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AUTOMATING HIGHER-ORDER LOGIC
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Abstract

An automated theorem-proving system called TPS for proving theorems of
first or higher-order logic in automatic, semi-automatic, or interactive mode
has been developed. As its logical language TPS uses Church's formulation
of type theory with A-notation, in which most theorems of mathematics can
be expressed very directly. As an interactive tool TPS has many features
which facilitate writing formal proofs and manipulating and displaying
formulas of logic in traditional notations. In automatic mode TPS combines
theorem-proving methods for first-order logic with Huet's unification
algorithm for typed A-calculus, finds acceptable general matings (which
represent the essential syntactic combinatorial information implicit in
proofs), and constructs proofs in natural deduction style. Among the
theorems which can· be proved completely automatically is
- 3G 'dF 3J [[G J] = F], which expresses Cantor's Theorem that a set

ou 0' ,
has more subsets than members by asserting that there is no function G
from individuals to sets which has every set F of individuals in its range. The
computer substitutes for F the formula [AW - G W W], which denotes

0' L ou
the set {W I W ~ G W} and expresses the key idea in the classical diagonal
argument.

The methods presently used by TPS in automatic mode are in principle
complete for first-order logic, but not for higher-order logic. A recently
proved extension of Herbrand's Theorem to type theory is presented. It is
anticipated that this metatheorem will provide a basis for extending the
capabilities of TPS.
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§1 Introduction

We have barely begun to automate higher-order logic, but we have made a

start, and this paper will give some indication of what we have done so far,

and what we may do in the future. After setting the stage in this section, we

shall give an example of an automati~ proof in §2. We shall discuss a

metatheorem which may provide a foundation for further progress in §3, and

prove it in §4. The ideas in §§1-2 have been discussed previously in

conferences on automated deduction, and more details can be found in [3],

[4], and [10].

Theorems and proofs are expressed in some language. When" one is

automating the theorem-proving process, it's convenient to use a language of

symbolic logic, because such a language represents a nice compromise

between human languages and computer languages. It's comprehensible to

people trained in logic, but has a precise syntax and clear representation of

logical ideas which facilitates computer manipulations.

We wanted to automate the logic of a language which is generally adequate

for expressing mathematical ideas in a direct and natural way, and chose to

use an elegant formulation of type theory (otherwise known as higher-order

logic) due to Alonzo Church [6]. Of course, some people would prefer to use

axiomatic set theory as a language for formalizing mathematics, and thus stay

within the framework of first-order logic. We won't take time to debate this

issue now, but let's note that mathematicians do make intuitive distinctions

between different types of mathematical objects, and it's useful to have these

distinctions represented explicitly in the computer. Also, in Church's type

theory one doesn't need axioms for set existence, since sets are represented

explicitly by X-expressions. Another advantage of using typed A·calculus is

the existence of powerful unification algorithms for expressions of this

language which were developed by Gerard Huet [8] and by Pietrzykowski and

Jensen [9]. We shall see how Huet's algorithm can be used in §2.

For the convenience of the reader we provide a brief introduction to the

main features of the language in [6], which we shall call T. Tuses X-notation

for functions, which can easily be explained by an example. If F is a function

and F(x) = x2 + X + 3 for all x in the domain of F, then we write

[Xx. x2 + x + 3] as a notation for the fundion F itself. We denote the result of

ailplying this function to the argument 5 by [[Xx. x2 + X + 3] 5], which we

convert to [52 + 5 + 3] by a syntactic operation called X-contraction.
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Expressions of Thave types, and we of.ten indicate the types of variables and

constants by attaching subscripts called type symbols to them. If F is a

function which maps elements of type Pto elements of type a, then F is said to

have type (ap). Truth values and statements have type o. If S (a function
oy

which maps elements of type v to truth ."alues) maps an element X to truth,
I. Y

we write [S X] to indicate that [S X] is true, and say that X is in the set
oy y oy y y

S or that X has the property S . Thus sets and properties are identified
oy y oy

with functions which map elements to truth values, and have types of the form

(or). It can be seen that if A is a statement, [XX A] is another notation for
. 0 y 0

the set {X IA } of all elements X for which the statement A is true.
yo· y . 0

We use the convention of association to the left for omitting parentheses

and brackets. so that aPr is regarded as an abbreviation for «aph). Also, a

dot denotes a left bracket whose mate is as far to the right as possible without

changing the pairing of brackets already present.

The proofs we construct are in natural deduction format, and here is an

example of a very simple proof in this format:

( 1) 1 .- Vx, . [Po, x ] A .Qo& X Hyp

( 2·) 1 .- [P H ] A ·Qo, If VI: H 1
0' I ,

(3) 1 .- P H RuleP: 2
0' &

(4) 1 .- 3y, ,P
OI

Y 3G: H, 3

(5) .- [Vx . [P x ] A • Q0' x ] ::> •3y, .P Y, 01

Deduct: 4

The proof is a sequence of lines. Each line has the form

{n)}I .- A J

where n is a number serving as a label for the line, }I is a (possibly empty)

sequence containing the numbers of lines which are assumed as hypotheses

for that line, A is the statement being asserted in that line, and J is the

justification for that line. J indicates what rule of inference was applied to

obtain the given line, and how it was used. The rules of inference for this

system of natural deduction are listed in the Appendix.

At Carnegie·Mellon we have developed an automated theorem-proving

system called TPS which can be used in both interactive and automatic

modes, and various combinations of these, to construct such proofs.

Considerable effort has been devoted to making TPS easy to interact with.
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Certain computer terminals have been equipped with extra character

generators so that a wide variety of symbols can be displayed on their

screens. Thus, traditional notations of logic and mathematics appear on the

terminal screens as well as on printed output. TPS can handle expressions of

higher·order logic as well as first·order logic, but it is logically complete in

automatic mode only for first-order logic.

TPS is both a system under development and a research tool. It enables us

to test our ideas, and to look efficiently at examples which reveal new

problems and suggest new ideas. While we would ultimately like to build into

TPS a variety of facilities useful in automating logic, our present focus is· on an

approach to theorem-proving which involves analyzing the essential logical

structure of a theorem [4], and using the information thus obtained to

construct a proof without further search [3].

§2 An Example of an Automatic Proof

In order to convey a general idea of what TPS is like, we shall show how it

works on an example. We shall present the actual output produced by the

computer' as it proves the theorem. with certain material edited out, and with

explanatory comments added' in italics. (Since the program is still under

development, the reader may notice that it could be made more elegant in

certain respects.) lines preceded by a • below are typed in by the human

operator, and all other lines (except explanations) are produced by TPS.

TPS has a list of theorems with attached comments stored in its me'mory,

and we start by asking it to state THM5:

·STATE THM5

- .3Gou VFo, 3J, .[G J ] = F

(THIS IS CANTOR'S THEOREM FOR SETS)

(THE POWER SET OF A SET HAS MORE MEMBERS THAN THE SET)

THM5 is a rather special statement of Cantor's Theorem in which the types

attached to the variables playa very significant role. Let S be the set which we

wish to show is smaller than its power set, and let an object have type & iff it is

a member of 5. Thus the objects of type (0&) are simply the subsets of 5, and

the objects of type ((0&)&) are the functions which map members of 5 to

subsets of 5. Thus THM5 simply says that there is no function G which .maps
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members of S to subsets of S and which has every subset F of S in its range.

Statements of t-he form [X = Yl are actually abbreviations for [ = X Y 1Oaa a a
where = 0 is defined as AX AY va .[0 Xl:::> .0 Y. (Thus, X and Yareaa a a oa
equal iff every property a of X is also a property of Y.J If we instantiate the

definition of = in THM5, here is what we g~t:

- .3Gou VF0' 3J, VOo(o,) •[0 .G J ] :::> .0 F

We initiate the process of having TPS prove THM5 with the PLAN command:

·PLAN THM5

(RunTime 0.10091015 seconds ConsCount 9)

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(100)

(100) PLANl

TPS displays the proof it is constructing in a portion of the terminal screen

called the proof window, and the inital contents of the proof window are

shown above. The· proof will be constructed from the bottom up as well as

from the top down, and TPS starts off by making the theorem to be proved the

last line of the proof, and giving this line the number 100. Of course, this line

of the proof is really unjustified at this stage, and PL~N1 is just an indication

that TPS plans to prove line 100. At the top of the proof window is the~

line, which is a list of the numbers of lines which are still active (in need of

further processing).

We could now say GO and TPS would find a proof completely automatically.

However, we wish to force TPS to construct an indirect proof, since this will be

a little easier for us to grasp intuitively. (A heuristic which would enable TPS to

discover that an indirect proof is most appropriate for this theorem is

discussed on page 284 of [3], but it is not yet implemented in TPS.) Therefore

we instruct TPS to set up an indirect proof:

·P-INDIRECT
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(99 1)
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(1) 1 l- .3Gou VF 3J .[G J ] = F Hyp
0'

,
(99) I' I- .l PLAN2

(100) l- .3Gou VF0' 3J, .[G J ] = F Indirect: 99
----------------------------------------------------------
TPS has expanded the proof. Line 100 now has a justification and is no longer

active. and TPS plans to prove line 99. which asserts that a contradiction

(symbolized by .1) follows from line 1, which is the negation of THM5.

From here on the proof will proceed automatically. The first few steps

involve applications of rules of inference whose appropriateness is rather

obvious.

Evaluating D-NEG 1

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(99 2)

(1) 1 I- - .- .3Gou VFo, 3J, .[G J ] = F Hyp

(2) 1 I- 3Gou VFo, 3J, .[G J ] = F RuleP: 1

(99) 1 I- .l PLAN2
(100) I- - .3Gou VF 3J, • [G J ] = F Indirect: 99

0'

Evaluating P-CHOOSE 99 2
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(98 3)

(1) 1 I- - .- .3G VF 3J, • [G J .] = F Hypou 0'
(2) 1 I- 3Gou VFo, 3J, .[G J ] = F RuleP: 1

(3) 3 I- VFo, 3J, .[Gou J ] = F Choose: Gou 2

(98) 1,3 I- .l PLAN2

(99) 1 I- .l RuleC: 2 98

(100) I- .3Gou VF o, 3J, .[G J ] = F Indirect: 99

The problem, (98 3), can not be reduced.
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TPS has discovered that it can progress no further by trivial applications of

rules of logic, and prepares to proceed with the MatingSearch program. It

notes that the essential problem is to derive a contradiction from line 3, and

(rather inelegantly) adds line 97 to the proof (as shown below) to facilitate its

internal processing.

E~aluating FINDPLAN 98 (3)

(RunTime 3.7734394 ConsCount 22311)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(97 3)

] = F(1)

(2)

(3)

(97)

(98)
(99)
(100)

1

1

3

3

1,3
1

- - .3Gou VFo, 3J, .[G J

3Gou VF o, 3J, .[G J ] = F

VFo, 3J, .[Gou J ] = F

1.

1.

1.

Hyp

RuleP: 1

Choose: G 2ou
PLAN3

Oeduct,RuleP: 97

RuleC: 2 98
Indirect: 99

----------------------~-----------------------------------

Next TPS processes line 3 by instantiating the definition of =, writing the ::::>

thus introduced -in terms of - and V, and sko/emizing to eliminate the

existential quantifier. The variable J is replaced by the term [JIA ( \ F l,
& • & 0&1- 0&

where JIA (- ) is a sko/em function. TPS displays the resulting formula, and
& Ol

the names it has attached to its literals, as follows:

[1] VF O& VOo(O&) .[- .0 .Gou .JIA&(o,) F ] V .0 F

[1] VF 0& VOo(O&) . LIT2 V LIl3

From- [1J TPS must derive a contradiction by instantiating the quantifiers

appropriately.

Path with no potential mates: (LIT2)
No proof on this level
(RunTime 5.5491445 ConsCount 31522)
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TPS applied its search process. which will be described below, and quickly

discovered that no single instantiation of the two quantifiers can produce a

contradiction.

Replicate outermost ~aantifiers~

[2] [VF\i VQ\(Oi) .[- .Q1 .Gou .JIAi(Oi) F
1

] V .Q1 F
1

]

1\ • VF 2
0i VQ20(Oi) .[ - .Q2 .G .J IA F2 ] V .Q2 F2

[2]

The matingsearch process is described in [4J, but we shall briefly summarize

the basic concepts which underlie it. A mating M for a wff W (such as the

matrix of [2]) is a relation between occurrences of literals of W such that there

is a substitution 8 which makes literals with mated occurrences

complementary. Thus, if A M B, then 8B = - 8A. 8 is called the unifying

substitution associated with M. A vertical path through W is a sequence of

occurrences of literals whose conjunction is one of the conjuncts in the

disjunctive normal form of W. The vertical paths through [2] are (LlT2 t LlT22),

(LlT2 t LlT32), (LlT3 t LlT22), and (LlT3 t LlT32). A mating for W is acceptable iff

every vertical path contains a mated pair of literals. Thus, W becomes a

contradiction when a substitution associated with an acceptable mating is

applied to it.

TPS searches for an acceptable mating and its associated substitution in a
systematic way. It tries various possibilities, and backtracks when it finds that

the subtitutions required to mate various literal-pairs are incompatible. The

processes of finding appropriate pairs of literals to mate, and searching for

unifying substitutions, are carried on more or less simultaneously, and

interact with each other. The search processes are controlled by various

heuristics.

Path with no mates: (LIT2 1 LIT2 2)
try this arc: (LIT2 1 LIT2 2)

Partial Mating 0:
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(lIT2 1)-(lIT2Z)

Path with no mates: (LIT31 LIT22)
try this arc: (lIT3 1 LIT2 2 )

Partial Mating 0:
(LIT2 1 LIT3 1)-(LIT2 2 )

Path with no mates: (lIT3 1 LIT32)
try this arc: (LIT3 I LIT3 2

)

Partial Mating ~:

(LIT2 1 LIT3 1)-(LIT22 "LIT32)

177

Mating 0 is complete.
(RunTime 9.7913925 ConsCount 44797)

Mating 0 is the mating which contains the three literal-pairs referred to as arcs

above. plus the induced arc (UT2 1 LlT32
). TPS actually found this mating

without any need for backtracking, though backtracking usually does occur

when dealing with formulas with a more complicated propositional structure.

In essence, TPS has found that a contradiction will be obtained if the

quantifiers in f2] are instantiated in such a way that f2] reduces to a formula

having the form

[ 0 V 0]
A [-0 V -0].

Thus far TPS has actually done only a partial and superficial check that a
substituion associated with Mating 0 exists. It next searches in earnest for

such a substitution, using Gerard Huet's elegant unification algorithm (8).

TPS owes much of its pOVler to this algorithm, but we omit the lengthy details

of the unification process. Actually, TPS could be working on an incorrect

mating, for which the unification algorithm would never terminate, so TPS

alternates between generating new matings and continuing work on all of

their associated unification problems. Eventually it reaches a Terminal

Success Node in its search for a unifier associated with Mating 0:

NO-2-0-0-0-0-0-0:=
F\, {=AW1, .G O"

F2 {=AWl -"G0' ," 0"

TSN
W1 W1

W1 W1
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Q10(Ol) {::::AWl o, ' WI •J IAl(Ol) •AW2, .• - •GO" W2 W2

Q20 (Ol) {::::AWl
0

' .WI .JIAl(o,) .AW2,. .Gou W2 W2

Unification complete
(RunTime 25.365179 ConsCount 74167)

Having finished its search, TPS prepares to use the information it has found

to complete the natural deduction proof. First it notices that the substitutions

for F1 and F2 are the same, which means that it would have been more

appropriate to duplicate the quantifier VO of formula [1] instead of VF. TPS

makes the appropriate changes. replacing formula [2] by formula {3J below:

The replication has been simplified.
01 d: (F0' 2) New: (Qo(Ol) 2)

[3]

liFo, [ VQ 1o(ol) .(- .Qf .GO" .JIAl(ol) F ] V .0 1 F ]

A • VQ2o(Ol) •[- •Q2 •G '. J IA F ] V •Q2 F

The substitution has also been changed.
New:
Fo' {::::AWl , .- .Gou WI WI

O\(Ol) {::::AWl o, .Wl .JIAl(O,) • AW2 , .Gou W2 W2

02
0

(Ol) {::::AWl o, '- .Wl .JIAl(O,) .AW2, .- .Gou W2 W2

TPS displays the result of instantiating the quantifiers in [3J with the new

substitution and A-reducing as formula [4J:

[4]

[ (- .GO" [JIAl(O,) .AWI , .- .G WI WI ]

.JIA •AW2, .- .G W2 W2 ]

V .G (JIA .AW2 .- .G W2 W2 ]

.J IA .AW? .- .G W2 W2 ]

A • (- .G (JIA •AWI - .G WI WI ]

.JIA .AW2 .- .G W2 W2 ]

V - .G (JIA .AW2 .- .G W2 W2 ]

·JIA .AW2 - .G W2 W2

Note that [4] is indeed a contradiction having the form anticipated above.
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[VQ1~0~ .[Ql .GO" J ] ~ .Ql F ]

ATM2 1 ATM3 1

A .VQ2~0&) .[Q2 .G J ] ~ .Q2 F

ATM2 2 ATM3 2

TPS now eliminates the skolem terms from the substitution terms and

transforms the information it has obtained into a plan for proving line 97,

which it calls PLAN3. Thus. PLAN3 is no longer an empty label indicating that

TPS plans to prove line 97; it is now the name of a data structure which

contains all the information necessary to carry out the proof. PLAN3 is

exhibited by displaying the expanded form of the formula to be proved, and

the substitution which (as will be seen in §3) reduces it to a tautology.

PLAN3 is:

•VF 0' 3J,

The substitution is:

F0& ~ AW1& .- .G O" WI WI

Q2~0&) {:= AWl o, .- .Wl J,

~ AWl .Wl J&0&

Now TPS continues the construction of the natural deduction proof. The

substitution terms in PLAN3 are used to instantiate the quantifiers in the proof

below.

Evaluating O-ALL 3 AWl& .- .Gou WI WI 97
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(97 4)

(1) 1 l- . - • - .3GO" VF 0& 3J& • [G J ] = F Hyp

(2) 1 I- 3Gou VF
O
& 3J, .[G J ] = F RuleP: 1

(3) 3 I- VFo, 3J, .[Gou J ] = F Choose: Gou 2

(4) 3 I- 3J, .[Gou J ] = .AW1& .- .G WI WI

VI: [AWl - .Gou WI WI ] 3,
(97) 3 I- .L PLAN3

(98) 1,3 I- .L Deduct,RuleP: 91

(99) 1 I- .L RuleC: 2 98

(100) I- .3G
O

" 'liFo, 3J& .[G J ] = F Indirect: 99
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P-CHOOSE 97 4

D-DEFI 6

D-ALL 6 XWI •WI J. 96
OJ •

Evaluating D-ALL 6 XWl ol .- .WI J& 96
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
(96 S 7)

(1) 1

(2) 1

(3) 3

(4) 3

(5) 5

r- - .- .3Gou "F
OJ

3J
J

.[G J ] = F Hyp

r- 3Gou "F
OJ

3J& .[G J ] = F RuleP: 1

r-"F OJ 3J& • [Gou J ] = F Choose: Gou 2

r- 3J
J

.[G
O

" J ] = .AWI
J
.- .G WI WI

"I: [XWI
J
.- .Gou WI WI ] 3

r- [Gou J& ] = .XWI
J
.- .G WI WI

Choose: J& 4

(6) 6 r-

(7) 5 r-

(S) 6 r-

(96) 3,5 r-

(97) 3 r-

(9S) 1,3 r-

(99) 1 r-

(100) r-

"Qo(O&) • [Q .GO&J JJ ]

:> .Q .XWI .- .G WI WI Def: 5, .
[Gou J, J ] :> •- ..G J J

"I: [XWI
0

& • WI J, ] 6

[- •Gou .J ~ J ] :> •- •- •G J J

"I: [XWI
O
& .- •WI J& ] 6

~ PLAN3

~ RuleC: 4 96

~ Deduct,RuleP: 97

~ RuleC: 2 98

.3Gou "F
O

& 3J, .[G J ] = F Indirect: 99

After each application of a rule of inference, TPS checks to see whether the

line it is planning to prove follows by RuleP from the other active lines. TPS

now notices that line 96 follows from lines 7 and 8 by this rule.
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Evaluating RULEP 96 (8 7)
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

(1)

(2)

(3)

(4)

(5)

1

1

3

3

5

..... -.- .3GO" VFo, 3J, .[G J ] = F Hyp

..... 3GO" VFo, 3J, .[G J ] = F Ru1eP: 1

..... VF0' 3J, • [GO" J ] = F Choose: GO" 2

..... 3J .[G J] = .AWI•• - .G WI WI'ou ,
VI: [AWl, .- .G

O
" WI WI] 3

..... [GO" J, ] = .AWl, .- .G WI WI

Choose: J, 4

(6) 5 .....

(7) 5 .....

(8) 5 .....

(96) 3,5 .....

(97) 3 .....

(98) 1,3 .....

(99) I .....

(100) .....

V0o(o,) .[0 .GO" J,]
::::> .0 .AWI, .- .G WI WI Def: 5

[G.-" J, J ] ::::> • - .G J J

VI: [AWlo, .Wl J, ] 6

[- . GO" J, J ] ::::> • - • - • G J J

VI: [AWl o, .- .Wl J, ] 6

~ Ru1eP: 7 8

~ Ru1eC: 4 96

~ Deduct.Ru1eP: 97

~ Ru1 eC: 2 98

.3G
O

" VF o, 3J, .[G J ] = F Indirect: 99

There are no plan lines.

(RunTime 31.780359 ConsCount 103655)

Since every line of the proof now has a justification, the proof is complete.

Note that it is simply a formalized presentation of the traditional diagonal proof

of Cantor's Theorem. It was obtained in less than 32 seconds by a purely

syntactic analysis of the theorem.
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§3 A Metatheorem for Extending the Capabilities of TPS

TPS is able to prove certain theorems of higher-order logic, such as

Cantor's Theorem, by combining higher-order unification with a theorem·

proving method which was really designed for first· order logic. We're a long

way from having a reasonable theorem-proving procedure for higher-order

logic which is logically complete even in principle, but in this section we shall

present a metatheorem which provides a conceptual framework in which it

may be possible to develop such a procedure.

It may be recalled that in his thesis Herbrand discussed properties A, B, and

C of wffs, and asserted for each of the properties that a wff of first-order. logic

is provable iff it has the property. In its present formulation, the metatheorem

below is a generalization to higher-order logic of Herbrand's Theorem using

Property A, in which skolem functions are not used. (The metatheorem as

formulated below was proved by Andrews. Another formulation due to Miller

will be presented in [11 ].)

In order to state the metatheorem precisely enough so that it can be proved

in §4, we must next give some technical definitions. However, the reader who

wishes to temporarily skip these can get a general idea of what the

metatheorem says by looking at the example later in this section,

In §1 we used T as a name for a language of type theory, but we shall now

use Tin a more precise way as the name of the logical system described in §2

of [1]; T consists of the system originally presented by Church in [6], minus

axioms of extensionality, descriptions, choice, and infinity. Thus T simply

embodies the logic of propositional connectives, quantifiers, and

A-conversion in the context of type theory, and (as in [2]) we shall refer to Tas

elementary type theory.

The primitive logical constants of Tare -00 (negation), V 000 (disjunction),

and n ( )' n ( )[Ax C ] may .be abbreviated as "Ix C , and n ( )A iso 00 0 00 0 0 0 0 0 00 oa
provably equivalent to "Ix [A x J if x is not free in A . 1\, ::J, =. and 3 areo 00 0 0 oa
defined in familiar ways.

The weI/-formed formulas (wits) of T are defined in [6] and in [1]. We shall

use occwfp as an abbreviation for the phrase occurrence of a weI/-formed

part, and occwfps for occurrences of wei/·formed parts. We say that an

occwfp A of a wffo (wff of type 0) W0 is very accessible in W0 iff A is only in.

the scope of propositional connectives in W0; for greater precision this notion

is defined inductively as follows:
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1. W is very accessible in W .o 0

2. If - B is very accessible in W0' so is B.

3. If [BvCl is very accessible in W t so are Band C.o

An occwfp A of W is negative in W iff A is in the scope of an odd numbero 0

of occurrences of negation signs in W , and is positive in W otherwise. Ano 0

occwfp of W having the form n ( )A is essentially universal iff it is positiveo 0 ocr oa
in W I and essentially existential iff it is negative in W. (The essentiallyo 0

universal [existential] occwfps of W correspond to the universal [existential]
o

quantifiers in prenex normal forms of W0') An occwfp A of a wff W0 is critical

in W iff A is very accessible and essentially existential in W .o 0

Let W be a wff which has a very accessible occwfp M having the form
o

n ( )A . Let U be the result of replacing the given occurrence of M in W byo oa oa
an occurrence of a wff N which we discuss below.

1. If M is positive in Wand N is A x, where x does not occur free
Oa a a

in W, we say that U is obtained from W by universal quantifier

deletion (V-deletion).

2. If M is negative in Wand N is [n ( )A /\ n ( )A 1, we sayo oa oa ooa oa
that U is obtained from W by existential duplication

(3·duplication).

3. If M is negative in Wand N is A B, where B is any wff ,·we sayoa a a a
that U is obtained from W by existential instantiation

(3-instantiation ).

We shall say that we apply X-reduction to a wff when we apply X-contraction

(rule 2.6.2 of [1]) to one of its parts of the form [[Xx BplA 1, after making anya a
necessary alphabetic changes of bound variables (rule 2.6.1 of [1]). A wff is in

X·normal form if it has nO parts of the form [[XxaBplAal.

We call V-deletion, 3·duplication, 3-instantiation, and X-reduction the four

basic operations. A development of a sentence W of Tis any wffo obtained

from it by any sequence of applications of the basic operations.

It can be seen that if W contains a very accessible positive occwfp "Ix C·,o a 0

where x does not occur free in W , then this occurrence of "Ix C can bea 0 a 0

replaced by C by V-deletion and X-reduction. Indeed, "Ix C is ano a 0

abbreviation for n ( )[Xx C 1, which can be replaced by [Ax C]x byo oa a 0 a 0 a
V-deletion, and X-reduced to Co' Similarly, a very accessible positive occwfp
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3xaCo is an abbreviation for - nO(oa)[Axa - Co], which can be 3-instantiated

to - [Ax - C ]B , which A-reduces (modulo a double negation which wea 0 a
often omit writing) to the result of instantiating the quantifier in 3x C with the

a 0

wff B . Thus, when we abbreviate wffs so that quantifiers always occur as V
a

or 3, and n ( ) does not explicitly appear, we see that developments of wffso oa
are obtained by deleting essentially universal quantifiers, duplicating or

instantiating essentially existential quantifiers, and performing A-reductions_

We next illustrate these concepts by developing THM5. In abbreviated form,

THM5is:

- .3Go" VF0' 3J, • [G J ] = F

We start by instantiating the definition of = (which is really just an
application of X-reduction), and obtain:

- .3Go" VFo, 3J, VQo(o,) .[Q .G J ] :J .Q F

Delete 3G:

- .VFo' 3J, VQo(o,)" .[0 .Gou J ] :J .Q F

Instantiate 'v'F with AW, ".- .G
O

&& W W

- .3J, V0o(o,) .[Q .G o" J ] :J .Q .AW,

Delete 3J:

- .VOo(o,) .[0 .Go" J, ] :J .Q .AW,

.G W W

.G W W

Duplicate VQ:

[VOo(o,) .[Q .Go" J, ] :J .Q .AW, .- .G W W ]

A .'dQ .[Q .G J ] :J .Q .AW .- .G W W

Instantiate the first VQ with AU .•U J :
0' ,

[[[AU
O

& .U J, ].G
O

&& J ]:J .[AU .U J ].AW,

A .VQo(Ol) .[Q .G J ] :J .Q .AW .- .G W W

.G WW ]
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X-reduce:

[[G J J ] ::J .[XU .U J ].XW .- .G W W ]
OU i Oi ,

1\ • VQo(o,) • [Q .G J ] ::J .Q .XW .G W W

[[Gou J, J ] ::J • [ XW, . - .G W W ] J ]

1\ .VQo(o,) .[Q .G J ] ::J .Q .XW .G W W

[ [Gou J i J ] ::J • - •G J J ]

1\ .VQO(Oi) .[Q .G J ] ::J .Q .AW, .G W W

Instantiate the remaining VQ with XUo, .U J,

[ [ Gou J i J ] ::J • - • G J J ]

1\ • [[ xu0' ....... • U J ]. G J ]

::J .[XU .U J ] ..XW, .- .G WW

X-reduce:

185

[ [ Gau J, J ] ::J • - • G J J ]

1\ .[- .G J J ] ::J ,[XUOi .- .U J ].XW,

[ [ Gau J i J ] ::J • - • G J J ]

1\ • [- • G J J ] ::J • - • [XW, •- . G W W ] J

.G WW

[ [ Gau J i J ] ::J • - • G J J ]

1\ .[- .G J J ] ::J .- .- .G J J

Note that we have obtained a development of THM5 which is tautologous (a

substitution instance of a tautology of propositional calculus). Our main

metatheorem asserts that this can be done for every theorem of T.

Metatheorem. A sentence of T is provable in T iff it has a tautologous

development.

It can be seen from the results in [11] that once one knows how to obtain a

tautologous development of a sent~nce, one can construct .a natural·
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deduction proof of it without further search. Thus, the metatheorem above

shows that we can focus our research in higher-order theorem proving on the

problem of finding tautologous developments. Of course, this is a partial

extension to higher-order logic of the basic approach in [4].

Although a tautologous development of THM5 can be found by purely

automatic methods, significant new ideas must be found in order to expand

the set of sentences for which tautologous developments can be found

automatically. Nevertheless, it seems reasonable to hope that the search for

tautologous developments provides a context in which further progress on

automating higher-order logic can be made.

§4 Proof of the Metatheorem

In this section we prove the metatheorem stated in §3. We shall write r- w
to indicate that W is a theorem of T, and t= W to indicate that W is

tautologous.

By examining the axioms and rules of inference of T, one easily sees that

analogues of all theorems and derived rules of inference offirst-order logic

are provable in T, and we shall use this fact freely. In particular, if t= W, then

r- W. Also, it is easy to establish the following:

Lemma <Substitutivity of Implication). Let M and N be wffs such thato
r- M :J N, let Wand U be wffs such that M has an occurrence in W as a very

o
accessible occwfp, and U is obtained from W by replacing the designated

occurrence of M in W by an occurrence of N. Then r- W :J U if the

designated occurrence of M is positive in W, and r- U :J W if it is negative.

It is easy to see that if a sentence W has a tautologous development, then

r- W. Indeed, suppose We, W 1
,... , Wn is a sequence of wffs such that WO is

o
W. Wn is tautologous, and Wi + 1 is obtained from Wi by a basic operation for

each i <. n. Since r- Wn, it suffices to show for each i <. n that if r- Wi + 1, then

r- Wi. Since r- flo(oa)A oa :J [no(oa)Aoa 1\ flo(oa)A oa] and
r- n ( )A :J A B and operations of I\-convers.ion are reversible, it iso oa oa oa a
easy to see with the aid of the Lemma that if Wi + 1 is obtained from Wi by

3-duplication, 3·instantiation, or I\-reduction, then r- Wi + 1 :J Wi, which is

more than sufficient. Also. if Wi
+ 1 is obtained from Wi by V-deletion, then Wi

can be inferred from Wi + 1 by universal generalization and anti-prenex rules

for pushing in quantifiers. (Here we use the condition on the variable in the
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V·deletion rule). This completes the proof of the theorem in the trivial

direction. and shows that finding tautologous developments is a sound

method for establishing theorems of T.

Next we must show that the method is complete. Here we shall assume

familiarity with §4 of [1} (the cut-elimination theorem for T, which is based on

the work of Takahashi [16]). It is interesting to note that just as there is a close

relation between Gentzen's cut·elimination theorem and Herbrand's theorem

for first-order logic, there is a close relation between cut-elimination for Tand

our generalization of Herbrand's theorem to T.

We start by introducing some definitions. A wffo is open iff it is in X-normal

form and contains no positive very accessible occwfps of the form IT ( )A .°Ou oa
We open a wffo W by applying the operations of V-deletion and X-reduction to

it repeatedly until it is open. This process is called opening W, and the

resulting wff is called an open form of W. It can be seen (as a minor extension

of the Church-Rosser Theorem for typed X-calculus) that every wff W has an
°open form (Le.• the process terminates), which is unique modulo alphabetic

changes of free and bound variables.

If W is a wffo and U is obtained from W by applying 3-instantiation (once) to

Wand opening the resulting wff, then we say that U is obtained from W by

major 3-instantiation. The sequence Wo,..., Wi,...• Wn (where n > 0) is a

development sequence (d-seq) for a wffoW iff WO is an open form of W, and

for each i < n, Wi + 1 is obtained from Wi by 3-duplication or by major

3-instantiation. Clearly, each of the wffs Wi in a d-seq -for Wis an ·open

development of W. If Wo,... , Wn is a d-seq for Wand !=wn, we say that the

d-seq WO, , Wn verifies Wand is a verification of W, and write

o W{Wo ,Wn
}. If some d-seq verifies W we say that W is verified and write

OW.
Let WO,....Wi,... , Wn be any development sequence, and let R be any very

accessible occwfp of Wi (where 0 :::; i :5 n). For each k :2: i, we define the

descendant Rk of R in Wk by induction on k:

1. If k = i, then Rk is R.

2. Suppose k >i, so wk
+ 1 is obtained from Wk by replacing some

critical occwfp M of Wk by an occwfp N. M has the form

IT ( )A I so M is either a subformula of Rk or does not overlap°ou Oa
RI

.:. In the former case Rk + 1 is the subformula of Wk + 1 obtained
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when M is replaced by N in Rk. In the latter case Rk
+ 1 is the

ocurrence of Rk in Wk
+ 1 which corresponds to the occurrence of

Rk in Wk.

Now we are ready to start the completeness proof. We shall show that if

~ W, then 0 W. Suppose that ~ W; then by Theorem 4.10 of [1], W has a

proof p1,....pk,... ,pm in the cut· free system 9 of [1]. We show by induction on

k that 0 pk for each k (k = 1,... , m).

Case O. pk is an axiom A V -A of E, where A is atomic.

Clearly 0 pk{AO V -AO}, where AO is a A-normal form of A.

For the sake of brevity. in all the cases below we shall assume that pk is

inferred from pi [or fro,n pi and pi in Case 5] by the indicated rule of inference

of g, where i <k [and j <k]. By inductive hypothesis we are given that 0 pi{l}

(where 1 is the d-seq WO, W 1,....Wn), and we must show that 0 pk.

Case 1. pk is inferred by A-conversion.

Then 0 pk{l}.

Case 2. pk is inferred by disjunction rules.

Clearly one can apply the same disjunction rules as were used to obtain pk

from pi to each wff in ] to obtain a verification of pk.

Case 3. pk is pi VA.

Let AO be an open form of A. 0 pk{WO V AO, w1 V AO,... , Wn V AO}.

Case 4. pi is M V A and pk is M V --A.

WO has the form MO V A0. For each p, let uP be obtained from wP by

replacing the descendant 0 of A° in wP by the wff --D. It is easy to see that

o pk{Uo,...,Un}.

Case 5. pi is M V -A and pi is M V -B and pk is M V -[A VB].

Since M has an essentially unique open form (modulo renaming of variables),

we may assume that we are given verifications] = (Wo, ...• Wn) for M V -A

and J = (Uo, ... , UQ) for M V -B, where WO is MO V -Ao, UO is MO V -Bo, and

MO is an open form of M. Also, we may assume that the only variables which

occur free both in wffs of ] and in wffs of J are those which occur free both in

M O V - A and in MO V-B. Clearly Wn has the form Ma V - A 1 and UQ has

the form Mb V -B1, where Ma, Mb, -A 1, and _B 1 are descended from MO,

MO
, -A0, and -Bo, respectively. (See Figure 4-1.)

We now describe a verification of M V -[A V B]. Its initial wff XO is

MO V -[A° V B°]. Next, for each critical occwfp R of M O
, perform an
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Figu re 4·1: Notations for Case 5
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pi = [M v -A] pi = [M v -B] pk = [M V -[A VB]]

x,+n+q = [Me V -[A1 V B1]]

3·duplication; the two copies of R thus produced will be called the left and the

right copies. This produces a development X' = [MC V -[AO V Bon of

M V -[A V B], where I=[MC == MO]. Continue from here by imitating the

operations in the verification 1; whenever an operation used to construct I
was applied to an occwfp of a descendant of a critical occwfp R of MO

,

perform that operation within the descendant of the left copy of R in· MC
•

Whenever an operation in 1 was applied to an occwfp in a descendant of _ A°
(in WO), perform the same operation to the corresponding occwfp in the

descendant of the copy of -Ao in X'. One thus obtains a development X,+n

of M V -[A V B]. Now continue by imitating the operations in J, but use the

occwfps in descendants of right copies of occwfps of MO
, One thus obtains a

development X' + n +q = [Me V -[A 1 V B1]] of M V -[A V B]. Note that all

this is possible without changing any of the variables which were introduced

in land J.
Lemma. Let C be any very accessible occwfp of MO

, and let Ca, Cb, and Ce

be the descendants of C in Ma, Mb, and Me, respectively. Then I=[Ca V Cb] :::)

Ce if C is positive in MO
, and 1= Ce ::J rCa /\ C b] if C is negative in MO.

The lemma is proved by induction on the construction of C.

Case a, C is atomic.

Then Ce, Ca, and Cb are all the same as C, so I=[Ca V Cb] ::J Ce and
I=Ce::J rCa /\ Cb].

Case b. C is critical in MO
,

Then Ce is rCa /\ Cb], so I=ce :::) [Ca /\ Cb]. Since C is negative in MO
, this is
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the desired conclusion.

Case c. C has the form -D.

Then Ce is _De, Ca is _Oa, and Cb is _Db. If C is positive in MO
, then 0 is

negative in MO
, so 1= De ::J [Oa 1\ Db] by inductive hypothesis, so

I=[Ca v Cb] ::J Ceo Similarly, jf C is negative in MO
, then I=[Oa V Ob]::J De, SO

1= Ce ::J [Ca1\ Cb].

Case d. C has the form [0 V E].

Then Ci is [Oi V Ei
] for i = a, b, e. If C is positive in MO, then 0 and E are too,

so by inductive hypothesis I=[Oa V Db] ::J De and I=[Ea V Eb] ::J Ee, so I=[Ca V

Cb] ::J Ceo If C is negative in MO, then 1= De ::J [Oa 1\ Db] and I=Ee ::J [Ea 1\ Eb],

so I=Ce ::J [fDa 1\ Db] V [Ea 1\ Eb], so I=Ce ::J [[Oa V Ea] 1\ [Db V Eb]], so

I=Ce::J rCa 1\ Cb].

This completes the proof of the lemma, since every very accessible occwfp

of the open wff MO must fall under one of these cases.

We now apply the Lemma to see that I=Ma V Mb ::J Me. Since I=Wn and

I=UQ we know that I=Ma V -A 1 and I=Mb V _B ' , so I=Me V -[A 1 V B1
].

Thus I=Xf+n+Q, so O[M V -[A V B]]{Xo,... , Xf+n+Q}. This concludes the

treatment of Case 5.

Case 6. piisMv-n ( )A V-A Band pkisMv-n ( )A .°oa 00: oa a ° oa oa
By the argument in Case 4 we see that 0 M V --[-n ( A V -A B],° oa6 Oa oa a
so this wff has a verification Uo, ... , Un, where U has the form

MO V --[-n ()Ao V -C ], and -C is an open form of -A B.°oa oa ° ° oa a
Since AO is a A-normal form of A ,and -C is an open form of _Ao B,

oa oa 0 oa a
it is easy to see that
o pk{MO V -n AO

o(oa) 001'

MO -[n AO 1\ n AO]
V o(oa) 001 o(oa) 001

(whichisMOv--[-n ( )Ao v-n ( )Ao ]),°oa 001 0001 001

MOV--[-n AO V-C]
0(001) oa ° '

ul,..., Un}.

Case 7. pi is M V A x and pk is M V n ( )A ,and x is not free in M or
oa a 0.001 oa a

A .
oa

Clearly 0 pk{l}, since any open form of pi is also an open form of pk.

Since we have now considered all the rules of inference of g, the proof of

the metatheorem is complete.
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I. Appendix: Rules of Inference

fI denotes a (possibly empty) set of wffso ' and fI,A denotes ,l{ U {A}.

Hypothesis Rule (Hyp): Infer }{, At-A.

Deduction Rule (Deduct): From }{, A t- B infer }{ r- A:> B.

Rule of Propositional Calculus (RuJeP): Frum}{1 r- A1, . .. and

}{n r- An infer }{1 U ... U }{n r- B, provided that [[A 1 A ••• A An] :> B] is

tautologous. (For the case that n :::: 0, this rule takes the form: infer){ r- B,

provided that B is tautologous.)

Negation-Quantifier Rule (RuleQ): From }{ r- A infer }{ r- B, where A is

-'dxC, - 3xC, 'dx-C, or 3x-C, and B is 3x-C, 'dx-C, - 3xC, or --'dxC,

respectively.

Rule of Indirect Proof (Indirect): From}{, -A r- .1 infer }{ r- A.

Rule of Cases (Cases): From}{ r- A v Band }{, A r- C and }{, B r- C infer

){ r- c.
Universal Generalization (VG): From fI r- A infer }{ r- 'dxA, provided that

x is not free in any member of fl.

Existential Generalization (3G): Let A(x) be a wff and .Iet t be a term

which is free for x in A(x). (t may occur in A(x).) From}{ r- A(t) infer

){ t- 3xA(x).

Universal Instantiation (VI): From){ t- 'dxA(x) infer }{ r- A(t), provided

that t is a term free for x in A(x).

When one has inferred a wff of the form 3xA, one often "existentially

instantiates" to obtain the wff A; which asserts that x (a free variable of A) is

an entity of the sort whose existence is asserted by 3xA. We shall simply

regard A as an additional hypothesis, which is eventually to be eliminated by

Rule C below. (The name Rule C was introduced by Rosser [15], but our

formulation of the rule differs from his.)

Rule C: From}{ t- 3xA and fI, A r- B infer ){ r- B, when x is not free in B or

in any member of fl.

Rules of Alphabetic Change of Bound Variable (af3) and

X-conversion (X). See [6] or [1] forthe formal statements of these rules.

Rule of Definition (Det): Eliminate or introduce a definition.
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