

⊗L
Ψ; Γ, n:A⊗ B timesl (λn1:A. λn2:B. d)n−→ ∆; Θ

1R
Ψ; · oner p−→ p:1; Θ

Ψ; Γ
d−→ ∆; Θ

1L

Ψ; Γ, n:1
oneldn−→ ∆; Θ

Additive Connectives.

Ψ; Γ
d1−→ p1:A,∆; Θ Ψ; Γ

d2−→ p2:B,∆; Θ
NR

Ψ; Γ
andr 〈(λp1:A. d1),(λp2:B. d2)〉 p−→ p:ANB,∆; Θ

Ψ; Γ, n1:A
d1−→ ∆; Θ

NL1

Ψ; Γ, n:ANB
andl1 (λn1:A. d1)n−→ ∆; Θ

Ψ; Γ, n2:B
d2−→ ∆; Θ

NL2

Ψ; Γ, n:ANB
andl2 (λn2:B. d2)n−→ ∆; Θ

>R
Ψ; Γ

topr 〈 〉 p−→ p:>,∆; Θ No >L rule

Involution.

Ψ; Γ, n:A
d−→ ∆; Θ

¬R
Ψ; Γ

perpr (λn:A. d) p−→ p:A⊥,∆; Θ

Ψ; Γ
d−→ p:A,∆; Θ

¬L
Ψ; Γ, n:A⊥

perpl (λp:A. d)n−→ ∆; Θ

10 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

Quantification.

Ψ; Γ
d−→ p1:[a/x]A,∆; Θ

∀Ra
Ψ; Γ

forallr (λa:i. λp1:[a/x]A. d) p−→ p:∀x. A,∆; Θ

Ψ; Γ, n1:[t/x]A
d−→ ∆; Θ

∀L
Ψ; Γ, n:∀x. A foralll t (λn1:[t/x]A. d)n−→ ∆; Θ

Exponentials.

Ψ; · d−→ p1:A; Θ
!R

Ψ; · !r·(λp1:A. d) p−→ p:!A; Θ

(Ψ, nω:A); Γ
d−→ ∆; Θ

!L

Ψ; (Γ, n:!A)
!l (λ

ω
nω:A. d)n−→ ∆; Θ

Ψ; Γ
d−→ ∆; (pω:A,Θ)

?R

Ψ; Γ
?r (λ

ω
pω:A. d) p−→ (p:?A,∆); Θ

Ψ;n1:A
d−→ ·; Θ

?L

Ψ;n:?A
?l·(λn1:A. d)n−→ ·; Θ

Structural Rules.

(Ψ, nω:A); (Γ, n:A)
d−→ ∆; Θ

!D

(Ψ, nω:A); Γ
!d (λn:A. d)·nω−→ ∆; Θ

Ψ; Γ
d−→ (p:A,∆); (pω:A,Θ)

?D

Ψ; Γ
?d (λp:A. d)·pω−→ ∆; (A,Θ)

A sequent derivation does not uniquely determine its proof term, nor does a proof term uniquely
determine a derivation. The first phenomenon arises since sequent derivations without proof terms
do not track occurrences. For example,

I
(A,A);A−→ A; ·

D!
(A,A); · −→ A; ·

when annotated as

(nω1 :A, nω2 :A); · d−→ p:A; ·

would be well formed with either

d = !d (λn:A. axiomn p) · nω1 , or
d = !d (λn:A. axiomn p) · nω2 ,

depending on whether the first or the second non-linear occurrence of A is copied to the linear zone.
For the meta-theory of sequent calculi it is often assumed that we can “track occurrences”—proof
terms provide a principled way to achieve this, since different occurrences of formulas have distinct
labels.

In the other direction, a linear proof term does not uniquely determine its derivation. The first
source of ambiguity already arises in the classical calculus: Adjoining modal hypotheses or modal
conclusions to a derivation does not change the structure of its proof term. This is desirable, since
it permits a proof of cut elimination by structural induction on the proof terms.

5 REPRESENTATION IN LF 11

The second ambiguity is due to the additive nature of >. Consider the two derivations

>R
A −→ >

>R
· −→ >

⊗R
A −→ >⊗>

>R
· −→ >

>R
A −→ >

⊗R
A −→ >⊗>

The proof term d for the annotated sequent

n:A
d−→ p:>⊗>

in both cases is
timesr (λp1:>. topr 〈 〉 p1) (λp2:>. topr 〈 〉 p2) p

Other hypotheses besides A are also permitted and could be split in different ways at the ⊗R
inference without affecting the proof term. Since proof terms forget information, it seems inevitable
that our LF representation based on the proof terms above will not be adequate. The solution is to
introduce a higher-level judgment that the representing terms are indeed well formed linear terms.
The derivations that establish linearity of proof terms are then isomorphic to sequent derivations.

Despite these difficulties, we have the following properties of proof terms. Here we write D, v:A
for the result of adjoining v:A to the appropriate non-linear zone in every sequent in D. Note that
the proof term does not change when we adjoin a formula.

Lemma 3 (Basic Properties of Proof Terms)

1. (WL) If D :: (Ψ; Γ
d−→ ∆; Θ) then (D, nω:A) :: ((Ψ, nω:A); Γ

d−→ ∆; Θ).

2. (WR) If D :: (Ψ; Γ
d−→ ∆; Θ) then (D, pω:A) :: (Ψ; Γ

d−→ ∆; (pω:A,Θ)).

Proof: In each case by a straightforward induction on the structure of D. 2

Of course, weakening in the linear zones of a sequent is not valid in general.

5 Representation in LF

In this section we develop the representation of linear sequent derivations in LF as implemented in
Elf. We proceed in three stages. In the first stage we represent the formulas of linear logic using the
standard technique of higher-order abstract syntax (see [HHP93]). In the second stage we encode
proof terms for the sequent calculus without regard to linearity constraints as in [Pfe94]. In the
third stage we encode the linearity requirements as a higher-level judgment on proof terms. This
third stage yields an adequate representation.

5.1 Formulas

The representation of formulas using higher-order abstract syntax is straightforward. The main
idea is to represent object-level variables and parameters by meta-level variables. Also, we do not
commit to any particular domain of individuals, so only variables are built-in. One can encode
constants or function symbols by declaring new LF constants of appropriate type i -> ... -> i

and predicate symbols by declaring new LF constants of type i -> ... -> o. We only show
the Elf declarations below. An explicit definition of the representation of A, pAq, may be easily
constructed from this signature. For example, pA⊥q = perp pAq Note that we use readable infix
notation for ⊗ and N which are considered right associative.

12 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

i : type. % individuals

o : type. % formulas

% Multiplicative connectives

times : o -> o -> o. %infix right 11 times

one : o.

% Additive connectives

and : o -> o -> o. %infix right 11 and

top : o.

% Involution

perp : o -> o.

% Quantifier

forall : (i -> o) -> o.

% Exponentials

! : o -> o.

? : o -> o.

For example, p∀x. (AxN(B x)⊥)q would be

(forall [x:i] A x and perp (B x)) : o.

in a context where A:i -> o and B:i -> o.

5.2 Proof Terms

The proof terms of the annotated sequent calculus are transcribed into LF, interpreting both λ and
λ
ω

as meta-level abstraction, and both juxtaposition and · as meta-level application. We use four
distinct type families, neg!, neg, pos, and pos? to distinguish exponential and linear hypotheses
and conclusions.

: type. % Token (for derivations)

neg!: o -> type. % Modal Hypotheses (far left)

neg : o -> type. % Hypotheses (left)

pos : o -> type. % Conclusions (right)

pos?: o -> type. % Modal Conclusions (far right).

axiom : (neg A -> pos A -> #).

timesr : (pos A -> #) timesl : (neg A -> neg B -> #)

-> (pos B -> #) -> (neg (A times B) -> #).

-> (pos (A times B) -> #).

oner : (pos one -> #). onel : # -> (neg one -> #).

andl1 : (neg A -> #)

andr : (pos A -> #) -> (pos B -> #) -> (neg (A and B) -> #).

-> (pos (A and B) -> #).

5 REPRESENTATION IN LF 13

andl2 : (neg B -> #)

-> (neg (A and B) -> #).

topr : (pos (top) -> #). % no topl

perpr : (neg A -> #) perpl : (pos A -> #)

-> (pos (perp A) -> #). -> (neg (perp A) -> #).

forallr : ({a:i} pos (A a) -> #) foralll : {T:i} (neg (A T) -> #)

-> (pos (forall A) -> #). -> (neg (forall A) -> #).

!r : (pos A -> #) !l : (neg! A -> #)

-> (pos (! A) -> #). -> (neg (! A) -> #).

?r : (pos? A -> #) ?l : (neg A -> #)

-> (pos (? A) -> #). -> (neg (? A) -> #).

!d : (neg A -> #) ?d : (pos A -> #)

-> (neg! A -> #). -> (pos? A -> #).

The obvious representation function pdq for proof terms can be extracted from this signature.
As an example we give a derivation of A⊗ B −→ B ⊗A and its representation in Elf.

I
B −→ B

I
A −→ A

⊗R
A,B −→ B ⊗A

⊗L
A⊗B −→ B ⊗A

If we label the sequent n:A⊗B d−→ p:B ⊗ A then the proof term d would be

timesl (λn1:A. λn2:B. timesr (λp2:B. axiomn2 p2) (λp1:A. axiomn1 p1) p) n.

Its representation in Elf is the object below. Note that we abstract over A and B to express that
the derivation is parametric in A and B.

([A:o] [B:o]

[n:neg (A times B)]

[p:pos (B times A)]

timesl ([n1:neg A] [n2:neg B]

timesr ([p2:pos B] axiom n2 p2)

([p1:pos A] axiom n1 p1)

p)

n)

:

{A:o} {B:o}

neg (A times B)

-> pos (B times A)

-> #.

14 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

The representation of the derivation

>R
A −→ >

>R
B −→ >

⊗R
A,B −→ >⊗>

⊗L
A⊗B −→ >⊗>

is the term

([A:o] [B:o]

[n:neg (A times B)]

[p:pos (top times top)]

timesl ([n1:neg A] [n2:neg B]

timesr ([p1:pos top] topr p1)

([p2:pos top] topr p2)

p)

n)

:

{A:o} {B:o}

neg (A times B)

-> pos (top times top)

-> #.

which is ambiguous. For example, it is also the proof term for

>R
A,B −→ >

>R
· −→ >

⊗R
A,B −→ >⊗>

⊗L
A⊗B −→ >⊗>

This ambiguity is resolved in the check of linearity constraints discussed below.

5.3 Linearity Constraints

Third, the representation of the linearity constraints. We need to check that certain meta-level
functions occurring in proof terms are linear in their argument. Due to typing considerations and
the absence of polymorphism in LF, we need two judgments to represent linearity:

linp : (pos A -> #) -> type.

linn : (neg A -> #) -> type.

We also require a judgment enforcing that each function occurring embedded in a proof term
satisfies the appropriate linearity constraints.

lin : # -> type.

We show here only parts of the implementations of these type families; the complete code may
be found in Appendix A.3. Because we intend the type families to be used operationally in the
Elf meta-language to determine if a given proof term representation is indeed linearly valid, we use
notation A <- B <- C for C -> B -> A. The operational interpretation reads: “To solve a goal of
the form A, first solve B and then C”. First, some cases for linp.

5 REPRESENTATION IN LF 15

Axiom. An axiom is linear in the positive formula participating in it.

linp_axiom : linp ([p] axiom N p).

Tensor. An application of ⊗R is linear in a positive formula p:A if (1) p labels the principal
formula of the inference and p does not occur in either premise,

linp_timesr_0 : linp ([p] timesr D1 D2 p).

(2) p labels a side formula of the inference and p occurs linearly in the left premise and not at all
in the right premise,

linp_timesr_1 : linp ([p] timesr (D1 p) D2 P)

<- ({p1} linp ([p] D1 p p1)).

(3) p labels a side formula of the inference and p occurs linearly in the right premise and not at all
the left premise

linp_timesr_2 : linp ([p] timesr D1 (D2 p) P)

<- ({p2} linp ([p] D2 p p2)).

Note how the multiplicative nature of the tensor is encoded in these three inference rules. Note
also how the variable hygiene of the meta-language captures occurrence conditions. The (implicit)
quantifiers for D1, D2, and P are on the outside and thus, for example, in the last rule D1 may not
depend on p, while D2 may, since we permit dependence by writing (D2 p). Similarly, the principal
formula P cannot be p. The left rule for tensor is simpler: p cannot label the principal formula,
since p is positive and the principal formula is negative. We therefore have only one case.

linp_timesl : linp ([p] timesl (D1 p) N)

<- ({n1} {n2} linp ([p] D1 p n1 n2)).

Multiplicative Unit. This behaves like a 0-ary tensor.

linp_oner_0 : linp ([p] oner p).

linp_onel : linp ([p] onel (D1 p) N)

<- linp ([p] D1 p).

Additive Conjunction. An application of NR is linear in a positive formula p:A if (1) p labels
the principal formula of the inference and p does not occur in either premise,

linp_andr_0 : linp ([p] andr D1 D2 p).

(2) p labels a side formula of the inference and p occurs linearly in both premises

linp_andr : linp ([p] andr (D1 p) (D2 p) P)

<- ({p1} linp ([p] D1 p p1))

<- ({p2} linp ([p] D2 p p2)).

16 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

This encodes the additive nature of the N connective. There are two left rules for N. In each
case, p cannot be the principal formula (which is negative) and must therefore occur linearly in the
premise:

linp_andl1 : linp ([p] andl1 (D1 p) N)

<- ({n1} linp ([p] D1 p n1)).

linp_andl2 : linp ([p] andl2 (D2 p) N)

<- ({n2} linp ([p] D2 p n2)).

Additive Unit. The additive unit > behaves like a 0-ary additive conjunction.

linp_topr_0 : linp ([p] topr p).

linp_topr : linp ([p] topr P).

Involution. The involutive negation is straightforward.

linp_perpr_0 : linp ([p] perpr D1 p).

linp_perpr : linp ([p] perpr (D1 p) P)

<- ({n1} linp ([p] D1 p n1)).

linp_perpl : linp ([p] perpl (D1 p) N)

<- ({p1} linp ([p] D1 p p1)).

Universal Quantification. The universal quantifier does not introduce any new ideas: a formula
occurrence is either principal or occurs linearly in the premise.

linp_forallr_0 : linp ([p] forallr D1 p).

linp_forallr : linp ([p] forallr (D1 p) P)

<- ({a} {p1} linp ([p] D1 p a p1)).

linp_foralll : linp ([p] foralll T (D1 p) N)

<- ({n1} linp ([p] D1 p n1)).

Exponentials. The modal operator ! introduces some new considerations, since we must mediate
between modal and linear hypotheses and conclusions. We repeat the inference rules.

Ψ; · d−→ p1:A; Θ
!R

Ψ; · !r·(λp1:A. d) p−→ p:!A; Θ

(Ψ, nω:A); Γ
d−→ ∆; Θ

!L

Ψ; (Γ, n:!A)
!l (λ

ω
nω :A. d)n−→ ∆; Θ

The !R rule is constrained to have empty linear zones, that is, no linear side formulas are permitted.
Thus an deduction ending in !R is linear in a positive formula p only if p labels the principal formula
of the inference (it cannot occur as a side formula).

5 REPRESENTATION IN LF 17

linp_!r_0 : linp ([p] !r D1 p).

In the left rule we have no such restriction. Since p is positive, it must label a side formula.

linp_!l : linp ([p] !l (D1! p) N)

<- ({n1!} linp ([p] D1! p n1!)).

Note that n1!, the newly introduced negative formula, falls into the modal zone, but this becomes
important only later when we check linearity of subterms where required. For similar reasons, the
structural rule for the exponential ! is simple.

linp_!d : linp ([p] !d (D1 p) N!)

<- ({n1} linp ([p] D1 p n1)).

Analogous considerations for the ? operator lead to the following three rules.

linp_?r_0 : linp ([p] ?r D1 p).

linp_?r : linp ([p] ?r (D1? p) P)

<- ({p1?} linp ([p] D1? p p1?)).

% no linp_?l_0: p is positive

% no linp_?l: p may not occur in D1

linp_?d : linp ([p] ?d (D1 p) P?)

<- ({p1} linp ([p] D1 p p1)).

Note that p may not be the principal formula of a dereliction, which must originate from the
positive modal zone.

We skip the dual rules for linearity of functions in negative formulas. We still have to define
the type family lin, encoding the constraint that every linear hypothesis or conclusion that is
introduced into a derivation is indeed used linearly. There is exactly one declaration for lin for
each inference rule.

Axiom. There are no subderivations, so any use of an axiom is considered linear. The con-
straint that there be no linear side formulas is enforced collectively by checking all hypotheses and
conclusions wherever they are introduced.

lin_axiom : lin (axiom N P).

Tensor. Recall the right rule:

Ψ; Γ1
d1−→ p1:A,∆1; Θ Ψ; Γ2

d2−→ p2:B,∆2; Θ
⊗R

Ψ; Γ1,Γ2
timesr (λp1:A. d1) (λp2:B. d2) p−→ p:A ⊗B,∆1,∆2; Θ

We have to check that (1) the derivation d1 of the left premise is linear in p1, (2) the derivation d2

of the right premise is linear in p2, (3) all subderivations of the left premise are linear, and (4) all
subderivations of the right premise are linear. That is:

18 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

lin_timesr : lin (timesr D1 D2 P)

<- linp D1

<- linp D2

<- ({p1} lin (D1 p1))

<- ({p2} lin (D2 p2)).

Recall the left rule:

Ψ; Γ, n1:A, n2:B
d1−→ ∆; Θ

⊗L
Ψ; Γ, n:A⊗ B timesl (λn1:A. λn2:B. d1)n−→ ∆; Θ

We have to check that (1) the derivation d1 is linear in n1, (2) the derivation d1 is linear in n2, and
(3) all subderivations of d1 are linear.

lin_timesl : lin (timesl D1 N)

<- ({n2} linn ([n1] D1 n1 n2))

<- ({n1} linn ([n2] D1 n1 n2))

<- ({n1} {n2} lin (D1 n1 n2)).

The other multiplicative and additive connectives and the quantifiers are congruences in a
similar style. They are given in Appendix A.3.

Exponentials. Recall the left and right rules for the ! modality:

Ψ; · d1−→ p1:A; Θ
!R

Ψ; · !r·(λp1:A. d1) p−→ p:!A; Θ

(Ψ, nω:A); Γ
d1−→ ∆; Θ

!L

Ψ; (Γ, n:!A)
!l (λ

ω
nω :A. d1)n−→ ∆; Θ

To check that an application of !R is linear, we need to check (1) that the derivation d1 of the
premise is linear in p1, and (2) that all subderivations of the premise are linear. The condition that
there may be no linear side formulas is encoded in the linp and linn families.

lin_!r : lin (!r D1 P)

<- linp D1

<- ({p1} lin (D1 p1)).

In the !L rule, the newly introduced hypothesis nω :A is modal and therefore does not need to
satisfy any linearity constraints. For example, it may occur as a side formula to other applications
of !R. That is, we only need to check that all subderivations of the premise are again linear.

lin_!l : lin (!l D1! N)

<- ({n1!} lin (D1! n1!)).

Dereliction introduces a new linear hypothesis which must thus be checked, together with the
linearity of all further subderivations.

lin_!d : lin (!d D1 N!)

<- linn D1

<- ({n1} lin (D1 n1)).

5 REPRESENTATION IN LF 19

The cases for the ? modality are dual.

lin_?r : lin (?r D1? P)

<- ({p1?} lin (D1? p1?)).

lin_?l : lin (?l D1 N)

<- linn D1

<- ({n1} lin (D1 n1)).

lin_?d : lin (?d D1 P?)

<- linp D1

<- ({p1} lin (D1 p1)).

At the top-level we must check that the derivation is linear in each linear hypothesis or conclu-
sion, and also that every subderivation is linear. A common case is one where we have one linear
hypothesis and one linear conclusion, represented by the type neg A -> pos B -> #. To check a
proof term for validity we may use the following auxiliary judgment.

lin2 : (neg B -> pos C -> #) -> type.

lin2_all : lin2 D

<- ({p} linn ([n] D n p)) % linear in n

<- ({n} linp ([p] D n p)) % linear in p

<- ({n} {p} lin (D n p)). % subderivations are all linear

The adequacy theorem for our representation is tedious, but we include some details since it
may be instructive. We fix the signature Σ to the one consisting of all declarations summarized
in Appendices A.1–A.3 (after type reconstruction) and write G `LF M ⇑ A if M is a canonical LF
object of type A in context G. Assume we have sequent derivation ending in

Ψ; Γ
d−→ ∆; Θ.

For each hypothesis or conclusion we introduce a typing assumption in LF, where the zones are
distinguished by four type families, neg!, neg, pos, and pos?.

pΨq = pnω1 :A1, . . . , n
ω
j :Ajq = nω1 :neg!pA1q, . . . , nωj :neg!pAjq

pΓq = pn1:B1, . . . , nk:Bkq = n1:negpB1q, . . . , nk:negpBkq
p∆q = pp1:C1, . . . , pl:Clq = p1:pospC1q, . . . , pl:pospClq
pΘq = ppω1 :D1, . . . , p

ω
m:Dmq = pω1 :pos?pD1q, . . . , pωm:pos?pDmq

We ambiguously apply p·q to Ψ, Γ, ∆, and Θ, since it is always clear in which zone the hypotheses
or conclusions originate. We then have the theorem that the representation of every derivation
is well-typed and canonical in the LF context which arises from translating the hypotheses and
conclusions as defined above.

Lemma 4 (Soundness of Representation) Let D :: (Ψ; Γ
d−→ ∆; Θ) be a sequent derivation

with parameters among a1, . . . , ah. Then

1. a1:i, . . . , ah:i, pΨq, pΓq, p∆q, pΘq `
LF pdq ⇑ #,

20 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

2. there exists an M such that

a1:i, . . . , ah:i, pΨq, pΓq, p∆q, pΘq `LF M ⇑ lin pdq

3. for each ni:negpBiq, 1 ≤ i ≤ k, there exists an Ni such that

a1:i, . . . , ah:i, pΨq, pΓq, p∆q, pΘq `LF Ni ⇑ linn (λni:negpBiq. pdq)

4. for each pi:pospCiq, 1 ≤ i ≤ l in p∆q there exists a Pi such that

a1:i, . . . , ah:i, pΨq, pΓq, p∆q, pΘq `LF Pi ⇑ linp (λpi:pos pCiq. pdq)

Proof: By induction on the structure of D. 2

In the other direction (the more difficult one) we have to show that every well-typed, canonical
LF object satisfying conditions (1)–(4) above is the representation of a linear sequent derivation.

Lemma 5 (Completeness of Representation) Let G be an LF context of the form

a1:i, . . . , ah:i, pΨq, pΓq, p∆q, pΘq

as defined above. If

1. G `LF D ⇑ #,

2. G `LF M ⇑ linD,

3. G `LF Ni ⇑ linn (λni:negpBiq. D) for 1 ≤ i ≤ k, and

4. G `LF Pi ⇑ linp (λpi:pospCiq. D) for 1 ≤ i ≤ l,

then there exist a proof term d and a derivation D :: (Ψ; Γ
d−→ ∆; Θ) such that pdq = D.

Proof: By induction on the structure of the derivation L :: (G `LF D ⇑ #), applying inversion on
the derivations postulated by items (2)–(4). It is crucial that D, M , Ni and Pi be in canonical
form. 2

Soundness and completeness are the crucial lemmas for adequacy of the representation, since
it can be easily checked that it is a bijection. Compositionality is guaranteed by construction since
we represented object-level variables by meta-level variables.

Theorem 6 (Adequacy of Representation) There exists a bijection p·q between linear sequent
derivations of

D
Ψ; Γ

d−→ ∆; Θ

in the system LV and canonical LF objects of type lin pdq satisfying conditions (2)–(4) in an
appropriate context as stated in Lemmas 4 and 5. The bijection is compositional in the sense that

p[t/a]Dq = [ptq/a]pDq and p[n1/n2]Dq = [n1/n2]pDq and p[p1/p2]Dq = [p1/p2]pDq

5 REPRESENTATION IN LF 21

While this is a very complex statement, it is actually quite easy to use. The complexity is mostly
due to the fact that we have to admit an undetermined number of hypothesis and conclusions in
its formulation. We can specialize it to the case where we have no linear hypotheses or conclusions
(at the end sequent), or to the case where we have precisely one linear hypotheses and conclusion.
For example, if we declare

lin2 : (neg B -> pos C -> #) -> type.

lin2_all : lin2 D

<- ({p} linn ([n] D n p)) % linear in n

<- ({n} linp ([p] D n p)) % linear in p

<- ({n} {p} lin (D n p)). % subderivations are all linear

then we can easily show, using Theorem 6:

Corollary 7 There is a compositional bijection between linear sequent derivations of

D
Ψ;B

d−→ C; Θ

with parameters among a1, . . . , ah in the system LV and canonical LF objects M such that

a1:i, . . . , ah:i, pΨq, pΘq `LF M ⇑ lin2 (λn:negpBq. λp:pospCq. pdq).

We now return to an earlier example, checking that the given proof term actually represents a
derivation of A⊗B −→ B⊗A. To this end we check via an Elf query that it satisfies lin2. Elf here
is used as a constraint logic programming language, searching for a closed instance of the query.
This search is incomplete (depth-first, left-to-right subgoal selection), but linn, linp, and lin are
all operationally adequate and not merely a declarative description of the concepts of linearity.
The answer substitution for L below can be considered the representation of the sequent derivation
according to Corollary 7.

?- L :

{A:o} {B:o}

lin2

([n:neg (A times B)]

[p:pos (B times A)]

timesl ([n1:neg A] [n2:neg B]

timesr ([p2:pos B] axiom n2 p2)

([p1:pos A] axiom n1 p1)

p)

n).

Solving...

L =

[A:o] [B:o]

lin2_all

([n:neg (A times B)] [p:pos (B times A)]

lin_timesl

([n1:neg A] [n2:neg B]

22 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

lin_timesr ([p2:pos A] lin_axiom) ([p1:pos B] lin_axiom)

linp_axiom linp_axiom)

([n1:neg A] linn_timesr_1 [p1:pos B] linn_axiom)

([n2:neg B] linn_timesr_2 [p2:pos A] linn_axiom))

([n:neg (A times B)] linp_timesl [n1:neg A] [n2:neg B] linp_timesr_0)

([p:pos (B times A)] linn_timesl_0).

The following is an incorrect derivation: It violates the multiplicative nature of the tensor and
the side conditions on axioms.

I
A, B −→ B

⊗L
A⊗B −→ B

I
A,B −→ A

⊗L
A⊗ B −→ A

⊗R
A⊗B −→ B ⊗A

A proof term for this derivation may still be written down:

([A:o] [B:o]

[n:neg (A times B)]

[p:pos (B times A)]

timesr ([p2:pos B] timesl ([n1:neg A] [n2:neg B] axiom n2 p2) n)

([p1:pos A] timesl ([n1:neg A] [n2:neg B] axiom n1 p1) n)

p)

:

{A:o} {B:o}

neg (A times B)

-> pos (B times A)

-> #.

However, this term does not satisfy the linearity constraints and thus does not represent a
derivation.

?- {A:o} {B:o}

lin2

([n:neg (A times B)]

[p:pos (B times A)]

timesr ([p2:pos B] timesl ([n1:neg A] [n2:neg B] axiom n2 p2) n)

([p1:pos A] timesl ([n1:neg A] [n2:neg B] axiom n1 p1) n)

p).

Solving...

no

The same proof term may also annotate several valid derivations. This phenomenon was illus-
trated in the examples toward the end of the last section. We show here two of the possible four
derivations with the same proof term.

>R
A −→ >

>R
B −→ >

⊗R
A,B −→ >⊗>

⊗L
A⊗ B −→ >⊗>

>R
A,B −→ >

>R
· −→ >

⊗R
A,B −→ >⊗>

⊗L
A ⊗B −→ >⊗>

The implementation of the linearity constraints enumerates all possible derivations whose annota-
tion is the given proof term. This always terminates, since there are only finitely many possibilities.

5 REPRESENTATION IN LF 23

The order of enumeration depends on the order of the overlapping clauses for linn and linp since
they are tried first-to-last.

?- L :

{A:o} {B:o}

lin2

[n:neg (A times B)]

[p:pos (top times top)]

timesl ([n1:neg A] [n2:neg B]

timesr ([p1:pos top] topr p1)

([p2:pos top] topr p2)

p)

n.

Solving...

L =

[A:o] [B:o]

lin2_all

([n:neg (A times B)] [p:pos (top times top)]

lin_timesl

([n1:neg A] [n2:neg B]

lin_timesr ([p2:pos top] lin_topr) ([p1:pos top] lin_topr)

linp_topr_0 linp_topr_0)

([n1:neg A] linn_timesr_1 [p1:pos top] linn_topr)

([n2:neg B] linn_timesr_1 [p1:pos top] linn_topr))

([n:neg (A times B)] linp_timesl [n1:neg A] [n2:neg B] linp_timesr_0)

([p:pos (top times top)] linn_timesl_0).

;

L =

[A:o] [B:o]

lin2_all

([n:neg (A times B)] [p:pos (top times top)]

lin_timesl

([n1:neg A] [n2:neg B]

lin_timesr ([p2:pos top] lin_topr) ([p1:pos top] lin_topr)

linp_topr_0 linp_topr_0)

([n1:neg A] linn_timesr_2 [p2:pos top] linn_topr)

([n2:neg B] linn_timesr_1 [p1:pos top] linn_topr))

([n:neg (A times B)] linp_timesl [n1:neg A] [n2:neg B] linp_timesr_0)

([p:pos (top times top)] linn_timesl_0).

;

L =

[A:o] [B:o]

lin2_all

([n:neg (A times B)] [p:pos (top times top)]

lin_timesl

([n1:neg A] [n2:neg B]

lin_timesr ([p2:pos top] lin_topr) ([p1:pos top] lin_topr)

linp_topr_0 linp_topr_0)

([n1:neg A] linn_timesr_1 [p1:pos top] linn_topr)

24 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

([n2:neg B] linn_timesr_2 [p2:pos top] linn_topr))

([n:neg (A times B)] linp_timesl [n1:neg A] [n2:neg B] linp_timesr_0)

([p:pos (top times top)] linn_timesl_0).

;

L =

[A:o] [B:o]

lin2_all

([n:neg (A times B)] [p:pos (top times top)]

lin_timesl

([n1:neg A] [n2:neg B]

lin_timesr ([p2:pos top] lin_topr) ([p1:pos top] lin_topr)

linp_topr_0 linp_topr_0)

([n1:neg A] linn_timesr_2 [p2:pos top] linn_topr)

([n2:neg B] linn_timesr_2 [p2:pos top] linn_topr))

([n:neg (A times B)] linp_timesl [n1:neg A] [n2:neg B] linp_timesr_0)

([p:pos (top times top)] linn_timesl_0).

;

no more solutions

6 Admissibility of Cut

In this section we prove the admissibility of cut in LV. The admissibility of cut in CLL is a simple
corollary by virtue of the translations between LV and CLL from Theorem 2.

Theorem 8 (Admissibility of Cut in LV) The three rules of cut

Ψ; Γ1 −→ A,∆1; Θ Ψ; Γ2, A −→ ∆2; Θ
Cut

Ψ; Γ1,Γ2 −→ ∆1,∆2; Θ

Ψ; · −→ A; Θ (Ψ, A); Γ −→ ∆; Θ
Cut!

Ψ; Γ −→ ∆; Θ

Ψ; Γ −→ ∆; (A,Θ) Ψ;A −→ ·; Θ
Cut?

Ψ; Γ −→ ∆; Θ

for the linear sequent calculus LV are admissible.

Proof: Let A be the cut formula and d and e the proof terms of the derivations of the premises
of the cut rules. We proceed by three nested structural inductions on A, d and e, simultaneously
for Cut, Cut!, and Cut?. Appeals to Cut! and Cut? are considered greater than Cut, if the cut
formula A is the same. To rephrase: We may appeal to the induction hypothesis on (1) a smaller
cut formula, (2) the same cut formula, but pass from Cut! or Cut? to Cut, (3) the same cut formula
and rule, but smaller proof term d, or (4) the same cut formula, rule, proof terms d, but smaller
proof term e. Actually, there is no natural priority between d and e: Whenever we need the
induction hypothesis for a smaller e, d remains the same, and vice versa.

In the proof we distinguish the following classes of cases.

1. Axiom cases. Either D or E is an axiom, with the cut formula as principal formula.

6 ADMISSIBILITY OF CUT 25

2. Essential cases. The cut formula is the principal formula of the last inference in both D and
E .

3. Structural cases. The cut formula is the principal formula of a structural rule (!D or ?D) at
the end of D or E . There are only two such cases.

4. Commutative cases. The cut formula is a side formula of the last inference in D or E . There
are three subclasses of this class, depending on whether we are considering Cut, Cut! or Cut?.

These cover all possible cases of Cut, Cut! and Cut?. The general idea of the proof in each class of
cases is summarized below.

1. Axiom cases. Here the cut can be eliminated outright.

2. Essential cases. Here we can eliminate the cut by appeals to the induction hypothesis with
immediate subformulas of the cut formula A.

3. Structural cases. Here we appeal to the induction hypotheses on an immediate subderivation
followed by a switch from Cut! or Cut? to Cut, maintaining the same cut formula A.

4. Commutative cases. Here we appeal to the induction hypothesis on the proof terms labeling
each immediate subderivation of D or E . It is also in some of these cases that we need
weakening for the non-linear zones without changing the proof term.

Many of the cases are very similar. For each class we only show some representative cases below.
The algorithm for admissibility of cut that may be extracted from our proof is non-deterministic,

since the various cases are not mutually exclusive. Our implementation computes a proof term for
the conclusion, given proof terms for the premises of a cut. In Elf, this is represented as a relation
between A, d, e (the input arguments) and f (the resulting derivation). Since there are three forms
of cut, we have three corresponding type families.

ad : {A:o} (pos A -> #) -> (neg A -> #) -> # -> type.

ad! : {A:o} (pos A -> #) -> (neg! A -> #) -> # -> type.

ad? : {A:o} (pos? A -> #) -> (neg A -> #) -> # -> type.

Reasoning about linearity constraints or distribution of hypotheses is not implemented in these
type families. We therefore do not consider them an implementation of the proof, but only of some
of its operational aspects. Nonetheless, it is sufficient to non-deterministically calculate proof terms
for the conclusion of a cut. The complete implementation is given in Appendix A.4. An example
of its execution may be found in Appendix A.5.

Axiom Cases. These comprise two cases: either D or E is an axiom with the principal formula
being the cut formula. Since axioms permit no linear side formulas only two further commutative
cases (for Cut! and Cut?) involving axioms arise. We show the case where D is an axiom; the other
case is symmetric.

Case:

D =
I

Ψ;N :A
axiomN p−→ p:A; Θ

26 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

and E :: (Ψ; Γ2, n:A
e−→ ∆2; Θ) is arbitrary. Then we construct

F =

[N/n]E
Ψ; Γ2, N :A

[N/n]e−→ ∆2; Θ

ad_axiom_l : ad A ([p] axiom N p) E (E N).

In the remaining cases we omit the proof terms, since they may easily be reconstructed from the
derivations and clutter the presentation. In cases we proof terms are important for the induction
we assign proof term e to derivation E , d to D, d1 to D1, etc.

Essential Cases. These are the cases where the cut formula A is the principal formula of the
last inference in D and E .

Case:

D =

D1

Ψ; Γ′1 −→ A1,∆
′
1; Θ

D2

Ψ; Γ′′1 −→ A2,∆
′′
1; Θ

⊗R
Ψ; Γ′1,Γ

′′
1 −→ A1 ⊗A2,∆

′
1,∆

′′
1; Θ

and

E =

E1

Ψ; Γ2, A1, A2 −→ ∆2; Θ
⊗L.

Ψ; Γ2, A1 ⊗A2 −→ ∆2; Θ

Then we construct

E ′1 :: (Ψ; Γ′1,Γ2, A2 −→ ∆′1,∆2; Θ) By ind. hyp. on A1 from D1 and E1

F :: (Ψ; Γ′1,Γ
′′
1,Γ2,−→ ∆′1,∆

′′
1,∆2; Θ) By ind. hyp. on A2 from D2 and E ′1

ad_times : ad (A1 times A2) ([p] timesr D1 D2 p) ([n] timesl E1 n) F

<- ({n2:neg A2} ad A1 D1 ([n1] E1 n1 n2) (E1’ n2))

<- ad A2 D2 E1’ F.

In the remaining cases we omit “Ψ; ” and “; Θ” when they do not change throughout the argument
as above. A full description of the case can be obtained by adjoining them to the left and right of
every sequent in its abbreviated form.

Case:

D = 1R
· −→ 1

and

E =

E1

Γ −→ ∆
1L.

Γ, 1 −→ ∆

Then F = E1 is a derivation with the desired end sequent.

6 ADMISSIBILITY OF CUT 27

ad_one : ad (one) ([p] oner p) ([n] onel E1 n) E1.

Case:

D =

D1

Γ1 −→ A1,∆1

D2

Γ1 −→ A2,∆1
NR

Γ1 −→ A1NA2,∆1

and

E =

E1

Γ2, A1 −→ ∆2
NR1

Γ2, A1NA2 −→ ∆2

Then

F :: (Γ1,Γ2 −→ ∆1,∆2) By ind. hyp. on A1 from D1 and E1

ad_and1 : ad (A1 and A2) ([p] andr D1 D2 p) ([n] andl1 E1 n) F

<- ad A1 D1 E1 F.

Case: The case where E ends in NR2 is symmetric to the previous one.

ad_and2 : ad (A1 and A2) ([p] andr D1 D2 p) ([n] andl2 E2 n) F

<- ad A2 D2 E2 F.

Case: There is no essential case for the additive unit >, since there is no left rule.

Case:

D =

D1

Γ1, A1 −→ ∆1

¬R
Γ1 −→ A⊥1 ,∆1

and

E =

E1

Γ2 −→ A1,∆2

¬L.
Γ2, A

⊥
1 −→ ∆2

Then

F :: (Γ1,Γ2 −→ ∆1,∆2) By ind. hyp. on A1 from E1 and D1.

ad_perp : ad (perp A1) ([p] perpr D1 p) ([n] perpl E1 n) F

<- ad A1 E1 D1 F.

28 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

Case:

D =

D1

Γ1 −→ [a/x]A1,∆1

∀Ra
Γ1 −→ ∀x. A1,∆1

and

E =

E1

Γ2, [t/x]A1 −→ ∆1

∀L
Γ2, ∀x. A1 −→ ∆2

Then

[t/a]D1 :: (Γ1 −→ [t/x]A1,∆1) Since D1 is parametric in a
F :: (Γ1,Γ2 −→ ∆1,∆2) By ind. hyp. on [t/x]A1 from [t/a]D1 and E1

Note that in first-order logic [t/x]A1 is structurally smaller than ∀x. A1; this would break
down in an attempt to extend this proof directly to higher-order logic.

ad_forall : ad (forall A1) ([p] forallr D1 p) ([n] foralll T E1 n) F

<- ad (A1 T) (D1 T) E1 F.

Case:

D =

D1

Ψ; · −→ A1; Θ
!R

Ψ; · −→ !A1; Θ

and

E =

E1

(Ψ, A1); Γ2 −→ ∆2; Θ
!L.

Ψ; Γ2, !A1 −→ ∆2; Θ

Then

F :: (Ψ; Γ2 −→ ∆2; Θ) By ind. hyp. on A1 with Cut! from D1 and E1.

ad_! : ad (! A1) ([p] !r D1! p) ([n] !l E1 n) F

<- ad! A1 D1! E1 F.

Case:

D =

D1

Ψ; Γ1 −→ ∆1; (A1; Θ)
?R

Ψ; Γ1 −→ ?A1,∆1; Θ

and

E =

E1

Ψ;A1 −→ ·; Θ
?L.

Ψ; ?A1 −→ ·; Θ

Then

6 ADMISSIBILITY OF CUT 29

F :: (Ψ; Γ1 −→ ∆1; Θ) By ind. hyp. on A1 with Cut? from D1 and E1.

ad_? : ad (? A1) ([p] ?r D1 p) ([n] ?l E1! n) F

<- ad? A1 D1 E1! F.

Structural Cases. There are only two structural rules, !D and ?D, which copy a formula from
a non-linear to the appropriate linear zone. In case the copied formula A is the principal formula
of a Cut! or Cut?, we first eliminate the remaining non-linear hypothesis or conclusion A and then
appeal to Cut on the same formula A. This is permissable in our structural induction: Cut is
considered smaller than Cut! and Cut? if the cut formula does not change.

Case: D :: (Ψ; · −→ A; Θ) is arbitrary and

E =

E1

(Ψ, A); Γ2, A −→ ∆2; Θ
!D.

(Ψ, A); Γ2 −→ ∆2; Θ

Then (writing e1 for the proof term annotating E1 and d for the proof term of D)

E ′1 :: (Ψ; Γ2, A −→ ∆2; Θ) By ind. hyp. on A, d, and e1 with Cut! from D and E1

F1 :: (Ψ; Γ2 −→ ∆2; Θ) By ind. hyp. on A with Cut from D and E ′1

ad!_d : ad! A D! ([n!] !d (E1 n!) n!) F

<- ({n1:neg A} ad! A D! ([n!] E1 n! n1) (E1’ n1))

<- ad A D! E1’ F.

Case: The case of a Cut? where D ends in ?D and E is arbitrary is dual to the previous one.

ad?_r : ad? A ([p?] ?d (D1 p?) p?) E! F

<- ({p1:pos A} ad? A ([p?] D1 p? p1) E! (D1’ p1))

<- ad A D1’ E! F.

Commutative Cases of Cut. Here we have a Cut where the cut formula is a side formula of
the last inference in D (left commutative cases) or E (right commutative cases). These cases are
not mutually exclusive, so the algorithm implicit in this proof is naturally non-deterministic. We
only show a few cases, since they are very repetitive: We appeal to the induction hypothesis on a
subderivation and then re-apply the last inference.

Case: D :: (Γ1 −→ A,∆1) is arbitrary and

E =

E1

Γ′2, A −→ B1,∆
′
2

E2

Γ′′2 −→ B2,∆
′′
2
⊗R.

Γ′2,Γ
′′
2, A −→ B1 ⊗B2,∆

′
2,∆

′′
2

Then (writing e1 for the proof term annotating E1)

30 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

E ′1 :: (Γ1,Γ
′
2 −→ B1,∆1,∆

′
2) By ind. hyp. on A, d, and e1 from D and E1

F :: (Γ1,Γ
′
2,Γ
′′
2 −→ B1 ⊗B2,∆1,∆

′
2,∆

′′
2) By ⊗R from E ′1 and E2.

There is a symmetric case where A occurs in the hypotheses of E2. We show both cases in
Elf.

adr_timesr1 : ad A D ([n] timesr (E1 n) E2 P) (timesr E1’ E2 P)

<- ({p1:pos B1} ad A D ([n] E1 n p1) (E1’ p1)).

adr_timesr2 : ad A D ([n] timesr E1 (E2 n) P) (timesr E1 E2’ P)

<- ({p2:pos B2} ad A D ([n] E2 n p2) (E2’ p2)).

Case: D :: (Γ1 −→ A,∆1) is arbitrary and

E =

E1

Γ2, A −→ B1,∆
′
2

E2

Γ2, A −→ B2,∆
′
2
NR.

Γ2, A −→ B1NB2,∆
′
2

Then (writing e1 and e2 for the proof terms annotating E1 and E2, respectively)

E ′1 :: (Γ1,Γ2 −→ B1,∆1,∆
′
2) By ind. hyp. on A, d, and e1 from D and E1

E ′2 :: (Γ1,Γ2 −→ B2,∆1,∆
′
2) By ind. hyp. on A, d, and e2 from D and E2

F :: (Γ1,Γ2 −→ B1NB2,∆1,∆
′
2) By NR from E ′1 and E ′2.

adr_andr : ad A D ([n] andr (E1 n) (E2 n) P) (andr E1’ E2’ P)

<- ({p1:pos B1} ad A D ([n] E1 n p1) (E1’ p1))

<- ({p2:pos B2} ad A D ([n] E2 n p2) (E2’ p2)).

Case: D :: (Γ1 −→ A,∆1) is arbitrary and E ends in !R with A as a side formula. This case is
impossible, since !R permits no linear side formulas.

Case: D :: (Ψ; Γ1 −→ A,∆1; Θ) is arbitrary and

E =

E1

(Ψ, B1); Γ′2, A −→ ∆2; Θ
!L

Ψ; Γ′2, !B1, A −→ ∆2; Θ

In this case we cannot directly appeal to the induction hypothesis, since the non-linear hy-
potheses of E1 contain B1, but not those of D. However, we can apply weakening (WL,
Lemma 3) to D without changing its proof term d. Thus (writing e1 for the proof term of E1)

(D, B1) :: ((Ψ, B1); Γ1
d−→ A,∆1; Θ) By Lemma 3

E ′1 :: ((Ψ, B1); Γ1,Γ
′
2 −→ ∆1,∆2; Θ) By ind. hyp. on A, d, and e1 from (D, B1) and E1

F :: (Ψ; Γ1,Γ
′
2, !B1 −→ ∆1,∆2; Θ) By !L from E ′1

adr_!l : ad A D ([n] !l (E1 n) N) (!l E1’ N)

<- ({n1!:neg! B1} ad A D ([n] E1 n n1!) (E1’ n1!)).

6 ADMISSIBILITY OF CUT 31

Commutative Cases of Cut!. Here we have a Cut! where the cut formula A is not the principal
formula of E . Note that the only way A could be the principal formula would be a structural rule
!D, since otherwise non-linear hypothesis participate in inferences only as side formulas. Thus we
have precisely one case for each possible inference rule R in E , including axioms. In each case we
simply commute the cut into the premises of E and then re-apply R to the results of appeals to
the induction hyphotheses. Note that we do not distinguish cases based on the last inference in D.
Eventually, the Cut! disappears at the leaves of the derivation or is involved in a structural rule, in
which case a structural case from above applies. We show only two of the mechanical commutative
cases here.

Case: D :: (Ψ; · −→ A; Θ) is arbitrary and

E = I.
(Ψ, A);B −→ B; Θ

Then
F = I

Ψ;B −→ B; Θ

is a derivation with the desired end sequent.

ad!r_axiom : ad! A D! ([n!] axiom N P) (axiom N P).

Case: D :: (Ψ; · −→ A; Θ) is arbitrary and

E =

E1

(Ψ, A); Γ′2 −→ B1,∆
′
2; Θ

E2

(Ψ, A),Γ′′2 −→ B2,∆
′′
2; Θ

⊗R.
(Ψ, A),Γ′2,Γ

′′
2 −→ B1 ⊗ B2,∆

′
2,∆

′′
2; Θ

Writing d, e1 and e2 for the proof terms of D, E1 and E2, respectively, we obtain

E ′1 :: (Ψ; Γ′2 −→ B1,∆
′
2; Θ) By ind. hyp. on A, d, and e1 from D and E1

E ′2 :: (Ψ; Γ′′2 −→ B2,∆
′′
2; Θ) By ind. hyp. on A, d, and e2 from D and E2

F :: (Ψ; Γ′2,Γ
′′
2 −→ B1 ⊗ B2,∆

′
2,∆

′′
2; Θ) By ⊗R from E ′1 and E ′2.

ad!r_timesr : ad! A D! ([n!] timesr (E1 n!) (E2 n!) P)

(timesr E1’ E2’ P)

<- ({p1:pos B1} ad! A D! ([n!] E1 n! p1) (E1’ p1))

<- ({p2:pos B2} ad! A D! ([n!] E2 n! p2) (E2’ p2)).

Commutative Cases of Cut?. Here we have a Cut? where the cut formula A is not the principal
formula of D. These cases are dual to the preceding commutative cases Cut!.

2

The faithful and concise implementation of this proof in the spirit of similar representations
for intuitionistic and classical logic ([Pfe94]) would require a linear logical framework, which is the
subject of current research. By meta-level reasoning (i.e., the informal proof and properties of LF)
we know that our implementation always maps linear derivations to linear derivations.

32 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

Corollary 9 (Admissibility of Cut for CLL) The rule of cut is admissible in CLL.

Proof: We translate the cut free derivations of the premises of the cut in CLL to LV (using
Theorem 2) and apply Theorem 8. We then translate the resulting cut-free derivation to a cut-free
derivation in CLL using Theorem 2 in the other direction. 2

The translations between CLL and LV preserve enough structure that we could map our algo-
rithm for admissibility of cut on LV to an algorithm for admissibility of cut on CLL. We do not
pursue this here.

7 Cut Elimination

The theorem of cut elimination states that a derivation possibly using many cuts may be trans-
formed into one without cuts. This follows by a simple structural induction from the admissibility
of cut. We introduce a new system, LV+ with primitive rules of cut and write Ψ; Γ −→+ ∆; Θ for

the system without proof terms and Ψ; Γ
d−→+ ∆; Θ for the system with proof terms. The latter

contains the rules

Ψ; Γ1
d−→+ p:A,∆1; Θ Ψ; Γ2, n:A

e−→+ ∆2; Θ
Cut

Ψ; Γ1,Γ2
cut(λp:A. d) (λn:A. e)−→ + ∆1,∆2; Θ

Ψ; · d−→+ p:A; Θ (Ψ, nω:A); Γ
e−→+ ∆; Θ

Cut!

Ψ; Γ
cut!·(λp:A. d) (λ

ω
nω:A. e)−→ + ∆; Θ

Ψ; Γ
d−→+ ∆; (pω:A,Θ) Ψ; n:A

e−→+ ·; Θ
Cut?

Ψ; Γ
cut? (λ

ω
pω:A. D)·(λn:A. e)−→ + ∆; Θ

Theorem 10 (Cut Elimination for LV+) If Ψ; Γ
d̂−→+ ∆; Θ then Ψ; Γ

d−→ ∆; Θ for some proof
term d.

Proof: By structural induction on d̂. For all rules R except the cut rules we appeal to induc-
tion hypotheses on the derivation(s) of the premise(s) and then apply R to the resulting cut-free
derivation(s). In the case of a cut we first eliminate all cuts from the derivations of the premises
(using the induction hypothesis) and then apply the admissibility of cut for the resulting cut-free
derivations (Theorem 8) to obtain a cut-free derivation of the conclusion. 2

Since the Elf language implementation currently supports neither subtyping nor modules, we
implement LV+ declaring a new type family @ for derivations with cut and copying all the inference
rules, appending ^ to their names to avoid name conflicts. The implementation of the cut elimina-
tion algorithm induced by our proof above is then straightforward. We only show the declarations,
one congruence case, and the cut cases. The full implementation appears in Appendix A.7. Once
again, the implementation does not check linearity constraints.

8 REPRESENTATION IN A LINEAR META-LANGUAGE 33

elim : @ -> # -> type.

ce_timesr : elim (timesr^ D1^ D2^ P) (timesr D1 D2 P)

<- ({p1} elim (D1^ p1) (D1 p1))

<- ({p2} elim (D2^ p2) (D2 p2)).

ce_cut : elim (cut^ D1^ D2^) F

<- ({p} elim (D1^ p) (D1 p))

<- ({n} elim (D2^ n) (D2 n))

<- ad A D1 D2 F.

ce_cut! : elim (cut!^ D1!^ D2^) F

<- ({p} elim (D1!^ p) (D1! p))

<- ({n!} elim (D2^ n!) (D2 n!))

<- ad! A D1! D2 F.

ce_cut? : elim (cut?^ D1^ D2!^) F

<- ({p?} elim (D1^ p?) (D1 p?))

<- ({n} elim (D2!^ n) (D2! n))

<- ad? A D1 D2! F.

We can obtain cut elimination for CLL in three ways: (1) we could prove it by structural
induction from Corollary 9, (2) we could extend the translations from Theorem 2 to include cut
and then use cut elimination for LV, or (3) we could obtain a direct algorithm by composing the
translations with the cut elimination steps of LV. In any case, we have:

Corollary 11 (Cut Elimination for CLL) The linear sequent calculus CLL satisfies cut elimi-
nation.

8 Representation in a Linear Meta-Language

In this somewhat speculative section we show how to exploit a meta-language based on linear
natural deduction in order to represent the linear sequent calculus more concisely. A full realization
of this idea requires a dependently typed linear logical framework [MPP92] which is the subject
of current research in joint work with I. Cervesato. In the absence of such a framework we limit
ourselves to the propositional fragment of the linear sequent calculus LV, since its proof terms may
be mapped rather directly onto the Lolli fragment of a linear natural deduction calculus [HM94].
We believe that the ideas can be extended naturally to a full calculus, including the proof of cut
elimination. Throughout this section, we restrict ourselves to the propositional fragment LVP of
LV.

The intuitionistic meta-language we need contains linear and intuitionistic implication, additive

34 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

conjunction, and the additive unit. We endow its natural deduction formulation with proof terms.

Linear Types A ::= P | A1(A2 | A1NA2 | > | A1 → A2

Linear Terms M ::= c | x
| λx:A. M |M1M2 for A1(A2

| 〈M1,M2〉 | π1M | π2M for A1NA2

| 〈 〉 for >
| λωx:A. M |M1 ·M2 for A1 → A2

Linear Contexts G ::= · | G, x:A

The overall context is divided into non-linear and linear zones. We use E for the non-linear context
and L for the linear context, fixing a signature Σ for constants. We define here only the judgment
for canonical forms (which correspond to so-called uniform derivations in [HM94]), because this is
required for adequacy. We obtain the typing judgment for this linear λ-calculus by replacing both
⇑ and ↓ by : and omitting the (now redundant) rule which coerces from ↓ to ⇑. It follows from
results in [Hod94] that every term can be transformed into canonical form. Note that the canonical
forms correspond to long βη-normal forms.

E;L `L M ⇑ A M is canonical of type A in context E;L

E;L `L M ↓ A M is atomic of type A in context E;L

It is defined by the following rules.

E; (L, x:A) `
L

M ⇑ B

E;L `
L

λx:A. M ⇑ A(B

(E, x:A);L `
L

M ⇑ B

E;L `
L

λ
ω

x:A. M ⇑ A→ B

E;L `
L

M ⇑ A E;L `
L

N ⇑ B

E;L `
L

〈M,N〉 ⇑ ANB E;L `
L

〈 〉 ⇑ >

E;L `
L

M ↓ P

E;L `
L

M ⇑ P

c:A in Σ

E; · `
L

c ↓ A

E; x:A `
L

x ↓ A

x:A in E

E; · `
L

x ↓ A

E;L1 `
L

M ↓ A(B E;L2 `
L

N ⇑ A

E;L1, L2 `
L

M N ↓ B

E;L `
L

M ↓ A→ B E; · `
L

N ⇑ A

E;L `
L

M ·N ↓ B

E;L `
L

M ↓ ANB

E;L `
L

π1M ↓ A

E;L `
L

M ↓ ANB

E;L `
L

π2M ↓ B

Below we give the declarations of the constants that could be used to construct the linear λ-
terms to obtain an adequate representation of sequent derivations in LV. Alternatively, one can
think of this as a Lolli program, where each clause has been labelled.

8 REPRESENTATION IN A LINEAR META-LANGUAGE 35

: type. % Token for Derivations

neg!: o -> type. % Modal Hypotheses (far left)

neg : o -> type. % Hypotheses (left)

pos : o -> type. % Conclusions (right)

pos?: o -> type. % Modal Conclusions (far right)

axiom : (neg A -o pos A -o #).

timesr : (pos A -o #) timesl : (neg A -o neg B -o #)

-o (pos B -o #) -o (neg (A times B) -o #).

-o (pos (A times B) -o #).

oner : (pos one -o #). onel : # -o (neg one -o #).

andl1 : (neg A -o #)

andr : ((pos A -o #) & (pos B -o #)) -o (neg (A and B) -o #).

-o (pos (A and B) -o #).

andl2 : (neg B -o #)

-o (neg (A and B) -o #).

topr : T -o (pos (top) -o #). % no topl

perpr : (neg A -o #) perpl : (pos A -o #)

-o (pos (perp A) -o #). -o (neg (perp A) -o #).

!r : (pos A -o #) !l : (neg! A -> #)

-> (pos (! A) -o #). -o (neg (! A) -o #).

?r : (pos? A -> #) ?l : (neg A -o #)

-o (pos (? A) -o #). -> (neg (? A) -o #).

!d : (neg A -o #) ?d : (pos A -o #)

-o (neg! A -> #). -o (pos? A -> #).

If the cut rules were primitive, they would be represented by

cut : (pos A -o #)

-o (neg A -o #)

-o #.

cut! : (pos A -o #)

-> (neg! A -> #)

-o #.

cut? : (neg? A -> #)

-o (pos A -o #)

-> #.

Since the framework can now express linearity constraints directly, we no longer require the
judgments linp, linn, and lin from before. However, the ambiguities of proof terms must still be
taken into account when formulating the adequacy theorem. Proof terms from LVP are represented
directly by linear terms in the meta-language. Sequent derivations are mapped to derivations

36 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

showing that these terms in the meta-language are canonical (and thereby, that they satisfy linearity
constraints). We write pDq for this meta-derivation. We do not write out its definition, since it
follows obviously from the representation of proof terms. The main point of this mapping is that
linear hypotheses and conclusions of the sequent derivation D are distributed to the premises in an
analogous manner in pDq.

Lemma 12 (Soundness of Linear Representation) Let D :: (Ψ; Γ
d−→ ∆; Θ) be a sequent

derivation in LVP. Then

pDq :: ((pΨq, pΘq); (pΓq, p∆q) `L pdq ⇑ #).

Proof: By induction on the structure of D. 2

Lemma 13 (Completeness of Linear Representation) Let E be a non-linear context of the
form pΨq, pΘq and L be of the form pΓq, p∆q.

1. If E;L `L M ⇑ # then there exists a unique proof term d such that pdq = M .

2. For every derivation L :: (E;L `L M ⇑ #) there exists a unique LVP sequent derivation

D :: (Ψ; Γ
d−→ ∆; Θ) such that pDq = L.

Proof: By induction on the structure of L. 2

Theorem 14 (Adequacy of Linear Representation) The representation function p·q on se-
quent calculus proof terms is a bijection between valid proof terms d and canonical terms M of type
in the appropriate contexts. Moreover, p·q on sequent derivations is a bijection between sequent
derivations D with proof term d and derivations L showing that pdq is canonical.

9 Conclusion

We presented LV, a sequent formulation of classical linear logic with proof terms and gave a
structural proof of cut elimination for it. We also presented an adequate encoding of linear sequent
derivations in LF and an implementation of a cut elimination algorithm for LV in Elf.

The implementation of cut elimination is operationally adequate, but it is not a complete
implementation of the cut elimination proof, since it disregards all linearity constraints. We believe
it would be possible, albeit very tedious (without any automation) to implement a proof of the
property that our algorithms maps linear derivations to linear derivations.

This naturally leads to the question if the proof of cut elimination could be represented faithfully
and directly in a linear logical framework along the lines of [MPP92]. We conjecture that this is
possible and plan to investigate it in future work. Preliminary evidence in this direction is a more
direct encoding of sequent derivations themselves presented in Section 8.

Another interesting direction for further research would be to reformulate the algorithm into a
set of higher-order rewrite rules on linear λ-terms. The resulting system appears to be canonical
modulo permutations of adjacent inferences as analyzed by Galmiche & Perrier [GP]. We have
checked this mechanically only for the intuitionistic and classical (non-linear) version of our cut
elimination procedure as presented in [Pfe94].

9 CONCLUSION 37

Acknowledgments

I would like to thank Iliano Cervesato for discussions regarding the topic of this paper and proof-
reading earlier drafts.

38 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

A Complete Implementation

A.1 Formulas

%file formulas.elf

i : type. % individuals

o : type. % formulas

%name i S

%name o A B C

% Multiplicative connectives

times : o -> o -> o. %infix right 11 times

one : o.

% Additive connectives

and : o -> o -> o. %infix right 11 and

top : o.

% Involution

perp : o -> o.

% Quantifier

forall : (i -> o) -> o.

% Exponentials

! : o -> o.

? : o -> o.

A.2 Sequent Calculus LV

%file lv.elf

: type. % Token (for derivations)

neg!: o -> type. % Exponential Hypotheses (far left zone)

neg : o -> type. % Hypotheses (left zone)

pos : o -> type. % Conclusions (right zone)

pos?: o -> type. % Exponential Conclusions (far right zone)

%name # D

%name neg! N!

%name neg N

%name pos P

%name pos? N?

%% Axioms

axiom : (neg A -> pos A -> #).

%% Multiplicative Connectives

timesr : (pos A -> #)

-> (pos B -> #)

A COMPLETE IMPLEMENTATION 39

-> (pos (A times B) -> #).

timesl : (neg A -> neg B -> #)

-> (neg (A times B) -> #).

oner : (pos one -> #).

onel : #

-> (neg one -> #).

%% Additive Connectives

andr : (pos A -> #) -> (pos B -> #)

-> (pos (A and B) -> #).

andl1 : (neg A -> #)

-> (neg (A and B) -> #).

andl2 : (neg B -> #)

-> (neg (A and B) -> #).

topr : (pos (top) -> #).

% no topl

%% Involution

perpr : (neg A -> #)

-> (pos (perp A) -> #).

perpl : (pos A -> #)

-> (neg (perp A) -> #).

%% Quantifier

forallr : ({a:i} pos (A a) -> #)

-> (pos (forall A) -> #).

foralll : {T:i} (neg (A T) -> #)

-> (neg (forall A) -> #).

%% Exponentials

!r : (pos A -> #)

-> (pos (! A) -> #).

!l : (neg! A -> #)

-> (neg (! A) -> #).

!d : (neg A -> #)

-> (neg! A -> #).

40 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

?r : (pos? A -> #)

-> (pos (? A) -> #).

?l : (neg A -> #)

-> (neg (? A) -> #).

?d : (pos A -> #)

-> (pos? A -> #).

A.3 Linearity Constraints

%file linear.elf

%% Linear functions in positive formula

linp : (pos A -> #) -> type.

%mode -linp +D

%lex D

linp_axiom : linp ([p] axiom N p).

linp_timesr_0 : linp ([p] timesr D1 D2 p).

linp_timesr_1 : linp ([p] timesr (D1 p) D2 P)

<- ({p1} linp ([p] D1 p p1)).

linp_timesr_2 : linp ([p] timesr D1 (D2 p) P)

<- ({p2} linp ([p] D2 p p2)).

linp_timesl : linp ([p] timesl (D1 p) N)

<- ({n1} {n2} linp ([p] D1 p n1 n2)).

linp_oner_0 : linp ([p] oner p).

linp_onel : linp ([p] onel (D1 p) N)

<- linp ([p] D1 p).

linp_andr_0 : linp ([p] andr D1 D2 p).

linp_andr : linp ([p] andr (D1 p) (D2 p) P)

<- ({p1} linp ([p] D1 p p1))

<- ({p2} linp ([p] D2 p p2)).

linp_andl1 : linp ([p] andl1 (D1 p) N)

<- ({n1} linp ([p] D1 p n1)).

linp_andl2 : linp ([p] andl2 (D2 p) N)

<- ({n2} linp ([p] D2 p n2)).

A COMPLETE IMPLEMENTATION 41

linp_topr_0 : linp ([p] topr p).

linp_topr : linp ([p] topr P).

linp_perpr_0 : linp ([p] perpr D1 p).

linp_perpr : linp ([p] perpr (D1 p) P)

<- ({n1} linp ([p] D1 p n1)).

linp_perpl : linp ([p] perpl (D1 p) N)

<- ({p1} linp ([p] D1 p p1)).

linp_forallr_0 : linp ([p] forallr D1 p).

linp_forallr : linp ([p] forallr (D1 p) P)

<- ({a} {p1} linp ([p] D1 p a p1)).

linp_foralll : linp ([p] foralll T (D1 p) N)

<- ({n1} linp ([p] D1 p n1)).

linp_!r_0 : linp ([p] !r D1 p).

% no linp_!r: p may not occur in D1.

linp_!l : linp ([p] !l (D1! p) N)

<- ({n1!} linp ([p] D1! p n1!)).

linp_!d : linp ([p] !d (D1 p) N!)

<- ({n1} linp ([p] D1 p n1)).

linp_?r_0 : linp ([p] ?r D1 p).

linp_?r : linp ([p] ?r (D1? p) P)

<- ({p1?} linp ([p] D1? p p1?)).

% no linp_?l_0 : p is positive

% no linp_?l: p may not occur in D1

linp_?d : linp ([p] ?d (D1 p) P?)

<- ({p1} linp ([p] D1 p p1)).

%% Linear function in negative formula

linn : (neg A -> #) -> type.

%mode -linn +D

%lex D

linn_axiom : linn ([n] axiom n P).

linn_timesr_1 : linn ([n] timesr (D1 n) D2 P)

42 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

<- ({p1} linn ([n] D1 n p1)).

linn_timesr_2 : linn ([n] timesr D1 (D2 n) P)

<- ({p2} linn ([n] D2 n p2)).

linn_timesl_0 : linn ([n] timesl D1 n).

linn_timesl : linn ([n] timesl (D1 n) N)

<- ({n1} {n2} linn ([n] D1 n n1 n2)).

% no linn_oner

linn_onel_0 : linn ([n] onel D1 n).

linn_onel : linn ([n] onel (D1 n) N)

<- linn ([n] D1 n).

linn_andr : linn ([n] andr (D1 n) (D2 n) P)

<- ({p1} linn ([n] D1 n p1))

<- ({p2} linn ([n] D2 n p2)).

linn_andl1_0 : linn ([n] andl1 D1 n).

linn_andl1 : linn ([n] andl1 (D1 n) N)

<- ({n1} linn ([n] D1 n n1)).

linn_andl2_0 : linn ([n] andl2 D2 n).

linn_andl2 : linn ([n] andl2 (D2 n) N)

<- ({n2} linn ([n] D2 n n2)).

linn_topr : linn ([n] topr P).

linn_perpr : linn ([n] perpr (D1 n) P)

<- ({n1} linn ([n] D1 n n1)).

linn_perpl_0 : linn ([n] perpl D1 n).

linn_perpl : linn ([n] perpl (D1 n) N)

<- ({p1} linn ([n] D1 n p1)).

linn_forallr : linn ([n] forallr (D1 n) P)

<- ({a} {p1} linn ([n] D1 n a p1)).

linn_foralll_0 : linn ([n] foralll T D1 n).

linn_foralll : linn ([n] foralll T (D1 n) N)

<- ({n1} linn ([n] D1 n n1)).

% no linn_!r_0 : n is negative

% no linn_!r: n may not occur in D1.

A COMPLETE IMPLEMENTATION 43

linn_!l_0 : linn ([n] !l D1! n).

linn_!l : linn ([n] !l (D1! n) N)

<- ({n1!} linn ([n] D1! n n1!)).

linn_!d : linn ([n] !d (D1 n) N!)

<- ({n1} linn ([n] D1 n n1)).

linn_?r : linn ([n] ?r (D1? n) P)

<- ({p1?} linn ([n] D1? n p1?)).

linn_?l_0 : linn ([n] ?l D1 n).

% no linn_?l: n may not occur in D1

linn_?d : linn ([n] ?d (D1 n) P?)

<- ({p1} linn ([n] D1 n p1)).

%% Linear derivations: all subderivations must be

%% linear as required.

lin : # -> type.

%mode -lin +D

%lex D

lin_axiom : lin (axiom N P).

lin_timesr : lin (timesr D1 D2 P)

<- linp D1

<- linp D2

<- ({p1} lin (D1 p1))

<- ({p2} lin (D2 p2)).

lin_timesl : lin (timesl D1 N)

<- ({n2} linn ([n1] D1 n1 n2))

<- ({n1} linn ([n2] D1 n1 n2))

<- ({n1} {n2} lin (D1 n1 n2)).

lin_oner : lin (oner P).

lin_onel : lin (onel D N)

<- lin D.

lin_andr : lin (andr D1 D2 P)

<- linp D1

<- linp D2

<- ({p1} lin (D1 p1))

<- ({p2} lin (D2 p2)).

44 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

lin_andl1 : lin (andl1 D1 N)

<- linn D1

<- ({n1} lin (D1 n1)).

lin_andl2 : lin (andl2 D2 N)

<- linn D2

<- ({n2} lin (D2 n2)).

lin_topr : lin (topr P).

% no topl

lin_perpr : lin (perpr D1 P)

<- linn D1

<- ({n1} lin (D1 n1)).

lin_perpl : lin (perpl D1 N)

<- linp D1

<- ({p1} lin (D1 p1)).

lin_forallr : lin (forallr D1 P)

<- ({a:i} linp (D1 a))

<- ({a} {p1} lin (D1 a p1)).

lin_foralll : lin (foralll T D1 N)

<- linn D1

<- ({n1} lin (D1 n1)).

lin_!r : lin (!r D1 P)

<- linp D1

<- ({p1} lin (D1 p1)).

lin_!l : lin (!l D1! N)

<- ({n1!} lin (D1! n1!)).

lin_!d : lin (!d D1 N!)

<- linn D1

<- ({n1} lin (D1 n1)).

lin_?r : lin (?r D1? P)

<- ({p1?} lin (D1? p1?)).

lin_?l : lin (?l D1 N)

<- linn D1

<- ({n1} lin (D1 n1)).

lin_?d : lin (?d D1 P?)

<- linp D1

<- ({p1} lin (D1 p1)).

%% Linear derivation of B --> C (common case).

A COMPLETE IMPLEMENTATION 45

lin2 : (neg B -> pos C -> #) -> type.

%mode -lin2 +D

%lex D

lin2_all : lin2 D

<- ({p} linn ([n] D n p)) % linear in n

<- ({n} linp ([p] D n p)) % linear in p

<- ({n} {p} lin (D n p)). % subderivations are all linear

A.4 Admissibility of Cut

%file admit.elf

ad : {A:o} (pos A -> #) -> (neg A -> #) -> # -> type.

ad! : {A:o} (pos A -> #) -> (neg! A -> #) -> # -> type.

ad? : {A:o} (pos? A -> #) -> (neg A -> #) -> # -> type.

%mode -ad! +A1 +D1! +E1 -F1

%mode -ad? +A2 +D2 +E2! -F2

%mode -ad +A3 +D3 +E3 -F3

%lex {A1 A2 A3} {} {D1! D2 D3} {E1 E2! E3}

%% 1. Axiom Cases

ad_axiom_l : ad A ([p] axiom N p) E (E N).

ad_axiom_r : ad A D ([n] axiom n P) (D P).

%% 2. Essential Cases

% Essential cases, multiplicatives

ad_times : ad (A1 times A2) ([p] timesr D1 D2 p) ([n] timesl E1 n) F

<- ({n2:neg A2} ad A1 D1 ([n1] E1 n1 n2) (E1’ n2))

<- ad A2 D2 E1’ F.

ad_one : ad (one) ([p] oner p) ([n] onel E1 n) E1.

% Essential cases, additives

ad_and1 : ad (A1 and A2) ([p] andr D1 D2 p) ([n] andl1 E1 n) F

<- ad A1 D1 E1 F.

ad_and2 : ad (A1 and A2) ([p] andr D1 D2 p) ([n] andl2 E2 n) F

<- ad A2 D2 E2 F.

% No essential case for additive unit

46 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

% Essentional case, involution

ad_perp : ad (perp A1) ([p] perpr D1 p) ([n] perpl E1 n) F

<- ad A1 E1 D1 F.

% Essential case, quantifier

ad_forall : ad (forall A1) ([p] forallr D1 p) ([n] foralll T E1 n) F

<- ad (A1 T) (D1 T) E1 F.

% Essential cases, exponentials

ad_! : ad (! A1) ([p] !r D1! p) ([n] !l E1 n) F

<- ad! A1 D1! E1 F.

ad_? : ad (? A1) ([p] ?r D1 p) ([n] ?l E1! n) F

<- ad? A1 D1 E1! F.

%% 3. Structural Cases

ad!_d : ad! A D! ([n!] !d (E1 n!) n!) F

<- ({n1:neg A} ad! A D! ([n!] E1 n! n1) (E1’ n1))

<- ad A D! E1’ F.

ad?_r : ad? A ([p?] ?d (D1 p?) p?) E! F

<- ({p1:pos A} ad? A ([p?] D1 p? p1) E! (D1’ p1))

<- ad A D1’ E! F.

%% 4. Commutative Cases

% 4.1 Right commutative cases of Cut

% No commutative cases crossing axioms

% Crossing multiplicatives

adr_timesr1 : ad A D ([n] timesr (E1 n) E2 P) (timesr E1’ E2 P)

<- ({p1:pos B1} ad A D ([n] E1 n p1) (E1’ p1)).

adr_timesr2 : ad A D ([n] timesr E1 (E2 n) P) (timesr E1 E2’ P)

<- ({p2:pos B2} ad A D ([n] E2 n p2) (E2’ p2)).

adr_timesl : ad A D ([n] timesl (E1 n) N) (timesl E1’ N)

<- ({n1:neg B1} {n2:neg B2}

ad A D ([n] E1 n n1 n2) (E1’ n1 n2)).

% No case for oner

adr_onel : ad A D ([n] onel (E1 n) N) (onel E1’ N)

<- ad A D E1 E1’.

A COMPLETE IMPLEMENTATION 47

% Crossing additives

adr_andr : ad A D ([n] andr (E1 n) (E2 n) P) (andr E1’ E2’ P)

<- ({p1:pos B1} ad A D ([n] E1 n p1) (E1’ p1))

<- ({p2:pos B2} ad A D ([n] E2 n p2) (E2’ p2)).

adr_andl1 : ad A D ([n] andl1 (E1 n) N) (andl1 E1’ N)

<- ({n1:neg B1} ad A D ([n] E1 n n1) (E1’ n1)).

adr_andl2 : ad A D ([n] andl2 (E2 n) N) (andl2 E2’ N)

<- ({n2:neg B2} ad A D ([n] E2 n n2) (E2’ n2)).

adr_topr : ad A D ([n] topr P) (topr P).

% no topl rule

% Crossing involution

adr_perpr : ad A D ([n] perpr (E1 n) P) (perpr E1’ P)

<- ({n1:neg B1} ad A D ([n] E1 n n1) (E1’ n1)).

adr_perpl : ad A D ([n] perpl (E1 n) N) (perpl E1’ N)

<- ({p1:pos B1} ad A D ([n] E1 n p1) (E1’ p1)).

% Crossing quantifier

adr_forallr : ad A D ([n] forallr (E1 n) P) (forallr E1’ P)

<- ({a:i} {p1:pos (B1 a)} ad A D ([n] E1 n a p1) (E1’ a p1)).

adr_foralll : ad A D ([n] foralll T (E1 n) N) (foralll T E1’ N)

<- ({n1} ad A D ([n] E1 n n1) (E1’ n1)).

% Crossing exponentials

% no adr_!r since there are no linear side formulas

% Meta-level weakening is required in next case

adr_!l : ad A D ([n] !l (E1 n) N) (!l E1’ N)

<- ({n1!:neg! B1} ad A D ([n] E1 n n1!) (E1’ n1!)).

adr_!d : ad A D ([n] !d (E1 n) N!) (!d E1’ N!)

<- ({n1:neg B} ad A D ([n] E1 n n1) (E1’ n1)).

% Meta-level weakening is required in next case

adr_?r : ad A D ([n] ?r (E1 n) P) (?r E1’ P)

<- ({p1?:pos? B1} ad A D ([n] E1 n p1?) (E1’ p1?)).

% no adr_?l since there are no linear side formulas

adr_?d : ad A D ([n] ?d (E1 n) P?) (?d E1’ P?)

<- ({p1:pos B} ad A D ([n] E1 n p1) (E1’ p1)).

48 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

% 4.2 Left commutative cases of Cut

% No commutative cases crossing axioms

% Crossing multiplicatives

adl_timesr1 : ad A ([p] timesr (D1 p) D2 P) E (timesr D1’ D2 P)

<- ({p1:pos B1} ad A ([p] D1 p p1) E (D1’ p1)).

adl_timesr2 : ad A ([p] timesr D1 (D2 p) P) E (timesr D1 D2’ P)

<- ({p2:pos B2} ad A ([p] D2 p p2) E (D2’ p2)).

adl_timesl : ad A ([p] timesl (D1 p) N) E (timesl D1’ N)

<- ({n1:neg B1} {n2:neg B2}

ad A ([p] D1 p n1 n2) E (D1’ n1 n2)).

% No case for oner

adl_onel : ad A ([p] onel (D1 p) N) E (onel D1’ N)

<- ad A D1 E D1’.

% Crossing additives

adl_andr : ad A ([p] andr (D1 p) (D2 p) P) E (andr D1’ D2’ P)

<- ({p1:pos B1} ad A ([p] D1 p p1) E (D1’ p1))

<- ({p2:pos B2} ad A ([p] D2 p p2) E (D2’ p2)).

adl_andl1 : ad A ([p] andl1 (D1 p) N) E (andl1 D1’ N)

<- ({n1:neg B1} ad A ([p] D1 p n1) E (D1’ n1)).

adl_andl2 : ad A ([p] andl2 (D2 p) N) E (andl2 D2’ N)

<- ({n2:neg B1} ad A ([p] D2 p n2) E (D2’ n2)).

adl_topr : ad A ([p] topr P) E (topr P).

% no topl rule

% Crossing involution

adl_perpr : ad A ([p] perpr (D1 p) P) E (perpr D1’ P)

<- ({n1:neg B1} ad A ([p] D1 p n1) E (D1’ n1)).

adl_perpl : ad A ([p] perpl (D1 p) N) E (perpl D1’ N)

<- ({p1:pos B1} ad A ([p] D1 p p1) E (D1’ p1)).

% Crossing quantifier

adl_forallr : ad A ([p] forallr (D1 p) P) E (forallr D1’ P)

<- ({a:i} {p1:pos (B1 a)} ad A ([p] D1 p a p1) E (D1’ a p1)).

A COMPLETE IMPLEMENTATION 49

adl_foralll : ad A ([p] foralll T (D1 p) N) E (foralll T D1’ N)

<- ({n1} ad A ([p] D1 p n1) E (D1’ n1)).

% Crossing exponentials

% no adl_!r since there are no linear side formulas

adl_!l : ad A ([p] !l (D1 p) N) E (!l D1’ N)

<- ({n1!:neg! B1} ad A ([p] D1 p n1!) E (D1’ n1!)).

adl_!d : ad A ([p] !d (D1 p) N!) E (!d D1’ N!)

<- ({n1:neg B} ad A ([p] D1 p n1) E (D1’ n1)).

adl_?r : ad A ([p] ?r (D1 p) P) E (?r D1’ P)

<- ({p1?:pos? B1} ad A ([p] D1 p p1?) E (D1’ p1?)).

% no adl_?l since there are no linear side formulas

adl_?d : ad A ([p] ?d (D1 p) P?) E (?d D1’ P?)

<- ({p1:pos B} ad A ([p] D1 p p1) E (D1’ p1)).

% 4.3 Right commutative cases of Cut!

% Crossing axioms

ad!r_axiom : ad! A D! ([n!] axiom N P) (axiom N P).

% Crossing multiplicatives

ad!r_timesr : ad! A D! ([n!] timesr (E1 n!) (E2 n!) P)

(timesr E1’ E2’ P)

<- ({p1:pos B1} ad! A D! ([n!] E1 n! p1) (E1’ p1))

<- ({p2:pos B2} ad! A D! ([n!] E2 n! p2) (E2’ p2)).

ad!r_timesl : ad! A D! ([n!] timesl (E1 n!) N) (timesl E1’ N)

<- ({n1:neg B1} {n2:neg B2}

ad! A D! ([n!] E1 n! n1 n2) (E1’ n1 n2)).

ad!r_oner : ad! A D! ([n!] oner P) (oner P).

ad!r_onel : ad! A D! ([n!] onel (E1 n!) N) (onel E1’ N)

<- ad! A D! E1 E1’.

% Crossing additives

ad!r_andr : ad! A D! ([n!] andr (E1 n!) (E2 n!) P) (andr E1’ E2’ P)

<- ({p1:pos B1} ad! A D! ([n!] E1 n! p1) (E1’ p1))

<- ({p2:pos B2} ad! A D! ([n!] E2 n! p2) (E2’ p2)).

ad!r_andl1 : ad! A D! ([n!] andl1 (E1 n!) N) (andl1 E1’ N)

<- ({n1:neg B1} ad! A D! ([n!] E1 n! n1) (E1’ n1)).

50 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

ad!r_andl2 : ad! A D! ([n!] andl2 (E2 n!) N) (andl1 E2’ N)

<- ({n2:neg B2} ad! A D! ([n!] E2 n! n2) (E2’ n2)).

ad!r_topr : ad! A D! ([n!] topr P) (topr P).

% no topl rule

% Crossing involutions

ad!r_perpr : ad! A D! ([n!] perpr (E1 n!) P) (perpr E1’ P)

<- ({n1:neg B1} ad! A D! ([n!] E1 n! n1) (E1’ n1)).

ad!r_perpl : ad! A D! ([n!] perpl (E1 n!) N) (perpl E1’ N)

<- ({p1:pos B1} ad! A D! ([n!] E1 n! p1) (E1’ p1)).

% Crossing quantifiers

ad!r_forallr : ad! A D! ([n!] forallr (E1 n!) P) (forallr E1’ P)

<- ({a:i} {p1:pos (B1 a)}

ad! A D! ([n!] E1 n! a p1) (E1’ a p1)).

ad!r_foralll : ad! A D! ([n!] foralll T (E1 n!) N) (foralll T E1’ N)

<- ({n1} ad! A D! ([n!] E1 n! n1) (E1’ n1)).

% Crossing exponentials

ad!r_!r : ad! A D! ([n!] !r (E1! n!) P) (!r E1!’ P)

<- ({p1:pos B1} ad! A D! ([n!] E1! n! p1) (E1!’ p1)).

ad!r_!l : ad! A D! ([n!] !l (E1 n!) N) (!l E1’ N)

<- ({n1!:neg! B1} ad! A D! ([n!] E1 n! n1!) (E1’ n1!)).

ad!r_!d : ad! A D! ([n!] !d (E1 n!) N!) (!d E1’ N!)

<- ({n1:neg B} ad! A D! ([n!] E1 n! n1) (E1’ n1)).

ad!r_?r : ad! A D! ([n!] ?r (E1 n!) P) (?r E1’ P)

<- ({p1?:pos? B1} ad! A D! ([n!] E1 n! p1?) (E1’ p1?)).

ad!r_?l : ad! A D! ([n!] ?l (E1! n!) N) (?l E1!’ N)

<- ({n1:neg B1} ad! A D! ([n!] E1! n! n1) (E1!’ n1)).

ad!r_?d : ad! A D! ([n!] ?d (E1 n!) P?) (?d E1’ P?)

<- ({p1:pos B} ad! A D! ([n!] E1 n! p1) (E1’ p1)).

% 4.4 No left commutative cases for Cut!

% Right commutative or structural

% cases will always be applicable for ad!

% 4.5 No right commutative cases for Cut?

% Left commutative cases or structural

A COMPLETE IMPLEMENTATION 51

% cases will always be applicable for ad?

% 4.6 Left commutative cases for Cut?

% Crossing axioms

ad?l_axiom : ad? A ([p?] axiom N P) E! (axiom N P).

% Crossing multiplicatives

ad?l_timesr : ad? A ([p?] timesr (D1 p?) (D2 p?) P) E! (timesr D1’ D2’ P)

<- ({p1:pos B1} ad? A ([p?] D1 p? p1) E! (D1’ p1))

<- ({p2:pos B2} ad? A ([p?] D2 p? p2) E! (D2’ p2)).

ad?l_timesl : ad? A ([p?] timesl (D1 p?) N) E! (timesl D1’ N)

<- ({n1:neg B1} {n2:neg B2}

ad? A ([p?] D1 p? n1 n2) E! (D1’ n1 n2)).

ad?l_oner : ad? A ([p?] oner P) E! (oner P).

ad?l_onel : ad? A ([p?] onel (D1 p?) N) E! (onel D1’ N)

<- ad? A D1 E! D1’.

% Crossing additives

ad?l_andr : ad? A ([p?] andr (D1 p?) (D2 p?) P) E! (andr D1’ D2’ P)

<- ({p1:pos B1} ad? A ([p?] D1 p? p1) E! (D1’ p1))

<- ({p2:pos B2} ad? A ([p?] D2 p? p2) E! (D2’ p2)).

ad?l_andl1 : ad? A ([p?] andl1 (D1 p?) N) E! (andl1 D1’ N)

<- ({n1:neg B1} ad? A ([p?] D1 p? n1) E! (D1’ n1)).

ad?l_andl2 : ad? A ([p?] andl2 (D2 p?) N) E! (andl2 D2’ N)

<- ({n2:neg B2} ad? A ([p?] D2 p? n2) E! (D2’ n2)).

ad?l_topr : ad? A ([p?] topr P) E! (topr P).

% no topl rule

% Crossing involutions

ad?l_perpr : ad? A ([p?] perpr (D1 p?) P) E! (perpr D1’ P)

<- ({n1:neg B1} ad? A ([p?] D1 p? n1) E! (D1’ n1)).

ad?l_perpl : ad? A ([p?] perpl (D1 p?) N) E! (perpl D1’ N)

<- ({p1:pos B1} ad? A ([p?] D1 p? p1) E! (D1’ p1)).

% Crossing quantifiers

ad?l_forallr : ad? A ([p?] forallr (D1 p?) P) E! (forallr D1’ P)

<- ({a:i} {p1:pos (B1 a)}

52 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

ad? A ([p?] D1 p? a p1) E! (D1’ a p1)).

ad?l_foralll : ad? A ([p?] foralll T (D1 p?) N) E! (foralll T D1’ N)

<- ({n1} ad? A ([p?] D1 p? n1) E! (D1’ n1)).

% Crossing exponentials

ad?l_!r : ad? A ([p?] !r (D1! p?) P) E! (!r D1!’ P)

<- ({p1:pos B1} ad? A ([p?] D1! p? p1) E! (D1!’ p1)).

ad?l_!l : ad? A ([p?] !l (D1 p?) N) E! (!l D1’ N)

<- ({n1!:neg! B1} ad? A ([p?] D1 p? n1!) E! (D1’ n1!)).

ad?l_!d : ad? A ([p?] !d (D1 p?) N!) E! (!d D1’ N!)

<- ({n1:neg B} ad? A ([p?] D1 p? n1) E! (D1’ n1)).

ad?l_?r : ad? A ([p?] ?r (D1 p?) P) E! (?r D1’ P)

<- ({p1?:pos? B1} ad? A ([p?] D1 p? p1?) E! (D1’ p1?)).

ad?l_?l : ad? A ([p?] ?l (D1! p?) N) E! (?l D1!’ N)

<- ({n1:neg B1} ad? A ([p?] D1! p? n1) E! (D1!’ n1)).

ad?l_?d : ad? A ([p?] ?d (D1 p?) P?) E! (?d D1’ P?)

<- ({p1:pos B} ad? A ([p?] D1 p? p1) E! (D1’ p1)).

A.5 Example Execution of Admissibility Algorithm

In this subsection we give derivations of !(A(B) −→ !A(!B and !A(!B −→ ?(B⊥)(?(A⊥)
and then apply admissibility of cut to obtain a derivation of !(A(B) −→ ?(B⊥)(?(A⊥). These
derivations are complicated by the fact that A(B is defined as (A ⊗ B⊥)⊥. We omit empty
exponential hypotheses or conclusions and abbreviate Ψ0 = (A⊗ B⊥)⊥, A.

I
Ψ0;A −→ A

I
Ψ0;B −→ B

¬R
Ψ0; · −→ B⊥, B

⊗R
Ψ0;A −→ A⊗ B⊥, B

¬L
Ψ0; (A⊗ B⊥)⊥, A −→ B

!D
Ψ0;A −→ B

!D
Ψ0; · −→ B

!R
(A ⊗B⊥)⊥, A; · −→ !B

!L
(A ⊗B⊥)⊥; !A −→ !B

!L
!((A ⊗B⊥)⊥), !A −→ !B

¬L
!((A ⊗B⊥)⊥), !A, (!B)⊥ −→ ·

⊗L
!((A⊗ B⊥)⊥), !A⊗ (!B)⊥ −→ ·

¬R
!((A⊗ B⊥)⊥) −→ (!A ⊗ (!B)⊥)⊥

A COMPLETE IMPLEMENTATION 53

I
A −→ A;A⊥

¬R
· −→ A,A⊥;A⊥

?D
· −→ A;A⊥

!R
· −→ !A;A⊥

?R
· −→ !A, ?(A⊥)

¬L
(?(A⊥))⊥ −→ !A

I
B;B −→ B

¬L
B;B,B⊥ −→ ·

!D
B;B⊥ −→ ·

?L
B; ?(B⊥) −→ ·

!L
?(B⊥), !B −→ ·

¬R
?(B⊥) −→ (!B)⊥

⊗R
?(B⊥), (?(A⊥))⊥ −→ !A ⊗ (!B)⊥

⊗L
?(B⊥)⊗ (?(A⊥))⊥ −→ !A ⊗ (!B)⊥

¬L
(!A⊗ (!B)⊥)⊥, ?(B⊥)⊗ (?(A⊥))⊥ −→ ·

¬R
(!A⊗ (!B)⊥)⊥ −→ (?(B⊥)⊗ (?(A⊥))⊥)⊥

Below we show the representation of the first derivation and the check that it is linear, the rep-
resentation of the second derivation and its linearity check, and then the Elf query that applies the
admissibility algorithm to these to deductions. There are 6768 different computation sequences of
the non-deterministic admissibility algorithm, many of them leading to distinct cut-free derivations
(they differ by permutations of successive inference rules). On a Dec Alpha it takes the current Elf
implementation 221 seconds wall-clock time to enumerate all solutions. We leave it as an exercise
to the diligent reader to translate the first solution to a sequent derivation in ordinary notation.

- top ();

Using: admit.elf linear.elf elim.elf

Solving for: ad ad! ad? linp linn lin lin2 elim

?- {A:o} {B:o}

lin2

([n:neg (! (perp (A times (perp B))))]

[p:pos (perp ((! A) times (perp (! B))))]

(perpr ([n1:neg ((! A) times (perp (! B)))]

timesl ([n4:neg (! A)]

[n5:neg (perp (! B))]

perpl ([p6:pos (! B)]

!l ([n7!:neg! (perp (A times (perp B)))]

!l ([n8!:neg! A]

!r ([p9:pos B]

!d ([n10:neg A]

!d ([n11:neg (perp (A times (perp B)))]

perpl ([p12:pos (A times (perp B))]

timesr ([p13:pos A] axiom n10 p13)

([p14:pos (perp B)]

perpr ([n15:neg B] axiom n15 p9)

p14)

p12)

n11)

n7!)

n8!)

p6)

n4)

n)

54 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

n5)

n1)

p)).

Solving...

solved

yes

?- {A:o} {B:o}

lin2

([n:neg (perp ((! A) times (perp (! B))))]

[p:pos (perp ((? (perp B)) times (perp (? (perp A)))))]

perpr ([n1:neg ((? (perp B)) times (perp (? (perp A))))]

perpl ([p2:pos ((! A) times (perp (! B)))]

timesl ([n3:neg (? (perp B))]

[n4:neg (perp (? (perp A)))]

timesr ([p5:pos (! A)]

perpl ([p6:pos (? (perp A))]

?r ([p7?:pos? (perp A)]

!r ([p8:pos A]

?d ([p9:pos (perp A)]

perpr ([n10:neg A] axiom n10 p8)

p9)

p7?)

p5)

p6)

n4)

([p11:pos (perp (! B))]

perpr ([n12:neg (! B)]

!l ([n13!:neg! B]

?l ([n14:neg (perp B)]

!d ([n15:neg B]

perpl ([p16:pos B] axiom n15 p16)

n14)

n13!)

n3)

n12)

p11)

p2)

n1)

n)

p).

Solving...

solved

yes

?- {A:o} {B:o}

{N:neg (! (perp (A times (perp B))))}

{P:pos (perp ((? (perp B)) times (perp (? (perp A)))))}

ad (perp ((! A) times (perp (! B))))

([p:pos (perp ((! A) times (perp (! B))))]

(perpr ([n1:neg ((! A) times (perp (! B)))]

timesl ([n4:neg (! A)]

[n5:neg (perp (! B))]

perpl ([p6:pos (! B)]

!l ([n7!:neg! (perp (A times (perp B)))]

!l ([n8!:neg! A]

!r ([p9:pos B]

!d ([n10:neg A]

!d ([n11:neg (perp (A times (perp B)))]

perpl ([p12:pos (A times (perp B))]

timesr ([p13:pos A] axiom n10 p13)

([p14:pos (perp B)]

perpr ([n15:neg B] axiom n15 p9)

p14)

p12)

A COMPLETE IMPLEMENTATION 55

n11)

n7!)

n8!)

p6)

n4)

N)

n5)

n1)

p))

([n:neg (perp ((! A) times (perp (! B))))]

perpr ([n1:neg ((? (perp B)) times (perp (? (perp A))))]

perpl ([p2:pos ((! A) times (perp (! B)))]

timesl ([n3:neg (? (perp B))]

[n4:neg (perp (? (perp A)))]

timesr ([p5:pos (! A)]

perpl ([p6:pos (? (perp A))]

?r ([p7?:pos? (perp A)]

!r ([p8:pos A]

?d ([p9:pos (perp A)]

perpr ([n10:neg A] axiom n10 p8)

p9)

p7?)

p5)

p6)

n4)

([p11:pos (perp (! B))]

perpr ([n12:neg (! B)]

!l ([n13!:neg! B]

?l ([n14:neg (perp B)]

!d ([n15:neg B]

perpl ([p16:pos B] axiom n15 p16)

n14)

n13!)

n3)

n12)

p11)

p2)

n1)

n)

P)

(F A B N P).

Solving...

F =

[A:o] [B:o] [N:neg (! (perp (A times perp B)))]

[P:pos (perp (? (perp B) times perp (? (perp A))))]

perpr

([n1:neg (? (perp B) times perp (? (perp A)))]

timesl

([n11:neg (? (perp B))] [n2:neg (perp (? (perp A)))]

!l ([n1!:neg! (perp (A times perp B))]

perpl

([p1:pos (? (perp A))]

?r ([p1?:pos? (perp A)]

?l ([n111:neg (perp B)]

perpl

([p11:pos B]

!d ([n1111:neg (perp (A times perp B))]

perpl

([p1111:pos (A times perp B)]

timesr

([p11111:pos A]

?d ([p9:pos (perp A)]

perpr ([n10:neg A] axiom n10 p11111)

56 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

p9)

p1?)

([p2:pos (perp B)]

perpr ([n11111:neg B] axiom n11111 p11) p2)

p1111)

n1111)

n1!)

n111)

n11)

p1)

n2)

N)

n1)

P.

yes

A.6 Sequent Calculus LV+ with Cuts

%file lv-cut.elf

@ : type. % Token (for derivations with Cuts)

%% Axioms

axiom^ : (neg A -> pos A -> @).

%% Multiplicative Connectives

timesr^ : (pos A -> @)

-> (pos B -> @)

-> (pos (A times B) -> @).

timesl^ : (neg A -> neg B -> @)

-> (neg (A times B) -> @).

oner^ : (pos one -> @).

onel^ : @

-> (neg one -> @).

%% Additive Connectives

andr^ : (pos A -> @) -> (pos B -> @)

-> (pos (A and B) -> @).

andl1^ : (neg A -> @)

-> (neg (A and B) -> @).

andl2^ : (neg B -> @)

-> (neg (A and B) -> @).

topr^ : (pos (top) -> @).

A COMPLETE IMPLEMENTATION 57

% no topl

%% Involution

perpr^ : (neg A -> @)

-> (pos (perp A) -> @).

perpl^ : (pos A -> @)

-> (neg (perp A) -> @).

% Quantifier

forallr^ : ({a:i} pos (A a) -> @)

-> (pos (forall A) -> @).

foralll^ : {T:i} (neg (A T) -> @)

-> (neg (forall A) -> @).

%% Exponentials

!r^ : (pos A -> @)

-> (pos (! A) -> @).

!l^ : (neg! A -> @)

-> (neg (! A) -> @).

!d^ : (neg A -> @)

-> (neg! A -> @).

?r^ : (pos? A -> @)

-> (pos (? A) -> @).

?l^ : (neg A -> @)

-> (neg (? A) -> @).

?d^ : (pos A -> @)

-> (pos? A -> @).

%% Cuts

cut^ : (pos A -> @)

-> (neg A -> @)

-> @.

cut!^ : (pos A -> @)

-> (neg! A -> @)

-> @.

cut?^ : (pos? A -> @)

-> (neg A -> @)

-> @.

58 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

A.7 Cut Elimination for LV+

%file elim.elf

elim : @ -> # -> type.

%mode -elim +D^ -D

%lex {D^}

ce_axiom : elim (axiom^ N P) (axiom N P).

ce_timesr : elim (timesr^ D1^ D2^ P) (timesr D1 D2 P)

<- ({p1} elim (D1^ p1) (D1 p1))

<- ({p2} elim (D2^ p2) (D2 p2)).

ce_timesl : elim (timesl^ D1^ N) (timesl D1 N)

<- ({n1} {n2} elim (D1^ n1 n2) (D1 n1 n2)).

ce_oner : elim (oner^ P) (oner P).

ce_onel : elim (onel^ D1^ N) (onel D1 N)

<- elim D1^ D1.

ce_andr : elim (andr^ D1^ D2^ P) (andr D1 D2 P)

<- ({p1} elim (D1^ p1) (D1 p1))

<- ({p2} elim (D2^ p2) (D2 p2)).

ce_andl1 : elim (andl1^ D1^ N) (andl1 D1 N)

<- ({n1} elim (D1^ n1) (D1 n1)).

ce_andl2 : elim (andl2^ D2^ N) (andl2 D2 N)

<- ({n2} elim (D2^ n2) (D2 n2)).

ce_topr : elim (topr^ P) (topr P).

ce_perpr : elim (perpr^ D1^ P) (perpr D1 P)

<- ({n1} elim (D1^ n1) (D1 n1)).

ce_perpl : elim (perpl^ D1^ N) (perpl D1 N)

<- ({p1} elim (D1^ p1) (D1 p1)).

ce_forallr: elim (forallr^ D1^ P) (forallr D1 P)

<- ({a:i} {p1} elim (D1^ a p1) (D1 a p1)).

ce_foralll: elim (foralll^ T D1^ N) (foralll T D1 N)

<- ({n1} elim (D1^ n1) (D1 n1)).

ce_!r : elim (!r^ D1!^ P) (!r D1! P)

<- ({p1} elim (D1!^ p1) (D1! p1)).

ce_!l : elim (!l^ D1^ N) (!l D1 N)

<- ({n1!} elim (D1^ n1!) (D1 n1!)).

A COMPLETE IMPLEMENTATION 59

ce_!d : elim (!d^ D1^ N!) (!d D1 N!)

<- ({n1} elim (D1^ n1) (D1 n1)).

ce_?r : elim (?r^ D1^ P) (?r D1 P)

<- ({p1?} elim (D1^ p1?) (D1 p1?)).

ce_?l : elim (?l^ D1!^ N) (?l D1! N)

<- ({n1} elim (D1!^ n1) (D1! n1)).

ce_?d : elim (?d^ D1^ P?) (?d D1 P?)

<- ({p1} elim (D1^ p1) (D1 p1)).

ce_cut : elim (cut^ D1^ D2^) F

<- ({p} elim (D1^ p) (D1 p))

<- ({n} elim (D2^ n) (D2 n))

<- ad A D1 D2 F.

ce_cut! : elim (cut!^ D1!^ D2^) F

<- ({p} elim (D1!^ p) (D1! p))

<- ({n!} elim (D2^ n!) (D2 n!))

<- ad! A D1! D2 F.

ce_cut? : elim (cut?^ D1^ D2!^) F

<- ({p?} elim (D1^ p?) (D1 p?))

<- ({n} elim (D2!^ n) (D2! n))

<- ad? A D1 D2! F.

60 STRUCTURAL CUT ELIMINATION IN LINEAR LOGIC

References

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 111:3–57, 1993.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):197–347, 1992.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir93] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201–217,
1993.

[GP] Didier Galmiche and Guy Perrier. On proof normalization in linear logic. Theoretical
Computer Science. To appear. Available as Technical Report CRIN 94-R-113, Nancy,
France.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear
logic. Information and Computation, 110(2):327–365, 1994. A preliminary version ap-
peared in the Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer
Science, pages 32–42, Amsterdam, The Netherlands, July 1991.

[Hod94] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory, Design,
and Implementation. PhD thesis, University of Pennsylvania, Department of Computer
and Information Science, 1994.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125–157,
1991.

[MPP92] Dale Miller, Gordon Plotkin, and David Pym. A relevant analysis of natural deduction.
Talk given at the Workshop on Logical Frameworks, B̊astad, Sweden, May 1992.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet and
Gordon Plotkin, editors, Logical Frameworks, pages 149–181. Cambridge University
Press, 1991.

[Pfe94] Frank Pfenning. A structural proof of cut elimination and its representation in a log-
ical framework. Technical Report CMU-CS-94-218, Department of Computer Science,
Carnegie Mellon University, November 1994.

[Wal90] Lincoln A. Wallen. Automated Proof Search in Non-Classical Logics: Efficient Matrix
Proof Methods for Modal and Intuitionistic Logics. MIT Press, 1990.

