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—— Abstract

Session types statically prescribe bidirectional communication protocols for message-passing processes.

However, simple session types cannot specify properties beyond the type of exchanged messages. In
this paper we extend the type system by using index refinements from linear arithmetic capturing
intrinsic attributes of data structures and algorithms. We show that, despite the decidability
of Presburger arithmetic, type equality and therefore also subtyping and type checking are now
undecidable, which stands in contrast to analogous dependent refinement type systems from functional
languages. We also present a practical, but incomplete algorithm for type equality, which we have
used in our implementation of Rast, a concurrent session-typed language with arithmetic index
refinements as well as ergometric and temporal types. Moreover, if necessary, the programmer can
propose additional type bisimulations that are smoothly integrated into the type equality algorithm.
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1 Introduction

Session types [24, 42] provide a structured way of prescribing communication protocols
in message-passing systems. This paper focuses on binary session types governing the
interactions along channels with two endpoints. They arise either directly as part of a
program notation [25], or as the result of endpoint projection of multi-party session types [26]
and are thus of central importance in the study of message-passing concurrency. Moreover, a
Curry-Howard correspondence relates propositions of linear logic to session types [8, 43, 9],
further evidence for their fundamental nature.

Once recursion is introduced for session types as well as processes, we are confronted
with the question as to what is the correct notion of type equality since its use in type
checking is inescapable. Gay and Hole [17] convincingly answer this question and also provide
a practical algorithm for subtyping (which implies an algorithm for type equality). First,
since the endpoints of channels need to agree on a type (or possibly two dual types) for
communication, recursive types should be a priori structural rather than nominal. Second,
types should be equal if their observable communication behaviors are indistinguishable.
This means that two types should be equal if there is a bisimulation between them. This
is particularly elegant since the definition is independent of any particular programming
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language in which session types are embedded, or whether they are checked statically or
dynamically. The algorithm for type equality then constructs a bisimulation. It terminates
because the number of pairs of types that might be related by the bisimulation is finite.

Like any type system, basic session types are limited in the kind of properties they
can express, which has led to some generalizations such as polymorphic [43, 7, 21] and
context-free [38] session types, each with its own questions for type equality. In this paper we
propose a natural linear arithmetic refinement of session types, which allows us to capture a
number of significant properties of message-passing communication such as size or value of
data structures, number of messages exchanged or delay in those messages. In conception,
this refinement is closely related to indexed types or wvalue-dependent types familiar from
functional languages [47, 46, 37], where the indices are arithmetic expressions.

To our surprise, despite an eminently decidable index domain, the type equality problem
becomes undecidable. We show this via a reduction from the non-halting problem for
two-counter machines [30]. Analyzing this reduction in detail shows that the problem is
already undecidable for a single type constructor (pick either internal (&) or external (&)
choice, in addition to arithmetic refinements). While our type system is equirecursive to aid
in the simplicity of programming, even retreating to isorecursive types leaves the problem
undecidable. Finally, one may be tempted to blame the quantifiers in Presburger arithmetic,
but our reduction shows that even if we restrict ourselves to linear arithmetic with universal
prefix quantification only, type equality remains undecidable.

A retrenchment to a nominal interpretation of recursive types would rule out too many
programs and complicate communications, so we develop a sound but incomplete algorithm.
Our experience with the Rast implementation [14] to date shows that it is effective in practice
(see Section 6 for further discussion).

Most closely related is the design of LiquidPi [22], but it refines only basic data types
such as int rather than equirecursively defined session types. The resulting system has a
decidable subtyping problem and even type inference (under reasonable assumptions on
the constraint domain), but it cannot express many of our motivating examples. Along
similar lines, refinements of basic data types together with subtyping have been proposed for
runtime monitoring of binary session-typed communication [20, 19]. Label-dependent session
types [39] also support types indexed by natural numbers using a fixed schema of iteration
with a particular unfolding equality, rather than arbitrary recursion and bisimulation. Zhou
et al. [49, 48] refine base types with arithmetic expressions in the context of multiparty
session types without recursive types. In this simpler setting, they obtain a decidable notion
of type equality. Further related work can be found in Section 7.

2 Basic Session Types

We review the basic language of binary session types. We take the intuitionistic point of
view [8, 9], since our experiments and motivating examples have been carried out in Rast [14].
Changes for a classical view [43] are minimal and do not affect our results or algorithms. We
would add a type L dual to 1, and replace the —o operator with % with only minor changes
to the remainder of the development.

A B,C == @{l:A}eer send label k € L continue at type A
| &{l: Av}eer receive label k € L continue at type Ay
| A®B send channel a : A continue at type B
| A—B receive channel a : A continue at type B
| 1 send close message no continuation
|

A% defined type variable
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We provide a brief description of the operational behavior of the types from the provider’s
point of view. The provider of @&{¢: Ay}scr, sends a label k € L and continues to provide
Aj. Dually, the provider of &{¢ : Ay}ecr receives one of the labels in L. The provider of
A ® B sends a channel of type A and continues to provide B, whereas the process providing
A —o B receives a channel of type A and provides B. Finally, the provider of 1 sends a close
message and terminates.

We assume that labels ¢ € L (for a finite, nonempty set L) and close messages can be
observed, but the identity of channels can not. Instead any communication along channels
that are sent and received can be observed in turn. Based on this notion, we adopt type
bisimulations from Gay and Hole [17]. Rather than an explicit recursive type constructor p
we postulate a signature 3 with definitions of type variables V.

Signature ¥ == -|X, V=4

In a wvalid signature all definitions V' = A are contractive, that is, A is not itself a type
variable. This allows us to take an equirecursive view of type definitions, which means
that unfolding a type definition does not require communication. We can easily adapt our
definitions to an isorecursive view [28, 15] with explicit unfold messages (see the remark at
the end of Section 4). All type variables V' occurring in a valid signature may refer to each
other and must be defined, and all type variables defined in a signature must be distinct.

» Definition 1. We define unfolds(V) = A if V = A € ¥ and unfoldg(A) = A otherwise.

» Definition 2. A relation R on types is a type bisimulation if (A, B) € R implies that for
S = unfoldg(A), T = unfolds(B) we have

If S=a{l: As}toer then T = &{L: Bi}yer, and (A, Be) € R for all L € L.

If S=&{l: Ap}oer then T = &{L€: Bi}yer, and (A, Be) € R for all L € L.

If S= A1 ® Ay, then T = B; ® By and (Al,Bl) € R and (AQ,BQ) eER.

]fS =A; — Ay, then T = By — By and (Al,Bl) € R and (AQ,BQ) eER.

If S=1 then T =1.

» Definition 3. We say that A is equal to B, written A = B, if there is a type bisimulation
R such that (A,B) € R.

As two simple running examples we use an interface to a queue and the representation of
binary numbers as sequences of bits.

» Example 4 (Queues, v1). A queue provider offers a choice (indicated by &) of either
receiving an ins label followed by a channel of type A (denoted by —o) to insert into the
queue, or a del label to delete an element from the queue. In the latter case, the queue
provider has a choice (indicated by @) of either responding with the label none (if there is no
element in the queue) and closes the channel (indicated by 1), or the label some followed by
an element of type A (denoted by ®) and recurses to await the next round of interactions. We
view queue 4 as a family of types, one for each A, to avoid introducing explicit polymorphic
type constructors.

queue, = &{ins : A —o queuey,,
del : &{none: 1,
some : A ® queue 4 }}

» Example 5 (Binary Numbers, v1). A process representing a binary number either sends a
label e representing the number 0 and closes the channel, or one of the labels b0 (bit 0) or
b1 (bit 1) followed by remaining bits (by recursing). We assume a “little endian” form, that
is, the least significant bit is sent first.
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bin = &{b0 : bin, b1 : bin,e : 1}

As examples of message sequences along a fixed channel, we would have

e ; close representing 0

b0 ; e ; close also representing 0
b0 ; bl ; e; close representing 2
bl; b0; bl; bl; e; close representing 13

3 Arithmetic Refinements

Before we extend our language of types formally, we revisit the examples in order to motivate
the specific constructs available. We write V[€] for a type indexed by a sequence of arithmetic
expressions e. Since it has been appropriate for most of our examples, we restrict ourselves
to natural numbers rather than arbitrary integers.

» Example 6 (Queues, v2). The provider of a queue should be constrained to answer none
exactly if the queue contains no elements and some if it is nonempty. The queue type from
Example 4 does not express this. This means a client may need to have some redundant
branches to account for responses that should be impossible. We now define the type
queue 4[n] to stand for a queue with exactly n elements.

queue 4[n] = &{ins : A —o queue, [n + 1],
del : ®{none : 7{n = 0}.1,
some : 7{n > 0}. A® queue [n — 1]}}

The first branch is easy to understand: if we add an element to a queue of length n, it
subsequently contains n + 1 elements. In the second branch we constrain the arithmetic
variable n to be equal to 0 if the provider sends none and positive if the provider sends some.
In the latter case, we subtract one from the length after an element has been dequeued.

Conceptually, the type ?{¢}. A means that the provider must send a proof p of ¢, so it
corresponds to dp: ¢. A. A characteristic of type refinement, in contrast to fully dependent
types, is that the computation of A and thus, the execution of processes can only depend
on the ezistence of a proof, but not on its form (known in type theory as proof irrelevance).
More concretely, the process types and terms cannot refer to the proof p. This irrelevance
property combined with the decidability of our index domain means that no actual proof
needs to be sent (since one can be constructed from ¢ automatically, if needed), just a token
asserting its existence. There is also a dual constructor !{¢}. A that licenses the assumption
of ¢, which, conceptually, corresponds to receiving a proof of ¢.

» Example 7 (Binary Numbers, v2). The indexed type bin[n] should represent a binary
number with value n. Because the least significant bit comes first, we expect, for example,
that bin[n] = ®{b0 : ?{2| n}.bin[n/2],...} (a|b denotes a divides b). However, while
divisibility is available in Presburger arithmetic, division itself is not; instead, we can express
the constraint and the index of the recursive occurrence using quantification.

bin[n] = &{b0 : 3k. ?{n = 2 x k}. bin[k],
bl:3k.7{n =2xk+ 1}. bin[k],
e:?{n=0}1}
As a further refinement, we could rule out leading zeros by adding the constraint n > 0 in
the branch for b0 (in branch b1, n = 2k + 1 implies n > 0 so the constraint implicitly holds).
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The type dn. A means that the provider must send a natural number ¢ and proceed at
type Ali/n], corresponding to existential quantification in arithmetic. The dual universal
quantifier Vn. A requires the provider to receive a number ¢ and proceed at type A[i/n].

We now extend our definitions to account for these new constructs. Below, i represents a
constant, n is a natural number variable and (i | e) means ¢ divides e.

Types A = L
|  ?{¢}. A assert ¢ continue at type A
| Yot A  assume ¢ continue at type A
| dn.A  send number ¢ continue at type Ali/n)
| V¥n.A  receive number i continue at type Ali/n]
| Ve variable instantiation
Arith. Expressions e === i|lete|e—el|ixel(i]e)|n
Arith. Propositions ¢ === e=el|le>e|T|L|opAd|dVS|—¢]|TIn.¢|Vn.¢
Signature Y ou= | S, V[n|g=A4
An indexed type definition V1 | ¢] = A containing an optional proposition ¢ requires

every instantiation € (in Ve]) of the sequence of variables T to satisfy ¢[é/n]. This is
verified statically when a type signature is checked for validity, as defined below. We use
V for a collection of arithmetic variables and C (to signify constraints) for an arithmetic
proposition occurring among the antecedents of a judgment. We then have the following
rules defining the validity of signatures (- X signature), declarations (Fx ¥’ valid), and types
(V; C ks A walid) where V is a collection of arithmetic variables including all free variables
in constraint C and type A. We silently rename variables so that n does not already occur in
V in the 3V and VV rules. We also call upon the semantic entailment judgment V ; C E ¢
which means that VV.C D ¢ holds in arithmetic and F ¢ abbreviates - ; T F ¢.

Fs Y valid Fe X valid m; ¢bs Avalid A#£V'[E]
F X signature Fs () valid Fe X Vn| ¢ = A valid
Vi CAo¢ls Awvalid v V:CA¢ts A wvalid |
V; Cky ?{¢}. A valid ~ V; Cky {¢}. Avalid
V,n; Cksx A walid Jym V,n; Ctyxs A wvalid .
V; Cltx In. A valid V; Clkx Vn. A valid

Vin|¢l=AeX V;CE¢le/n]
V; Clx Vie] valid

tdef

We elide the compositional rules for all the other type constructors. Since we like to work
over natural numbers rather than integers, it is convenient to assume that every definition
V[n] = A abbreviates V7o | m > 0] = A. This means that in valid signatures every occurrence
Ve] is such that & > 0 follows from the known constraints.

» Example 8. The declaration
queue 4[n] = &{ins : A —o queue, [n + 1],
del : ®{none : ?{n = 0}.1,
some : 7{n > 0}. A ® queue [n — 1]}}
is valid: in the ins branch, we verify (n ; n > 0 E n+ 1 > 0) while checking validity of

queue 4[n + 1] with rule tdef; in the some branch, we add n > 0 to our constraint C (due to
rule ?V') and verify (n; n >0An >0F n—1 > 0) while checking validity of queue 4[n — 1].
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Unfolding a definition must now substitute for the arithmetic variables we abstract over.
» Definition 9. unfolds(V[e]) = Ale/n] if V[ | ¢] = A € ¥ and unfolds(A) = A otherwise.
We say that a type is closed if it contains no free arithmetic variables n.

» Definition 10. A relation R on closed valid types is a type bisimulation if (A,B) € R
implies that for S = unfolds(A), T = unfolds(B) we have the following conditions (in
addition to those of Definition 2):

If S = {¢}. A’ then T = ?{¢p}. B" and either (i) E ¢, E ¢, and (A’,B’) € R,

or (it) E =¢ and E —p.

If S = Yo} A" then T = {«}. B' and either (i) E ¢, E4, and (A',B’) € R,

or (it) E ¢ and E —)

If S =3m. A’ then T = 3n. B’ and for alli € N, (A’[i/m], B'[i/n]) € R.

If S =Vm. A" then T =Vn.B' and for alli € N, (A'[i/m], B’[i/n]) € R.
We also extend the notation A = B to this richer set of types.

An interesting point here is provided by the cases (%¢) in the first two clauses. Because
the type must be closed, we know that ¢ and v will be either true or false. If both are false,
no messages can be sent along a channel of either type and therefore the continuation types
A’ and B’ are irrelevant when considering type equality.

Fundamentally, due to the presence of arbitrary recursion and therefore non-termination,
we always view a type as a restriction of what a process might send or receive along some
channel, but it is neither required to send a message nor guaranteed to receive one. This is
similar to functional programming with unrestricted recursion where an expression may not
return a value. The definition based on observability of messages is then somewhat strict, as
exemplified by the next example.

» Example 11. Consider the following two types

bin[n] = &{b0 : Ik. ?{n = 2 * k}.bin[k], zero = &{b0 : 3k. ?{k = 0}. zero,
bl:3k.7{n =2x*k+ 1}.bin[k], e:7{0=0}.1}
e:?{n=0}.1}

We might expect bin[0] = zero, but this is not so. A process of type bin[0] could send the
label b1 and an arbitrary value for k and then just loop forever (because there is no proof of
0 =2k + 1). The type zero cannot exhibit this behavior so the types are not equivalent.

In our implementation, missing branches for a choice in process definitions are reconstructed
with a continuation that marks it as impossible, which is then verified by the type checker. We
found this simple technique significantly limited the need for subtyping or explicit definition
of types such as zero — instead, we just work with bin[0].

The following properties of type equality are straightforward.

» Lemma 12 (Properties of Type Equality). The relation = is reflexive, symmetric, transitive
and a congruence on closed valid types.

4 Undecidability of Type Equality

We prove the undecidability of type equality by exhibiting a reduction from an undecidable
problem about two counter machines.

The type system allows us to simulate two counter machines [30]. Intuitively, arithmetic
constraints allow us to model branching zero-tests available in the machine. This, coupled with
recursion in the language of types, establishes undecidability. Remarkably, a small fragment



A. Das and F. Pfenning

of our language containing only type definitions, internal choice (&) and assertions (?{¢}. A)
where ¢ just contains constraints n = 0 and n > 0 is sufficient to prove undecidability.
Moreover, the proof still applies if we treat types isorecursively. In the remainder of this
section we provide some details of the undecidability proof.

» Definition 13 (Two Counter Machine). A two counter machine M is defined as a sequence
of instructions i1, 2, ..., tm and ¢; (j € {1,2}) as the two counters. Fach instruction has
one of the following forms.

“inc(c;); goto k7 (increment counter j by 1 and go to instruction k)

“zero(c;)? goto k : dec(c;); goto 1 ” (if the value of counter j is 0, go to instruction k, else
decrement the counter by 1 and go to instruction l)

“halt” (stop computation)

A configuration C of the machine M is defined as a triple (i,c1,c), where i denotes the
number of the current instruction and c;’s denote the value of the counters. A configuration
C' is defined as the successor configuration of C, written as C — C' if C' is the result
of executing the i-th instruction on C. If v; = halt, then C = (i,¢1,¢2) has no successor
configuration. The computation of M is the unique mazimal sequence p = p(0)p(1) ... such
that p(i) — p(i+ 1) and p(0) = (1,0,0). FEither p is infinite, or ends in (i,c1,cq) such that
t; = halt and c1,co € N.

The halting problem refers to determining whether the computation of a two counter
machine M with given initial values c¢1,cy € N is finite. Both the halting problem and its
dual, the non-halting problem, are undecidable.

» Theorem 14. Given a valid signature 3, two natural number variables m and n, and two
types A and B such that m,n ; T by A, B valid. Then it is undecidable whether for concrete
1,7 € N we have Ali/m,j/n] = Bli/m, j/n].

Proof. Given a two counter machine, we construct a signature 3 and two types A and B
with free arithmetic variables m and n such that the computation of the machine starting
with initial counter values ¢ and j is infinite iff A[i/m,j/n] = Bi/m,j/n] in X.

We define types Ting = ®{¢ : Tine} and T}, = @{¢' : T} ;} for distinct labels ¢ and ¢'.

inf —

Next, for every instruction ¢;, we define types T; and 7} based on the form of the instruction.

Case (1; = inc(c1); goto k): We define

Ti[cl, CQ] = @{incl : Tk[cl + 1, CQ}}
T,L-/[Cl,CQ] = @{incl : T,g[cl + 1, CQ]}

Case (¢; = inc(c2); goto k): We define

Ti[cl, 62} = @{incz : Tk[Cl,CQ + 1}}
T![c1,e2] = @{incg : Tyler,ca + 1]}

Case (1; = zero(c1)? goto k : dec(cq); goto 1): We define

Ti[Cl, 02} = @{zerol : ?{01 = 0}.T]€[Cl702], decy : ?{Cl > O} Tl[Cl -1, 02}}
T![c1,c2] = @{zeroy : {c1 = 0}. T} [c1, 2], decy : ?{c1 > 0}.T)[c1 — 1,¢2]}

Case (1; = zero(cz)? goto k : dec(cz); goto 1): We define

Ti[Cl, CQ} = @{ZGFOQ : ?{62 = O}Tk [01,62], dec2 : ?{CQ > 0} E[Cl,CQ — 1}}
TZ[Cl,CQ] = @{ZGFOQ : ?{CQ = O}T;é [01,62], dec2 : ?{CQ > 0} T‘ll[Cl, Cy — 1]}

13:7
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Case (¢; = halt): We define

Tiler,e2] = Ting
Tiler,e2] = i/nf

We set type A = Ty[m,n] and B = T{[m,n]. Now suppose, the counter machine M is
initialized in the state (1,4, 7). The type equality question we ask is whether T4 7, j] = TY[¢, j].
The two types only differ at the halting instruction. If M does not halt, the two types
capture exactly the same communication behavior, since the halting instruction is never
reached and they agree on all other instructions. If M halts, the first type proceeds with
label £ and the second with ¢’ and they are therefore not equal. Hence, the two types are
equal iff M does not halt. <

We can easily modify this reduction for an isorecursive interpretation of types, by wrapping
@{unfold : _ } around the right-hand side of each type definition to simulate the unfold
message. We also see that a host of other problems are undecidable, such as determining
whether two types with free arithmetic variables are equal for all instances. This is the
problem that arises while type-checking parametric process definitions.

5 A Practical Algorithm for Type Equality

Despite its undecidability, we have designed a coinductive algorithm for soundly approximating
type equality. Similar to Gay and Hole’s algorithm, it proceeds by attempting to construct a
bisimulation. Due to the undecidability of the problem, our algorithm can terminate in three
different states: (1) we have succeeded in constructing a bisimulation, (2) we have found a
counterexample to type equality by finding a place where the types may exhibit different
behavior, or (3) we have terminated the search without a definitive answer. From the point
of view of type-checking, both (2) and (3) are interpreted as a failure to type-check (but
there is a recourse; see Subsection 5.2). Our algorithm is expressed as a set of inference
rules where the execution of the algorithm corresponds to the bottom-up construction of a
deduction. The algorithm is deterministic (no backtracking) and the implementation is quite
efficient in practice (see Section 6).

One of the basic operations in Gay and Hole’s algorithm is loop detection, that is, we
have to determine that we have already added an equation A = B to the bisimulation we are
constructing. Since we must treat open types, that is, types with free arithmetic variables
subject to some constraints, determining if we have considered an equation already becomes a
difficult operation. To that purpose we make an initial pass over the given type and introduce
fresh internal names abstracted over their free type variables and known constraints. In
the resulting signature defined type variables and type constructors alternate and we can
perform loop detection entirely on type definitions (whether internal or external).

» Example 15 (Queues, v3). After creating internal names %i for the type of queue we
obtain the following signature (here parametric in A).

queue 4[n] = &{ins : %0[n], del : %1[n]}

%0[n] = A —o queuey[n + 1] %3=1
%1[n] = &{none : %2[n|, some : %4[n|} %A4[n] = {n > 0}. %5[n]
%2[n] = {n = 0}. %3 %5[n | n > 0] = A® queuey[n — 1]

Based on the invariants established by internal names, the algorithm only needs to
compare two type variables or two structural types. The rules are shown in Figure 1.
The judgment has the form V ; C ; ' H A = B where V contains the free arithmetic
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V;C;T'HA, =By (VEEL) V;C; T'HA =8B,y (VKGL)
V; C; F"EB{[:Ag}ZGLEEB{gth}geL V; C; FF&{@:A@}KGLE&{fiBg}geL

V;C;Fl_AlEBl V;C;F}_AQEBQ
V,C,F}_A1®AQEBl®BQ

V;:;C;T'HA =B V;:;C;T'kAs =B

Vi CiTF A — Ay = B; — B, - Vi, TFi=1"1
V;CE¢p+ Y V;C/\qb;FI—AEB? V;CEp= Y V;ChNp; THFA=B
V.C.TF o). A=y} B : V.C,TF o). A={¢).B
V,k; C; T'F Alk/m] = B[k/n] . V,k; C; T'F Alk/m] = B[k/n] "
V;C;T'F3dm.A=3n.B V;C;T'-Vm.A=Vn.B
V:;CkEL ViCEer=¢€e/N...Ne, =€, .
V.C.TFA=B + V.C.TrVE=vie ¢

Vifor | 1] = A€ X Valvg | ¢o] = B e X
v=(V; C; iler] = Valez])
V; C; T,y F Aler/t1] = Blez /13]
V; C; 'k Vifer] = Vales]

expd

Vi s edl=Wwe el V;CEV . CAel =g A6 =&
Vi C; I'EVifer] = Vales]

def

Figure 1 Algorithmic Rules for Type Equality.

variables in the constraints C and the types A and B, and T" is a collection of closures
V' ¢ Vel = Vi[ez’]). If a derivation can be constructed, all ground instances of all
closures are included in the resulting bisimulation (see the proof of Theorem 20). A ground
instance V{[e7’[0']] = V4 [e2’[0”]] is given by a substitution ¢’ over variables in V' such that
EC'[0].

The rules for type constructors simply compare the components. If the type constructors
(or the label sets in the @ and & rules) do not match, then type equality fails (having
constructed a counterexample to bisimulation) unless the L rule applies. This rules handles
the case where the constraints are contradictory and no communication is possible.

The rule of reflexivity is needed explicitly here (but not in the version of Gay and Hole)
because due to the incompleteness of the algorithm we may otherwise fail to recognize type
variables with equal index expressions as equal.

Now we come to the key rules, expd and def. In the expd rule we expand the definitions
of Vi[e1] and Va[ez], and we also add the closure (V ; C; Vi[er] = Va[ez]) to I'. Since the
equality of Vi[e1] and Va[ez] must hold for all its ground instances, the extension of I' with
the corresponding closure remembers exactly that. We can ignore the propositions ¢; and
¢2 since the validity of types (rule tdef in Section 3) ensures that both F ¢;[e7/v7] and
F ¢2[e2/72] hold.

In the def rule we close off the derivation successfully if all instances of the equation
Vi[e1] = Valez] are already instances of a closure in I'. This is checked by the entailment in
the second premise, V ; C E 3V'.C' AN E; = &1 A By = &;. This entailment is verified as a
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closed V3 arithmetic formula, even if the original constraints C and C’ do not contain any
quantifiers. While for Presburger arithmetic we can decide such a proposition using quantifier
elimination, other constraint domains may not permit such a decision procedure.

The algorithm so far is sound, but potentially nonterminating because when encountering
variable/variable equations, we can use the expd rule indefinitely. To ensure termination, we
restrict the expd rule to the case where no closure with the same type variables V; and V5 is
already present in I'. This also removes the overlap between these two rules. Note that if
type variables have no parameters, our algorithm specializes to Gay and Hole’s (with the
small optimizations of reflexivity and internal naming), which means our algorithm is sound
and complete on unindexed types.

As an extension, our algorithm also allows the programmer to specify a depth bound k.
This informs the algorithm to apply the expd rule until there are at most k closures with the
same type variables V; and V5 in T'.

» Example 16 (Integer Counter). An integer counter with increment (inc), decrement (dec)
and sign-test (sgn) operations provides type intctr|x,y], where the current value of the
counter is x — y for natural numbers x and y.

intctr[x, y] = &{inc : intctr[z + 1, ],
dec : intctr[z,y + 1],
sgn : @{neg : M{z < y}.intctr[z, y],
zer : 7{x = y}.intctr]z, y],
pos : 7{x > y}.intctr[z, y|}}

Under this definition our algorithm verifies, for example, that an increment followed by a
decrement does not change the counter value. That is,

z,y; T - Fintctr[z, y] = intctr[z + 1,y + 1]

where we have elided the assumptions x,y > 0. When applying expd, we assume vy =
(«',y' 5 T intetr[z’,y'] = intctr[2’ + 1,4 + 1]). Then, for example, in the first branch (for
inc) we conclude z,y ; T ; v F intctr[x + 1, y] = intcr[z 4 2,y + 1] using the def rule and the
entailment z,y ; TE I . Jy. 2’ =x+1Ay =yA2’+1=2+2Ay +1=y+1. The other
branches are similar.

As exemplified by the above example, a distinguishing feature of our algorithm is that
it goes beyond reflexivity. Essentially, V[e1] = V[ez] can hold even if &7 # e;5. This is in
contrast with traditional refinement languages such as DML [46] that use reflexivity as the
only criterion for equality on indexed type names.

5.1 Soundness of the Type Equality Algorithm

We prove that the type equality algorithm is sound with respect to the definition of type
equality. The soundness is proved by constructing a type bisimulation from a derivation of
the algorithmic type equality judgment. We sketch the key points of the proofs.

The first gap we have to bridge is that the type bisimulation is defined only for closed
types, because observations can only arise from communication along channels which, at
runtime, will be of closed type. So, if we can derive V ; C ; - = A = B then we should
interpret this as stating that for all ground substitutions o over V such that = C[o] we have
Alo] = Blo].



A. Das and F. Pfenning

» Definition 17. Given a relation R on valid ground types and two types A and B such that
V; CF A, B valid, we write VV.C = A =r B if for all ground substitutions o over V such
that & Clo] we have (Alo], Blo]) € R.

Furthermore, we write YV.C = A = B if there exists a type bisimulation R such that
YW.C = A= B.

Note that if V ; CE L, then YV.C = A = B is vacuously true, since there does not exist
a ground substitution ¢ such that = C[o].
A key lemma is the following, which is needed to show the soundness of the def rule.

» Lemma 18. Suppose VV'.C' = Vi[er'] =r Valez'] holds. Further assume that V ; C F
W'.C ANer' =eg ANey' =3 for some V,C er,e3. Then, VV.C = Vi[e1] =g Vales] holds.

Proof. To prove YV.C = Vi[e1] =r Va[ez], it is sufficient to show that Vi[er[o]] =r
Va[ez[o]] for any substitution o over V such that £ Cl[o]. Applying this substitution to
Vi, CEIV.CANel =e ANeg' = e, we infer IV'.C' Aey! = ef[o] A ez’ = &]o] since

E Clo]. Thus, there exists ¢’ over V' such that F C’[¢’] holds, and ey'[0’] = ei[o]| and
e3'[0'] = ez]o]. And since YV'.C' = Vi[er'] =g Va[ez'], we deduce that for any ground
substitution (including the current one) o’ over V', Vi[er’[0’]] =r Va[ez’[o’]] holds. This
implies that Vi[e1[o]] =r Va[ez|o]] since e1’[0'] = eq[o] and &'[0'] = e3[0]. <

We construct the bisimulation from a derivation of V ; C; I' = A = B by (i) collecting
the conclusions of all the sequents, excepting only the def rule, and (ii) forming all ground
instances from them.

» Definition 19. Given a derivation D of V ; C ; '+ A = B, we define the set S(D) of
closures. For each sequent V' ; C'; T' = A’ = B’ (except the conclusion of the def rule) we
include the closure (V' ; C'; A’ = B’) in S(D).

» Theorem 20 (Soundness). IfV; C; -+ A= B, thenVV.C = A= B.

Proof. We are given a derivation Dy of Vy ; Cp ; -+ Ag = By. Counstruct S(Dy) and define
a relation R on closed valid types as follows:

R ={(A[o],Blo]) | (V; C; A= B) € §(Dy) and o over V with F C[o]}

We prove that R is a type bisimulation. Then our theorem follows since the closure
(Vo5 Co; Ao = Bo) € S(Dy).

Counsider (A[o], Blo]) € R where (V; C; A= B) € §(Dy) for some o over V and F C[o].

First, consider the case where V ; C E 1. Under such a constraint, ¥V ; C; -+ A= B
holds true due to the L rule. Furthermore, VV.C = A = B holds vacuously, and the
algorithm is sound. For the remaining cases, we case analyze on the structure of A[o] and
assume that there exists a ground substitution o such that F Clo].

Consider the case where A = @{¢ : A;}ser. Since A and B are both structural, B =
@®{l: Bo}ocr. Since (V; C; A= B) € §(Dy), by definition of S(Dy), we get (V; C; A; =
By) € S(Dy) for all £ € L. By the definition of R, we get that (A[o], Belo]) € R. Also,
Alo] = ®f{¢ : Aglo]}eer and similarly, Blo] = @{¢ : By[o]|}ser. Hence, R satisfies the
appropriate closure condition for a type bisimulation.

Next, consider the case where A = 7{¢}. A’. Since A and B are both structural,
B =?}.B'. Since (V; C; A= B) € S(Dy), we obtain V ; CE ¢ <> ¢ and (V ; CA
¢; A’ = B’y € §(Dy). Thus, for any substitution o such that E C[o] A ¢[o], we get that
(A'[o], B'[0]) € R with Alo] = ?{¢[o]}. A'[o] and Blo] = ?{¢[o]}. B'[o]. Since F ¢[o] and
and V; CFE ¢ <> ¢ we also obtain F ¢[o] and the closure condition is satisfied.
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Next, consider the case where A = Im. A’. Since A and B are both structural, B = 3n. B’.
Since (V; C; A= B) € §(Dy), we get that (V,k; C; A'[k/m] = B'[k/n]) € S(Dy). Since
k was chosen fresh and does not occur in C, we obtain that for any ¢ € N we have E Clo,i/k|
and therefore (A'[o,i/k], B'[o,i/k]) € R for all i € N and the closure condition is satisfied.

The only case where a conclusion is not added to S(Dp) is the def rule. In this case,
adding (VV.C = Vi[e1] = Va[ez]) is redundant: Lemma 18 states that V;[er[o]] =r Valez|o]]
which implies (V;[e1]o]], Va[ez]o]]) € R. <

5.2 Type Equality Declarations

Even though the type equality algorithm in Section 5 is incomplete, we have yet to find a
natural example where it fails after we added reflexivity as a general rule. But since we
cannot see a simple reason why this should be so, we made our type equality algorithm
extensible by the programmer via an additional form of declaration

YV.C = Vile1] = Valez)
in signatures. Let I's; denote the set of all such declarations. Then we check
vV C ; I's B Vl[?l] = VQ[@]

for each such declaration, seeding the construction of a bisimulation with all the given
equations. Then, when type-checking has to decide the equality of two types, it starts not
with the empty context I" but with I';. Our soundness proof can easily accommodate this
more general algorithm.

» Example 21 (Queues, v4). Consider the two types queue,[n] and queu€’, [n], both repre-
senting queue data structures, but queue’; [n] is rooted at 1.

queuey[n] = &{ins : A —o queue,[n + 1],
del: &{none : 7{n =0}.1,
some : ?{n > 0}. A ® queue[n — 1]}}

queue/y [n] = &{ins : A —o queue/y[n + 1],
del : ®{none : 7{n = 1}.1,
some : 7{n > 1}. A @ queue/,[n — 1]}}

Our intuition would suggest that queue,[0] = queue’y[1]. But this cannot be directly
proved by our equality algorithm. While checking this equality, our algorithm would add
(-5 T ; queuey[0] = queue’y[1]) to I' and would continue to check queuey[1] = queue’y[2]
(the ins branch). However, our closure in T is not sufficient to prove this goal (the def rule
fails), and our algorithm reports the types may not be equal. However, we can add a general
equality declaration Vn. queue,[n] = queue’y[n + 1] to the signature. This can be verified by
our algorithm since it would add (n; T ; queuey[n] = queue/y[n + 1]) to I' and use it to
prove queuey[n + 1] = queue’y [n + 2] in the ins branch. Then, we will use the same equality
declaration from the signature to verify queue4[0] = queue’y[1] by instantiating n = 0.

6 Implementation and Further Examples

We have implemented the algorithm presented in Section 5 as part of the Rast programming
language [14], whose name derives from “Resource-Aware Session Types”. Rast is based on
intuitionistic linear sessions [8, 9] extended with general equirecursive types and recursively
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Table 1 Case Studies.

Module LOC #Defs T (ms)

arithmetic 143 8 1.325
integers 114 8 1.074
linlam 67 6 4.003
list 441 29 3.419
primes 118 8 1.646
segments 65 9 0.195
ternary 235 16 1.967
theorems 141 16 0.894
tries 308 9 5.283
Total 1632 109 19.806

defined processes. We do not explicitly dualize types [43] but distinguish providers and clients
that are connected by a private channel. In parallel work we have proved type safety for Rast,
which includes type preservation (session fidelity) and global progress (deadlock freedom).
The open-source implementation is written in Standard ML and currently comprises about
7500 lines of source code [36].

Rast supports indexed types, quantifiers, and arithmetic constraints, following the presen-
tation in this paper with minor syntactic differences. In addition, Rast has temporal [12] and
ergometric [13] types that capture parallel and sequential complexity of programs. These
bounds often depend on intrinsic properties of the data structures (such as the length of a
queue or the value of a binary number) which are expressed as arithmetic indices.

Rast’s linear type checker is bidirectional, which means that only process definitions
need to be annotated with their types. In the so-called explicit syntaz type checking is then
straightforward, breaking down the structure of the type and unfolding definitions, except for
calls to type equality (which are necessary for forwarding, process invocations, and sending of
channels). The implementation also supports an implicit syntaz in which some parts of the
program, specifically those concerning missing branches that can be proved to be impossible
using refinements, can be omitted from the source and are reconstructed. The reconstructed
code is then passed through the type checker as ultimate arbiter.

We use a straightforward implementation of Cooper’s algorithm [10] to decide Presburger
arithmetic with two small but significant optimizations. One takes advantage of the fact
that we are working over natural numbers rather than integers, the other is to eliminate
constraints of the form x = e by substituting e for x in order to reduce the number of
variables. We also extend our solver to handle non-linear constraints. Since non-linear
arithmetic is undecidable, in general, we use a normalizer which collects coefficients of each
term in the multinomial expression. To check e; = ey, we normalize e; — e and check that
each coefficient of the normal form is 0. To check e; > e, we normalize e; — es and check
that each coefficient is non-negative.

We have a variety of 21 examples implemented, totaling about 3700 lines of code, for
which complete code can be found in our open source repository [36]. Table 1 describes the
results for nine representative case studies: LOC describes the lines of code, #Defs shows
the number of process definitions, and T (ms) shows the type-checking time in milliseconds
respectively. The experiments were run on an Intel Core 15 2.7 GHz processor with 16 GB
1867 MHz DDR3 memory. We briefly describe each case study.
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1. arithmetic: natural numbers in unary and binary representation indexed by their value
and processes implementing standard arithmetic operations.

2. integers: an integer counter represented using two indices z and y with value = — y.

3. linlam: expressions in the linear A-calculus indexed by their size with an eval process to
evaluate them (see below for an excerpt).

4. list: lists indexed by their size with standard operations (e.g., append, reverse, map).

5. primes: implementation of the sieve of Eratosthenes.

6. segments: type seg[n] = Vk.list[k] —o list|n + k| representing partial lists with constant-
work append operation.

7. ternary: natural numbers represented in balanced ternary form with digits 0,1, —1,
indexed by their value, and some standard operations on them.

8. theorems: processes representing (circular [15]) proofs of simple arithmetic theorems.

9. tries: a trie data structure to store multisets of binary numbers, with constant amortized
work insertion and deletion, verified with ergometric types.

Linear A-calculus. We briefly sketch the types in an implementation of the (untyped) linear
A-calculus in which the index objects track the size of the expression, because it uses multiple
feature of the type system.

exp[n] = @{lam : ?{n > 0}.Vn,.exp[ni] —o exp[ny + n — 1],
app : Inq. Ing. M{n = nq + ng + 1}. exp[n1] @ exp[nq]}

An expression is either a A-abstraction (sending label lam) or an application (sending label
app). In case of lam, the continuation receives a number n; and an argument of size n; and
then behaves like the body of the A-abstraction of size ny +n — 1. In case of app, it will
send n; and ny such that n = n; + ng + 1 followed an expression of size n; and then behave
as an expression of size ns.

A value can only be a A-abstraction

val[n] = @{lam : ?{n > 0}.Vn;.exp[ni] —o exp[ni +n — 1]}

so the app label is not permitted. Type checking verifies that that the result of evaluating
a linear A\-term is no larger than the original term. The declaration below expresses that
eval [n] is client to a process sending a A-expression of size n along channel e and provides a
value of size k, where k < n.

(e :exp[n]) F eval [n] :: (v: Jk.?2{k < n}.vallk])

7 Further Related Work

Traditional languages with dependent type refinements such as Zenger’s [47] or DML [46] only
use the rule of reflexivity as a criterion for equality of indexed types. This is justified in the
context of these functional languages because data types are generative and therefore nominal
in nature. This is also true for more recent languages with linearity and value-dependent
types such as Granule [32].

Session type systems that allow dependencies are label-dependent session types [39] and
richer linear type theories [40, 33, 41]. Toninho et al. [40, 33] allow sufficient dependencies
that, in general, proofs must be sent in some circumstances. They do not provide a type
equality algorithm or implementation. In a more recent paper, Toninho et al. [41] propose a
dependent type theory with rich notions of value and process equality based on 8n-congruences
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and certain process equalities, but they do not discuss decidability or algorithms for type
checking or type equality. Wu and Xi [44] propose a dependent session type system based on
ATS [45] formalizing type equality in terms of subtyping and regular constraint relations.
They mention recursive session types as a possible extension, but do not develop them nor
investigate properties of the required type equality.

Linearly refined session types [2, 16] extend the m-calculus with capabilities from a
fragment of multiplicative linear logic. These capabilities encode an authorization logic
enabling fine-grained specifications and are thus not directly comparable to arithmetic
refinements. Session types with limited arithmetic refinements (only base types could
be refined) have been proposed for the purpose of runtime monitoring [20, 19], which is
complementary to our uses for static verification. They have also been proposed to capture
work [13, 11] and parallel time [12], but parameterization over index objects was left to an
informal meta-level and not part of the object language. Consequently, these languages
contain neither constraints nor quantifiers, and the metatheory of type equality, type checking,
and reconstruction in the presence of index variables was not developed.

Several other generalizations of session types for specification and verification have been
proposed. Generalizing the idea of “Design by Contract” [29] to distributed domains, session
types have been elaborated with logical predicates to obtain global assertions [4]. Actris [23]
combines concurrent separation logics with session types for reasoning about message passing
in the presence of other concurrency paradigms. Actris is able to prove functional correctness
of a distributed merge sort, a distributed load-balancing mapper, and a variant of the map-
reduce model. Context-free session types [38] are another generalization of basic session types
in a different direction, essentially allowing the concatenation of sessions. This generalization
has decidable type checking and type equality problems that have been shown to be efficient
in practice [1].

Asynchronous session types [18] have a notion of subtyping under different assumptions
regarding communication behavior [31]. The resulting subtyping relation also turns out to be
undecidable [6, 27] with the development of recent practical incomplete algorithms [5]. The
expressive power of asynchronous session subtyping seems incomparable to our arithmetically
refined session types.

8 Conclusion

This paper explored the metatheory of session types with arithmetic refinements, showing
the undecidability of type equality. Nevertheless, we have shown a sound, but incomplete
algorithm that has performed well over a range of examples in our Rast implementation.

Natural extensions include nonlinear arithmetic and other constraint domains, balancing
practicality of type checking with expressive power. We would also like to generalize from type
equality to subtyping, replacing the notion of bisimulation with a simulation. Clearly, this
will be undecidable as well, but the pioneering work by Gay and Hole and the characteristics
of our algorithms suggest that it should extend cleanly and remain practical.

Finally, we would also like to generalize our approach to a mixed linear/nonlinear
language [3] or all the way to adjoint session types [34, 35]. Since the main issues of type
equality are orthogonal to the presence or absence of structural properties, we conjecture
that the algorithm proposed here will extend to this more general setting.
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