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Several type disciplines for π-calculi have been proposed in which linearity plays a key
role, even if their precise relationship with pure linear logic is still not well understood.
In this paper, we introduce a type system for the π-calculus that exactly corresponds
to the standard sequent calculus proof system for dual intuitionistic linear logic. Our
type system is based on a new interpretation of linear propositions as session types, and
provides the first purely logical account of all (both shared and linear) features of session
types. We show that our type discipline is useful from a programming perspective, and
ensures session fidelity, absence of deadlocks, and a tight operational correspondence
between π-calculus reductions and cut elimination steps.

1 Introduction

Linear logic has been intensively explored in the analysis of π-calculus models for com-
municating and mobile system, given its essential ability to deal with resources, effects,
and non-interference. The fundamental way it provides for analyzing notions of shar-
ing versus uniqueness, captured by the exponential “!”, seems to have been a source of
inspiration for Milner when introducing replication in the π-calculus [22]. Following
the early works of Abramsky [1], several authors have exploited variants of π-calculi to
express proof reductions (e.g., [5]) or game semantics (e.g., [19]) in systems of linear
logic. In the field of concurrency, many research directions have also drawn inspiration
from linear logic for developing type-theoretic analyses of mobile processes, motivated
by the works of Kobayashi, Pierce, and Turner [21]; a similar influence is already no-
ticeable in the first publications by Honda on session types [16]. Many expressive type
disciplines for π-calculi in which linearity frequently plays a key role have been pro-
posed since then (e.g., [20, 18, 26, 15]). However, linearity has been usually employed
in such systems in indirect ways, exploiting the fine grained type context management
techniques it provides, or the assignment of usage multiplicities to channels [21], rather
than the deeper type-theoretic significance of linear logical operators.

In this paper we present a type system for the π-calculus that exactly corresponds to
the standard sequent calculus proof system for dual intuitionistic linear logic. The key
to our correspondence is a new, perhaps surprising, interpretation of intuitionistic linear
logic formulas as a form of session types [16, 18], in which the programming language
is a session-typed π-calculus, and the type structure consists precisely of the connectives
of intuitionistic linear logic, retaining their standard proof-theoretic interpretation.

In session-based concurrency, processes communicate through so-called session
channels, connecting exactly two subsystems, and communication is disciplined by ses-
sion protocols so that actions always occur in dual pairs: when one partner sends, the
other receives; when one partner offers a selection, the other chooses; when a session
terminates, no further interaction may occur. New sessions may be dynamically created
by invocation of shared servers. Such a model exhibits concurrency in the sense that



several sessions, not necessarily causally related, may be executing simultaneously, al-
though races in unshared resources are forbidden; in fact this is the common situation
in disciplined concurrent programming idioms. Mobility is also present, since both ses-
sion and server names may be passed around (delegated) in communications. Session
types have been introduced to discipline interactions in session-based concurrency, an
important paradigm in communication-centric programming (see [11]).

It turns out that the connectives of intuitionistic linear logic suffice to express all
the essential features of finite session disciplines. While in the linear λ-calculus types
are assigned to terms (denoting functions and values), in our interpretation types are
assigned to names (denoting communication channels) and describe their session pro-
tocol. The essence of our interpretation may already be found in the interpretation of
the linear logic multiplicatives as behavioral prefix operators. Traditionally, an object of
type A(B denotes a linear function that given an object of type A returns an object of
type B [14]. In our interpretation, an object of type A(B denotes a session x that first
inputs a session channel of type A, and then behaves as B, where B specifies again an
interactive behavior, rather than a closed value. Linearity of( is essential, otherwise
the behavior of the input session after communication could not be ensured. An object
of type A ⊗ B denotes a session that first sends a session channel of type A and after-
wards behaves as B. But notice that objects of type A⊗B really consist of two objects:
the sent session of type A and the continuation session, of type B. These two sessions
are separate and non-interfering, as enforced by the canonical semantics of the linear
multiplicative conjunction (⊗). Our interpretation of A⊗B appears asymmetric, in the
sense that, of course, a channel of type A ⊗ B is in general not typable by B ⊗ A. In
fact, the symmetry captured by the proof of A⊗B ` B⊗A is realized by an appropri-
ately typed process that coerces any session of type A⊗B to a session of type B ⊗A.
The other linear constructors are also given compatible interpretations, in particular, the
!A type is naturally interpreted as a type of a shared server for sessions of type A, and
additive product and sum, to branch and choice session type operators. We thus obtain
the first purely logical account of both shared and linear features of session types.

We briefly summarize the contributions of the paper. We describe a system of ses-
sion types for the π-calculus (Section 3) that corresponds to the sequent calculus for
dual intuitionistic linear logic DILL (Section 4). The correspondence is bidirectional
and tight, in the sense that (a) any π-calculus computation can be simulated by proof re-
ductions on typing derivations (Theorem 5.3), thus establishing a strong form of subject
reduction (Theorem 5.6), and (b) that any proof reduction or conversion corresponds ei-
ther to a computation step or to a process equivalence on the π-calculus side (Theorems
5.4 and 5.5). An intrinsic consequence of the logical typing is a global progress prop-
erty, that ensures the absence of deadlock for systems with an arbitrary number of open
sessions (Theorem 5.8). Finally, we illustrate the expressiveness of our system (Section
6) with some examples and discussion.

2 Process Model

We briefly introduce the syntax and operational semantics of the process model: the
synchronous π-calculus (see [24]) extended with (binary) guarded choice.
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Definition 2.1 (Processes). Given an infinite set Λ of names (x, y, z, u, v), the set of
processes (P,Q,R) is defined by

P ::= 0 | P | Q | (νy)P | x〈y〉.P | x(y).P | !x(y).P
| x.inl;P | x.inr;P | x.case(P,Q)

The operators 0 (inaction), P | Q (parallel composition), and (νy)P (name restriction)
comprise the static fragment of any π-calculus. We then have x〈y〉.P (send y on x
and proceeds as P ), x(y).P (receive a name z on x and proceed as P with the input
parameter y replaced by z), and !x(y).P which denotes replicated (or persistent) input.
The remaining three operators define a minimal labeled choice mechanism, comparable
to the n-ary branching constructs found in standard session π-calculi (see eg., [18]). For
the sake of minimality and without loss of generality we restrict our model to binary
choice. In restriction (νy)P and input x(y).P the distinguished occurrence of the name
y is binding, with scope the process P . For any process P , we denote the set of free
names of P by fn(P ). A process is closed if it does not contain free occurrences of
names. We identify process up to consistent renaming of bound names, writing ≡α

for this congruence. We write P{x/y} for the process obtained from P by capture
avoiding substitution of x for y in P . Structural congruence expresses basic identities
on the structure of processes, while reduction expresses the behavior of processes.

Definition 2.2. Structural congruence (P ≡ Q), is the least congruence relation on
processes such that

P | 0 ≡ P (S0) P ≡α Q ⇒ P ≡ Q (Sα)
P | Q ≡ Q | P (S|C) P | (Q | R) ≡ (P | Q) | R (S|A)
(νx)0 ≡ 0 (Sν0) x 6∈ fn(P ) ⇒ P | (νx)Q ≡ (νx)(P | Q) (Sν|)
(νx)(νy)P ≡ (νy)(νx)P (Sνν)

Definition 2.3. Reduction (P → Q), is the binary relation on processes defined by:

x〈y〉.Q | x(z).P → Q | P{y/z} (RC)
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P (R!)
x.inl;P | x.case(Q,R) → P | Q (RL)
x.inr;P | x.case(Q,R) → P | R (RR)
Q → Q′ ⇒ P | Q → P | Q′ (R|)
P → Q ⇒ (νy)P → (νy)Q (Rν)
P ≡ P ′, P ′ → Q′, Q′ ≡ Q ⇒ P → Q (R≡)

Notice that reduction is closed (by definition) under structural congruence. Reduction
specifies the computations a process performs on its own. To characterize the interac-
tions a process may perform with its environment, we introduce a labeled transition
system; the standard early transition system for the π-calculus [24] extended with ap-
propriate labels and transition rules for the choice constructs. A transition P

α→ Q
denotes that process P may evolve to process Q by performing the action represented
by the label α. Transition labels are given by

α ::= x〈y〉 | x(y) | (νy)x〈y〉 | x.inl | x.inr | x.inl | x.inr
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P
α→ Q

(νy)P
α→ (νy)Q

(res)
P

α→ Q

P | R
α→ Q | R

(par)
P

α→ P ′ Q
α→ Q′

P | Q
τ→ P ′ | Q′

(com)

P
(νy)x〈y〉→ P ′ Q

x(y)→ Q′

P | Q
τ→ (νy)(P ′ | Q′)

(close)
P

x〈y〉→ Q

(νy)P
(νy)x〈y〉→ Q

(open) x〈y〉.P x〈y〉→ P (out)

x(y).P
x(z)→ P{z/y} (in) !x(y).P

x(z)→ P{z/y} | !x(y).P (rep) x.inl; P
x.inl→ P (lout)

x.inr; P
x.inr→ P (rout) x.case(P, Q)

x.inl→ P (lin) x.case(P, Q)
x.inr→ Q (rin)

Fig. 1. π-calculus Labeled Transition System.

Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-
actions, respectively the output x〈y〉 and bound output (νy)x〈y〉 actions, and the left/
right selections x.inl and x.inr. The bound output (νy)x〈y〉 denotes extrusion of a
fresh name y along (channel) x. Internal action is denoted by τ , in general an action
α (α) requires a matching α (α) in the environment to enable progress, as specified by
the transition rules. For a label α, we define the sets fn(α) and bn(α) of free and bound
names, respectively, as usual. We denote by s(α) the subject of α (e.g., x in x〈y〉).

Definition 2.4 (Labeled Transition System). The relation labeled transition (P α→ Q)
is defined by the rules in Figure 1, subject to the side conditions: in rule (res), we
require y 6∈ fn(α); in rule (par), we require bn(α) ∩ fn(R) = ∅; in rule (close), we
require y 6∈ fn(Q). We omit the symmetric versions of rules (par), (com), and (close).

We recall some basic facts about reduction, structural congruence, and labeled tran-
sition, namely: closure of labeled transitions under structural congruence, and coinci-
dence of τ -labeled transition and reduction [24]: (1) if P ≡ α→ Q, then P

α→≡ Q, and
(2) P → Q if and only if P

τ→≡ Q. We write ρ1ρ2 for relation composition (e.g, τ→≡).

3 Type System

We first describe our type structure, which coincides with intuitionistic linear logic [14,
3], omitting atomic formulas and the additive constants > and 0.

Definition 3.1 (Types). Types (A,B, C) are given by

A,B ::= 1 | !A | A⊗B | A(B | A⊕B | A N B

Types are assigned to (channel) names, and may be conveniently interpreted as a form
of session types; an assignment x:A enforces that the process will use x according to
the discipline A. A ⊗ B is the type of a session channel that first performs an output
(sending a session channel of type A) to its partner before proceeding as specified by B.
In a similar way, A(B types a session channel that first performs an input (receiving
a session channel of type A) from its partner, before proceeding as specified by B. The
type 1 means that the session terminated, no further interaction will take place on it.
Notice that names of type 1 may still be passed around in sessions, as opaque values.
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Γ ; ∆ ` P :: T

Γ ; ∆, x:1 ` P :: T
(T1L)

Γ ; · ` 0 :: x:1
(T1R)

Γ ; ∆, y:A, x:B ` P :: T

Γ ; ∆, x:A⊗B ` x(y).P :: T
(T⊗L)

Γ ; ∆ ` P :: y:A Γ ; ∆′ ` Q :: x:B

Γ ; ∆, ∆′ ` (νy)x〈y〉.(P | Q) :: x:A⊗B
(T⊗R)

Γ ; ∆ ` P :: y:A Γ ; ∆′, x:B ` Q :: T

Γ ; ∆, ∆′, x:A(B ` (νy)x〈y〉.(P | Q) :: T
(T(L)

Γ ; ∆, y:A ` P :: x:B

Γ ; ∆ ` x(y).P :: x:A(B
(T(R)

Γ ; ∆ ` P :: x:A Γ ; ∆′, x:A ` Q :: T

Γ ; ∆, ∆′ ` (νx)(P | Q) :: T
(Tcut)

Γ ; · ` P :: y:A Γ, u:A; ∆ ` Q :: T

Γ ; ∆ ` (νu)(!u(y).P | Q) :: T
(Tcut!)

Γ, u:A; ∆, y:A ` P :: T

Γ, u:A; ∆ ` (νy)u〈y〉.P :: T
(Tcopy)

Γ, u:A; ∆ ` P{u/x} :: T

Γ ; ∆, x:!A ` P :: T
(T!L)

Γ ; · ` Q :: y:A

Γ ; · ` !x(y).Q :: x:!A
(T!R)

Γ ; ∆, x:A ` P :: T Γ ; ∆, x:B ` Q :: T

Γ ; ∆, x:A⊕B ` x.case(P, Q) :: T
(T⊕L)

Γ ; ∆, x:B ` P :: T

Γ ; ∆, x:A N B ` x.inr; P :: T
(TNL2)

Γ ; ∆ ` P :: x:A Γ ; ∆ ` Q :: x:B

Γ ; ∆ ` x.case(P, Q) :: x:A N B
(TNR)

Γ ; ∆, x:A ` P :: T

Γ ; ∆, x:A N B ` x.inl; P :: T
(TNL1)

Γ ; ∆ ` P :: x:A

Γ ; ∆ ` x.inl; P :: x:A⊕B
(T⊕R1)

Γ ; ∆ ` P :: x:B

Γ ; ∆ ` x.inr; P :: x:A⊕B
(T⊕R2)

Fig. 2. The Type System πDILL.

A ⊕ B types a session that either selects “left” and then proceed as specified by A, or
else selects “right”, and then proceeds as specified by B. Dually, ANB types a session
channel that offers its partner a choice between an A typed behavior (“left” choice) and
a B typed behavior (“right” choice). The type !A types a non-session (non-linearized,
shared) channel (called standard channel in [13]), to be used by a server for spawning
an arbitrary number of new sessions (possibly none), each one conforming to type A.

A type environment is a collection of type assignments, of the form x : A where
x is a name and A a type, the names being pairwise disjoint. Following the insights
behind dual intuitionistic linear logic, which goes back to Andreoli’s dyadic system
for classical linear logic [2], we distinguish two kinds of type environments subject
to different structural properties: a linear part ∆ and an unrestricted part Γ , where
weakening and contraction principles hold for Γ but not for ∆. A judgment of our
system has then the form Γ ;∆ ` P :: z:C where name declarations in Γ are always
propagated unchanged to all premises in the typing rules, while name declarations in
∆ are handled multiplicatively or additively, depending on the nature of the type being
defined. The domains of Γ,∆ and z:C are required to be pairwise disjoint.

Intuitively, such a judgment asserts: P is ensured to safely provide a usage of name
z according to the behavior (session) specified by type C, whenever composed with any
process environment providing usages of names according to the behaviors specified by
names in Γ ;∆. As shown in Section 5, in our case safety ensures that the behavior is
free of communication errors and deadlock. A pure client Q that just relies on external
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services, and does not provide any, will be typed as Γ ;∆ ` Q :: −:1. In general, a pro-
cess P such that Γ ;∆ ` P :: z:C represents a system providing behavior C at channel
z, building on “services” declared in Γ ;∆. Of particular interest is a system typed as
Γ ;∆ ` R :: z:!A, representing a shared server. Quite interestingly, the asymmetry in-
duced by the intuitionistic interpretation of !A enforces locality of shared names but not
of linear (session names), which exactly corresponds to the intended model of sessions.

We present the rules of our type system πDILL in Fig. 2. We use T, S for right hand
side singleton environments (e.g., z:C). The interpretation of the various rules should
be clear, given the explanation of types given above. Notice that since in ⊗R the sent
name is always fresh, our typed calculus conforms to a session-based internal mobil-
ity discipline [23, 7], without loss of expressiveness. The composition rules (cut and
cut!) follow the “composition plus hiding” principle [1], extended to a name passing
setting. More familiar linear typing rules for parallel composition (e.g., as in [21]) are
derivable (see Section 6). Since we are considering π-calculus terms up to structural
congruence, typability is closed under ≡ by definition. πDILL enjoys the usual proper-
ties of equivariance, weakening in Γ and contraction in Γ . The coverage property also
holds: if Γ ;∆ ` P :: z:A then fn(P ) ⊆ Γ ∪∆∪{z}. In the presence of type-annotated
restrictions (νx:A)P , as usual in typed π-calculi [24], type-checking is decidable.

We illustrate the type system with a simple example, frequently used to motivate
session based interactions (see e.g., [13]). A client may choose between a “buy” opera-
tion, in which it indicates a product name and a credit card number to receive a receipt,
and a “quote” operation, in which it indicates a product name, to obtain the product
price. From the client perspective, the session protocol exposed by the server may be
specified by the type

ServerProto , (N(I((N⊗ 1)) N (N((I⊗ 1))

We assume that N and I are types representing shareable values (e.g., strings N and
integers I). To simplify, we set N = I = 1. Assuming s to be the name of the session
channel connecting the client and server, consider the code

QClntBodys , s.inr; (νtea)s〈tea〉.s(pr).0

QClntBodys specifies a client that asks for the price of tea (we simply abstract away
from what the client might do with the price after reading it). It first selects the quoting
operation on the server (s.inr), then sends the id of the product to the server (s〈tea〉),
then receives the price s(pr) from the server and finally terminates the session (0). Then

·; s : ServerProto ` QClntBodys :: −:1

is derivable (by T1R, T⊗L, T(L and TNL2). Here we wrote − for an anonymous
variable that does not appear in QClntBody. This is possible even in a linear type dis-
cipline since the inactive process 0 is typed by x:1 and does not use x. Concerning the
server code, let SrvBodys , s.case( s(pn).s(cn).(νrc)s〈rc〉.0, s(pn).(νpr)s〈pr〉.0 ) .
Then ·; · ` SrvBodys :: s:ServerProto is derivable, by TNR. By T cut we obtain for
the system QSimple , (νs)(SrvBodys | QClntBodys) the typing ·; · ` QSimple :: −:1.
In this example we have only introduced processes interacting in a single session, but
clearly the system accomodates all the generality of session types, e.g., a simple process
interacting in different sessions is x:A(1, y:A⊗ 1 ` y(w).(νk)x〈k〉.0 :: −:1.
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Γ ; ∆ ` D : C

Γ ; ∆, x : 1 ` 1L x D : C
(1L)

Γ ; · ` 1R : 1
(1R)

Γ ; ∆, y : A, x : B ` D : C

Γ ; ∆, x : A⊗B ` ⊗L x (y.x. D) : C
(⊗L)

Γ ; ∆ ` D : A Γ ; ∆′ ` E : B

Γ ; ∆, ∆′ ` ⊗R D E : A⊗B
(⊗R)

Γ ; ∆ ` D : A Γ ; ∆′, x : B ` E : C

Γ ; ∆, ∆′, x : A(B `(L x D (x. E) : C
((L)

Γ ; ∆, y : A ` D : B

Γ ; ∆ `(R (y. D) : A(B
((R)

Γ ; ∆ ` D : A Γ ; ∆′, x : A ` E : C

Γ ; ∆, ∆′ ` cut D (x. E) : C
(cut)

Γ ; · ` D : A Γ, u : A; ∆ ` E : C

Γ ; ∆ ` cut! D (u. E) : C
(cut!)

Γ, u : A; ∆, y : A ` D : C

Γ, u : A; ∆ ` copy u (y. D) : C
(copy)

Γ ; · ` D : A

Γ ; · ` !R D : !A
(!R)

Γ, u : A; ∆ ` D : C

Γ ; ∆, x : !A ` !L x (u.D) : C
(!L)

Γ ; ∆, x : A ` D : C

Γ ; ∆, x : A N B ` NL1 x (x. D) : C
(NL1)

Γ ; ∆, x : B ` D : C

Γ ; ∆, x : A N B ` NL2 x (x. D) : C
(NL2)

Γ ; ∆ ` D : A Γ ; ∆ ` E : B

Γ ; ∆ ` NR D E : A N B
(NR)

Γ ; ∆ x : A ` D : C Γ ; ∆, x : B ` E : C

Γ ; ∆, x : A⊕B ` ⊕L x (x. D) (x. E) : C
(⊕L)

Γ ; ∆ ` D : A

Γ ; ∆ ` ⊕R1 D : A⊕B
(⊕R1)

Γ ; ∆ ` D : B

Γ ; ∆ ` ⊕R2 D : A⊕B
(⊕R2)

Fig. 3. Dual Intuitionistic Linear Logic DILL.

4 Dual Intuitionistic Linear Logic

As presented, session type constructors correspond directly to intuitionistic linear logic
connectives. Typing judgments directly correspond to sequents in dual intuitionistic
linear logic, by erasing processes [3, 10]. In Figure 3 we present the DILL sequent
calculus. In our presentation, DILL is conveniently equipped with a faithful proof term
assignment, so sequents have the form Γ ;∆ ` D : C where Γ is the unrestricted
context, ∆ the linear context, C a formula (= type) and D the proof term that faithfully
represents the derivation of Γ ;∆ ` C. Our use of names in the proof system will be
consistent with the proof discipline, u, v, w for variables in Γ and x, y, z for variables
in ∆. This is consistent with standard usage of names in π-calculi. Given the parallel
structure of the two systems, if Γ ;∆ ` D : A is derivable in DILL then there is
a process P and a name z such that Γ ;∆ ` P :: z:A is derivable in πDILL, and
the converse result also holds: if Γ ;∆ ` P :: z:A is derivable in πDILL there is a
derivation D that proves Γ ;∆ ` D : A. This correspondence is made explicit by a
translation from faithful proof terms to processes, defined in Fig. 4: for Γ ;∆ ` D : C
we write D̂z for the translation of D such that Γ ;∆ ` D̂z :: z:C.

Definition 4.1 (Typed Extraction). We write Γ ;∆ ` D  P :: z:A, meaning “proof
D extracts to P”, whenever Γ ;∆ ` D : A and Γ ;∆ ` P :: z:A and P ≡ D̂z .
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D  D̂z

1R  0

1L x D  D̂z

⊗R D E  (νy) z〈y〉. (D̂y | Êz)

⊗L x (y.x. D)  x(y). D̂z

(R (y. D)  z(y). D̂z

(L x D (x. E)  (νy) x〈y〉. (D̂y | Êz)

NR D E  z. case(D̂z, Êz)

NL1 x (x. D)  x. inl; D̂z

NL2 x (x. E)  x. inr; Êz

D  D̂z

⊕R1 D  z.inl; D̂z

⊕R2 E  z.inr; Êz

⊕L x (x. D) (x. E)  x.case(D̂z, Êz)

cut D (x. E)  (νx)(D̂x | Êz)

!R D  !z(y). D̂y

!L x (u. D)  D̂z{x/u}
copy u (y. D)  (νy) u〈y〉. D̂z

cut! D (u. E)  (νu)((!u(y). D̂y) | Êz)

Fig. 4. Proof D extracts to process D̂z .

Typed extraction is unique up to structural congruence, in the sense that if Γ ;∆ `
D  P :: z:A and Γ ;∆ ` D  Q :: z:A then P ≡ Q, as a consequence of closure
of typing under structural congruence. The system DILL as presented does not admit
atomic formulas, and hence has no true initial sequents. However, the correspondence
mentioned above yields an explicit identity theorem:

Proposition 4.2. For any type A and distinct names x, y, there is a process idA(x, y)
and a cut-free derivation D such that ·;x:A ` D  idA(x, y) :: y:A.

The idA(x, y) process, with exactly the free names x, y, implements a synchronous
mediator that bidirectionally plays the protocol specified by A between channels x and
y. For example, we analyze the interpretation of the sequent A⊗B ` B ⊗A. We have

x:A⊗B ` F  x(z).(νn)y〈n〉.(P | Q) :: y:B ⊗A

where F = ⊗L x (z.x. ⊗R D E), P = idB(x, n) and Q = idA(z, y). This process is
an interactive proxy that coerces a session of type A⊗B at x to a session of type B⊗A
at y. It first receives a session of type A (bound to z) and after sending on y a session
of type B (played by copying the continuation of x to n), it progresses with a session
of type A on y (copying the continuation of z to y).

As processes are related by structural and computational rules, namely those in-
volved in the definition of ≡ and →, derivations in DILL are related by structural and
computational rules, that express certain sound proof transformations that arise in cut-
elimination. The reductions (Figure 5) generally take place when a right rule meets a
left rule for the same connective, and correspond to reduction steps in the process term
assignment. On the left, we show the usual reductions for cuts; on the right, we show the
corresponding reductions (if any) of the process terms, modulo structural congruence.
Since equivalences depend on variable occurrences, we write Dx if x may occur in D.

The structural conversions in Figure 6 correspond to structural equivalences in the
π-calculus, since they just change the order of cuts, e.g., (cut/−/cut1) translates to

(νx)(D̂x | (νy)(Êy | F̂ z)) ≡ (νy)((νx)(D̂x | Êy) | F̂ z)

In addition, we have two special conversions. Among those, (cut/1R/1L) is not needed
in order to simulate the π-calculus reduction, while (cut/!R/!L) is. In cut-elimination
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procedures, these are always used from left to right. Here, they are listed as equivalences
because the corresponding π-calculus terms are structurally congruent. The root cause
for this is that the rules 1L and !L are silent: the extracted terms in the premise and
conclusion are the same, modulo renaming. For 1L, this is the case because a terminated
process, represented by 0 :: − : 1 silently disappears from a parallel composition by
structural congruence. For !L, this is the case because the actual replication of a server
process is captured in the copy rule which clones u:A to y:A, rule rather than !L. It is
precisely for this reason that the rule commuting a persistent cut (cut!) over a copy rule
(copy) is among the computational conversions.

The structural conversions in Figure 8 propagate cut!. From the proof theoretic per-
spective, because cut! cuts a persistent variable u, cut! may be duplicated or erased.
On the π-calculus side, these no longer correspond to structural congruences, but, quite
remarkably, to behavioral equivalences, derivable from known properties of typed pro-
cesses, the (sharpened) Replication Theorems [24]. These hold in our language, due to
our interpretation of ! types. Our operational correspondence results also depend on six
commuting conversions, four in Figure 7 plus two symmetric versions. The commuting
conversions push a cut up (or inside) the 1L and !L rules. During the usual cut elimina-
tion procedures, these are used from left to right. In the correspondence with the sequent
calculus, the situation is more complex. Because the 1L and !L rules do not affect the
extracted term, cuts have to be permuted with these two rules in order to simulate π-
calculus reduction. From the process calculus perspective, such conversions correspond
to identity. There is a second group of commuting conversions (not shown), not nec-
essary for our current development. Those do not correspond to structural congruence
nor to strong bisimilarities on π-calculus, as they may not preserve process behavior in
the general untyped setting, since they promote an action prefix from a subexpression
to the top level. We conjecture that such equations denote behavioral identities under a
natural definition of typed observational congruence for our calculus.

Definition 4.3 (Relations on derivations induced by conversions). (1) ≡ : the least
congruence on derivations generated by the structural conversions (I) and the com-
muting conversions (II): (2) 's: the least congruence on derivations generated by all
structural conversions (I-III). We extend 's to processes as the congruence generated
by the process equations on the right. (3) Z⇒: the reduction on derivations obtained by
orienting all conversions in the direction shown, from left to right or top to bottom.

As discussed above, 's is a typed behavioral equivalence on processes.

5 Computational Correspondence, Preservation, and Progress

We now present the results stating the key properties of our type system and logical
interpretation. Theorem 5.3 states the existence of a simulation between reductions in
the typed π-calculus and proof conversions / reductions, expressing a strong form of
subject reduction for our type system. The proof relies on several auxiliary lemmas,
which we mostly omit, among them a sequence of lemmas relating process reduction
with derivation reduction, from which we select two typical examples.
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cut (⊗R D1 D2) (x.⊗L x (y.x. Exy))  (νx)(((νy) x〈y〉. (D̂y
1 | D̂x

2 )) | x(y). Êz)
⇒ →
cut D1 (y. cut D2 (x. Exy))  (νx)(νy)(D̂y

1 | D̂x
2 | Êz)

cut ((R (y. Dy)) (x.(L x E1 (x. E2x))  (νx)((x(y). D̂x) | (νy) x〈y〉. (Êy
1 | Êz

2 ))
⇒ →
cut (cut E1 (y. Dy)) (x. E2x)  (νx)(νy)(D̂x | Êy

1 | Êz
2 )

cut (NR D1 D2) (x.NLi x (x. Ex))  (νx)(x.case(D̂x
1 , D̂x

2 ) | x.inl; Êz)
⇒ →
cut Di (x. Ex)  (νx)(D̂x

i | Êz)

cut (⊕Ri D) (x.⊕L x (x. E1x) (x. E2x))  (νx)(x.inl; D̂x | x.case(Êz
1 , Êz

2 ))
⇒ →
cut D (x. Eix)  (νx)(D̂x | Êz

i )

cut! D (u. copy u (y. Euy))  (νu)((!u(y). D̂y) | (νy) u〈y〉. Êz)
⇒ →
cut D (y. cut! D (u. Euy))  (νy)(D̂y | (νu)((!u(y). D̂y) | Êz))

Fig. 5. Computational Conversions

(cut/−/cut1) cut D (x. cut Ex (y. Fy)) ≡ cut (cut D (x. Ex)) (y. Fy)
(cut/−/cut2) cut D (x. cut E (y. Fxy)) ≡ cut E (y. cut D (x. Fxy))

(cut/cut!/−) cut (cut! D (u. Eu)) (x. Fx) ≡ cut! D (u. cut Eu (x. Fx))

(cut/−/cut!) cut D (x. cut! E (u. Fxu)) ≡ (cut! E (u. cut D (x. Fxu))
(cut/1R/1L) cut 1R (x.1L x D) ≡ D

(cut/!R/!L) cut (!R D) (x. !L x (u. E)) ≡ cut! D (u. E)

Fig. 6. Structural Conversions (I): Cut Conversions

(cut/1L/−) cut (1L y D) (x. Fx) ≡ 1L y (cut D (x. Fx))
(cut/!L/−) cut (!L y (u. Du)) (x. Fx) ≡ !L y (u. cut Du (x. Fx))

(cut!/−/1L) cut! D (u.1L y Eu) ≡ 1L y (cut! D (u. Eu))

(cut!/−/!L) cut! D (u. !L y (v. Euv)) ≡ !L y (v. cut! D (u. Euv))

Fig. 7. Structural Conversions (II): Commuting Conversions

cut! D (u. cut Eu (y. Fuy))  (νu)(!u(y).D̂y | (νy)(Êy | F̂ z))
' '
cut (cut! D (u. Eu)) (y. cut! D (u. Fuy))  (νy)((νu)(!u(y).D̂y | Êy) |

(νu)(!u(y).D̂y | F̂ z) )

cut! D (u. cut! Eu (v. Fuv))  (νu)(!u(y).D̂y | (νv)(!v(y).Êy | F̂ z))
' '
cut! (cut! D (u. Eu)) (v. cut! D (u. Fuv))  (νv)((!v(y).(νu)(!u(y).D̂y | Êy)) |

(νu)(!u(y).D̂y | F̂ z) )

cut! (cut! D (u. Eu)) (v. Fv)  (νv)(!v(y).(νu)(!u(y).D̂y | Êy)) | F z)
' '
cut! D (u. cut! Eu (v. Fv))  (νu)(!u(y).D̂y | (νv)(!v(y).Êy | F̂ z))

cut! D (u. E)  (νu)(!u(y).D̂y | Êz)
' '
E  Êz (for u 6∈ FN(Êz))

Fig. 8. Structural Conversions (III): Cut! Conversions
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Lemma 5.1. Assume (a) Γ ;∆1 ` D  P :: x:A1 ⊗ A2 with P
(νy)x〈y〉→ P ′; and (b)

Γ ;∆2, x:A1 ⊗ A2 ` E  Q :: z:C with Q
x(y)→ Q′. Then (c) cut D (x.E) ≡⇒≡ F

for some F ; (d) Γ ;∆1,∆2 ` F  R :: z : C for R ≡ (νy)(νx)(P ′ | Q′).

Lemma 5.2. Assume (a) Γ ; · ` D  P :: x:A; (b) Γ, u:A;∆2 ` E  Q :: z:C with

Q
(νy)u〈y〉→ Q′. Then (c) cut! D (u. E) ≡⇒≡ F for some F ; (d) Γ ;∆ `F  R :: z:C

for some R ≡ (νu)(!u(x).P | (νy)(P{y/x} | Q′)).

Theorem 5.3. Let Γ ;∆ ` D  P :: z:A and P → Q. Then there is E such that
D ≡⇒≡ E and Γ ;∆ ` E  Q :: z:A
Proof. By induction on the structure of derivation D. The possible cases for D are
D = 1L y D′, D = !L x (u. D′), D = cut D1 (x.D2), and D = cut! D1 (x.D2),
in all other cases P 6→. Key cases are the cuts, where we rely on a series of reduction
lemmas, one for each type C of cut formula, which assign certain proof conversions
to process labeled transitions. For example, for C = C1 ⊗ C2, we rely on Lemma
5.1. The case of cut!, similar to the case C = !C ′, relies on Lemma 5.2. We show
such case in detail. Let D = cut! D1 (u. D2). We have P ≡ (νu)(!u(w).P1 | P2),
Γ ;` D1  P1 :: x:C, and Γ, u : C;∆ ` D2  P2 :: z:A by inversion. Since
P → Q, there two cases: (1) P2 → Q2 and Q = (νu)(!u(w).P1 | Q2), or (2) P2

α→ Q2

where α = (νy)x〈y〉 and Q = (νu)(!u(w).P1 | (νy)(P1{y/x} | Q2)). Case (1):
We have Γ, u : C;∆ ` D2  Q2 :: z:A for E′ with D2 ≡⇒≡ E′ by i.h. Then
cut! D1 (u. D2) ≡⇒≡ cut! D1 (u. E′) by congruence. Let E = cut! D1 (u. E′). So
Γ ;∆ ` E  Q :: z:A by cut!. Case (2): By Lemma 5.2, cut! D1 (u. D2) ≡⇒≡ E
for some E, and Γ ;∆ ` E  R :: z:A with R ≡ Q . �

Theorems 5.4 and 5.5 state that any proof reduction or conversion also corresponds
to either a process equivalence or to a reduction step on the π-calculus.

Theorem 5.4. Let Γ ;∆ ` D  P :: z:A and D 's E. Then there is Q where P 's Q
and Γ ;∆ ` E  Q :: z:A.
Proof. Following the commuting squares relating ≡, and ' in Figures 6, 7 and 8. �

Theorem 5.5. Let Γ ;∆ ` D  P :: z:A and D ⇒ E. Then there is Q such that
P → Q and Γ ;∆` E  Q :: z:A.

Proof. Following the commuting squares relating ⇒, and → in Figure 5. �

Notice that the simulation of π-calculus reductions by proof term conversions provided
by Theorem 5.3, and from which subject reduction follows, is very tight indeed, as
reduction is simulated up to structural congruence, which is a very fine equivalence
on processes. To that end, structural conversions need to be applied symmetrically (as
equations), unlike in a standard proof of cut-elimination, where they are usually consid-
ered as directed computational steps. Under the assumptions of Theorem 5.3, we can
also prove that there is an E such that D Z⇒⇒ E and Γ ;∆ ` E  R :: z:A, for
Q 's R. Thus, even if one considers the proof conversions as directed reduction rules
(Z⇒), we still obtain a sound simulation up to typed strong behavioral congruence.

We now state type preservation and progress results for our type system. The subject
reduction property (Theorem 5.6) directly follows from Theorem 5.3.
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Theorem 5.6 (Subject Reduction). If Γ ;∆ `P ::z:A and P →Q then Γ ;∆ `Q ::z:A.

Together with direct consequences of linear typing, Theorem 5.6 ensures session fi-
delity. Our type discipline also enforces a global progress property. For any P , define

live(P ) iff P ≡ (νn)(π.Q | R) for some π.Q, R, n

where π.Q is a non-replicated guarded process. We first establish the following contex-
tual progress property, from which Theorem 5.8 follows as a corollary.

Lemma 5.7. Let Γ ;∆ ` D  P :: z:C. If live(P ) then there is Q such that either

1. P → Q, or
2. P

α→ Q for α where s(α) ∈ (z, Γ,∆). More: if C = !A for some A, then s(α) 6= z.

Proof. Induction on derivation D. The key cases are D = cut D1 (y. D2) and D =
cut! D1(u. D2). In the case of cut, we rely on lemmas that characterize the possible
actions of a process on name y:A, depending on type A. These lemmas show that a syn-
chronization between dual actions must occur. For cut!, an inversion lemma is needed,
stating that free names of a non-live process can only be typed by 1 or !A types. �

Theorem 5.8 (Progress). If ·; · `D  P :: x:1 and live(P ) then exists Q st. P → Q.

Proof. By Lemma 5.7 and the fact that P cannot perform any action α with subject
s(α) = x since x:1 (by the action shape characterization lemmas). �

6 Discussion and Further Examples

We further compare our linear type system for (finite) session types with more familiar
session type systems [21, 18, 13]. An immediate observation is that in our case types
are freely generated, while traditionally there is a stratification of types in “session”
and “standard types” (the later corresponding to our !A types, typing session initiation
channels). In our interpretation, a session may either terminate (1), or become a repli-
cated server (!A), which is more general and uniform, and a natural consequence of the
logical interpretation. Concerning parallel composition, usually two rules can be found,
one corresponding to the cancellation of two dual session endpoints (a name restriction
rule), and another corresponding to independent parallel composition, also present in
most linear type systems for mobile processes. In our case, cut combines both princi-
ples, and the following rule is derivable:

Γ ;∆ ` P :: −:1 Γ ;∆′ ` Q :: T

Γ ;∆, ∆′ ` P | Q :: T
(comp)

A consequence of the logical composition rules cut and cut! is that typing intrin-
sically enforces global progress, unlike with traditional session type systems [18, 13],
which do not ensure progress in the presence of multiple open sessions, as we do here.
Techniques to ensure progress in sessions, but building on extraneous devices such as
well-founded orderings on events, have been proposed [20, 12]. It would be interesting
to further compare the various approaches, as far as process typability is concerned.
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Channel “polarities” are captured in our system by the left-right distinction of se-
quents, rather than by annotations on channels (cf. x+, x−). Session and linear type
systems [21, 18, 13] also include a typing rule for output of the form

Γ ;∆ ` P :: x:C
Γ ;∆, y:A ` x〈y〉.P :: x:A⊗ C

In our case, an analogous rule may be derived by ⊗R and the copycat construction,
where a “proxy” for the free name y, bidirectionally copying behavior A, is linked to z.

Γ ;∆ ` P :: x:C
Γ ;∆, y:A ` (νz)x〈z〉.(idA(y, z) | P ) :: x:A⊗ C

The copycat idA(y, z) plays the role of the “link” processes of [23, 7]. Notice that in our
case the definition of the “link” is obtained for free by the interpretation of identity ax-
ioms (Proposition 4.2). The two processes can be shown to be behaviorally equivalent,
under an adequate notion of observational equivalence, as in [7].

We now elaborate on the example of Section 3, in order to illustrate sharing and
session initiation. Consider now a different client, that picks the “buy” rather than the
“quote” operation, and the corresponding composed system.

BClntBodys , s.inl; (νcof)s〈cof〉.(νpin)s〈pin〉.s(rc)0
BSimple , (νs)(SrvBodys | BClntBodys)

We have the typings ·; s:ServerProto ` BClntBodys :: −:1 and ·; · ` BSimple :: −:1.
In these examples, there is a single installed pair client-server, where the session

is already initiated, and only known to the two partners. To illustrate sharing, we now
consider a replicated server. Such a replicated server is able to spawn a fresh session
instance for each initial invocation, each one conforming to the general behavior spec-
ified by ServerProto, and can be typed by !ServerProto. Correspondingly, clients must
initially invoke the replicated server to instantiate a new session (cf. the Tcopy rule).

QClient , (νs)c〈s〉.QClntBodys BClient , (νs)c〈s〉.BClntBodys

Server , !c(s).SrvBodys SharSys , (νc)(Server | BClient | QClient)

For the shared server, by T!R, we type ·; · ` Server :: c:!ServerProto. We also
have, for the clients, by Tcopy the typings c:ServerProto ; · ` BClient :: −:1 and
c:ServerProto ; · ` QClient :: −:1. By (comp), T!L, and Tcut we obtain the intended
typing for the whole system: ·; · ` SharSys :: − : 1. Notice how the session instantiation
protocol is naturally explained by the logical interpretation of the ! operator.

7 Related Work and Conclusions

We have established a tight correspondence between a session-based type discipline for
the π-calculus and intuitionistic linear logic: typing rules correspond to dual intuitionis-
tic linear sequent calculus proof rules, moreover process reduction may be simulated in
a type preserving way by proof conversions and reductions, and vice versa. As a result,
we obtain the subject reduction property, from which session fidelity follows. Our basic
typing discipline intrinsically ensures global progress, beyond the restricted “progress
on a single session” property obtained in pure session type systems.
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Other works have investigated π-calculus models of linear logic proofs. Bellin and
Scott [5] establish a mapping from linear logic proofs to a variant of the π-calculus
and some connections between proof reduction and π-calculus reduction. However,
this mapping results in complex encodings, so that their system could hardly be con-
sidered a type assignment system for processes, which has been achieved in this work.
Moreover, no relation between behavioral descriptions and logical propositions was
identified, as put by the authors: “[our encodings] have less to do with logic than one
might think, they are essentially only about the abstract pluggings in proof structures”.
A realizability interpretation for a linear logic augmented with temporal modalities (cf.
Hennessy-Milner) was proposed in [4], also based on a π-calculus variant. A recent
related development is [17], where a correspondence between (independently formu-
lated) proof nets and an IO-typed π-calculus is established. In our case, the type system
and the logic proof system are exactly the same, and we reveal a direct connection be-
tween pure linear logic propositions and behavioral types on π-calculus, that covers all
(both shared and linear) features of finite session types. A development of session types
as linear process types (in the sense of [21]) is presented in [15], where linearity and
sharing are expressed by special annotations, unrelated to a linear logic interpretation.

We have also analyzed the relation between our type discipline and (finite, deadlock-
free) session types. It is important to notice that our interpretation does not require lo-
cality for session (linear) channels (under which only the output capability of names
could be transmitted), which seems required in other works on linearity for π-calculi
(e.g., [26]). On the other hand, our intuitionistic discipline enforces locality of shared
channels, which, quite interestingly, seems to be the sensible choice for distributed im-
plementations of sessions. Interesting related topics would be the accommodation of
recursive types, logical relations [8], and the characterization of observational equiva-
lences under our typing discipline. In particular, we expect that all conversions (includ-
ing commuting conversions) between DILL derivations correspond to observational
equivalences on our typed π-calculus.

One important motivation for choosing a purely logical approach to typing is that
it often suggests uniform and expressive generalizations. In ongoing work, we have
also established an explicit relationship between session-based concurrency and func-
tional computation where in both cases determinacy (no races) and progress (deadlock-
freedom) are expected features. In particular, we have been investigating new encodings
of λ-calculi into the π-calculus that arise from translations from DILL natural deduc-
tion into sequent calculus. We also believe that dependent generalizations of our system
of simple linear types, perhaps along the lines of LLF [9] or CLF [25], may be able
to capture many additional properties of communication behavior in a purely logical
manner. Already, some systems of session types have dependent character, such as [6]
that, among other properties, integrates correspondence assertions into session types.
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