
Cut Reduction in Linear Logic as
Asynchronous Session-Typed Communication∗

Henry DeYoung1, Luís Caires2, Frank Pfenning1, and Bernardo
Toninho1,2

1 Computer Science Department, Carnegie Mellon University
Pittsburgh, PA, USA
{hdeyoung, fp, btoninho}@cs.cmu.edu

2 Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Lisboa, Portugal
luis.caires@di.fct.unl.pt

Abstract
Prior work has shown that intuitionistic linear logic can be seen as a session-type discipline for
the π-calculus, where cut reduction in the sequent calculus corresponds to synchronous process
reductions. In this paper, we exhibit a new process assignment from the asynchronous, polyadic
π-calculus to exactly the same proof rules. Proof-theoretically, the difference between these inter-
pretations can be understood through permutations of inference rules that preserve observational
equivalence of closed processes in the synchronous case. We also show that, under this new asyn-
chronous interpretation, cut reductions correspond to a natural asynchronous buffered session
semantics, where each session is allocated a separate communication buffer.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases linear logic, cut reduction, asynchronous π-calculus, session types

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Ever since linear logic was originally proposed, researchers have been discovering and exploring
its deep and perhaps surprising connections with concurrency in a variety of ways. Girard
himself first sketched a connection of linear logic with concurrency, by giving a high-level
pattern of communication that manifested itself in proof nets [13]. Others expanded upon
this with further models based on proof nets and related structures, e.g., [1, 6, 5, 16]. In a
different vein, two of the present authors recently developed a Curry-Howard interpretation
of intuitionistic linear logic [8], where propositions are interpreted as session types [15, 14],
sequent calculus proofs are interpreted as π-calculus processes, and proof reduction during
cut elimination is interpreted as synchronous communication.

A natural follow-up question to this work is whether a Curry-Howard correspondence
between linear logic and an asynchronous process calculus can be established. An answer
is relevant both to the concurrency theorist and the logician. For the concurrency theorist,
asynchronous communication is a more realistic (and challenging) model for concurrency, and
so being able to establish properties of asynchronous processes by static typing is of great
interest. For the logician, asynchrony can be seen as eliminating some of the “bureaucracy of

∗ Support was provided by the Fundação para a Ciência e a Tecnologia through the Carnegie Mellon
Portugal Program, under grants SFRH/BD/33763/2009 and INTERFACES NGN-44/2009, and CITI.

© Henry DeYoung, Luís Caires, Frank Pfenning, and Bernardo Toninho;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

syntax,” so that the order in which certain proof rules are applied no longer imposes artificial
sequentiality.

Our novel interpretation assigns processes from the asynchronous polyadic π-calculus1 [7,
17] to a sequent calculus formulation of DILL [3, 10] (the same proof rules as [8]), and cut
reductions to asynchronous communication, as we detail in Section 2. Moreover, in Section 3
we formally determine the relationship between the prior synchronous interpretation with
our asynchronous one. We show that, proof-theoretically, the fundamental difference between
the two is that a class of commuting conversions that in the synchronous interpretation
corresponded to only observational equivalences, now map to natural structural equivalences in
the asynchronous π-calculus. Finally, in Section 4, we relate our asynchronous interpretation
to buffered communication.

2 Linear logic as asynchronous session-typed communication

2.1 Judgmental principles
Because processes offer services along designated channels, our basic session-typing judgment
is P :: x:A, meaning “process P offers service A along channel x.” However, to provide new
services, most processes must themselves rely on services offered by other processes. Thus,
more generally, we use the hypothetical judgment

x1:A1, . . . , xn:An ` P :: x:A ,

meaning “Using services Ai that are assumed to be provided along channels xi, process P
offers service A along channel x.” The channels xi and x must all be distinct, and are binding
occurrences with scope over the process P . (We use the metavariable ∆ and its decorated
variants to stand for an arbitrary context of services.)

When two processes interact, their state changes; one now offers, and the other uses, the
continuation of the initial service. Due to this change of state, our hypothetical judgment
can be seen as an annotation of the intuitionistic linear sequent A1, . . . , An ` A. The context
of services satisfies neither weakening nor contraction. It does satisfy exchange, however,
because antecedents are uniquely labeled. Our process interpretation also handles persistent
antecedents, but we postpone their introduction until Section 2.6 to keep the overhead of
initial exposition lower.

The sequent calculus cut and identity rules serve to clarify the relationship between
offering and using a service.

Cut as composition. In the sequent calculus, the cut rule composes a proof of lemma A
with its use in the proof of theorem C:

∆ ` A ∆′, A ` C
∆,∆′ ` C cut

Because proofs should correspond to processes, this reading suggests that the process
interpretation of the cut rule should compose a process that offers service A with one that
uses service A. Stated differently, an offer satisfies a use. Therefore, we annotate cut as

∆ ` P :: x:A ∆′, x:A ` Q :: z:C
∆,∆′ ` (νx)(P | Q) :: z:C cut

1 Our interpretation in fact uses only niladic, monadic, and dyadic processes, not general polyadic
communication; for brevity, however, we prefer to retain ‘polyadic’ as the collective term.

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 3

The process (νx)(P | Q) allows to execute in parallel, as indicated by P | Q, and interact
along the private channel x, as indicated by the name restriction (νx). (The occurrence of x
in the name restriction (νx) is a binding occurrence, and is therefore subject to renaming.)

Identity as forwarding. The identity rule uses an antecedent to construct a proof directly:

A ` A id

This suggests an interpretation of id as a forwarding process, [y ↔ x]:

y:A ` [y ↔ x] :: x:A id

The process [y ↔ x] forwards messages received along channel x further on to channel y, and
vice versa, so that it offers A along x by directly using the service A that is available from y.
Stated differently, a use is one way to fulfill an offer.

2.2 Implication as input
In our process interpretation, the linear logical connectives correspond to various basic forms
of service. We adopt a verificationist perspective: the sequent calculus right rules will define
what it means to offer a service, whereas the left rules show how to use a service.

Consider linear implication, written A(B, and recall its right and left rules:

∆, A ` B
∆ ` A(B

(R
∆′

1 ` A ∆′
2, B ` C

∆′
1,∆′

2, A(B ` C (L

The right rule says that A(B is provable if B is provable using a proof of A. Correspondingly,
a process that offers service A(B should first input a channel offering service A and then
continue the session by using this service to offer service B. Conversely, a process that uses
service A(B should behave in a complementary way: the client must first output a new
channel offering service A and then continue the session by using service B.

Based on this intuition, a first attempt at an asynchronous process assignment might be:

∆, y:A ` P :: x:B
∆ ` x(y).P :: x:A(B

(R?
∆′

1 ` Q1 :: y:A ∆′
2, x:B ` Q2 :: z:C

∆′
1,∆′

2, x:A(B ` (νy)(x〈y〉 | Q1 | Q2) :: z:C (L?

The syntax x(y).P denotes a blocking input along channel x that guards process P ; here y
is a bound name and stands for the channel that will be received by the input. The syntax
x〈y〉 denotes an asynchronous output of y along channel x; we often think of it as a message
y somewhere in transit to x. Note that, in their premises, both typing rules reuse the session
channel of type A(B, namely x, as the channel for the session continuation at type B.

Unfortunately, there are two serious problems with this assignment. First, it leaves
outputs along the channel x unordered, violating the session contract. As an example,
consider the alleged typing derivation

∆1 ` P1 :: y1:A1

∆2 ` P2 :: y2:A2 ∆′, x:B ` Q :: z:C
∆2,∆′, x:A2 (B ` (νy2)(x〈y2〉 | P2 | Q) :: z:C (L?

∆1,∆2,∆′, x:A1 ((A2 (B) ` (νy1)
(
x〈y1〉 | P1 | (νy2)(x〈y2〉 | P2 | Q)

)
:: z:C

(L?

According to the contract imposed by the session type x:A1 ((A2 (B), a process listening
on channel x should expect to receive an A1 and then, only later, an A2. But, under the opera-
tional semantics of the asynchronous π-calculus, a process listening on x nondeterministically
receives either y1:A1 or y2:A2 when composed with the above process.

4 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

Second, it is possible that the output will be misdirected to the session’s continuation.
Because the (L rule types the continuation process Q2 with ∆′

2, x:B ` Q2 :: z:C, the
process Q2 may contain an input along channel x. Because the asynchronous output x〈y〉 is
in parallel with Q2, it is possible that such an input might unintentionally receive x〈y〉.

Fortunately, there is a single, elegant fix for both problems: rather than using the same
channel for the continuation, the session should continue along a fresh channel. Thus, the
left rule, (L, becomes

∆, y:A ` P :: x′:B
∆ ` x(y, x′).P :: x:A(B

(R
∆′

1 ` Q1 :: y:A ∆′
2, x

′:B ` Q2 :: z:C
∆′

1,∆′
2, x:A(B ` (νy)(νx′)(x〈y, x′〉 | Q1 | Q2) :: z:C (L

It is crucial that the (L process sends both y and x′, as represented by the dyadic output
x〈y, x′〉. If the process sent only y, then its session partner would not know where to
rendezvous for the session continuation. Accordingly, the right rule is a matching dyadic
input. (The names y and x′ are bound with scope over P in the input process x(y, x′).P .)

By using a fresh channel for the continuation, both problems are resolved. First, outputs
are now ordered. Since the (L rule types the continuation process as ∆′

2, x
′:B ` Q2 :: z:C, a

subsequent output in Q2 will occur along channel x′, not x. Because of the name restriction
(νx′), the channel x′ is unknown outside of this process. Thus, no other process can be
listening on x′ until it receives the output x〈y, x′〉 and learns of the new channel x′, thereby
imposing an order on outputs within a given session.

Pictorially, we might represent this ordering of outputs within a session as the sequence
x〈y1, x

′〉 , x′〈y2, x
′′〉 , x′′〈y3, x

′′′〉 , Because the typing discipline ensures that channels
x′, x′′, x′′′, . . . are not used elsewhere, this suggests a reading of well-typed processes as using
explicit communication buffers, such as the input buffer x〈y1, y2, y3, . . .] at endpoint x. This
intuition will be made precise in Section 4.

Second, the problem of misdirected outputs is also resolved by using a fresh channel
for the session continuation. The (L rule does not allow the previous session channel, x,
to appear in the continuation process Q2. Therefore, Q2 will not contain inputs along x,
precluding it from ever mistakenly receiving the output x〈y, x′〉.

Cut reduction as communication. In the linear sequent calculus, the principal cut reduction
for linear implication is a local check on the coherence of the (R and (L rules:

∆, A ` B
∆ ` A(B

(R
∆′

1 ` A ∆′
2, B ` C

∆′
1,∆′

2, A(B ` C (L

∆,∆′
1,∆′

2 ` C
cut −→

∆′
1 ` A ∆, A ` B

∆,∆′
1 ` B

cut ∆′
2, B ` C

∆,∆′
1,∆′

2 ` C
cut

Under the process interpretation, cut reduction is asynchronous session-typed communication.
When annotated according to the process interpretation, the above principal cut reduction
for linear implication yields the process reduction

(νx)
(
x(y, x′).P | (νy)(νx′)(x〈y, x′〉 | Q1 | Q2)

)
−→ (νx′)

(
(νy)(Q1 | P) | Q2

)
.

Modulo the structural congruences of the π-calculus (including α-renaming of bound names),
this is an instance of the standard asynchronous polyadic π-calculus process reduction that
drives asynchronous communication: x(w, z).P | x〈y, x′〉 −→ P{y/w, x′/z}. This justifies
our claim that cut reduction is asynchronous session-typed communication.

It is also possible to give a computational interpretation of identity expansion, the act of
reducing uses of the id rule at compound types to larger proofs that appeal to the id rule at
smaller types. We do not pursue it in this paper because it is not germane to our study of
cut reduction as communication and commuting conversions as the basis of asynchrony. For
the details of identity expansion in the synchronous case, see [9].

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 5

2.3 Multiplicative conjunction as output
Even in the intuitionistic linear sequent calculus, there is a strong flavor of duality between
linear implication and multiplicative conjunction. This duality should similarly extend to
the process interpretation: just as a process of type A(B offers an input of an A and then
behaves as B, a process of type A�B should offer an output of an A and then behave as B.

Thus, we arrive at the following process assignment for the usual right and left rules.
∆1 ` P1 :: y:A ∆2 ` P2 :: x′:B

∆1,∆2 ` (νy)(νx′)(x〈y, x′〉 | P1 | P2) :: x:A�B
�R

∆′, y:A, x′:B ` Q :: z:C
∆′, x:A�B ` x(y, x′).Q :: z:C �L

Again, notice the use of a new channel, x′, for the session continuation at type B. If we tried
to reuse the original session channel, x, then we would again face the problems of unordered
and misdirected outputs that plagued our first, failed process assignment for implication. We
can verify that the �R and �L rules fit together by checking the principal cut reduction.

Cut reduction as communication. The principal cut reduction for A�B is
∆1 ` A ∆2 ` B
∆1,∆2 ` A�B

�R
∆′, A,B ` C

∆′, A�B ` C �L

∆1,∆2,∆′ ` C cut −→
∆2 ` B

∆1 ` A ∆′, A,B ` C
∆1,∆′, B ` C cut

∆1,∆2,∆′ ` C cut

The same reduction can be carried out under the process interpretation, yielding

(νx)
(
(νy)(νx′)(x〈y, x′〉 | P1 | P2) | x(y, x′).Q

)
−→ (νx′)

(
P2 | (νy)(P1 | Q)

)
.

Once again, modulo structural congruence, this is an instance of the standard asynchronous
polyadic communication rule.

2.4 Multiplicative unit as termination
Because it is the unit of �, it is often helpful to view the proposition 1 as the nullary form
of �. For instance, the inference rules for 1 are nullary versions of the rules for A�B. We
can extend this to our process interpretation:

· ` x〈〉 :: x:1 1R
∆′ ` Q :: z:C

∆′, x:1 ` x().Q :: z:C 1L

The right rule outputs an empty message and has no continuation; the left rule inputs the
empty message. Because the right rule has no continuation, the empty message serves as a
session termination signal: the process will not offer any further service.

As the left rule is given, a process using a terminated session must block until it receives
the termination signal, because the prefix x() guards the continuation Q. We can enable
more parallelism by modifying the left rule:

∆′ ` Q :: z:C
∆′, x:1 ` x().0 | Q :: z:C 1L

The left rule’s continuation, Q, can now run in parallel while waiting to receive the termination
signal. The 1L rule is no longer an exact nullary version of the �L rule, but the process
assignment is still in bijective correspondence with the proof rules.

Cut reduction as communication. The principal cut reduction at type 1 is

· ` 1 1R ∆′ ` C
∆′,1 ` C 1L

∆′ ` C cut −→ ∆′ ` C

6 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

When annotated according to the process interpretation, we can extract the process reduction
(νx)

(
x〈〉 | (x().0 | Q)

)
−→ Q, which, modulo structural congruences, is an instance of the

asynchronous π-calculus reduction that matches a nullary output with a nullary input.

2.5 Additive conjunction and disjunction as choice
Processes should be able to offer the client a choice between two services, A and B. The
client selects one of the services and then uses the selected service. This type of external
choice corresponds to the additive conjunction A&B. We can assign processes to the rules:

∆ ` P1 :: x′
1:A ∆ ` P2 :: x′

2:B
∆ ` x.case((x′

1).P1, (x′
2).P2) :: x:A&B

&R

∆′, x′
1:A ` Q :: z:C

∆′, x:A&B ` (νx′
1)(x.inl〈x′

1〉 | Q) :: z:C
&L1

∆′, x′
2:B ` Q :: z:C

∆′, x:A&B ` (νx′
2)(x.inr〈x′

2〉 | Q) :: z:C
&L2

In the left rules, the client asynchronously sends his selection (either inl or inr) and a new
channel at which the session should continue. In the right rule, the server must be prepared
for either selection; it behaves like a case, waiting for a client’s selection and then continuing
accordingly.

The principal cut reductions and process reductions match: the process reductions are

(νx)
(
x.case((x′

1).P1, (x′
2).P2) | (νx′

1)(x.inl〈x′
1〉 | Q)

)
−→ (νx′

1)(P1 | Q)
(νx)

(
x.case((x′

1).P1, (x′
2).P2) | (νx′

2)(x.inr〈x′
2〉 | Q)

)
−→ (νx′

2)(P2 | Q) .

External choice is dual to internal choice, where a process offers one of two possible
services with the choice at its own discretion. Because A&B is dual to the additive disjunction
A � B in linear logic, A � B should be interpreted as internal choice and uses the same
process constructs in a dual manner. Due to space constraints, we omit the details here.

2.6 Exponential as persistent service
Thus far, we have focused on the purely linear fragment of intuitionistic linear logic, but
we can also give an asynchronous process interpretation of the ‘of course!’ exponential. In
the judgmental formulation of intuitionistic linear logic, the reusable antecedents provided
by the ‘of course!’ exponential are expressed with a new judgment, A valid, that is subject
to weakening, contraction, and exchange. To streamline notation, validity antecedents are
usually written in a separate zone of the sequent, as in dual intuitionistic linear logic [3, 10].
With the process annotations added, the sequent becomes

u1:B1, . . . , um:Bm;x1:A1, . . . , xn:An ` P :: x:A ,

where u1:B1, . . . , um:Bm are the reusable, validity antecedents. We use the metavariable Γ to
stand for an arbitrary context of validity antecedents. To match the new form for sequents,
all of the previously presented inference rules are extended to include a context Γ in the
conclusion and all premises.

2.6.1 Judgmental principles
A proposition A is valid if, and only if, A is true without linear antecedents. There are two
new judgmental rules: a cut principle for validity and a rule relating validity to linear truth.

Γ; · ` A Γ, A; ∆′ ` C
Γ; ∆′ ` C cut!

Γ, A; ∆′, A ` C
Γ, A; ∆′ ` C

copy

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 7

What process interpretation should we give to validity and its cut! and copy rules?
Because validity antecedents persist throughout a proof we will interpret u:A as a server that
persistently provides service A. Specifically:

Γ; · ` P :: y:A Γ, u:A; ∆′ ` Q :: z:C
Γ; ∆′ ` (νu)(!u(y).P | Q) :: z:C cut!

Γ, u:A; ∆′, x:A ` Q :: z:C
Γ, u:A; ∆′ ` (νx)(u〈x〉 | Q) :: z:C

copy

The cut! rule shows that a persistent offer of service A is made by the replicated input !u(y).P .
According to the copy rule, the client process, Q, can obtain service A by asynchronously
sending the server, u, a new channel; the server spawns a copy of service A at that channel,
and the server continues to be available for future requests.

Note that, in contrast with all previous rules, the copy rule’s premise does not use a
renamed persistent channel in the continuation. From an operational perspective, this is
because persistent servers do not directly participate in long-lived sessions with clients.
Instead, they just receive individual messages from various clients and spawn linear sessions
to do the real work. Alternatively, from a proof-theoretic perspective, this is because there is
a commuting conversion between any adjacent copy inferences.

Cut reduction as communication. The server’s act of spawning a copy of service A is
reflected in the process interpretation of the cut reduction that arises when cut! meets copy.
When processes annotate the cut reduction

Γ; · ` A
Γ, A; ∆′, A ` C

Γ, A; ∆′ ` C
copy

Γ; ∆′ ` C cut! −→
Γ; · ` A

Γ; · ` A Γ, A; ∆′, A ` C
Γ; ∆′, A ` C cut!

Γ; ∆′ ` C cut

we obtain the following process reduction, which matches an output with a replicated input.

(νu)
(
!u(y).P | (νx)(u〈x〉 | Q)

)
−→ (νx)

(
P{x/y} | (νu)(!u(y).P | Q)

)
2.6.2 Right and left rules
In a judgmental formulation of the linear sequent calculus, the right and left rules for the ‘of
course!’ connective, written !A, are:

Γ; · ` A
Γ; · ` !A !R

Γ, A; ∆′ ` C
Γ; ∆′, !A ` C !L

How does !A relate to validity as persistent service? Essentially, we will interpret a service !A
as one that creates a persistent server that offers A. The process assignment that we use is

Γ; · ` P :: y:A
Γ; · ` (νu)(x〈u〉 | !u(y).P) :: x:!A !R

Γ, u:A; ∆′ ` Q :: z:C
Γ; ∆′, x:!A ` x(u).Q :: z:C !L

The right rule says that a process offering !A along x first chooses a new, persistent name, u,
for itself and registers that channel by sending it to its session partner. The process then
persistently provides service A by offering a replicated input at u. Conversely, the left rule
says that a process that uses !A must input a persistent channel, u, and may thereafter treat
u as the name of a persistent server offering A.

Our process interpretation of the !R and !L rules departs significantly from the prior
synchronous interpretations [8, 9], in ways that are orthogonal to asynchrony. Previously,
the !R rule was interpreted as a replicated input along a linear channel and the !L rule was

8 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

interpreted as either an implicit [8] or explicit [9] substitution. We contend that our process
assignment is proof-theoretically more pleasing: now, all of the non-invertible right and left
rules [2] ((L, �R, &Li, �Ri, and !R) have an output flavor, and all of the invertible right
and left rules ((R, �L, &R, �L, and !L) have an input flavor.

Cut reduction as communication. Once again, the principal cut reduction corresponds to
a process reduction. The principal cut reduction at type !A is

Γ; · ` A
Γ; · ` !A !R

Γ, A; ∆′ ` C
Γ; ∆′, !A ` C !L

Γ; ∆′ ` C cut −→
Γ; · ` A Γ, A; ∆′ ` C

Γ; ∆′ ` C cut!

When this cut reduction is annotated with processes, we obtain the process reduction

(νx)
(
(νu)(x〈u〉 | !u(y).P) | x(u).Q

)
−→ (νu)(!u(y).P | Q) .

Thus, cut reduction at !A corresponds to registering a server’s persistent name with its client.

3 Relationship between synchronous and asynchronous process
interpretations

Prior work has shown that the intuitionistic linear sequent calculus can be seen as a session-
type discipline for the synchronous π-calculus [8, 9]. In the previous section, we presented a
new process assignment from the asynchronous, polyadic π-calculus to exactly the same proof
rules. This section serves to make precise the claim that, proof-theoretically, the difference
between these interpretations lies in the commuting conversions that are permitted.

3.1 A synchronous, polyadic process interpretation
The first step in making our claim precise is to reconsider the synchronous process interpre-
tation from [8, 9]. There, all outputs were represented as prefixes guarding a continuation
process, as is standard in the synchronous π-calculus. For example, the assignment for the
�R rule was a synchronous monadic output and the �L rule was a monadic input:

Γ; ∆1 ` P1 :: y:A Γ; ∆2 ` P2 :: x:B
Γ; ∆1,∆2 ` (νy)x〈y〉.(P1 | P2) :: x:A�B

�R
Γ; ∆′, y:A, x:B ` Q :: z:C

Γ; ∆′, x:A�B ` x(y).Q :: z:C �L

These processes reuse the session channel x as the channel for the session’s continuation.
There is no possibility of unordered or misdirected outputs here because P1 and P2 may not
execute until the output guard, x〈y〉, synchronizes with another input process, x(y).Q.

Instead of relying on this implicit convention, we could modify the synchronous process
assignment to be explicit about reusing the session channel. The �R and �L rules would
thus become dyadic outputs and inputs, respectively, with the output explicitly transmitting
x as a channel to be used for the session continuation. But, in fact, once dyadic outputs
and inputs are used, there is no technical advantage to reusing the session channel, and we
may as well use a fresh channel for the session continuation. Figure 1 presents a polyadic
synchronous process interpretation in this style.

There is a very strong operational equivalence between this polyadic interpretation and
the monadic synchronous interpretation from [9] (there is also a correspondence with [8], if
we match their rules for 1). For example, consider the principal cut reduction at type A�B.
Under the monadic synchronous process assignment, it corresponds to

(νx)
(
(νy)x〈y〉.(P1 | P2) | x(y).Q

)
−→ (νx)

(
P2 | (νy)(P1 | Q)

)
.

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 9

Γ; y:A ` [y ↔ x] :: x:A id
Γ; ∆ ` P :: x:A Γ; ∆′, x:A ` Q :: z:C

Γ; ∆,∆′ ` (νx)(P | Q) :: z:C
cut

Γ; · ` P :: y:A Γ, u:A; ∆′ ` Q :: z:C
Γ; ∆′ ` (νu)(!u(y).P | Q) :: z:C

cut!
Γ, u:A; ∆′, x:A ` Q :: z:C

Γ, u:A; ∆′ ` (νx)u〈x〉.Q :: z:C
copy

Γ; ∆, y:A ` P :: x′:B
Γ; ∆ ` x(y, x′).P :: x:A(B

(R
Γ; ∆′

1 ` Q1 :: y:A Γ; ∆′
2, x

′:B ` Q2 :: z:C
Γ; ∆′

1,∆′
2, x:A(B ` (νy)(νx′)x〈y, x′〉.(Q1 | Q2) :: z:C

(L

Γ; ∆1 ` P1 :: y:A Γ; ∆2 ` P2 :: x′:B
Γ; ∆1,∆2 ` (νy)(νx′)x〈y, x′〉.(P1 | P2) :: x:A�B

�R
Γ; ∆′, y:A, x′:B ` Q :: z:C

Γ; ∆′, x:A�B ` x(y, x′).Q :: z:C
�L

· ` x〈〉.0 :: x:1 1R
Γ; ∆′ ` Q :: z:C

Γ; ∆′, x:1 ` x().Q :: z:C
1L

Γ; ∆ ` P1 :: x′
1:A Γ; ∆ ` P2 :: x′

2:B
Γ; ∆ ` x.case((x′

1).P1, (x′
2).P2) :: x:A&B

&R

Γ; ∆′, x′
1:A ` Q :: z:C

Γ; ∆′, x:A&B ` x.inl〈x′
1〉;Q :: z:C

&L1
Γ; ∆′, x′

2:B ` Q :: z:C
Γ; ∆′, x:A&B ` x.inr〈x′

2〉;Q :: z:C
&L2

Γ; ∆ ` P :: x′
1:A

Γ; ∆ ` x.inl〈x′
1〉;P :: x:A�B

�R1
Γ; ∆ ` P :: x′

2:B
Γ; ∆ ` x.inr〈x′

2〉;P :: x:A�B
�R2

Γ; ∆′, x′
1:A ` Q1 :: z:C Γ; ∆′, x′

2:B ` Q2 :: z:C
Γ; ∆′, x:A�B ` x.case((x′

1).Q1, (x′
2).Q2) :: z:C

�L

Γ; · ` P :: y:A
Γ; · ` (νu)x〈u〉.!u(y).P :: x:!A !R

Γ, u:A; ∆′ ` Q :: z:C
Γ; ∆′, x:!A ` x(u).Q :: z:C

!L

Figure 1 A polyadic synchronous process assignment that is equivalent to one from [9].

Under the polyadic synchronous process assignment, the same cut reduction corresponds to

(νx)
(
(νy)(νx′)x〈y, x′〉.(P1 | P2{x′/x}) | x(y, x′).Q{x′/x}

)
−→ (νx′)

(
P2{x′/x} | (νy)(P1 | Q{x′/x})

)
.

Typing guarantees that x′ is not free in P1. Thus, by α-renaming x′ to x, we obtain the same
process after reduction as in the monadic synchronous assignment. In this way, there is a tight
operational correspondence between the monadic and polyadic synchronous assignments.

3.2 Commuting conversions as process equivalences
We can now turn to relating the interpretation of commuting conversions under the asyn-
chronous and synchronous process assignments. Having shown that the synchronous polyadic
process assignment of Figure 1 is equivalent to the synchronous monadic assignment of [9],
we can compare our asynchronous assignment from Section 2 with the synchronous polyadic
assignment and know that the comparison extends to the synchronous monadic assignment.

In proof theory, commuting conversions describe structural equivalences among proofs.
The following is an example of one commuting conversion between two adjacent cut inferences.

Γ; ∆1 ` B Γ; ∆2, B ` A
Γ; ∆1,∆2 ` A

cut Γ; ∆′, A ` C
Γ; ∆1,∆2,∆′ ` C cut ≡

Γ; ∆1 ` B
Γ; ∆2, B ` A Γ; ∆′, A ` C

Γ; ∆2,∆′, B ` C cut

Γ; ∆1,∆2,∆′ ` C cut

10 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

To what do such commuting conversions correspond under the synchronous and asynchronous
process assignments? The commuting conversions can be sorted into three classes.

Class 1. Some commuting conversions correspond to structural equivalences under both the
synchronous and asynchronous assignments. For example, both assignments interpret cut
with the same process. Thus, if we annotate the above cut/cut conversion accordingly, it can
be read as the following structural equivalence on processes:

(νx)
(
(νy)(P1 | P2) | Q

)
≡ (νy)

(
P1 | (νx)(P2 | Q)

)
, if x /∈ fn(P1) and y /∈ fn(Q).

This equivalence is derivable from more basic laws of the (synchronous and asynchronous) π-
calculus structural congruence, such as associativity and commutativity of parallel composition
and scope extrusion of name restrictions. (The side condition on the free names, denoted
fn(−), is only necessary in the untyped π-calculus; here it is guaranteed by typing.)

Class 2. Most commuting conversions do not yield structural process equivalences under
the synchronous interpretation. For example, one conversion between �R and (L is:

Γ; ∆ ` A1

Γ; ∆′
1 ` B1 Γ; ∆′

2, B2 ` A2

Γ; ∆′
1,∆′

2, B1 (B2 ` A2
(L

Γ; ∆,∆′
1,∆′

2, B1 (B2 ` A1 �A2
�R ≡

Γ; ∆′
1 ` B1

Γ; ∆ ` A1 Γ; ∆′
2, B2 ` A2

Γ; ∆,∆′
2, B2 ` A1 �A2

�R

Γ; ∆,∆′
1,∆′

2, B1 (B2 ` A1 �A2
(L

Under the synchronous interpretation, this commuting conversion does not correspond to
a structural process equivalence of the synchronous polyadic π-calculus because it reorders
two blocking outputs:

(νw)(νz′)z〈w, z′〉.
(
P | (νy)(νx′)x〈y, x′〉.(Q1 | Q2)

)
6≡ (νy)(νx′)x〈y, x′〉.

(
Q1 | (νw)(νz′)z〈w, z′〉.(P | Q2)

)
.

However, when composed with closed processes as required by the Γ and ∆,∆′
1,∆′

2, x:B1(B2
contexts, these two processes are observationally equivalent, according to (a simple dyadic
extension of) typed context bisimilarity as defined by Pérez et al. [20]. Essentially, the
reason is this: When composed with the required processes, only the actions along z:A1 �A2,
namely (νw)(νz′)z〈w, z′〉, are observable—all other interactions, such as (νy)(νx′)x〈y, x′〉,
are internal to the closed process—and so the reordering cannot be detected.

On the other hand, under our asynchronous process interpretation, this �R/(L com-
muting conversion can be read as the structural process equivalence

(νw)(νz′)
(
z〈w, z′〉 | P | (νy)(νx′)(x〈y, x′〉 | Q1 | Q2)

)
≡ (νy)(νx′)

(
x〈y, x′〉 | Q1 | (νw)(νz′)(z〈w, z′〉 | P | Q2)

)
, if w, z′ /∈ fn(Q1) and y, x′ /∈ fn(P).

Once again, this equivalence is derivable from laws of structural congruence that are standard
in the asynchronous π-calculus.

We contend that our asynchronous interpretation is therefore proof-theoretically more
pleasing: it maps certain structural equivalences of proofs to standard structural equivalences
of processes, whereas the synchronous interpretation only mapped these proof equivalences
to strictly weaker observational equivalences on processes.

Class 3. Another class of commuting conversions are those that involve rules to which
input-flavored processes are assigned. These conversions do not correspond to structural

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 11

process equivalences under either the synchronous or asynchronous assignments. For example,
one such conversion is between �R and �L:

Γ; ∆1 ` A1

Γ; ∆2, B1, B2 ` A2
Γ; ∆2, B1 �B2 ` A2

�L

Γ; ∆1,∆2, B1 �B2 ` A1 �A2
�R ≡

Γ; ∆1 ` A1 Γ; ∆2, B1, B2 ` A2
Γ; ∆1,∆2, B1, B2 ` A1 �A2

�R

Γ; ∆1,∆2, B1 �B2 ` A1 �A2
�L

Under the synchronous assignment, this conversion is only an observational equivalence:

(νw)(νz′)z〈w, z′〉.
(
P | x(y, x′).Q

)
≈ x(y, x′).

(
(νw)(νz′)z〈w, z′〉.(P | Q)

)
.

The justification is similar to the previous one: When composed with closed processes required
by Γ and ∆1,∆2, B1 �B2, only the actions along z:A1 �A2, namely (νw)(νz′)z〈w, z′〉, are
observable because all other interactions, such as x(y, x′), are internal to the closed process.

Similarly, under the asynchronous process assignment, this commuting conversion does
not yield a structural equivalence because permuting the input outward blocks actions in P :

(νw)(νz′)
(
z〈w, z′〉 | P | x(y, x′).Q

)
6≡ x(y, x′).(νw)(νz′)(z〈w, z′〉 | P | Q) .

This exposes a fundamental asymmetry between outputs, which can be interpreted asyn-
chronously and give rise to very natural structural commutation laws, and inputs, which,
in a process calculus, are inherently points of synchronization and cannot obey structural
commutation laws since that would defeat the purpose of synchronization points.

With the above intuition for the three classes of conversions, we obtain the following.

I Theorem 1. For each commuting conversion listed in Figure 2, its asynchronous process
interpretation is a standard structural equivalence.

4 Correspondence with an asynchronous buffered session semantics

In Section 2, we presented a novel Curry-Howard interpretation of intuitionistic linear logic as
an asynchronous session-type system. Asynchronous outputs were represented abstractly as
free-floating messages waiting to be received by an input process. However, in keeping with
practical implementations of asynchronous communication, existing asynchronous session-
type systems use explicitly buffered communication channels [12, 11, 18]. To relate our
Curry-Howard interpretation to existing asynchronous session-type systems, we now show
that the use of fresh channels for session continuations serves as an encoding of FIFO buffers.
First, we must present a π-calculus with explicit two-sided FIFO buffers.

4.1 A π-calculus with explicit two-sided FIFO buffers
Syntax and structural congruence. Syntactically, this calculus extends the (synchronous)
π-calculus with a FIFO buffer (i.e., queue) construct, x[mk, . . . ,m1〉z. It represents an input
buffer at endpoint z that holds the sequence m1, . . . ,mk of messages that have been sent by
the peer endpoint x. A message m has one of several forms: a linear channel, y; a termination
signal, fin; left and right selectors, inl and inr; or registration of a persistent channel, !u.
We assume that a message sent by endpoint x immediately arrives at the tail of its peer
endpoint’s input buffer. It will also be useful to adopt z〈m1, . . . ,mk]x as alternate notation
for the queue x[mk, . . . ,m1〉z.

In addition to the usual basic laws of π-calculus structural congruence, we include the
equivalence x[〉z ≡ x〈]z. This expresses that an empty queue remains uncommitted to its
direction—either endpoint may place a message onto the empty queue.

12 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

Class 2:
(cut/(L/−), ((L/−/cut1) (νx)((νw, y′)(y〈w, y′〉 | P1 | P2) | Q)

≡ (νw, y′)(y〈w, y′〉 | P1 | (νx)(P2 | Q))

(cut/1L/−), (1L/cut1) (νx)((y().0 | P) | Q) ≡ y().0 | (νx)(P | Q)

(cut/&Li/−), (&Li/cut1) (νx)((νy′)(y.in[l/r]〈y′〉 | P) | Q) ≡ (νy′)(y.in[l/r]〈y′〉 | (νx)(P | Q))
(cut/copy/−), (copy/cut1) (νx)((νy)(u〈y〉 | P) | Q) ≡ (νy)(u〈y〉 | (νx)(P | Q))

(cut/−/(L1), (cut/−/�R1),
((L/cut/−), (�R/cut/−)

(νx)(P | (νw, y′)(y〈w, y′〉 | Q1 | Q2))
≡ (νw, y′)(y〈w, y′〉 | (νx)(P | Q1) | Q2)

(cut/−/(L2), (cut/−/�R2),
((L/−/cut2), (�R/−/cut)

(νx)(P | (νw, y′)(y〈w, y′〉 | Q1 | Q2))
≡ (νw, y′)(y〈w, y′〉 | Q1 | (νx)(P | Q2))

(cut/−/1L), (1L/cut2) (νx)(P | (y().0 | Q)) ≡ y().0 | (νx)(P | Q)

(cut/−/&Li), (cut/−/�Ri),
(&Li/cut2), (�Ri/cut2)

(νx)(P | (νy′)(y.in[l/r]〈y′〉 | Q)) ≡ (νy′)(y.in[l/r]〈y′〉 | (νx)(P | Q))

(cut/−/copy), (copy/cut2) (νx)(P | (νy)(u〈y〉 | Q)) ≡ (νy)(u〈y〉 | (νx)(P | Q))

((L/cut!/−), (�R/cut!/−) (νw, z′)(z〈w, z′〉 | (νu)(!u(y).P1 | P2) | Q)
≡ (νu)(!u(y).P1 | (νw, z′)(z〈w, z′〉 | P2 | Q))

((L/−/cut!), (�R/−/cut!) (νw, z′)(z〈w, z′〉 | P | (νu)(!u(y).Q1 | Q2))
≡ (νu)(!u(y).Q1 | (νw, z′)(z〈w, z′〉 | P | Q2))

(cut!/−/1L), (1L/cut!) (νu)(!u(y).P | (x().0 | Q)) ≡ x().0 | (νu)(!u(y).P | Q)

(cut!/−/&Li), (cut!/−/�Ri),
(&Li/cut!), (�Ri/cut!)

(νu)(!u(y).P | (νx′)(x.in[l/r]〈x′〉 | Q))
≡ (νx′)(x.in[l/r]〈x′〉 | (νu)(!u(y).P | Q))

(cut!/−/copy), (copy/cut!) (νu)(!u(y).P | (νx)(v〈x〉 | Q)) ≡ (νx)(v〈x〉 | (νu)(!u(y).P | Q))

((L/(L/−), ((L/−/(L1),
((L/−/�R1), (�R/(L/−)

(νy, x′)(x〈y, x′〉 | (νw, z′)(z〈w, z′〉 | P1 | P2) | Q)
≡ (νw, z′)(z〈w, z′〉 | P1 | (νy, x′)(x〈y, x′〉 | P2 | Q))

((L/1L/−), (�R/1L/−),
(1L/(L1), (1L/�R1)

(νy, x′)(x〈y, x′〉 | (z().0 | P) | Q) ≡ z().0 | (νy, x′)(x〈y, x′〉 | P | Q)

((L/&Li/−), (�R/&Li/−),
(&Li/(L1), (&Li/�R1)

(νy, x′)(x〈y, x′〉 | (νz′)(z.in[l/r]〈z′〉 | P) | Q)
≡ (νz′)(z.in[l/r]〈z′〉 | (νy, x′)(x〈y, x′〉 | P | Q))

((L/copy/−), (�R/copy/−),
(copy/(L1), (copy/�R1)

(νy, x′)(x〈y, x′〉 | (νz)(u〈z〉 | P) | Q)
≡ (νz)(u〈z〉 | (νy, x′)(x〈y, x′〉 | P | Q))

((L/−/(L2), ((L/−/�R2),
(�R/−/(L)

(νw, z′)(z〈w, z′〉 | P | (νy, x′)(x〈y, x′〉 | Q1 | Q2))
≡ (νy, x′)(x〈y, x′〉 | Q1 | (νw, z′)(z〈w, z′〉 | P | Q2))

((L/−/1L), (�R/−/1L),
(1L/(L2), (1L/�R2)

(νy, x′)(x〈y, x′〉 | P | (z().0 | Q)) ≡ z().0 | (νy, x′)(x〈y, x′〉 | P | Q)

((L/−/&Li), ((L/−/�Ri),
(�R/−/&Li), (&Li/(L2),
(&Li/�R2), (�Ri/(L)

(νy, x′)(x〈y, x′〉 | P | (νz′)(z.in[l/r]〈z′〉 | Q))
≡ (νz′)(z.in[l/r]〈z′〉 | (νy, x′)(x〈y, x′〉 | P | Q))

((L/−/copy), (�R/−/copy),
(copy/(L2), (copy/�R2)

(νy, x′)(x〈y, x′〉 | P | (νz)(u〈z〉 | Q))
≡ (νz)(u〈z〉 | (νy, x′)(x〈y, x′〉 | P | Q))

(1L/1L) x().0 | (z().0 | P) ≡ z().0 | (x().0 | P)

(1L/&Li), (1L/�Ri),
(&Li/1L), (�Ri/1L)

x().0 | (νz′)(z.in[l/r]〈z′〉 | P) ≡ (νz′)(z.in[l/r]〈z′〉 | (x().0 | P))

(1L/copy), (copy/1L) x().0 | (νz)(u〈z〉 | P) ≡ (νz)(u〈z〉 | (x().0 | P))

(&Li/&Lj), (&Li/�Rj),
(�Ri/&Lj)

(νx′)(x.in[l/r]〈x′〉 | (νz′)(z.in[l/r]〈z′〉 | P))
≡ (νz′)(z.in[l/r]〈z′〉 | (νx′)(x.in[l/r]〈x′〉 | P))

(copy/copy) (νx)(u〈x〉 | (νz)(v〈z〉 | P)) ≡ (νz)(v〈z〉 | (νx)(u〈x〉 | P))

Figure 2 Asynchronous structural equivalences that arise from commuting conversions.

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 13

Syntax and structural congruence:

m,n ::= y | fin | inl | inr | !u
P,Q ::= (νx)P | (P | Q) | 0 | x〈y〉.P | x(y).P | x〈〉.0 | x().P | x.inl;P | x.inr;P | x.case(P,Q)

| x〈u〉.P | x(u).P | u〈x〉 | !u(y).P | x[~m〉z

All π-calculus laws of structural congruence, plus x[〉z ≡ x〈]z.

Untyped reductions:

x〈y〉.P | x[~m〉z −→ P | x[y, ~m〉z (S-ch) x[~m, y〉z | z(w).Q −→ x[~m〉z | Q{y/w} (R-ch)
x〈〉.0 | x[~m〉z −→ x[fin, ~m〉z (S-fin) x[fin〉z | z().Q −→ Q (R-fin)
x.inl;P | x[~m〉z −→ P | x[inl, ~m〉z (S-inl) x[~m, inl〉z | z.case(Q1, Q2) −→ x[~m〉z | Q1 (R-inl)
x.inr;P | x[~m〉z −→ P | x[inr, ~m〉z (S-inr) x[~m, inr〉z | z.case(Q1, Q2) −→ x[~m〉z | Q2 (R-inr)
x〈u〉.P | x[~m〉z −→ P | x[!u, ~m〉z (S-!ch) x[!u〉z | z(v).Q −→ Q{u/v} (R-!ch)

!u(y).P | u〈x〉.Q −→ !u(y).P | P{x/y} | Q (Rep)
Notational definitions:
(νz)(P | z[〉x) , P{x/z} x〈y〉.P , (νx′)(x〈y, x′〉 | P{x′/x})

(νz)
(
P2 | (νy)(P1 | z[~m, y〉x)

)
x(y).P , x(y, x′).P{x′/x}

, (νy)(νx′)
(
x〈y, x′〉 | P1 | (νz)(P2 | z[~m〉x′)

)
(νz)(z[fin〉x) , x〈〉 x〈〉.0 , x〈〉

(νz)(νu)(P | z[!u〉x) , (νu)(x〈u〉 | P) x〈u〉.P , x〈u〉 | P

(νz)(P | z[~m, inl〉x) , (νx′)
(
x.inl〈x′〉 | (νz)(P | z[~m〉x′)

)
x.inl;P , (νx′)(x.inl〈x′〉 | P{x′/x})

(νz)(P | z[~m, inr〉x) , (νx′)
(
x.inr〈x′〉 | (νz)(P | z[~m〉x′)

)
x.inr;P , (νx′)(x.inr〈x′〉 | P{x′/x})
x.case(P1, P2)

, x.case((x′
1).P1{x′

1/x}, (x′
2).P2{x′

2/x})

Figure 3 A π-calculus with explicit two-sided FIFO buffers.

Reduction semantics. The reductions are given in Figure 3. Reductions S-ch, S-fin, S-inl,
S-inr, and S-!ch show that an output from endpoint x can always be placed at the tail of its
peer endpoint’s input buffer. Thus, outputs are non-blocking. Conversely, reductions R-ch,
R-fin, R-inl, R-inr, and R-!ch show how the peer endpoint z responds to these messages
using inputs and cases. Note that receipt of a fin termination message (R-fin) causes the
buffer to be deallocated. Similarly, receipt of a persistent channel (R-!ch) deallocates the
buffer because persistent channels spawn linear sessions rather than establishing a persistent
pattern of communication in their own right.

4.2 Typing and well-typed reductions for buffered processes
In our asynchronous process assignment, the use of fresh channels for session continuations or-
ders outputs within a session into a queue: the sequence x〈y1, x

′〉 , x′〈y2, x
′′〉 , x′′〈y3, x

′′′〉 , . . .
can be read as a queue, x〈y1, y2, y3, . . .]. This intuition allows us to treat buffered processes
as notational definitions for polyadic asynchronous processes, as shown in Figure 3.

To type processes in the calculus with explicit buffers, we expand the definitions and type
the resulting process according the polyadic asynchronous process assignment. For instance,
to type the process (νz)

(
z〈〉.0 | (νy)(P1 | z[y〉x)

)
, we would expand the definitions, typing

(νy)(νx′)
(
x〈y, x′〉 | P1 | x′〈〉

)
instead. The reductions with explicit buffers also correspond

to reductions in the polyadic asynchronous process assignment:

I Theorem 2. Well-typed reductions respect the definitions from Figure 3.

14 Cut Reduction in Linear Logic as Asynchronous Session-Typed Communication

Proof. As a representative example, consider the well-typed reductions derived from (S-ch)
and (R-ch). The well-typed reduction corresponding to (R-ch) is

(νx)
(
(νz)(P2 | (νy)(P1 | z[~m, y〉x)) | x(y).Q

)
−→ (νx)

(
(νz)(P2 | z[~m〉x) | (νy)(P1 | Q)

)
.

By expanding according to the notational definitions from Figure 3, the reducing process
is (νx)

(
(νy, x′)(x〈y, x′〉 | P1 | (νz)(P2 | z[~m〉x′)) | x(y, x′).Q{x′/x}

)
. By the principal cut

at � type, this reduces to (νx′)
(
(νz)(P2 | z[~m〉x′) | (νy)(P1 | Q{x′/x})

)
, which, modulo

α-conversion (since x′ is not free in P1 or P2), is the same as the direct result.
The well-typed reduction corresponding to (S-ch) is

(νx)
(
(νz)((νy)z〈y〉.(P1 | P2) | z[~m〉x) | Q

)
−→ (νx)

(
(νz)(P2 | (νy)(P1 | z[y, ~m〉x)) | Q

)
.

We can show by induction on the length of ~m that these processes are structurally equivalent
when the definitions from Figure 3 are applied. The inductive case is straightforward. In
the base case, it suffices to show that (νz)((νy)z〈y〉.(P1 | P2) | z[〉x) and (νz)(P2 | (νy)(P1 |
z[y〉x)) are structurally equivalent when the definitions are expanded. The former expands
to (νy, x′)(x〈y, x′〉 | P1 | P2{x′/z}) and so does the latter. J

This result shows that our asynchronous polyadic process assignment does indeed faithfully
represent buffered asynchronous session types.

5 Related Work

The connections between linear logic and concurrency have been studied by both the logic
and concurrency theory communities. Abramsky gave a process algebraic interpretation of
classical linear logic proofs [1]. Since then, some work has taken a “propositions as types”
approach. Two of the present authors proposed an interpretation of linear logic in which
synchronous π-calculus session-typed processes are intuitionistic linear logic proofs [8], giving
rise to several interesting extensions and applications [9].

The connections between asynchronous process algebras and linear logic are also not new.
Honda and Laurent [16] show a correspondence between polarized proof nets and typings
for the asynchronous polyadic π-calculus. In contrast to our work, they consider the much
simpler IO-type system, rather than session types. Moreover, they use classical proof nets,
whereas we capture asynchrony while remaining in a sequent calculus.

Bellin and Scott [6] also give a process interpretation of classical linear logic using proof
nets. They modify the synchronous π-calculus by adding structural laws that allow for
arbitrary prefix commutations. This greatly simplifies the match with the proof theory but
also makes the development somewhat artificial from the process calculus perspective. In
contrast, we compromise between the two worlds in an arguably more satisfying way.

Beauxis et al. [4] showed that, in an untyped setting, the asynchronous π-calculus
corresponds to using bags for buffered communication. Buffers for session-typed asynchrony
have been considered for binary session types in a functional language [12], an object-oriented
language [11], and for multiparty sessions [18]. The systems of [12, 11] are similar to ours but
lack a clean logical interpretation which we get from our operational correspondence results.

6 Conclusion

In this paper, we have exhibited a novel process assignment from the asynchronous, polyadic
π-calculus to the proof rules of intuitionistic linear logic (Section 2). By allowing non-blocking

H. DeYoung, L. Caires, F. Pfenning, and B. Toninho 15

outputs, our asynchronous interpretation exposes additional parallelism inherent in linear logic
that remained hidden in the prior synchronous interpretation [8, 9]. Proof-theoretically, this
arises from a better match between proof equivalences and process equivalences (Section 3).

As future work, we would like to further study the behavioral theory of the asynchronous
process assignment. With this understanding, it should then be possible to relate the
synchronous and the asynchronous assignments by developing a form of delayed bisimulation
for synchronous processes. We would also like to extend the asynchronous assignment to
multiparty session types [18]; we conjecture that hybrid logic [19] might prove useful.

References
1 S. Abramsky. Computational interpretations of linear logic. Theoret. Comput. Sci., 111(1–

2):3–57, 1993.
2 J-M. Andreoli. Logic programming with focusing proofs in linear logic. J. Logic Comput.,

2(3):197–347, 1992.
3 A. Barber. Dual intuitionistic linear logic. Technical Report LFCS-96-347, Univ. of Edin-

burgh, 1996.
4 R. Beauxis, C. Palamidessi, and F. D. Valencia. On the asynchronous nature of the asyn-

chronous π-calculus. In Concurrency, Graphs and Models, pages 473–492, 2008.
5 E. Beffara. A concurrent model for linear logic. In 21st Ann. Conf. Math. Found. Program.

Semantics, pages 147–168, 2006.
6 G. Bellin and P. Scott. On the π-calculus and linear logic. Theoret. Comput. Sci., 135(1):11–

65, 1994.
7 G. Boudol. Asynchrony and the π-calculus. Rapport de recherche RR-1702, INRIA, 1992.
8 L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In 21st Int.

Conf. Concur. Theory, pages 222–236. LNCS 6269, 2010.
9 L. Caires, F. Pfenning, and B. Toninho. Towards concurrent type theory. In 8th ACM

SIGPLAN Workshop on Types in Language Design and Implementation, pages 1–12, 2012.
10 B-Y. E. Chang, K. Chaudhuri, and F. Pfenning. A judgmental analysis of linear logic.

Technical Report CMU-CS-03-131R, Carnegie Mellon Univ., 2003.
11 M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida. Objects and session

types. Inform. and Comput., 207(5):595–641, 2009.
12 S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. J. Funct.

Programming, 20(1):19–50, 2010.
13 J.-Y. Girard. Linear logic. Theoret. Comput. Sci., 50(1):1–102, 1987.
14 M. Giunti and V. T. Vasconcelos. A linear account of session types in the π-calculus. In

21st Int. Conf. Concur. Theory, pages 432–446. LNCS 6269, 2010.
15 K. Honda. Types for dyadic interaction. In 4th Int. Conf. Concur. Theory, pages 509–523.

LNCS 715, 1993.
16 K. Honda and O. Laurent. An exact correspondence between a typed π-calculus and

polarised proof-nets. Theoret. Comput. Sci., 411(22–24):2223–2238, 2010.
17 K. Honda and M. Tokoro. An object calculus for asynchronous communication. In 5th Eur.

Conf. Object-Oriented Programming, pages 133–147. LNCS 512, 1991.
18 K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In 35th

ACM SIGPLAN-SIGACT Symp. Prin. Program. Lang., pages 273–284, 2008.
19 T. Murphy, VII. Modal Types for Mobile Code. PhD thesis, Carnegie Mellon Univ., January

2008. Available as technical report CMU-CS-08-126.
20 J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical relations for session-

based concurrency. In 22nd Eur. Symp. Program., pages 539–558. LNCS 7211, 2012.

	Introduction
	Linear logic as asynchronous session-typed communication
	Judgmental principles
	Implication as input
	Multiplicative conjunction as output
	Multiplicative unit as termination
	Additive conjunction and disjunction as choice
	Exponential as persistent service
	Judgmental principles
	Right and left rules

	Relationship between synchronous and asynchronous process interpretations
	A synchronous, polyadic process interpretation
	Commuting conversions as process equivalences

	Correspondence with an asynchronous buffered session semantics
	A pi-calculus with explicit two-sided FIFO buffers
	Typing and well-typed reductions for buffered processes

	Related Work
	Conclusion

