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Abstract. Focusing is traditionally seen as a means of reducing inessential non-
determinism in backward-reasoning strategies such as uniform proof-search or
tableaux systems. In this paper we construct a form of focused derivations for
propositional linear logic that is appropriate for forward reasoning in the inverse
method. We show that the focused inverse method conservatively generalizes the
classical hyperresolution strategy for Horn-theories, and demonstrate through a
practical implementation that the focused inverse method is considerably faster
than the non-focused version.

1 Introduction

Strategies for automated deduction can be broadly classified as backward reasoning or
forward reasoning. Among the backward reasoning strategies we find tableaux and ma-
trix methods; forward reasoning strategies include resolution and the inverse method.
The approaches seem fundamentall§iclilt to reconcile because the state of a back-
ward reasoner is global, while a forward reasoner maintains locally self-contained state.

Both backward and forward approaches are amenable to reasoning in non-classical
logics. This is because they can be derived from an inference system that defines a
logic. The derivation process is systematic to some extent, but in order to obtain an
effective calculus and arflicient implementation, we need to analyze and exploit deep
proof-theoretic or semantic properties of each logic under consideration.

Some themes stretch across both backwards and forwards systems and even dif-
ferent logics. Cut-elimination and its associated subformula property, for example, are
absolutely fundamental for both types of systems, regardless of the underlying logic. In
this paper we advance the thesis tlegusingis similarly universal. Focusing was orig-
inally designed by Andreoli [1, 2] to remove inessential non-determinism from back-
ward proof search in classical linear logic. It has already been demonstrated [3] that
focusing applies to other logics; here we show that focusing is an important concept for
theorem proving in the forward direction.

As the subject of our study we pick propositional intuitionistic linear logic [4—
6].This choice is motivated by two considerations. First, it includes the propositional
core of the Concurrent Logical Framework (CLF), so our theorem prover, and its first-
order extension, can reason with specifications written in CLF; many such specifica-
tions, including Petri nets, the-calculus and Concurrent ML, are described in [7].
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For many of these applications, the intuitionistic nature of the framework is essential.
Second, it is almost a worst-case scenario, combining tfieulties of modal logic,
intuitionistic logic, and linear logic, where even the propositional fragment is undecid-
able. A treatment, for example, of classical linear logic without the lax modality can be
given very much along the same lines, but would be simpler in several respects.

Our contributions are as follows. First, we show how to construct a non-focusing
inverse method for intuitionistic linear logic. This follows a fairly standard recipe [8],
although the resource management problem germane to linear logic has to be consid-
ered carefully. Second, we define focused derivations for intuitionistic linear logic. The
focusing properties of the connectives turn out to be consistent with their classical in-
terpretation, but completeness does not come for free because of the additional restric-
tions placed by intuitionistic (and modal) reasoning. The completeness proof is also
somewhat dterent from ones we have found in the literature. Third, we show how
to adapt focusing so it can be used in the inverse method. The idea is quite general
and, we believe, can be adapted to other non-classical logics. Fourth, we demonstrate
via experimental results that the focused inverse method is substantially faster than the
non-focused one. Fifth, we show that refining the inverse method with focusing agrees
exactly with classical hyperresolution on Horn formulas, a property which fails for non-
focusing versions of the inverse method. This is practically significant, because even in
the linear setting many problems or subproblems may be non-linear and Horn, and need
to be treated with reasonablgieiency.

In arelated paper [9] we generalize our central results to first-order intuitionistic lin-
ear logic, provide more detail on the implementation choices, and give a more thorough
experimental evaluation. Lifting the inverse method here to include quantification is
far from straightforward, principally because of the rich interactions between linearity,
weakening, and contraction in the presence of free variables. However, these consider-
ations are orthogonal to the basic design of forward focusing which remains unchanged
from the present paper.

Perhaps most closely related to our work is Tammet'’s inverse method prover for
classical linear logic [10] which is a refinement of Mints’ resolution system [11]. Some
of Tammet’s optimizations are similar in nature to focusing, but are motivated primarily
by operational rather than by logical considerations. As a result, they are not nearly
as far-reaching, as evidenced by the substantial speedups we obtain with respect to
Tammet's implementation. Our examples were chosen so that fileeetice between
intuitionistic and classical linear reasoning was inessential.

2 Backward linear sequent calculus

We use a backward cut-free sequent calculus for propositions constructed out of the
propositional linear connectivd®, 1, —, &, T, !}; the extension to first-order connec-
tives using the recipe outlined in [9] is straightforward. To simplify the presentation we
leave outd andO, though the implementation supports them and some of the experi-
ments in Sec. 5.2 use them. Propositions are written using uppercase At r€,

with p standing for atomic propositions. The sequent calculus is a standard fragment
of JILL [6], containing dyadic two-sided sequents of the fafm4 = C: the zonel



contains the unrestricted hypotheses ancbntains the linear hypotheses. Both con-
texts are unordered. For the rules of this calculus we refer the reader to [6, page 14].
Also in [6] are the standard weakening and contraction properties for the unrestricted
hypotheses, which means we can trEats a set, and admissibility of cut by means of

a simple lexicographic induction.

Definition 1 (subformulas). A decorated formulas a tuple (A, s,w) where A is a
proposition, s is asign (+ or —) and w is aweight (h for heavyor | for light). The
subformula relatiors is the smallest reflexive and transitive relation between deco-
rated subformulas satisfying the following inequalities:

(Ash <{(Asx (ASH<(A—-Bsx*x (Bsl)<(A-oB,s=*)
(AL S (A1® Az 8 %) (ALS ) < (A& A, %) ie{l2
wheres is the opposite of s, andcan stand for either h or |, as necessary. Decorations
and the subformula relation are lifted to (multi)sets in the obvious way.

Property 2 (subformula property). In any sequent” ; 4/ = C’ used in a proof of
r ; 4= C <r,7 ) h> U <A,7 ) *) U {<C/, +, *>} < <F7 ) h> ) <A»_a I> ) {<Ca +9|>}' O

For the remainder of the paper, all rules are restricted to decorated subformulas
of a given goal sequent. A right (resp. left) rule is applicable if the principal formula
in the conclusion is a positive (resp. negative) subformula of the goal sequent. Of the
judgmental rules (reviewed in the next section), init is restricted to atomic subformulas
that arebothpositive and negative decorated subformulas, and the copy rule is restricted
to negative heavy subformulas.

3 Forward linear sequent calculus

In addition to the usual non-determinism in rule and subgoal selection, the single-use
semantics of linear hypotheses gives riseespurce non-determinisguring backward
search. Its simplest form multiplicative caused by binary multiplicative rulesR and
—L), where the linear zone of the conclusion has to be distributed into the premisses.
In order to avoid an exponential explosion, backward search strategies postpone this
split either by an inpybutput interpretation, where proving a subgoal consumes some
of the resources from the input and passes the remaining resources on as outputs [12],
or via Boolean constraints on the occurrences of linear hypotheses [13]. Interestingly,
multiplicative non-determinism is entirely absent in a forward reading of multiplicative
rules: the linear context in the conclusion is formed simply by adjoining those of the
premisses. On the multiplicative-exponential fragment, for example, forward search has
no resource management issues at all. Resource management problems remain absent
even in the presence of binary additives (& a)d

The only form of resource non-determinism for the forward direction arises in the
presence of additive constants @nd0). For example, the backwardR rule has an
arbitrary linear context which we cannot guess in the forward direction. We therefore
leave it empty (no linear assumptions are needed), but we have to remember that we can
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Fig. 1: forward linear sequent calculus

add linear assumptions if necessary. We therefofferéintiate sequents whose linear
context can be weakened and those whose can not.

To distinguish forward from backward sequents, we shall use a single arrey (
possibly decorated, but keep the names of the rules the same.

Definition 3 (forward sequents).

1. Aforward sequenis of the formI" ; 4 —W C. I and 4 hold the unrestricted and
linear resources respectively, and w is a Boolean (0 or 1) callediuhak-flag Se-
quents with w= 1 are calledweakly linearor simplyweak and those with w= 0
are strongly linearor strong

2. Thecorrespondence relatianbetween forward and backward sequents is defined as
follows: (F;A —YC) < (F’ A= C) if C cI'",and4 = 4" or 4 C A’ depend-
ing on whether w= 0 or w = 1, respectively. The forward sequent saundif for
every backward sequentsuch that s< §, s is derivable in the backward calculus.

3. Thesubsumption relatiorx between forward sequents is the smallest relation to
satisfy:

(F;A —>0C)S(F’;A —>0C)
wherel’ C I'" and4 C 4'.
(ria—tc)<(r;4 —"c
Note that strong sequents never subsume weak sequents.

Obviously, ifs; < s, ands, < s, thens; < s. It is easy to see that weak sequents
model dfine logic: this is familiar from embeddings into linear logic that transl&iaa



implicationsA — B asA — (B® T). The collection of inference rules for the forward
calculusisin fig. 1. The rules must be read while keeping in mind that they are restricted
to subformulas of the goal; precisely, a rule is applied only when the principal formula
is a proper decorated subformula of the goal sequent.

The trickiest aspect of these rules are the side conditions (given in parentheses) and
the weakness annotations. In order to understand these, it may be useful to think in term
of the following property, which we maintain for all rules in order to avoid redundant
inferences.

Definition 4. A rule with conclusion s and premisses .s., $, is said to satisfy the
irredundancy propertif fornoie {1,...,n},s < s.

In other words, a rule is irredundant if none of its premisses subsumes the conclusion.
Note that this is a local property; we do not discuss here more global redundancy crite-
ria.

The first immediate observation is that binary rules simply take the union of the
unrestricted zone from the premisses. The action of the rules on the linear zone is also
prescribed by linearity when the sequents are strang 0).

The binary additive rule (&) is applicable in the forward direction when both pre-
misses are weaky= 1), regardless of their linear zone. This is because in this case the
linear zones can always be weakened to make them equal. We therefore compute the
upper boundLi() of the two multisets: ifA occursn times in4 andmtimes in4’, then it
occurs maxt, m) times ind L A4’.

If only one premiss of the binary additive rule is weak, the linear zone of the weak
premiss must be included in the linear zone of the other strong premiss. If both pre-
misses are strong, their linear zones must be equal. We abstract the four possibilities in
the form of an additive compatibility test.

Definition 5 (additive compatibility). Given two forward sequents; 4 —" C and
I’ ; 4/ —W C, their additive zoned and4’ are additively compatiblgiven their re-
spective weak-flags, which we write v ~ 4’ /w’, if the following hold:

A0~ A')0 ifa=4 A0~ A'J1 fa4 c4
A/l=~A"]1 always All=A"J0 ifacA

For binary multiplicative rules lik®R, the conclusion is weak if either of the pre-
misses is weak; thus, the weak-flag of the conclusion is a Boolean-or of those of the
premisses. Dually, for binary additive rules, the conclusion is weak if both premisses
are weak, so we use a Boolean-and to conjoin the weak flags. Most unary rules are
oblivious to the weakening decoration, which simply survives from the premiss to the
conclusion. The exception iR for which it is unsound to have a weak conclusion;
there is no derivation of; T = ! T, for example.

Left rules with weak premisses require some attention. It is tempting to write the
“weak” ®L rules as:

r;4,A—1C r;4,B—!C
— QL ——— ®L,.
Ir;4,A®B—'C r;4,A®B—'C

(Note that the irredundancy property requires that at least one of the operandie of



present in the premiss.) This pair of rules, however, would allow redundant inferences
such as:
Ir;4,AB—C

r;4,AA®B—1C
We might as well have consumed badttandB to form the conclusion, and obtained a
stronger result. The sensible strategy is: wAeandB are both present, they mustth
be consumed. Otherwise, only apply the rule when one operand is present in a weak
sequent. A similar observation can be made about all such rules: there is one weakness-
agnostic form, and some possible refined forms to account for weak sequents.

®L,.

Property 6 (irredundancy). All forward rules satisfy the irredundancy property.O

The soundness and completeness theorems are both proven by structural induction;
we omit the simple proofs. Note that the completeness theorem shows that the forward
calculus infers a possibly stronger form of the goal sequent.

Theorem 7 (soundness)f I' ; 4 —" C is derivable, then it is sound.

Theorem 8 (completeness)f I' ; 4 = C is derivable, then there exists a derivable
forward sequent” ; 4/ —" C such tha(F’ A —W C) < (F A= C).

4 Focused derivations

Search using the backward calculus can always apply invertible rules eagerly in any
order as there always exists a proof that goes through the premisses of the invertible
rule. Andreoli pointed out [1] that a similar and dual feature exists for non-invertible
rules also: it is enough for completeness to apply a sequence of non-invertible rules
eagerly in one atomic operation, as long as the corresponding connectives are of the
samesynchronousature.

In classical linear logic the synchronous or asynchronous nature of a given con-
nective is identical to its polarity; the negative connectives (&%, L, V) are asyn-
chronous, and the positive connectives {, @, 0, J) are synchronous. The nature of
intuitionistic connectives, though, must be derived without an appeal to polarity, which
is alien to the constructive and judgmental philosophy underlying the logic. We derive
this nature by examining the rules and phases of search: an asynchronous connective is
one for which decomposition is complete in the active phase; a synchronous connec-
tive is one for decomposition is complete in the focused phase. This definition happens
to coincide with polarities for classical linear logic. Our reconstruction of focusing for
intuitionistic linear logic can be seen as a refinement of Howe’s approach [3]: our cal-
culus difers in having a precise definition the classes of connectives and no overlap in
the inference rules. As a result, our completeness proof is considerably simpler, being
a direct consequence of cut-elimination.

As our backward linear sequent calculus is two-sided, we have left- and right-
synchronous and asynchronous connectives. For non-atomic propositions a left-synchro-
nous connective is right-asynchronous, and a left-asynchronous connective right-syn-
chronous; this appears to be universal in well-behaved logics. We define the notations
in the table below



symbol meaning

P left-synchronous (&, —, p)
Q right-synchronousg, 1, !, p)

L left-asynchronousg 1, )
R right-asynchronous (&7, —)

The backward focusing calculus consists of three kinds of sequigfttsfocal sequents
of the form " ; 4> A (A under focus)]eft-focal sequentsf the form7I";4; A< Q,
andactive sequentsf the formI"; 4; Q = C. I' indicates the unrestricted zone as
usual,4 containsonly left-synchronous propositions, atlis an ordered sequence of
propositions (of arbitrary nature).

The active phase is entirely deterministic: it operates on the right side of the active
sequent until it becomes right-synchronous, i.e., of the fbrmaf ; Q = Q. Then the
propositions inQ are decomposed in order from right to left. The ordexis used
solely to avoid spurious non-deterministic choices. Eventually the sequent is reduced to
the formrI"; 4 ;- = Q, which we callneutral sequents

A focusing phase is launched from a neutral sequent by selecting a proposition from
I', 4 or the right hand side. This focused formula is decomposed until the top-level
connective becomes asynchronous. Then we enter an active phase for the previously
focused proposition.

Atomic propositions and modal operators need a special mention. Andreoli ob-
served in [1] that it is sfficient to assign arbitrarily a synchronous or asynchronous
nature to the atoms as long as duality is preserved; here, the asymmetric nature of the in-
tuitionistic sequents suggests that they should be synchronous, as explained below. The
modal connectives were treated by Howe as neither synchronous nor asynchronous, If
the left-focal formula is an atom, then the sequent is initfahie linear zonet is empty
andthe right hand side matches the focused formula; this gives the focused version of
the “init” rule. If an atom has right-focus, however, it is not enough to simply check that
the left matches the right, as there might be some pending decompositions; consider eg.
-, P& g> g. Focus is therefore blurred in this case, and we correspondingly disallow a
right atom in a neutral sequent from gaining focus.

The other subtlety is with theRirule: although ! is right synchronous, the tule
cannot maintain focus on the operand. If this were forced, there could be no focused
proof of I(A® B) — |(B® A), for example. This is because there is a hidden transition
from the truth of |A to the validity of Awhich in turn reduces to the truth éf(see [6]).

The first is synchronous, the second asynchronous, so the exponential has aspects of
both. Girard has made a similar observation that exponentials are composed of one
micro-connective to change polarity, and another to model a given behavior [14, Page
114]; this observation extends to other modal operators, such as why-not (?) of JILL [6]
or the lax modality of CLF [7].

The full set of rules is in fig. 2. Soundness of this calculus is rather an obvious
property— forget the distinction betweenand Q, elide the focus and blur rules, and
the original backward calculus appears. For completeness of the focusing calculus, we
proceed by interpreting every backward sequent as an active sequent in the focusing
calculus, then showing that the backward rules are admissible in the focusing calcu-
lus. This proof relies on admissibility of cut in the focusing calculus. Because a non-
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Fig. 2: Backward linear focusing calculus

atomic left-synchronous proposition is right-asynchronous, a left-focal sequent needs
to match only an active sequent in a cut; similarly for right-synchronous propositions.
Active sequents should match other active sequents, however. Cuts destroy focus, as
they generally require commutations spanning phase boundaries; the products of a cut
are therefore active.

The proof needs two key lemmas: the first notes that permuting the ordered con-
text doesn'’t &ect provability, as the ordered context does not mirror any deep non-
commutativity in the logic. This lemma thus allows cutting formulas from anywhere
inside the ordered context, and also to re-order the context when needed.

Lemma9. If I';4;Q = C, thenl" ; 4 ; Q' = C for any permutatio2’ of Q. m|

The other lemma shows that left-active rules can be applied even if the right-hand side
is not synchronous. This lemma is vital for commutative cuts.

Lemma 10. The following variants of the left-active rules are admissible
;4P Q=C r;4,Q-A-B=2=¢C r;4,Q—2=¢C A 4;Q—=C
' 4,Q-P—=C T 4;,2-AB—=C TI';4;Q2-1=—=C TI;4,;Q-'A=C

Theorem 11 (cut).If
1. ;4> Aand:
@Tr;4;,Q-A= Cthenr;4,4 ;2= C.



(b) I';4,A; Q= Cthenl; 4,4’ ;2 = C.
.I;->AandlA;4;Q2 = Cthenl";4;Q = C.
3.I';4; Q= Aand:

(@ I'; 4 ;A< Qthenl; 4,4 ;Q = Q.
(b) ;4 ;2 -A= Cthenr;4,4;Q-2 = C.
I 4,A;Q = Cthenl ;4,4 ;2 -Q = C.
4. I;-;- = Aand:
(@) IA;4; Q= Cthenl";4;Q2 = C.
(b) IA; 4> Bthenl" ; 4> B.
5. I';4;B<«<Aand:
(@) I';4 ;A= Qthenl"; 4,4’ ; B« Q.
(b) I';4,A;- = Qthenl ;4,4 ;B Q.
6. I;4;-= Aandl";4’,A> Bthenl ;4,4 > B.

N

Proof (sketch)By lexicographic induction on the given derivations. The argument is
lengthy rather than complex, and is an adaptation of similar structural cut-admissibility
proofs in eg. [6]. O

Theorem 12 (completeness).
If I'; 4 = C andQ is any serialization off, thenl" ;- ; 2 = C.

Proof (sketch)First show that all ordinary rules are admissible in the focusing system
using cut. Proceed by induction on the derivatioof: I" ; 4 = C, splitting cases on
the last applied rule, using cut and lem. 9 as required. A representative cas&)for
Dy:l4a=A D, I' 4 =B

D= [4.4 = A®B ®R
Let Q and &’ be serializations off and4’ respectively; by the induction hypothesis
on D; andD,, we havel ;-; Q= Aandrl;-;Q = B. Now, it is easy to show
thatl";-; A-B=— A® B. The result follows by the use of cut twice, fBrandB in
the active context respectively, to gét - ; Q - & = A® B, and then noting that any
serialization o1, 4’ is a permutation of2 - &', O

5 Forward focusing

We now construct the forward version of the focusing calculus. Intermediate sequents
in the eager active and focusing phases must not be added to the database of de-
rived sequents; instead, we should store just the neutral sequents—that is, of the form
I';4;-— Q—at the phase boundaries. We therefore first construct derived rules for
neutral sequents that make the intermediate focal and active sequents irrelevant.

For any given synchronous subformula, the derived inferences for that subformula
correspond to a single pair of focal and active phases; Andreoli callediipeies[2].
However, there are importantftBrences between backward reasoning bipoles and their
forward analogue: as shown in thm. 8, the forward calculus generates stronger forms of
sequents than in the corresponding backward proof. Therefore, not every branch of the



backward bipole will be available in the forward direction. The forward derived rules
therefore need some additional mechanism in the internal nodes to handle these cases.
We still adapt the essential idea of bipoles of viewing every proposition as a relation
between the conclusion of the bipole and its possible premisses at the leaves of the
bipole. This relational interpretation gives us the derived rules corresponding to the
proposition; the premisses and conclusions of these derived rules are neutral sequents,
which we indicate by means of a double-headed sequent arrony.(
Each relatiorR takes as input the premisses of the bipale,s; - - - s, (written ),
and constructs the relevant portion of a conclusion secgi@re write this afj[2] — s.
There are three classes of these relations:

1. Right focal relations for the focus formug writtenfocﬂ(A).
2. Left focal relations for the focus formuks writtenfoc; (A).
3. Active relations, writteracty(I" ; 4 ; 2 = ), wherey is either- or C.

The focal relations are understood as defining derived rules corresponding to a given
proposition. The conclusion of these derived rules are themselves neutral sequents. For
a right focal relatiorfoc (Q), the corresponding derived rule is:

I (focj(QIE] >4 —" )
I;4—"Q

"
focy

Similarly, for negative propositions, we have two rules, depending on whether the fo-
cused proposition is a heavy subformula of the goal sequent or not.

I (focy(P)E]>T;4—"Q) X (focy(AZ] = I';4—" Q)
T 4P—"0Q focy TUAA—"Q

As before, these derived rules are understood to contain only signed subformulas of the
goal sequent. The active relations essentially replay the active rules of the backward
focusing calculus, except they also account for weak sequents as needed.

For lack of space we leave out the details of the definition of these relations; they can
be found in the accompanying technical report [15]. Instead, we shall give an example.
Consider the negative principal subform#la= p& g —r & (s®t) and the three input
sequentdy ;A1 —»t p, I'y; 4, —»0 @, andI's; 43, s—»1 Q, nameds,, s, and S
respectively. By the definition dbc:

I'ocy

fOCﬂ(P)[%-Sg_-SQ]C—)FgUrlUrg;Ag,Az —»lQ if t¢ 43and4, C 45

In other words, the instance of the full derived rule fomatched against the given
sequents stands for the following derived rule of inference specialized to this scenario:
Fyjdy—>tp Ipd, —°q T3;43,5—1Q (t¢ds) (41 C4r)
F3UF1UF2;A3,A2,P—»1Q

The proofs of soundness and completeness of the forward focusing calculus with
respect to the backward focusing calculus are are in [15]. Soundness is shown by sim-
ple structural induction on tHecl*l, foc; andact, derivations. Completeness is a rather
more complex result because the forward and backward focused proofs are not in bi-
jection. The essential idea of the proof is to define a complete calculus of backward

10



derived rules, and prove the calculus of forward derived rules complete with respect to
this intermediate calculus.

Theorem 13 (soundness)f I' ; 4 —»"' Q is derivable, then it is sound. O

Theorem 14 (completeness)f I'; 4 ;- = Q is derivable, then there exists a deriv-
able focused sequent ; 4/ —" Q such tha(I” ;4 —" Q) < (I';4=0Q). O

5.1 The focused inverse method

What remains is to implement the inverse method search strategy that uses the forward
focusing calculus. We only briefly sketch the method here, as the implementation is-
sues are out of the scope of this paper, and have been detailed in a related paper [9].
The inverse method consists of three essential componentdatiigasef generated
sequents, the library afilesthat can be applied to sequents to generate new sequents,
and the main loop oengine Rules are constructed by naming all subformulas of the
goal sequent with fresh propositional labels, and specializing the inference rules of the
full logic to principal uses of the subformula labels; the general rules are then discarded.
This procedure is key to giving the inverse method a goal direction, as the search space
is constrained to subformulas of the goal. Traditionally the library of rules is consid-
ered static during a given search, but as we describe in [9], it is beneficial, especially
in the first-order extension, to allow the library of rules to be extended during search
with partial applications— a form of memoization. The inputs for these rules are drawn
from the database of computed sequents. At the start of search, this database contains
just the initial sequents, which are determined by consideringtaihic subformulas

that are both positively and negatively occurring in the goal sequent. The engine repeat-
edly selects sequents from the database, and applies rules from the library to generate
new sequents; if these new sequents are not subsumed by any sequent derived earlier,
they are inserted in to the database. Completeness of the search strategy is guaranteed
by using a fair selection (i.e., equivalent to breadth-first search) of sequents from the
database in order to generate new sequents.

The primary issue in the presence of focusing is what propositions to generate rules
for. As the calculus of derived rules has only neutral sequents as premisses and con-
clusions, we need only generate rules for propositions that occur in neutral sequents;
we call themfrontier propositions To find the frontier propositions in a goal sequent,
we simply abstractly replay the focusing and active phases to identify the phase tran-
sitions. Each transition from an active to a focal phase produces a frontier proposition.
Formally, we define two generating functionis(focal) anda (active), from signed
propositions to multisets of frontier propositions. None of the logical constants are in
the frontier, for the conclusions of rules suchT@® and1R are easy to predict, and can
be generated as needed. Similarly we do not count a negative focused atomic proposi-
tion in the frontier as we know that the conclusion of the init rule needs to have the form
I';-; p< p; this restricts the collection of spurious initial sequents that are not possi-
ble in a focused proof. The steps in the calculation are shown in figure 3; as a simple
example,f(p& q—or & (s®t))” =p,q,st.
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f(p" =0 f(p)" =aP*={p} O =ad) =0 f(TM) =aT) =0

f(A® B)” = a(A® B) f(A® B)* = f(A)", f(B)*
a(A® B)” = a(A)", a(B)” a(A® B)* = f(A® B)",A® B
f(A& B)” = f(A), f(B) f(A& B)* = a(A& B)*

a(A& B) = f(A& B),A& B  aA& B)" = a(A)*,a(B)*

f(A— B)” = f(A)", f(B)~ f(A—-B)" =a(A—-B)"
aA—-B) =f(A-B),A-B aA—-B)"=alA),aB)"
fCA) =alA” (A" =aA)" alA =aA)” alA*=TfA)"ITA

Fig. 3: calculating frontier propositions

Definition 15 (frontier). Given a goall” ;4 ;- = Q (which is neutral), its frontier
contains:

i. all (top-level) propositions ifT’, 4, Q;

ii. forany Ae I, 4, the collection {A)~; and

iii. the collection Q).

Property 16 (neutral subformula property). In any backward focused proof, all neu-
tral sequents consist only of frontier propositions of the goal sequent. O

In the preparatory phase for the inverse method, we calculate the frontier proposi-
tions of the goal sequent. There is no need to generate initial sequents separately, as
the executions of negative atoms in the frontier directly give us the necessary initial se-
quents. The general design of the main loop of the prover and the argument for its com-
pleteness are fairly standard [8, 10]; we use a lazy refinement of this basic design [9]
that is ideal for multi-premiss rules.

5.2 Some experimental results

We have implemented an expanded version of the forward focusing calculus as a certi-
fying® inverse method prover for intuitionistic linear logic, including the missing con-
nectives®, 0, and the lax modality. Table 1 contains a running-time comparison of

the focusing proverR) against a non-focusing versioNF) of the prover (directly im-
plementing the calculus of sec. 3), and Tammet's Gandalf “nonclassical” distribution
that includes a pair of (non-certifying) provers for classical linear logic, @@ (s-

ing a refinement of Mints’ resolution system for classical linear logic [11, 10], and the
other Gt) using a backward Tableaux-based strategy. Neither of these provers incorpo-
rates focusing. The test problems ranged from simple stateful encodings such as blocks-
world or change-machines, to more complex problems such as encodifimeflagic

1 By certifying we mean that it produces independently verifiable proof objects.
2 Available from the first author's web pagelsttp: //www. cs. cmu. edu/ “kaustuv/
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Test NF F Gt Gr

blocks-world 0.02s <0.01s 13.51s 0.03s

change 3.20s <0.01s — 0.63s

affinel 0.01s <0.01s 0.03s <0.01s

affine2 ~12m 1.21s — —

gbfl 0.03s <0.01s — 240s

gbf2 0.04 s <0.01s — 42.34 s

gbf3 ~35m 0.53s — —
All measurements are wall-clock times on an unloaded computer with a 2.80GHz Pentium 4 processor, 512KB
L1 cache and 1GB of main memory; “—" denotes unsuccessful proof withen hours.

Table 1: some experimental results.

problems, and translations of various quantified Boolean formulas using the algorithm
in [16]. Focusing was faster in every case, with an average speedup of about three orders
of magnitude over the non-focusing version.

6 Embedding non-linear logics

6.1 Intuitionistic logic

When we move from intuitionistic to intuitionistic linear logic, we gain a lot of expres-
sive power. Nonetheless, many problems, even if posed in linear logic, have significant
non-linear components or subproblems. Standard translations into linear logic, how-
ever, have the problem that any focusing properties enjoyed by the source are lost in
the translation. In a focusing system for intuitionistic logic, as hinted to by Howe [3]
and briefly considered below, a quite deterministic proof with, say, one phase of fo-
cusing, will be decomposed into many small phases, leading to a large loss in ef-
ficiency. Fortunately, it is possible to translate intuitionistic logic in a way that pre-
serves focusing. To illustrate, consider a minimal intuitionistic propositional logic with
connectiveg A, t, d}. The focusing system for this logic has three kinds of sequents,
I'> A (right-focal), I ; A<, Q (left-focal), andl” ; 2 =, C (active), with> treated

as right-synchronous, andasboth (right-) synchronous and asynchronous. The meta-
variablesP, Q, L andR are used in the spirit of section 4; thatisfor left-synchronous

{A, t,D, p}, Q for right-synchronousa, t, p}, L for left-asynchronouga, t}, andR for
right-asynchronoug, t, o}. Q means tha@ is not atomic, i.e., just containing, t}.

I'; A< Q I' B« Q I'> A I'> A I'>B
r;p<ip T''AlAAkQ I'; ADB« Q I'> AAB I'>t
I Q-AAB=Q r;Q— AAB roQ—=—t+ I;Q— ADB

I'P; Q= Q I'> Q I';P<Q Ir,-= 'R I;L=Q

ropP—=0% 7 "=0Q TP —Q TI>R rL<Q

The translation is modal with two phaseés(active) andF (focal). A positive focala
is translated a®, and the duals as &. For every use of the act rule, the corresponding
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F(O " =p FP)'=p Ap) =!'p Ap'=p

F(AAB) =F(A) & F(B)” F(AAB)" = F(A) ® F(B)*
AAAB) =AA) ®AB)  AAAB) = AA) & A(B)*

F(t) =T F@®)"=1 Aty =1 Ar)'=T

F(A>B) = F(A)* = F(B)" F(A>B)"=AAD>B)*
AASB) =!F(A> B) A(A > B)* = A(A)" — A(B)*

Fig. 4: embedding intuitionistic logic

translation phasefiixes an exponential; the phase-transitions in the image of the trans-
lation exactly mirror those in the source. The details of the translation are in figure 4. It
is easily shown that these translations preserve the focusing structure of proofs.

Property 17 (preservation of the structure of proofs).

1. fI'> A then KN~ ;-> F(A)".

2. fI'; A< Q,then KIN)~ ;- ; F(A)” < F(Q)*.

3. fIr'; Q= Q,thenKIN)~; -; A(Q)” = F(Q)*.

4. IfI'; Q = R, then RN~ ;-; A(Q)” = AR)". O

The reverse translation, writter?, is trivial: simply erase all !s, rewrite & angl asA,
T andlast, and— as=.

Property 18 (soundness).

1. IfI';-> A, then®° >, A°.

2. IfI';-; A< Q, thenl™; A° <« Q°.

3. fI';-; Q= C, thenl®; Q° =, C°. O

An important feature of this translation is that only (certain) negative atoms and
implications are !-flixed; this is related to a similar observation by Dyckhbat the
ordinary propositional intuitionistic logic has a contraction-free sequent calculus that
duplicates only negative atoms and implications [17]. It is also important to note that
this translation extends easily to handle the disjunctioasid L (in the source) ané
and0 in the target logic; this naturality is not as obvious for Howe’s translation [3].

6.2 Classical Horn formulas

A related issue arises with respect to (non-linear) Horn logic. In complex specifica-

tions that employ linearity, there are often significant sub-specifications that lie in the

Horn fragment. Unfortunately, the straightforward inverse method is quitédreat

on Horn formulas, something already noticed by Tammet [10]. So his prover switches
between hyperresolution for Horn and near-Horn formulas and the inverse method for
other propositions.
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With focusing, this becomes entirely unnecessary. Our focused inverse method for
intuitionistic linear logic, when applied to a classical, non-linear Horn formula, will
exactly behave as classical hyperresolution. This remarkable property gives further ev-
idence to the power of focusing as a technique for forward theorem proving.

A propositional Horn clause has the foqpn > --- > p, > p where allp; andp are
atomic. A Horn theory? is just a set of Horn clauses. This can easily be generalized to
include conjunction and truth. The results in this section extend also to the first-order
case, where Horn formulas allow outermost universal quantification.

The hyperresolution strategy on this framework iT PL P2 - P hyper

p

essentially just forward reasoning with rule set “hy
per’ for any p1>--->ppD> pe ¥. Note that these
will be unit clauses ifn=0. If we translate every clauspy > ---> p,D p as
I(pL—o -+ — pn —o p), it is easy to see that the derived rules associated with the results
of the translation are exactly the hyperresolution rules.

7 Conclusion

We have presented the design of an inverse method theorem prover for propositional
intuitionistic linear logic and have demonstrated through experimental results that fo-
cusing represents a highly significant improvement. Though elided here, the results
persist in the presence of a lax modality [7], and extend to the first-order case as shown
by the authors in a related paper [9], which also contains many more details on the
implementation and a more thorough empirical evaluation.

Our methods derived from focusing can be applied directly and more easily to
classical linear logic and (non-linear) intuitionistic logic, also yielding focused inverse
method provers. While we do not have an empirical evaluation of such provers, the re-
duction in the complexity of the search space is significant. We therefore believe that
focusing is a nearly universal improvement to the inverse method and should be applied
as a matter of course, possibly excepting only (non-linear) classical logic.

In future work we plan to add higher-order and linear terms in order to obtain a theo-
rem prover for all of CLF [7]. The main obstacles will be to develop feasible algorithms
for unification and to integrate higher-order equational constraints. We are also inter-
ested in exploring if model-checking techniques could help to characterize the shape of
the linear zone that could arise in a backward proof in order to further restrict forward
inferences.

Finally, we plan a more detailed analysis of connections with a bottom-up logic pro-
gramming interpreter for the LO fragment of classical linear logic [18]. This fragment,
which is in fact dfine, has the property that the unrestricted context remains constant
throughout a derivation, and incorporates focusing at least partially via a backchain-
ing rule. It seems plausible that our prover might simulate their interpreter when LO
specifications are appropriately translated into intuitionistic linear logic, similar to the
translation of classical Horn clauses.

AcknowledgmentsWe thank Kevin Watkins for illuminating discussions on the topic

of focused derivations, and the anonymous referees of this and an earlier version of this
paper for their helpful suggestions.
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