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Abstract10

We develop a generalization of existing Curry-Howard interpretations of (binary) session types11

by relying on an extension of linear logic with features from hybrid logic, in particular modal worlds12

that indicate domains. These worlds govern domain migration, subject to a parametric accessibility13

relation familiar from the Kripke semantics of modal logic. The result is an expressive new typed14

process framework for domain-aware, message-passing concurrency. Its logical foundations ensure15

that well-typed processes enjoy session fidelity, global progress, and termination. Typing also ensures16

that processes only communicate with accessible domains and so respect the accessibility relation.17

Remarkably, our domain-aware framework can specify scenarios in which domain information18

is available only at runtime; flexible accessibility relations can be cleanly defined and statically19

enforced. As a specific application, we introduce domain-aware multiparty session types, in which20

global protocols can express arbitrarily nested sub-protocols via domain migration. We develop a21

precise analysis of these multiparty protocols by reduction to our binary domain-aware framework:22

complex domain-aware protocols can be reasoned about at the right level of abstraction, ensuring23

also the principled transfer of key correctness properties from the binary to the multiparty setting.24
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1 Introduction34

The goal of this paper is to show how existing Curry-Howard interpretations of session35

types [9, 10] can be generalized to a domain-aware setting by relying on an extension of36

linear logic with features from hybrid logic [42, 5]. These extended logical foundations of37

message-passing concurrency allow us to analyze complex domain-aware concurrent systems38

(including those governed by multiparty protocols) in a precise and principled manner.39

Software systems typically rely on communication between heterogeneous services; at their40

heart, these systems rely on message-passing protocols that combine mobility, concurrency,41

and distribution. As distributed services are often virtualized, protocols should span diverse42

software and hardware domains. These domains can have multiple interpretations, such as43

the location where services reside, or the principals on whose behalf they act. Concurrent44
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35:2 Domain-Aware Session Types

behavior is then increasingly domain-aware: a partner’s potential for interaction is influenced45

not only by the domains it is involved in at various protocol phases (its context), but also46

by connectedness relations among domains. Moreover, domain architectures are rarely fully47

specified: to aid modularity and platform independence, system participants (e.g., developers,48

platform vendors, service clients) often have only partial views of actual domain structures.49

Despite their importance in communication correctness and trustworthiness at large, the50

formal status of domains within typed models of message-passing systems remains unexplored.51

This paper contributes to typed approaches to the analysis of domain-aware commu-52

nications, with a focus on session-based concurrency. This approach specifies the intended53

message-passing protocols as session types [29, 30, 23]. Different type theories for binary54

and multiparty (n-ary) protocols have been developed. In both cases, typed specifications55

can be conveniently coupled with π-calculus processes [36], in which so-called session chan-56

nels connect exactly two subsystems. Communication correctness usually results from two57

properties: session fidelity (type preservation) and deadlock freedom (progress). The former58

says that well-typed processes always evolve to well-typed processes (a safety property); the59

latter says that well-typed processes will never get into a stuck state (a liveness property).60

A key motivation for this paper is the sharp contrast between (a) the growing relevance61

of domain-awareness in message-passing, concurrent systems and (b) the expressiveness of62

existing session type frameworks, binary and multiparty, which cannot adequately specify63

(let alone enforce) domain-related requirements. Indeed, existing session types frameworks,64

including those based on Curry-Howard interpretations [9, 50, 13], capture communication65

behavior at a level of abstraction in which even basic domain-aware assertions (e.g., “Shipper66

resides in domain AmazonUS”) cannot be expressed. As an unfortunate consequence, the67

effectiveness of the analysis techniques derived from these frameworks is rather limited.68

To better illustrate our point, consider a common distributed design pattern: a middleware69

agent (mw) which answers requests from clients (cl), sometimes offloading the requests to a70

server (serv) to better manage local resource availability. In the framework of multiparty71

session types [31] this protocol can be represented as the global type:72

cl�mw:{request〈req〉. mw�cl:{ reply〈ans〉. mw�serv:{done.end} , wait.mw�serv:{req〈data〉.
serv�mw:{reply〈ans〉.mw�cl:{reply〈ans〉.end}}}}}

The client first sends a request to the middleware, which answers back with either a reply73

message containing the answer or a wait message, signaling that the server will be contacted to74

produce the final reply. While this multiparty protocol captures the intended communication75

behavior, it does not capture that protocols for the middleware and the server often involve76

some form of privilege escalation or specific authentication—ensuring, e.g., that the server77

interaction is adequately isolated from the client, or that the escalation must precede the78

server interactions. These requirements simply cannot be represented in existing frameworks.79

Our work addresses this crucial limitation by generalizing Curry-Howard interpretations80

of session types by appealing to hybrid logic features. We develop a logically motivated81

typed process framework in which worlds from modal logics precisely and uniformly define82

the notion of domain in session-based concurrency. At the level of binary sessions, domains83

manifest themselves through point-to-point domain migration and communication. In84

multiparty sessions, domain migration is specified choreographically through the new construct85

p moves q̃ toω forG1 ; G2, where participant p leads a migration of participants q̃ to domain86

ω in order to perform protocol G1, who then migrate back to perform protocol G2.87

Consider the global type Offload , mw� serv:{req〈data〉.serv� mw:{reply〈ans〉.end}}88

in our previous example. Our framework allows us to refactor the global type above as:89

cl�mw:{request〈req〉. mw�cl:{ reply〈ans〉.mw�serv:{done.end} , wait.mw�serv:{init.
mw moves serv towpriv for Offload ; mw�cl:{reply〈ans〉.end}}}}
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By considering a first-class multiparty domain migration primitive at the type and process90

levels, we can specify that the offload portion of the protocol takes place after the middleware91

and the server migrate to a private domain wpriv, as well as ensuring that only accessible92

domains can be interacted with. For instance, the type for the server that is mechanically93

projected from the protocol above ensures that the server first migrates to the private domain,94

communicates with the middleware, and then migrates back to its initial domain.95

Perhaps surprisingly, our domain-aware multiparty sessions are studied within a context96

of logical binary domain-aware sessions, arising from a propositions-as-types interpretation97

of hybrid linear logic [21, 17], with strong static correctness guarantees derived from the98

logical nature of the system. Multiparty domain-awareness arises through an interpretation99

of multiparty protocols as medium processes [7] that orchestrate the multiparty interaction100

while enforcing the necessary domain-level constraints and migration steps.101

Contributions The key contributions of this work are:102

1. A process model with explicit domain-based migration (§ 2). We present a session103

π-calculus with domains that can be communicated via novel domain movement prefixes.104

2. A session type discipline for domain-aware interacting processes (§ 3). Building upon105

an extension of linear logic with features from hybrid logic [21, 17] we generalize the106

Curry-Howard interpretation of session types [9, 10] by interpreting (modal) worlds as107

domains where session behavior resides. In our system, types can specify domain migration108

and communication; domain mobility is governed by a parametric accessibility relation.109

Judgments stipulate the services used and realized by processes and the domains where110

sessions should be present. Our type discipline statically enforces session fidelity, global111

progress and, notably, that communication can only happen between accessible domains.112

3. As a specific application, we introduce a framework of domain-aware multiparty ses-113

sions (§ 4) that uniformly extends the standard multiparty session framework of [31]114

with domain-aware migration and communication primitives. Our development leverages115

our logically motivated domain-aware binary sessions (§ 3) to give a precise semantics116

to multiparty sessions through a (typed) medium process that acts as an orchestrator of117

domain-aware multiparty interactions, lifting the strong correctness properties of typed118

processes to the multiparty setting. We show that mediums soundly and completely119

encode the local behaviors of participants in a domain-aware multiparty session.120

We conclude with a discussion of related work (§ 5) and concluding remarks (§ 6).121

2 Process Model122

We introduce a synchronous π-calculus [44] with labeled choice and explicit domain migration123

and communication. We write ω, ω′, ω′′ to stand for a concrete domain (w,w′, . . .) or a124

domain variable (α, α′, . . .). Domains are handled at a high-level of abstraction, with their125

identities being attached to session channels. Just as the π-calculus allows for communication126

over names and name mobility, our model also allows for domain communication and mobility.127

These features are justified with the typing discipline of § 3.128

I Definition 2.1. Given infinite, disjoint sets Λ of names (x, y, z, u, v), L of labels l1, l2, . . . ,129

W of domain tags (w,w′, w′′) and V of domain variables (α, β, γ), respectively, the set of130

processes (P,Q,R) is defined by131

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| [x↔y] | x .

{
li : Pi

}
i∈I

| x /li;P
| x〈y@ω〉.P | x(y@ω).P | x〈ω〉.P | x(α).P

132
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35:4 Domain-Aware Session Types

Domain-aware prefixes are present only in the last line. As we make precise in the typed133

setting of § 3, these constructs realize mobility and domain communication, in the usual sense134

of the π-calculus: migration to a domain is always associated to mobility with a fresh name.135

The operators 0 (inaction), P | Q (parallel composition) and (νy)P (name restriction)136

are standard. We then have x〈y〉.P (send y on x and proceed as P ), x(y).P (receive z on x137

and proceed as P with parameter y replaced by z), and !x(y).P which denotes replicated138

(persistent) input. The forwarding construct [x↔ y] equates x and y; it is a primitive139

representation of a copycat process. The last two constructs in the second line define a140

labeled choice mechanism: x .
{

li : Pi
}
i∈I is a process that awaits some label lj (with j ∈ I)141

and proceeds as Pj . Dually, the process x /li;P emits a label li and proceeds as P .142

The first two operators in the third line define explicit domain migration: given a domain143

ω, x〈y@ω〉.P denotes a process that is prepared to migrate the communication actions in P144

on endpoint x, to session y on ω. Complementarily, process x(y@ω).P signals an endpoint x145

to move to ω, providing P with the appropriate session endpoint that is then bound to y. In146

a typed setting, domain movement will be always associated with a fresh session channel.147

Alternatively, this form of coordinated migration can be read as an explicit form of agreement148

(or authentication) in trusted domains. Finally, the last two operators in the third line define149

output and input of domains, x〈ω〉.P and x(α).P , respectively. These constructs allow for150

domain information to be obtained and propagated across processes dynamically.151

Following [43], we abbreviate (νy)x〈y〉 and (νy)x〈y@ω〉 as x〈y〉 and x〈y@ω〉, respectively.152

In (νy)P , x(y).P , and x(y@ω).P the distinguished occurrence of name y is binding with153

scope P . Similarly for α in x(α).P . We identify processes up to consistent renaming of bound154

names and variables, writing ≡α for this congruence. P{x/y} denotes the capture-avoiding155

substitution of x for y in P . While structural congruence ≡ expresses standard identities on156

the basic structure of processes (cf. [?]), reduction expresses their behavior.157

Reduction (P → Q) is the binary relation defined by the rules below and closed under158

structural congruence; it specifies the computations that a process performs on its own.159

x〈y〉.Q | x(z).P → Q | P{y/z} x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
x〈y@ω〉.P | x(z@ω′).Q→ P | Q{y/z} x〈ω〉.P | x(α).Q→ P | Q{ω/α}
(νx)([x↔y] | P )→ P{y/x} Q→ Q′ ⇒ P | Q→ P | Q′
P → Q⇒ (νy)P → (νy)Q x /lj ;P | x .

{
li : Qi

}
i∈I → P | Qj (j ∈ I)

160

For the sake of generality, reduction allows dual endpoints with the same name to interact,161

independently of the domains of their subjects. The type system introduced next will ensure,162

among other things, local reductions, disallowing synchronisations among distinct domains.163

3 Domain-aware Session Types via Hybrid Logic164

This section develops a new domain-aware formulation of binary session types. Our system165

is based on a Curry-Howard interpretation of a linear variant of so-called hybrid logic, and166

can be seen as an extension of the interpretation of [9, 10] to hybrid (linear) logic. Hybrid167

logic is often used as an umbrella term for a class of logics that extend the expressiveness of168

propositional logic by considering modal worlds as syntactic objects that occur in propositions.169

As in [9, 10], propositions are interpreted as session types of communication channels,170

proofs as typing derivations, and proof reduction as process communication. As main171

novelties, here we interpret: logical worlds as domains; the hybrid connective @ω A as the172

type of a session that migrates to an accessible domain ω; and type-level quantification over173

worlds ∀α.A and ∃α.A as domain communication. We also consider a type-level operator174
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↓α.A (read “here”) which binds the current domain of the session to α in A. The syntax of175

domain-aware session types is given in Def. 3.1, where w,w1, . . . stand for domains drawn176

from W, and where α, β and ω, ω′ are used as in the syntax of processes.177

I Definition 3.1 (Domain-aware Session Types). The syntax of types (A,B,C) is defined by178

A ::= 1 | A( B | A⊗B | &{li : Ai}i∈I | ⊕{li : Ai}i∈I | !A
| @ω A | ∀α.A | ∃α.A | ↓α.A179

Types are the propositions of intuitionistic linear logic where the additives A&B and A⊕B180

are generalized to a labelled n-ary variant. Propositions take the standard interpretation as181

session types, extended with hybrid logic operators [5], with worlds interpreted as domains182

that are explicitly subject to an accessibility relation (in the style of [45]) that is tracked183

by environment Ω. Intuitively, Ω is made up of direct accessibility hypotheses of the form184

ω1 ≺ ω2, meaning that domain ω2 is accessible from ω1.185

Types are assigned to channel names; a type assignment x:A[ω] enforces the use of name186

x according to session A, in the domain ω. A type environment is a collection of type187

assignments. Besides the accessibility environment Ω just mentioned, our typing judgments188

consider two kinds of type environments: a linear part ∆ and an unrestricted part Γ. They189

are subject to different structural properties: weakening and contraction principles hold for190

Γ but not for ∆. Empty environments are written as ‘ · ’. We then consider two judgments:191

(i) Ω ` ω1 ≺ ω2 and (ii) Ω; Γ; ∆ ` P :: z:A[ω]192

Judgment (i) states that ω1 can directly access ω2 under the hypotheses in Ω. We write193

≺∗ for the reflexive, transitive closure of ≺, and ω1 6≺∗ ω2 when ω1 ≺∗ ω2 does not hold.194

Judgment (ii) states that process P offers the session behavior specified by type A on195

channel z; the session s resides at domain ω, under the accessibility hypotheses Ω, using196

unrestricted sessions in Γ and linear sessions in ∆. Note that each hypothesis in Γ and ∆ is197

labeled with a specific domain. We omit Ω when it is clear from context.198

Typing Rules Selected typing rules are given in Fig. 1; see [?] for the full listing. Right199

rules (marked with R) specify how to offer a session of a given type, left rules (marked200

with L) define how to use a session. The hybrid nature of the system induces a notion of201

well-formedness of sequents: a sequent Ω; Γ; ∆ ` P :: z : C[ω1] is well-formed if Ω ` ω1 ≺∗ ω2202

for every x:A[ω2] ∈ ∆, which we abbreviate as Ω ` ω1 ≺∗ ∆, meaning that all domains203

mentioned in ∆ are accessible from ω1 (not necessarily in a single direct step). No such204

domain requirement is imposed on Γ. If an end sequent is well-formed, every sequent in its205

proof will also be well-formed. All rules (read bottom-up) preserve this invariant; only (cut),206

(copy), (@R), (∀L) and (∃R) require explicit checks, which we discuss below. This invariant207

statically excludes interaction between sessions in accessible domains (cf. Theorem 3.7).208

We briefly discuss some of the typing rules, first noting that we consider processes modulo209

structural congruence; hence, typability is closed under ≡ by definition. Type A ( B210

denotes a session that inputs a session of type A and proceeds as B. To offer z:A( B at211

domain ω, we input y along z that will offer A at ω and proceed, now offering z:B at ω:212

((R)
Ω; Γ; ∆, y:A[ω] ` P :: z:B[ω]

Ω; Γ; ∆ ` z(y).P :: z:A( B[ω]
(⊗R)

Ω; Γ; ∆1 ` P :: y:A[ω] Ω; Γ; ∆2 ` Q :: z:B[ω]
Ω; Γ; ∆1,∆2 ` z〈y〉.(P | Q) :: z:A⊗B[ω]213

Dually, A⊗B denotes a session that outputs a session that will offer A and continue as B.214

To offer z:A⊗B, we output a fresh name y with type A along z and proceed offering z:B.215

CONCUR 2019



35:6 Domain-Aware Session Types

The (cut) rule allows us to compose process P , which offers x:A[ω2], with process Q,216

which uses x:A[ω2] to offer z:C[ω1]. We require that domain ω2 is accessible from ω1 (i.e.,217

ω1 ≺∗ ω2). We also require ω1 ≺∗ ∆1: the domains mentioned in ∆1 (the context for P )218

must be accessible from ω1, which follows from the transitive closure of the accessibility219

relation (≺∗) using the intermediary domain ω2. As in [9, 10], composition binds the name x:220

(cut)
Ω ` ω1 ≺∗ ω2 Ω ` ω1 ≺∗ ∆1 Ω; Γ; ∆1 ` P :: x:A[ω2] Ω; Γ; ∆2, x:A[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C[ω1]221

Type 1 means that no further interaction will take place on the session; names of type 1222

may be passed around as opaque values. &{li : Ai}i∈I types a session channel that offers223

its partner a choice between the Ai behaviors, each uniquely identified by a label li. Dually,224

⊕{li : Ai}i∈I types a session that selects some behavior Ai by emitting the corresponding225

label. For flexibility and consistency with merge-based projectability in multiparty session226

types, rules for choice and selection induce a standard notion of session subtyping [25].227

Type !A types a shared (non-linear) channel, to be used by a server for spawning an228

arbitrary number of new sessions (possibly none), each one conforming to type A.229

Following our previous remark on well-formed sequents, the only rules that appeal to230

accessibility are (@R), (@L), (copy), and (cut). These conditions are directly associated with231

varying degrees of flexibility in terms of typability, depending on what relationship is imposed232

between the domain to the left and to the right of the turnstile in the left rules. Notably, our233

system leverages the accessibility judgment to enforce that communication is only allowed234

between processes whose sessions are in (transitively) accessible domains.235

The type operator @ω realizes a domain migration mechanism which is specified both236

at the level of types and processes via name mobility tagged with a domain name. Thus, a237

channel typed with @ω2A denotes that behavior A is available by first moving to domain ω2,238

directly accessible from the current domain. More precisely, we have:239

(@R)

Ω ` ω1 ≺ ω2

Ω ` ω2 ≺∗ ∆ Ω; Γ; ∆ ` P :: y:A[ω2]
Ω; Γ; ∆ ` z〈y@ω2〉.P :: z:@ω2A[ω1]

(@L)
Ω, ω2 ≺ ω3; Γ; ∆, y:A[ω3] ` P :: z:C[ω1]

Ω; Γ; ∆, x:@ω3A[ω2] ` x(y@ω3).P :: z:C[ω1]240

Hence, a process offering a behavior z:@ω2 A at ω1 ensures: (i) behavior A is available at ω2241

along a fresh session channel y that is emitted along z and (ii) ω2 is directly accessible from242

ω1. To maintain well-formedness of the sequent we also must check that all domains in ∆ are243

still accessible from ω2. Dually, using a service x:@ω3A[ω2] entails receiving a channel y that244

will offer behavior A at domain ω3 (and also allowing the usage of the fact that ω2 ≺ ω3).245

Domain-quantified sessions introduce domains as fresh parameters to types: a particular246

service can be specified with the ability to refer to any existing directly accessible domain247

(via universal quantification) or to some a priori unspecified accessible domain:248

(∀R)
Ω, ω1 ≺ α; Γ; ∆ ` P :: z:A[ω1] α 6∈ Ω,Γ,∆, ω1

Ω; Γ; ∆ ` z(α).P :: z:∀α.A[ω1]

(∀L)
Ω ` ω2 ≺ ω3

Ω; Γ; ∆, x:A{ω3/α}[ω2] ` Q :: z:C[ω1]
Ω; Γ; ∆, x:∀α.A[ω2] ` x〈ω3〉.Q :: z:C[ω1]

249

Rule (∀R) states that a process seeking to offer ∀α.A[ω1] denotes a service that is located250

at domain ω1 but that may refer to any fresh domain directly accessible from ω1 in its251

specification (e.g. through the use of @). Operationally, this means that the process must be252

ready to receive from its client a reference to the domain being referred to in the type, which253

is bound to α (occurring fresh in the typing derivation). Dually, Rule (∀L) indicates that a254

process interacting with a service of type x:∀α.A[ω2] must make concrete the domain that255
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is directly accessible from ω2 it wishes to use, which is achieved by the appropriate output256

action. Rules (∃L) and (∃R) for the existential quantifier have a dual reading.257

Finally, the type-level operator ↓α.A allows for a type to refer to its current domain:258

(↓R)
Ω; Γ; ∆ ` P :: z:A{ω/α}[ω]

Ω; Γ; ∆ ` P :: z:↓α.A[ω]
(↓L)

Ω; Γ; ∆, x:A{ω/α}[ω] ` P :: z:C
Ω; Γ; ∆, x:↓α.A[ω] ` P :: z:C259

The typing rules that govern ↓α.A are completely symmetric and produce no action at the260

process level, merely instantiating the domain variable α with the current domain ω of the261

session. As will be made clear in § 4, this connective plays a crucial role in ensuring the262

correctness of our analysis of multiparty domain-aware sessions in our logical setting.263

By developing our type theory with an explicit domain accessibility judgment, we can264

consider the accessibility relation as a parameter of the framework. This allows changing265

accessibility relations and their properties without having to alter the entire system. To266

consider the simplest possible accessibility relation, the only defining rule for accessibility267

would be Rule (whyp) in Fig. 1. To consider an accessibility relation which is an equivalence268

relation we would add reflexivity, transitivity, and symmetry rules to the judgment.269

Discussion and Examples Being an interpretation of hybridized linear logic, our domain-270

aware theory is conservative wrt the Curry-Howard interpretation of session types in [9, 10],271

in the following sense: the system in [9, 10] corresponds to the case where every session resides272

at the same domain. As in [9, 10], the sequent calculus for the underlying (hybrid) linear273

logic can be recovered from our typing rules by erasing processes and name assignments.274

Conversely, a fundamental consequence of our hybrid interpretation is that it refines the275

session type structure in non-trivial ways. By requiring that communication only occurs276

between sessions located at the same (or accessible) domain we effectively introduce a new277

layer of reasoning to session type systems. To illustrate this feature, consider the following278

session type WStore, which specifies a simple interaction between a web store and its clients:279

WStore , addCart( &{buy : Pay , quit : 1} Pay , CCNum( ⊕{ok : Rcpt⊗ 1 , nok : 1}280

WStore allows clients to checkout their shopping carts by emitting a buy message or to quit.281

In the former case, the client pays for the purchase by sending their credit card data. If282

a banking service (not shown) approves the transaction (via an ok message), a receipt is283

emitted. Representable in existing session type systems (e.g. [9, 50, 30]), types WStore and284

Pay describe the intended communications but fail to capture the crucial fact that in practice285

the client’s sensitive information should only be requested after entering a secure domain. To286

address this limitation, we can use type-level domain migration to refine WStore and Pay:287

WStoresec , addCart( &{buy : @sec Paybnk, quit : 1}
Paybnk , CCNum( ⊕{ok : (@bnkRcpt)⊗ 1,nok : 1}288

WStoresec decrees that the interactions pertinent to type Paybnk should be preceded by a289

migration step to the trusted domain sec, which should be directly accessible from WStoresec’s290

current domain. The type also specifies that the receipt must originate from a bank domain291

bnk (e.g., ensuring that the receipt is never produced by the store without entering bnk).292

When considering the interactions with a client (at domain c) that checks out their cart, we293

reach a state that is typed with the following judgment:294

c ≺ ws; ·;x:@secPaybnk[ws] ` Client :: z:@sec1[c]295

At this point, it is impossible for a (typed) client to interact with the behavior that is296

protected by the domain sec, since it is not the case that c ≺∗ sec. That is, no judgment297
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(whyp)
Ω, ω1 ≺ ω2 ` ω1 ≺ ω2

(id)
Ω; Γ;x:A[ω] ` [x↔z] :: z:A[ω]

(@R)
Ω ` ω1 ≺ ω2 Ω ` ω2 ≺∗ ∆ Ω; Γ; ∆ ` P :: y:A[ω2]

Ω; Γ; ∆ ` z〈y@ω2〉.P :: z:@ω2A[ω1]

(@L)
Ω, ω2 ≺ ω3; Γ; ∆, y:A[ω3] ` P :: z:C[ω1]

Ω; Γ; ∆, x:@ω3A[ω2] ` x(y@ω3).P :: z:C[ω1]
(∀R)
Ω, ω1 ≺ α; Γ; ∆ ` P :: z:A[ω1] α 6∈ Ω,Γ,∆, ω1

Ω; Γ; ∆ ` z(α).P :: z:∀α.A[ω1]

(∀L)
Ω ` ω2 ≺ ω3 Ω; Γ; ∆, x:A{ω3/α}[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆, x:∀α.A[ω2] ` x〈ω3〉.Q :: z:C[ω1]

(∃R)
Ω ` ω1 ≺ ω2 Ω; Γ; ∆ ` P :: z:A{ω2/α}[ω1]

Ω; Γ; ∆ ` z〈ω2〉.P :: z:∃α.A[ω1]
(∃L)

Ω, ω2 ≺ α; Γ; ∆, x:A[ω2] ` Q :: z:C[ω1]
Ω; Γ; ∆, x:∃α.A[ω2] ` x(α).Q :: z:C[ω1]

(↓R)
Ω; Γ; ∆ ` P :: z:A{ω/α}[ω]

Ω; Γ; ∆ ` P :: z:↓α.A[ω]
(↓L)

Ω; Γ; ∆, x:A{ω/α}[ω] ` P :: z:C
Ω; Γ; ∆, x:↓α.A[ω] ` P :: z:C

(copy)
Ω ` ω1 ≺∗ ω2 Ω; Γ, u:A[ω2]; ∆, y:A[ω2] ` P :: z:C[ω1]

Ω; Γ, u:A[ω2]; ∆ ` u〈y〉.P :: z:C[ω1]

(cut)
Ω ` ω1 ≺∗ ω2 Ω ` ω2 ≺∗ ∆1 Ω; Γ; ∆1 ` P :: x:A[ω2] Ω; Γ; ∆2, x:A[ω2] ` Q :: z:C[ω1]

Ω; Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C[ω1]

Figure 1 Typing Rules (Excerpt – see [?])

of the form c ≺ ws; ·; Paybnk[sec] ` Client′ :: z:T [c] is derivable. This ensures, e.g., that a298

client cannot exploit the payment platform of the web store by accessing the trusted domain299

in unforeseen ways. The client can only communicate in the secure domain after the web300

store service has migrated accordingly, as shown by the judgment301

c ≺ ws, ws ≺ sec; ·;x′:Paybnk[sec] ` Client′ :: z′:1[sec].302

303

Technical Results We state the main results of type safety via type preservation (The-304

orem 3.3) and global progress (Theorem 3.4). These results directly ensure session fidelity305

and deadlock-freedom. Typing also ensures termination, i.e., processes do not exhibit infinite306

reduction paths (Theorem 3.5). We note that in the presence of termination, our progress307

result ensures that communication actions are always guaranteed to take place. Moreover, as308

a property specific to domain-aware processes, we show domain preservation, i.e., processes309

respect their domain accessibility conditions (Theorem 3.7). The formal development of310

these results relies on a domain-aware labeled transition system [?], defined as a simple311

generalization of the early labelled transition system for the session π-calculus given in [9, 10].312

Type Safety and Termination. Following [9, 10], our proof of type preservation relies on313

a simulation between reductions in the session-typed π-calculus and logical proof reductions.314

I Lemma 3.2 (Domain Substitution). Suppose Ω ` ω1 ≺ ω2. Then we have:315

If Ω, ω1 ≺ α,Ω′; Γ; ∆ ` P :: z:A[ω] then316

Ω,Ω′{ω2/α}; Γ{ω2/α}; ∆{ω2/α} ` P{ω2/α} :: z:A[ω{ω2/α}].317

Ω, α ≺ ω2,Ω′; Γ; ∆ ` P :: z:A[ω] then318

Ω,Ω′{ω1/α}; Γ{ω1/α}; ∆{ω1/α} ` P{ω1/α} :: z:A[ω{ω1/α}].319

Safe domain communication relies on domain substitution preserving typing (Lemma 3.2).320

I Theorem 3.3 (Type Preservation). If Ω; Γ; ∆ ` P :: z:A[ω] and P −→ Q then321

Ω; Γ; ∆ ` Q :: z:A[ω].322
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Proof (Sketch). The proof mirrors those of [9, 10, 8, 46], relying on a series of lemmas323

relating the result of dual process actions (via our LTS semantics) with typable parallel324

compositions through the (cut) rule [?]. For session type constructors of [9], the results are325

unchanged. For the domain-aware session type constructors, the development is identical326

that of [8] and [46], which deal with communication of types and data terms, respectively. J327

Following [9, 10], the proof of global progress relies on a notion of a live process, which328

intuitively consists of a process that has not yet fully carried out its ascribed session behavior,329

and thus is a parallel composition of processes where at least one is a non-replicated process,330

guarded by some action. Formally, we define live(P ) if and only if P ≡ (νñ)(π.Q | R), for331

some R, names ñ and a non-replicated guarded process π.Q.332

I Theorem 3.4 (Global Progress). If Ω; ·; · ` P :: x:1[ω] and live(P ) then ∃Q s.t. P −→ Q.333

Note that Theorem 3.4 is without loss of generality since using the cut rules we can compose334

arbitrary well-typed processes together and x need not occur in P due to Rule (1R).335

Termination (strong normalization) is a relevant property for interactive systems: while336

from a global perspective they are meant to run forever, at a local level participants should337

always react within a finite amount of time, and never engage into infinite internal behavior.338

We say that a process P terminates, noted P ⇓, if there is no infinite reduction path from P .339

I Theorem 3.5 (Termination). If Ω; Γ; ∆ ` P :: x:A[ω] then P ⇓.340

Proof (Sketch). By adapting the linear logical relations given in [40, 41, 8]. For the system341

in § 3 without quantifiers, the logical relations correspond to those in [40, 41], extended to342

carry over Ω. When considering quantifiers, the logical relations resemble those proposed for343

polymorphic session types in [8], noting that no impredicativity concerns are involved. J344

Domain Preservation. As a consequence of the hybrid nature of our system, well-typed345

processes are guaranteed not only to faithfully perform their prescribed behavior in a deadlock-346

free manner, but they also do so without breaking the constraints put in place on domain347

accessibility given by our well-formedness constraint on sequents.348

I Theorem 3.6. Let E be a derivation of Ω; Γ; ∆ ` P :: z:A[ω]. If Ω; Γ; ∆ ` P :: z:A[ω] is349

well-formed then every sub-derivation in E well-formed.350

While inaccessible domains can appear in Γ, such channels can never be used and thus351

can not appear in a well-typed process due to the restriction on the (copy) rule. Combining352

Theorems 3.3 and 3.6 we can then show that even if a session in the environment changes353

domains, typing ensures that such a domain will be (transitively) accessible:354

I Theorem 3.7. Let (1) Ω; Γ; ∆,∆′ ` (νx)(P | Q) :: z : A[ω], (2) Ω; Γ; ∆ ` P :: x:B[ω′′],355

and (3) Ω; Γ; ∆′, x:B[ω′] ` Q :: z:A[ω]. If (νx)(P | Q) −→ (νx)(P ′ | Q′) then: (a) Ω; Γ; ∆ `356

P ′ :: x′:B′[ω′′], for some x′, B′, ω′′; (b) Ω; Γ,∆′, x′:B′[ω′′] ` Q′ :: z:A[ω]; (c) ω ≺∗ ω′′.357

4 Domain-Aware Multiparty Session Types358

We now shift our attention to multiparty session types [31]. We consider the standard359

ingredients: global types, local types, and the projection function that connects the two. Our360

global types include a new domain-aware construct, p moves q̃ toω forG1 ; G2; our local types361

exploit the hybrid session types from Def. 3.1. Rather than defining a separate type system362

based on local types for the process model of § 2, our analysis of multiparty protocols extends363

CONCUR 2019
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the approach defined in [7], which uses medium processes to characterize correct multiparty364

implementations. The advantages are twofold: on the one hand, medium processes provide a365

precise semantics for global types; on the other hand, they enable the principled transfer of366

the correctness properties established in § 3 for binary sessions (type preservation, global367

progress, termination, domain preservation) to the multiparty setting. Below, participants368

are ranged over by p, q, r, . . .; we write q̃ to denote a finite set of participants q1, . . . , qn.369

Besides the new domain-aware global type, our syntax of global types includes constructs370

from [31, 20]. We consider value passing in branching (cf. U below), fully supporting371

delegation. To streamline the presentation, we consider global types without recursion.372

I Definition 4.1 (Global and Local Types). Define global types (G) and local types (T ) as373

U ::= bool | nat | str | . . . | T
G ::= end | p�q:{li〈Ui〉.Gi}i∈I | p moves q̃ toω forG1 ; G2

T ::= end | p?{li〈Ui〉.Ti}i∈I | p!{li〈Ui〉.Ti}i∈I | ∀α.T | ∃α.T | @αT | ↓α.T
374

The completed global type is denoted end. Given a finite I and pairwise different375

labels, p� q:{li〈Ui〉.Gi}i∈I specifies that by choosing label li, participant p may send a376

message of type Ui to participant q, and then continue as Gi. We decree p 6= q, so reflexive377

interactions are disallowed. The global type p moves q̃ toω forG1 ; G2 specifies the migration378

of participants p, q̃ to domain ω in order to perform the sub-protocol G1; this migration is lead379

by p. Subsequently, all of p, q̃ migrate from ω back to their original domains and protocol380

G2 is executed. This intuition will be made precise by the medium processes for global types381

(cf. Def. 4.8). Notice that G1 and G2 may involve different sets of participants. In writing382

p moves q̃ toω forG1 ; G2 we assume two natural conditions: (a) all migrating participants383

intervene in the sub-protocol (i.e., the set of participants of G1 is exactly p, q̃) and (b) domain384

ω is accessible (via ≺) by all these migrating participants in G1. While subprotocols and385

session delegation may appear as similar, delegation supports a different idiom altogether,386

and has no support for domain awareness. Unlike delegation, with subprotocols we can387

specify a point where some of the participants perform a certain protocol within the same388

multiparty session and then return to the main session as an ensemble.389

I Definition 4.2. The set of participants of G (denoted part(G)) is defined as: part(end) = ∅,390

part(p� q:{li〈Ui〉.Gi}i∈I) = {p, q} ∪
⋃
i∈I part(Gi), part(p moves q̃ toω forG1 ; G2) = {p} ∪391

q̃ ∪ part(G1) ∪ part(G2). We sometimes write p ∈ G to mean p ∈ part(G).392

Global types are projected onto participants so as to obtain local types. The terminated393

local type is end. The local type p?{li〈Ui〉.Ti}i∈I denotes an offer of a set of labeled394

alternatives; the local type p!{li〈Ui〉.Ti}i∈I denotes a behavior that chooses one of such395

alternatives. Exploiting the domain-aware framework in § 3, we introduce four new local396

types. They increase the expressiveness of standard local types by specifying universal and397

existential quantification over domains (∀α.T and ∃α.T ), migration to a specific domain398

(@αT ), and a reference to the current domain (↓α. T , with α occurring in T ).399

We now define (merge-based) projection for global types [20]. To this end, we rely on a400

merge operator on local types, which in our case considers messages U .401

I Definition 4.3 (Merge). We define t as the commutative partial operator on base and402

local types such that bool t bool = bool (and analogously for other base types), and403

1. T t T = T , where T is one of the following: end, p!{li〈Ui〉.Ti}i∈I , @ωT , ∀α.T , or ∃α.T ;404

2. p?{lk〈Uk〉.Tk}k∈K t p?{l ′j〈U ′j〉.T ′j}j∈J =405

p?
(
{lk〈Uk〉.Tk}k∈K\J ∪ {l ′j〈U ′j〉.T ′j}j∈J\K ∪ {ll〈Ul t U ′l 〉.(Tl t T ′l )}l∈K∩J

)
406

and is undefined otherwise.407
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Therefore, for U1 t U2 to be defined there are two options: (a) U1 and U2 are identical408

base, terminated, selection, or “hybrid” local types; (b) U1 and U2 are branching types, but409

not necessarily identical: they may offer different options but with the condition that the410

behavior in labels occurring in both U1 and U2 must be mergeable.411

To define projection and medium processes for the global type p moves q̃ toω forG1 ; G2,412

we require ways of “fusing” local types and processes. The intent is to capture in a single413

(sequential) specification the behavior of two distinct (sequential) specifications, i.e., those414

corresponding to protocols G1 and G2. For local types, we have the following definition,415

which safely appends a local type to another:416

I Definition 4.4 (Local Type Fusion). The fusion of T1 and T2, written T1 ◦ T2, is given by:417

p!{li〈Ui〉.Ti}i∈I ◦ T = p!{li〈Ui〉.(Ti ◦ T )}i∈I end ◦ T = T

p?{li〈Ui〉.Ti}i∈I ◦ T = p?{li〈Ui〉.(Ti ◦ T )}i∈I (∃α.T1) ◦ T = ∃α.(T1 ◦ T )
(∀α.T1) ◦ T = ∀α.(T1 ◦ T ) (@αT1) ◦ T = @α(T1 ◦ T )
(↓α.T1) ◦ T = ↓α.(T1 ◦ T )

418

This way, e.g., if T1 = ∃α.@α p?{l1〈Int〉.end , l2〈Bool〉.end} and T2 = @ω q!{l〈Str〉.end}, then419

T1 ◦T2 = ∃α.@α p?{l1〈Int〉.@ω q!{l〈Str〉.end} , l2〈Bool〉.@ω q!{l〈Str〉.end}}. We can now define:420

I Definition 4.5 (Merge-based Projection [20]). Let G be a global type. The merge-based421

projection of G under participant r, denoted G�r, is defined as end�r = end and422

p�q:{li〈Ui〉.Gi}i∈I�r =


p!{li〈Ui〉.Gi�r}i∈I if r = p

p?{li〈Ui〉.Gi�r}i∈I if r = q

ti∈I Gi�r otherwise (t as in Def. 4.3)
423

(p moves q̃ toω forG1 ; G2)�r =


↓β.(∃α.@αG1�r) ◦@β G2�r if r = p

↓β.(∀α.@αG1�r) ◦@β G2�r if r ∈ q̃

G2�r otherwise
424

When no side condition holds, the map is undefined.425

The projection for the type p moves q̃ tow forG1 ; G2 is one of the key points in our analysis.426

The local type for p, the leader of the migration, starts by binding the identity of its current427

domain (say, ωp) to β. Then, the (fresh) domain ω is communicated, and there is a migration428

step to ω, which is where protocol G1�p will be performed. Finally, there is a migration step429

from ω back to ωp; once there, the protocol G2�p will be performed. The local type for all of430

qi ∈ q̃ follows accordingly: they expect ω from p; the migration from their original domains431

to ω (and back) is as for p. For participants in G1, the fusion on local types (Def. 4.4) defines432

a local type that includes the actions for G1 but also for G2, if any: a participant in G1 need433

not be involved in G2. Interestingly, the resulting local types ↓β.(∃α.@αG1�p) ◦@β G2�p434

and ↓β.(∀α.@αG1�qi)◦@β G2�qi define a precise combination of hybrid connectives whereby435

each migration step is bound by a quantifier or the current domain.436

The following notion of well-formedness for global types is standard:437

I Definition 4.6 (Well-Formed Global Types [31]). We say that global type G is well-formed438

(WF, in the following) if the projection G�r is defined for all r ∈ G.439

Analyzing Global Types via Medium Processes A medium process is a well-typed process440

from § 2 that captures the communication behavior of the domain-aware global types of441

Def. 4.1. Here we define medium processes and establish two fundamental characterization442

results for them (Theorems 4.11 and 4.12). We shall consider names indexed by participants:443

given a name c and a participant p, we use cp to denote the name along which the session444

behavior of p will be made available. This way, if p 6= q then cp 6= cq. To define mediums, we445

need to append or fuse sequential processes, just as Def. 4.4 fuses local types:446
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I Definition 4.7 (Fusion of Processes). We define ◦ as the partial operator on well-typed447

processes such that (with π ∈ {c(y), c〈ω〉, c(α), c〈y@ω〉, c(y@ω), c /l}) :448

c〈y〉.([u↔y] | P ) ◦Q , c〈y〉.([u↔y] | (P ◦Q)) 0 ◦Q , Q

c .
{

li : Pi
}
i∈I
◦Q , c .

{
li : (Pi ◦Q)

}
i∈I

(π.P ) ◦Q , π.(P ◦Q)449

and is undefined otherwise.450

The previous definition suffices to define a medium process (or simply medium), which uses451

indexed names to uniformly capture the behavior of a global type:452

I Definition 4.8 (Medium Process). Let G be a global type (cf. Def. 4.1), c̃ be a set of453

indexed names, and ω̃ a set of domains. The medium of G, denoted Mω̃JGK(c̃), is defined as:454 

0 if G = end

cp .
{

li : cp(u).cq /li; cq〈v〉.([u↔v] | Mω̃JGiK(c̃))
}
i∈I

if G = p�q:{li〈Ui〉.Gi}i∈I

cp(α).cq1〈α〉. · · · .cqn〈α〉. if G = p moves q1, . . . , qn tow forG1 ; G2

cp(yp@α).cq1 (yq1 @α). · · · .cqn (yqn @α).
Mω̃{α/ωp,...,α/ωqn}JG1K(ỹ) ◦

(yp(mp@ωp).yq1 (mq1 @ωq1 ). · · · .yqn (mqn @ωqn ).
Mω̃JG2K(m̃))

455

where Mω̃JG1K(c̃) ◦Mω̃JG2K(c̃) is as in Def. 4.7.456

The medium for G = p � q:{li〈Ui〉.Gi}i∈I exploits four prefixes to mediate in the457

interaction between the implementations of p and q: the first two prefixes (on name cp)458

capture the label selected by p and the subsequently received value; the third and fourth459

prefixes (on name cq) propagate the choice and forward the value sent by p to q. We omit460

the forwarding and value exchange when the interaction does not involve a value payload.461

The medium for G = p moves q1, . . . , qn tow forG1 ; G2 showcases the expressivity and462

convenience of our domain-aware process framework. In this case, the medium’s behavior463

takes place through the following steps: First, Mω̃JGK(c̃) inputs a domain identifier (say, ω)464

from p which is forwarded to q1, . . . , qn, the other participants of G1. Secondly, the roles465

p, q1, . . . , qn migrate from their domains ωp, ωq1 . . . , ωqn
to ω. At this point, the medium466

for G1 can execute, keeping track the current domain ω for all participants. Finally, the467

participants of G1 migrate back to their original domains and the medium for G2 executes.468

Recalling the domain-aware global type of § 1, we produce its medium process:469

ccl .
{

request : ccl(r).cmw /request; cmw〈v〉.([r↔v] |
cmw .

{
reply : cmw(a).ccl /reply; ccl〈n〉.([a↔n] | cmw .

{
done : cserv /done; 0

}
),

wait : ccl /wait;cmw .
{

init : cserv /init; cmw(wpriv).cserv〈wpriv〉.
cmw(ymw@wpriv).cserv(yserv@wpriv).M ˜wprivJOffloadK(ymw, yserv) ◦
(ymw(zmw@wmw).yserv(zserv@wserv).
zmw .

{
reply : zmw(a).ccl /reply; ccl〈n〉.([a↔n] | 0)

}
)
}}

)
}

The medium ensures the client’s domain remains fixed through the entire interaction,470

regardless of whether the middleware chooses to interact with the server. This showcases471

how our medium transparently manages domain migration of participants.472

Characterization Results We state results that offer a sound and complete account of the473

relationship between: (i) a global type G (and its local types), (ii) its medium process474

Mω̃JGK(c̃), and (iii) process implementations for the participants {p1, . . . , pn} of G. In a475

nutshell, these results say that the typeful composition of Mω̃JGK(c̃) with processes for each476
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p1, . . . , pn (well-typed in the system of § 3) performs the intended global type. Crucially, these477

processes reside in distinct domains and can be independently developed, guided by their local478

type—they need not know about the medium’s existence or structure. The results generalize479

those in [7] to the domain-aware setting. Given a global type G with part(G) = {p1, . . . , pn},480

below we write npart(G) to denote the set of indexed names {cp1 , . . . , cpn
}. We define:481

I Definition 4.9 (Compositional Typing). We say Ω; Γ; ∆ ` Mω̃JGK(c̃) :: z:C is a composi-482

tional typing if: (i) it is a valid typing derivation; (ii) npart(G) ⊆ dom(∆); and (iii) C = 1.483

A compositional typing says that Mω̃JGK(c̃) depends on behaviors associated to each parti-484

cipant of G; it also specifies that Mω̃JGK(c̃) does not offer any behaviors of its own.485

The following definition relates binary session types and local types: the main difference is486

that the former do not mention participants. Below, B ranges over base types (bool, nat, . . .).487

I Definition 4.10 (Local Types→Binary Types). Mapping 〈〈·〉〉 from local types T (Def. 4.1)488

into binary types A (Def. 3.1) is inductively defined as 〈〈end〉〉 = 〈〈B〉〉 = 1 and489

〈〈p!{li〈Ui〉.Ti}i∈I〉〉 = ⊕{li : 〈〈Ui〉〉 ⊗ 〈〈Ti〉〉}i∈I 〈〈∀α.T 〉〉 = ∀α.〈〈T 〉〉
〈〈p?{li〈Ui〉.Ti}i∈I〉〉 = &{li : 〈〈Ui〉〉( 〈〈Ti〉〉}i∈I 〈〈∃α.T 〉〉 = ∃α.〈〈T 〉〉
〈〈@ωT 〉〉 = @ω〈〈T 〉〉 〈〈↓α.T 〉〉 = ↓α.〈〈T 〉〉

490

Our first characterization result ensures that well-formedness of a global type G guarantees491

the typability of its medium Mω̃JGK(c̃) using binary session types. Hence, it ensures that492

multiparty protocols can be analyzed by composing the medium with independently obtained,493

well-typed implementations for each protocol participant. Crucially, the resulting well-typed494

process will inherit all correctness properties ensured by binary typability established in § 3.495

I Theorem 4.11 (Global Types → Typed Mediums). If G is WF with part(G)= {p1, . . . , pn}496

then Ω; Γ; cp1 :〈〈G� p1〉〉[ω1], . . . , cpn :〈〈G� pn〉〉[ωn] ` Mω̃JGK(c̃) :: z : 1[ωm] is a compositional497

typing, for some Ω, Γ, with ω̃ = ω1, . . . , ωn. We assume that ωi ≺ ωm for all i ∈ {1, . . . , n}498

(the medium’s domain is accessible by all), and that i 6= j implies ωi 6= ωj.499

The second characterization result, given next, is the converse of Theorem 4.11: binary500

typability precisely delineates the interactions that underlie well-formed multiparty protocols.501

We need an auxiliary relation on local types, written �t↓ , that relates types with branching502

and “here” type operators, which have silent process interpretations (cf. Figure 1 and [?]).503

First, we have T1 �t↓ T2 if there is a T ′ such that T1 t T ′ = T2 (cf. Def. 4.3). Second,504

we have T1 �t↓ T2 if (i) T1 = T ′ and T2 = ↓ α.T ′ and α does not occur in T ′; but also if505

(ii) T1 = ↓α.T ′ and T2 = T ′{ω/α}. (See [?] for a formal definition of �t↓ ).506

I Theorem 4.12 (Well-Typed Mediums→ Global Types). Let G be a global type (cf. Def. 4.1).507

If Ω; Γ; cp1 :A1[ω1], . . . , cpn :An[ωn] ` Mω̃JGK(c̃) :: z : 1[ωm] is a compositional typing then508

∃T1, . . . , Tn such that G�pj �t↓ Tj and 〈〈Tj〉〉 = Aj, for all pj ∈ part(G).509

The above theorems offer a static guarantee that connects multiparty protocols and well-typed510

processes. They can be used to establish also dynamic guarantees relating the behavior511

of a global type G and that of its associated set of multiparty systems (i.e., the typeful512

composition of Mω̃JGK(c̃) with processes for each of pi ∈ part(G)). These dynamic guarantees513

can be easily obtained by combining Theorems 4.11 and 4.12 with the approach in [7].514

5 Related Work515

There is a rich history of works on the logical foundations of concurrency (see, e.g., [4, 26, 1, 3]),516

which has been extended to session-based concurrency by Wadler [50], Dal Lago and Di517
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Giamberardino [35], and others. Medium-based analyses of multiparty sessions were developed518

in [7] and used in an account of multiparty sessions in an extended classical linear logic [13].519

Two salient calculi with distributed features are the Ambient calculus [15], in which520

processes move across ambients (abstractions of administrative domains), and the distributed521

π-calculus (Dpi) [28], which extends the π-calculus with flat locations, local communication,522

and process migration. While domains in our model may be read as locations, this is just one523

specific interpretation; they admit various alternative readings (e.g., administrative domains,524

security-related levels), leveraging the partial view of the domain hierarchy. Type systems525

for Ambient calculi such as [14, 6] enforce security and communication-oriented properties in526

terms of ambient movement but do not cover issues of structured interaction, central in our527

work. Garralda et al. [24] integrate binary sessions in an Ambient calculus, ensuring that528

session protocols are undisturbed by ambient mobility. In contrast, our type system ensures529

that both migration and communication are safe and, for the first time in such a setting,530

satisfy global progress (i.e., session protocols never jeopardize migration and vice-versa).531

The multiparty sessions with nested protocols of Demangeon and Honda [18] include532

a nesting construct that is similar to our new global type p moves q̃ tow forG1 ; G2, which533

also introduces nesting. The focus in [18] is on modularity in choreographic programming;534

domains nor domain migration are not addressed. The nested protocols in [18] can have local535

participants and may be parameterized on data from previous actions. We conjecture that536

our approach can accommodate local participants in a similar way. Data parameterization537

can be transposed to our logical setting via dependent session types [46, 49]. Asynchrony and538

recursive behaviors can also be integrated by exploiting existing logical foundations [22, 48].539

Balzer et al. [2] overlay a notion of world and accessibility on a system of shared session540

types to ensure deadlock-freedom. Their work differs substantially from ours: they instantiate541

accessibility as a partial-order, equip sessions with multiple worlds and are not conservative542

wrt linear logic, being closer to partial-order-based typings for deadlock-freedom [34, 39].543

6 Concluding Remarks544

We developed a Curry-Howard interpretation of hybrid linear logic as domain-aware session545

types. Present in processes and types, domain-awareness can account for scenarios where546

domain information is only determined at runtime. The resulting type system features strong547

correctness properties for well-typed processes (session fidelity, global progress, termination).548

Moreover, by leveraging a parametric accessibility relation, it rules out processes that549

communicate with inaccessible domains, thus going beyond the scope of previous works.550

As an application of our framework, we presented the first systematic study of domain-551

awareness in a multiparty setting, considering multiparty sessions with domain-aware migra-552

tion and communication whose semantics is given by a typed (binary) medium process that553

orchestrates the multiparty protocol. Embedded in a fully distributed domain structure, our554

medium is shown to strongly encode domain-aware multiparty sessions; it naturally allows us555

to transpose the correctness properties of our logical development to the multiparty setting.556

Our work opens up interesting avenues for future work. Mediums can be seen as monitors557

that enforce the specification of a domain-aware multiparty session. We plan to investigate558

contract-enforcing mediums building upon works such as [27, 32, 19], which study runtime559

monitoring in session-based systems. Our enforcement of communication across accessible560

domains suggests high-level similarities with information flow analyses in multiparty sessions561

(cf. [12, 11, 16]), but does not capture the directionality needed to model such analyses562

outright. It would be insightful to establish the precise relationship with such prior works.563
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