Design and Implementation of Concurrent CO *

Max Willsey Rokhini Prabhu Frank Pfenning
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
mwillsey@cmu.edu rokhini@gmail.com fpOcmu. edu

We describe Concurrent CO, a type-safe C-like language with contracts and session-typed
communication over channels. Concurrent CO supports an operation called forwarding which
allows channels to be combined in a well-defined way. The language’s type system enables
elegant expression of session types and message-passing concurrent programs. We provide
a Go-based implementation with language based optimizations that outperforms traditional
message passing techniques.

1 Introduction

Message passing is an approach to concurrent programming where processes do not operate
directly on a shared state but instead communicate by passing messages over channels. Many
modern languages like Go, Rust, and Haskell provide concurrent processes and channels to
facilitate safe concurrent programming through message passing, eliminating the need for locks
in common communication patterns. Most message passing systems implement asynchronous
communication, where the channel contains a buffer so the sender can store the message and
proceed without waiting for it to be received.

However, conventional channels do not easily enable safe bidirectional communication. Send-
ers must somehow ensure that they do not receive messages that they just sent over the channel.
Furthermore, complex protocols involve multiple types of data, so statically typed channels must
be created with the sum of those types. The receiver must check the actual type of the value,
typically producing errors if the type is unexpected, essentially degenerating to dynamic typing.

We propose the Concurrent CO language as a tool to enable safer, more efficient concurrent
programming. Like other modern languages, it provides concurrent processes that communicate
over channels. It uses session typing to guarantee the safety of communication and also to alle-
viate the burden of manually synchronizing bidirectional communication [3, 5, 9]. Furthermore,
Concurrent CO offers a concise syntax to express session typed protocols and programs adhering
to them. The forwarding operation creates ways to write programs not possible in other lan-
guages with message passing. These language features provide additional safety and also enable
an optimized implementation.

2 Concurrent CO

Concurrent CO is based on C0, an imperative programming language closely resembling C de-
signed for use in an introductory programming course. CO intends to have fully specified se-
mantics to avoid the confusion that comes along with C’s undefined behavior |1]. CO provides

*An extended version of this paper can be found at http://maxwillsey.com/papers/ccO-thesis.pdf

Submitted to:
Linearity’16

mailto:mwillsey@cmu.edu
mailto:rokhini@gmail.com
mailto:fp@cmu.edu
http://maxwillsey.com/papers/cc0-thesis.pdf

2 Design and Implementation of Concurrent CO

memory safety by disallowing pointer arithmetic and casting; all pointers come from the built-
in alloc and all arrays from the built-in alloc_array, and they are not interchangeable as
in C. The CO runtime NULL-checks pointer accesses and bound-checks array accesses. CO is
garbage collected [2], eliminating the need to explicitly free memory. CO also supports optional
dynamically checked contracts of the familiar forms @requires, @ensures, and Q@assert. Stu-
dents use these contracts to learn how to reason about their code; in particular, the special
@loop_invariant form allows students to reason about their loops. For more on CO0, see [6].

Concurrent CO (CCO0) is an extension of C0, providing safety for the sequential aspects
of programs written in CCO. The session-typed concurrent extension is delimited from the
sequential language, and thus this paper’s contributions could be be readily applied to any
language with a similar session-typed linear semantics.

2.1 Concurrency
<lint;> $c fib(int n) {

Concurrent CO extends CO with the ability to create if (n==0) {
concurrent processes and channels to communicate be- N el%?ir’l 0 Sl%(&);
tween them. In CCO, a pmcessﬂ is a unit of concur- send($c, 1); close($c);
rent execution, and channels are eﬂ"ectivelyﬂ unbounded }else { i
. <lint;> $c1 = fib(n-1);
message buffers that allow the processes on either end <lint;> $c2 = fib(n-2);
to communicate asynchronously. int £1 = recv($cl); wait($cl);
. . § . . int £2 = recv($c2); wait($c2);
Consider line 1 of [Figure 1} fib is a spawning func- send($c, f1+£2); close($c);
tion that creates and returns the channel $c immedi- . b
ately, spawning a concurrent process that will calculate int mainO) {
the nth Fibonacci number and send it (denoted by the <lint;> $c = £ib(10);
. s . . . int £ = recv($c); wait($c);
session type <!int;>) along $c. Spawning functions assert(f — 58):

must provide a name preceded by $ as well as a session return 0;
type for the returned channel so that the channel can be
referred to inside the body. The spawned process is re-
ferred to as the provider, and the caller of the spawning Figure 1: Naive concurrent Fibonacci.
function is referred to as the client.

provides an example with very simple session types to demonstrate CC0’s concurrent
programming mechanisms. The client, main(), spawns a £ib(10) provider and then receives
on the resulting channel. Note that the spawn does not block the main() process, but the
receive does. Communication in CCO is asynchronous (channels are always buffered), so sends
are always non-blocking, but receives have to block until a message is available.

In the non-trivial case, fib(n) spawns two concurrent processes to calculate fib(n-1) and
fib(n-2). After receiving a value, the parent fib(n) waits for the children to close their
channels ($c1 and $c2) before sending the result back and then closing its own channel $c. The
compiler statically verifies that sends and receives are performed in the proper order with the
proper types according the channel’s session type (Section 2.2)). Also, the compiler makes sure

that all channels are closed and properly waited for (Section 2.3)).

! In the current implementations, processes are units of execution within a single operating system process,
and channels are implemented in shared memory. The features of Concurrent CO generalize to any communicating

processes, but this paper focuses on a shared memory implementation. For other applications, see
2 For some session types, a bounded buffer can behave the same as an unbounded one. See |Section 3.1.1

M. Willsey, R. Prabhu, F. Pfenning 3

2.2 Session Types

In concurrent programming, communication between two processes is often supposed to follow
some sort of protocol. By adding a type discipline to the (untyped) m-calculus, session typing
presents a method of encoding the type of this communication: sequences of types represent
how the type changes as the communication takes place [3, 5, 9]. Each type in the sequence is
designated as sending or receiving, encoding the direction of communication. This captures the
temporal aspect of concurrent communication in a way that conventional (monotyped) channels
do not: the type actually reflects processes’ progress in communicating with one another.

In Concurrent CO0, session types are represented as a semicolon-separated sequence of types
between angle brackets. Each type is preceded by either ! or ? to denote that a message of the
given type is sent or received, respectively. For example, a type where the provider sends an
int, then a bool, then receives an int would be written as: <!int; !'bool; ?int;>. The final
semicolon is required; it indicates the end of communication along that channel.

Note how, in , the provider (fib) behaves according to <!int;>, but the client
(main) does the opposite, receiving where the other sends. Concurrent CO uses dyadic session
types to model the client/provider relationship. Because both ends of the channel communicate
using the same protocol, it suffices to just give one type; we type the session from the provider’s
point of view. The client will then have to obey the dual of that type. Duality is an important
notion in session typing that captures the requirement that communication actions occur in
pairs: if a provider sends an int, the client must receive an int.

Session typing systems provide session fidelity, the property guaranteeing that processes send
and receive the correct data in the correct order according to the session type of the channel.
For more on session typing, duality, and session fidelity, see |3}, 5, |7].

Session types allow bidirectional communication, but only in one direction at a time. Con-
sider process A providing to client B with the type <?int; ?int; !bool;>. The direction of
communication starts out toward the provider: A is receiving and B is sending. When A has
received both ints, A has received everything B sent but has not sent the bool yet, so we know
the channel buffer must be empty. Also, we know that B has sent both ints, so its next action
will be to receive; both A and B are at the at the same point in the session type.

When session types change direction like this, a synchronization point occurs: both processes
must be in the same place in the session type and the buffer must be empty, allowing the
direction of communication to switch. Synchronization points occur whenever a session type
change directions; a formal treatment can be found in [7].

2.2.1 Branching

Many protocols are not characterized by a straightforward sequence of types. CCO uses the
keyword choice to denote session types that branch into different sequences of types. Choices
are declared in a manner similar to structs: a list of labels preceded by types. Using these
constructs, the C-like syntax can concisely express even complex session types.

Branches are selected by sending and receiving labels, the values of choice types. Labels
are sent using dot notation: $c.Label. The switch operator is used to receive values of choice
types: when it takes a channel variable, it receives and cases on the possible labels. The case
branches must follow the appropriate session type, as indicated by the label.

Receiving a choice type from the provider (?choice) is called an external choice, because the

4 Design and Implementation of Concurrent CO

client is making the decision. External choices are a natural way to encode a server request: the
client dictates the type of action the server takes. The empty () function on [line 29 of [Figure 4]
offers an external choice. Likewise, sending a choice type from the provider (!choice) is an
internal choice, because the provider specifies which branch the client will take. Internal choices
are ideal for encoding a server response, where the client needs to react to different possibilities.
The Deq branch on [line 4|in [Figure 4] is an internal choice; the client must handle the None case
where no element is available.

In Concurrent C0, choices allow the user to name a session type, also giving the ability to
specify recursive ones. In choice queue is a recursive session type for a provider that
offers a queue of integers. Once an element is enqueued, the type dictates that the provider will
continue to behave like a queue. Recursive session types can be implemented with tail recursion
(Figure 4] [line 34) or with loops. CCO guarantees that a new process is not spawned by a tail
recursive call; it is executed in place by the current provider.

2.3 Linearity

Channel variables have linear semantics [3], but with two references: exactly one client and
one provider will have a reference to a channel. This ensures that communication is always
one-to-one; there can never be a “dangling” channel with no one listening on the other end,
nor will there ever be multiple providers or clients fighting to communicate in one direction
over a channeﬂ Because a provider can only have one client at a time (initially the caller of
the function that spawned it), there is a natural correspondence between the client-provider
relationship in a CCO program and the parent-child relationship a tree. The main() function is
a process with no clients and therefore the root of the tree.

The close and wait primitives let the provider and client satisfy the linear type system. A
process providing across channel $c must call close($c) to terminate. The provider must have
already consumed all of its references and be a leaf in the process tree. Before terminating, a
client with a reference to a channel $c must call wait ($c) to ensure the provider terminates.

Channel references can be manipulated like other variables, but they are still subject to
linearity throughout the whole program. They cannot be copied, only renamed; the old reference
cannot be used. When passing a channel into a spawning function, the caller gives up its reference
to allow the new process to use the channel. Sending channels along channels works much in
the same way: the sender gives up its reference to the receiving process. Linearity ensures that
channel references are not leaked or duplicated, so the process tree will remain a tree even with
dramatic manipulation of the communication structure.

2.4 Forwarding

Concurrent CO implements an operation not commonly found in other languages with message
passing called forwarding which allows a process to terminate before its child and remove itself
from the process tree. A node with one exactly childlﬂ can be contracted by the forward operation,
allowing its parent and child to communicate directly without it in the middle. Removing the

3 cco implements linear channels from |3} 7] which have exactly one client. The same paper provides a notion
of shared channels which can support multiple clients, but these are not presently in CCO.

4 Because forwarding terminates the process, linearity dictates that all of its other references must have been
properly destroyed at the time of the forward.

M. Willsey, R. Prabhu, F. Pfenning 5

inner process effectively merges the two channels; because a process can only forward channels
of the same session type, session fidelity is preserved and communication continues as if nothing
happened |7} 9].

At a very high level, forwarding can be thought of as setting a channel equal to another
channel, and the $c = $d notation comes from this intuition. Forwarding terminates the process
and closes one of the channels, but it is not obvious how to deal with buffers that contain
messages. Simply combining the channels by concatenating the buffers does not work; see
for an example where messages are temporarily flowing in opposite directions.

We propose an alternate view of forwarding: as a special kind of message. We use the session
typing system to infer the direction of communication according to the forwarding process, so a
forward sends a special message along the channel in that direction containing a reference to the
other channel. This message must be the last one in the buffer because the forwarding process
terminated after sending it. When a process receives the forward, it destroys the channel it was
sent over and replaces its reference with the new channel from the forward message.
contains a more detailed example of how forwarding works.

discusses the details of our implementation, but it’s important to note that
this interpretation of forwarding allows implementation on any level. This view of forwarding,
to the best of our knowledge, is a novel contribution of this work, and could be implemented in
any session typed, message passing language.

3 Implementation

Concurrent CO’s typing system not only ensures the safety of concurrent code, but it also allows
for an efficient parallelizable implementation. Session typing directly enables our implementation
to use fewer, smaller buffers than other message passing techniques.

3.1 Compiler

Concurrent CO enforces linearity and session fidelity to produce safe concurrent code. The
compiler typechecks programs to make sure that messages are sent and received according to
the appropriate session types, and it also ensures that the linearity of channels is respected.
While certainly important to CCO, the typechecker itself is not a novel contribution of this
work, and interested readers are referred to [4] for more about typechecking session typed and
linear languages. After typechecking, the compiler inserts annotations that inform the runtime
about the communication structure. Finally, CCO source code is compiled to a target language
(C or Go) then linked with a runtime implementation written in the same target language.

3.1.1 Type Width

Certain session types dictate that only so many values can be buffered at a time. For example,
the type <!bool; 7int;> could only possibly buffer one value at a time, because the int must
be sent from the client, which can only occur once the client has received the previous the bool.
This quantity is called the width of the type. The CCO compiler infers widths, allowing the
runtime to use small, fixed length circular buffer as queues and not have to worry about ever
resizing.

6 Design and Implementation of Concurrent CO

typedef amount int;
balance typedef balance int;
\ typedef payment int;

P
—
0]
& typedef <?choice atm> atm;
9]
=)

choice atm {
!payment <?amount; !balance; atm> Deposit;
<?amount; !choice result; atm> Withdraw;

+

choice result {
<!payment; atm> Success;

- <atm> Overdraft;
| lchoice result | 3
H

Withdra
Q
>
4
4
o
)
oK

~
Q

=g
S

=

a

)

)
o
=

%
sse0ong

Figure 2: Code and graph of type atm with width 2.

Session types can be viewed as a directed graph in which a walk represents a possible sequence
of sent or received types. Nodes are colored as sending (green) or receiving (red); see
We know that the buffer will only contain messages going in one way at a time, so there are
actually two graphs, one red and one green, connected by the dashed gray edges representing
synchronization points where we know the buffer will be empty. Thus, the width of the type is
the longest walk in either the red or green subgraph.

An ATM is a canonical example in the session typing literature, and shows the
code and type graph for a simple ATM protocol. A process providing <?choice atm> could
clearly stay alive forever: the client may Deposit or Withdraw an unbounded number of times.
However, the width of the type is only 2; so the channel will never need to buffer more than two
items.

Note that type width is compatible with forwarding because of the forward-as-message in-
terpretation. Forwards are received instead of the intended message, so the forward message
will occupy that allocated space.

3.1.2 Forwarding

At each forward call-site, the CCO compiler infers the direction of communication according
the forwarding process’s session type. In the generated code, that direction is passed into the
forward runtime function. Just like the semantic understanding, the runtime sends a specially
tagged message in that direction and then terminates the calling process. Nothing else occurs
until the forward is received.

A process attempting to receive another value may see the special forward tag instead. The
forward message is guaranteed to be the last message in the buffer, so the receiving process
destroys the channel. The forward message contains a reference to the new channel, so the
receiving process replaces its own reference to the destroyed channel with the new one, and then
it attempts to receive the value it initially expected over that new channel. This ensures the
transparency of the forward: this process is still going to receive the value that it expected, and
all future interactions over that channel reference will use the new channel instead. Because
forwards are deferred, the receiver may to need to handle many forwards before getting the
expected message.

M. Willsey, R. Prabhu, F. Pfenning 7

3.2 Runtime System

The CCO compiler generates C or Go code that is linked with one of several runtime systems that
contain the logic for message passing and manipulating processes. The runtimes have different
threading models and synchronization strategies, but they share the same general structure
centered around channels. A channel contains a message queue, its direction, a mutex, and a
condition variable. The mutex is necessary to protect channel state, and the condition variable
is used by receivers to wait on messages to arrive or the queue to change directions.

The runtime consists of four main functions that provide all the necessary functionality for
spawning processes and message passing: NewChannel, Send, Recv, and Forward. The CCO0
functions close and wait are implemented by sending a receiving special DONE message.

NewChannel creates a new concurrent process and the channel along which it will provide,
returning a reference to that channel to the caller (client). NewChannel takes in the function
and arguments for the new provider process as well as the type width and initial direction of the
channel as inferred by the compiler, allowing the runtime to create a channel with a bounded
ring-buffer when possible.

Send sends a given message over a given channel, additionally taking in the message’s type
and the inferred direction. Send locks the channel, enqueues the message with its type, sets the
direction of the queue, and unlocks. A receiver may be waiting for the message, so the sender
must wake up the potential receiver by signaling the condition variable.

Recv receives a message over a given channel, taking in the message’s expected type and the
inferred direction. Recv locks the channel and attempts to receive the message. If the buffer is
empty or still flowing in the other direction, then the caller will give up the lock and wait on the
condition variable for the sender. If the message is a forward, the receiver handles it, installing
the new channel; see for details. Recv asserts that the received message is of the
expected type, panicking if it does not match (and is not a forward).

Forward takes in the two channels involved in the forward and the inferred direction of
communication. The forwarding process sends a forward message in the inferred direction using
the regular message passing functionality, then it terminates. See [Section 2.4] and [Section 3.1.2]

Because CCO encourages highly concurrent programming, most programs spawn many pro-
cesses. Our early C runtimes used 1:1 or custom M:N threading models; neither performed as
well as the Go runtimes. Go is imperative programming language with a lightweight threading
model that provides concurrency and efficient parallelism [§].

4 Experimental Comparison and Analysis

To benchmark Concurrent C0, we created goO, a naive, proof-of-concept implementation that
uses Go’s built-in channels to implement CCO channels. As CCO channels provide safe bidi-
rectional communication, two Go channels must be used to implement a CCO channel without
additional synchronization. goO serves as a stand-in modeling how message passing is done in
other languages (with two large channels intended for one-way communication), but it conforms
to the same interface as our other implementations so we can run the same tests against it.
Analysis of both the C and Go runtimes can be found in the extended version of this paper;
here we compare goO against go2, a Go implementation which uses the full suite of language
based optimizations detailed in Our benchmarking suiteﬂ consists of many highly
concurrent data structures, like the queue in [Figure 4 Most of the work done in these tests is

8 Design and Implementation of Concurrent CO

BN goO ||
N go2

Time (s)
o b N W s U O N @ WO

1+

°dd.e add-e,,

Ven en

biggy,. Ditgy,. bst. Ins, m m m
Uing, Uip Loy ot Tges, . 9o, 'Gese,
91c; 93 ey Moy M M ’Sa,-,‘,_q ’Sal-,q_q ’Sa,-,c._q

oag.. Parg Pri 9 % feq se Sie Sie o,
e "b.cq " Mes, 7 s‘uﬁ“-ﬂ% ;u&rl UCe.e; 91 Ve‘eage r:j‘/ezy R ;’“CI
\C 1 -

Figure 3: Median benchmark times of the goO and go2 runtimes over 20 samples.

communication, so as to highlight the efficiency of our message passing runtimes. All benchmarks
were run on a 2015 MacBook Pro with an Intel Core i7-4870HQ CPU with 4 cores at 2.50GHz.

The go0 vs. go2 benchmark in [Figure 3]demonstrates the effectiveness of our implementation
techniques. Compared to the naive implementation, our optimized version ran 1.38x faster on
averageﬂ We suspect that the speed up would be even more dramatic if the Go compiler
optimized tail recursion. Concurrent CO encourages a tail recursive style of programming; see
The queue-notail.c1 test case is the same as queue.c1, except that it is written
with loops as opposed to tail recursion. The more than 2x difference in both Go runtimes’
performance indicates that Go’s lack of optimization in this case is a serious hindrance. Other
test cases like primes. c1 rely heavily on mutually recursive tail calls, so even though the negative
impact is similar, no -notail version was written for those cases.

5 Future Work

The knowledge given by session types could improve scheduling decisions. The structure of rela-
tionships between communicating process could enable optimizations like co-scheduling providers
and clients to increase parallel performance. The same information might also assist the run-
time in deciding on granularity; the structure of the process tree could help save the overhead
of spawning new concurrent processes in some situations, just running them inline instead.

Session typing and linearity make communication of values safe, and Concurrent CO (from
C0) is memory safe for sequential programs, but the combination of shared memory and con-
currency leads to race conditions. Presently, our implementations allow sending and receiving
pointer and arrays between processes, but there is no attempt to enforce the safety of accesses
and writes. Given that channels already have linear semantics, CC0O could benefit from a linear
or affine treatment of shared memory like that of Ruslﬂ

Session types are traditionally associated with distributed computing, so a distributed im-
plementation of Concurrent CO could apply some of the contributions of this work. Specifically,
the concept of forwarding as a message would be even more beneficial than it was in the shared
memory setting, as synchronization is even more challenging on the distributed scale.

5 See the full suite of tests at http://maxwillsey.com/assets/ccO-linear16-benchmarks.tgz
6 Average is calculated as geometric mean of the ratios of the median benchmark times
7 https://doc.rust-lang.org/book/ownership.html

http://maxwillsey.com/assets/cc0-linear16-benchmarks.tgz
https://doc.rust-lang.org/book/ownership.html

M. Willsey, R. Prabhu, F. Pfenning

19
20

ST NIV

SN NN NN

W W W w wwwwNNN
N O U R W NN = O © 0

38

(SO R,

S S IS S
0

// external choice for request
choice queue {
<?int; ?choice queue> Engq;
<!choice queue_elem> Degq;
+;

typedef <7choice queue> queue;

// internal choice for response
choice queue_elem {

<lint; ?choice queue> Some;

< > None;

¥

// provider that holds element x and
// points to the rest of the queue $r
queue $q elem (int x, queue $r) {
switch ($q) {
case Eng:
int y = recv($q);
$r.Enq; send($r, y);
$q = elem(x, $r);
case Deq:
$q.Some; send($q, x);
$q = $r;
¥
¥

// provider for the end of the queue
queue $q empty O {
switch ($q) {
case Eng:
int y = recv($q);
queue $e = empty();
$q = elem(y, $e);
case Deq:
$q.None;
close($q);
+
}

void dealloc (queue $q) {
$q.Deq; switch($q) {
case Some:
recv($q);
dealloc($q);
return;
case None:
wait($q);
return;
}
¥

int main () {
queue $q = empty(Q);
$q.Enq; send($q, 1);
$q.Enqg; send($q, 2);
dealloc($q);
return O;

Figure 4: queue.cl, a queue imple-
mentation where each element is a con-
current process.

The arrows above the channel contents indicate the actual flow of messages
along the channel. The small arrows above channel endpoints indicate the
direction of that process’ next action along that channel according the session
type.

. -
P——0Q
main() empty ()
(a) P enqueues 1 \\
P ; 0Q7 'R
main() d elem(1,$r) empty ()

(b) @ gets the enqueue, spawning a new empty () process
and channel [line 33134].

})e, De(l - - II!IIE#H!I —>

o) O R
$q @

main() elem(1,$r) empty ()

(c) P enqueues 2 [line 56] which @Q passes to the back of
the queue [line 20]. P sends a dequeue request and waits
for the result |line 42.

«— ——
o OﬁQe o

$q $r

main() empty ()

(d) Q responds to the dequeue [line 23| and is about to
forward [line 24].

«»l Some [1 ‘

l fud: $q 12 l Enq_L
O O R
$q $r

main() empty ()

(e) @ forwards $q = $r by sending a forward
message in the direction of communication according to
the session type, not the state of the channel buffers. @
terminates, but $r must persist because it still has mes-
sages. Simply concatenating the buffer here will not work
because they have different directions.

P ; SR- o8
4 elem(2,$s)
(f) R finally gets the enqueue, spawning a new empty ()

process and channel [line 33H34]. When R receives the

forward, it deallocates $r (which is now safe because $r
is empty) and will now use $q instead.

Figure 5: An illustration using queue.c1 (Figure 4))

demonstrating how treating forwarding as a message
resolves communication direction issues.

main() empty ()

10 REFERENCES

References

[1] Rob Arnold. “Cy, an Imperative Programming Language for Novice Computer Scientists”.
Available as Technical Report CMU-CS-10-145. M.S. Thesis. Department of Computer Sci-
ence, Carnegie Mellon University, Dec. 2010.

[2] Hans-J. Boehm. A garbage collector for C'and C. URL: http://www.hboehm.info/gc.

[3] Luis Caires and Frank Pfenning. “Session Types as Intuitionistic Linear Propositions”. In:
Proceedings of the 21st International Conference on Concurrency Theory (CONCUR 2010).
Paris, France: Springer LNCS 6269, Aug. 2010, pp. 222-236. DOI: [10.1007/978-3-642-
15375-4 16.

[4] Dennis Griffith. “Polarized Substructural Session Types”. In preparation. PhD thesis. Uni-
versity of Illinois at Urbana-Champaign, Apr. 2016.

[5] Kohei Honda. “Types for Dyadic Interaction”. In: 4th International Conference on Concur-
rency Theory. CONCUR’93. Springer LNCS 715, 1993, pp. 509-523. DOI:|10.1007/3-540-
57208-2_35.

[6] Frank Pfenning. C0 Language. URL: http://cO.typesafety.netl

[7] Frank Pfenning and Dennis Griffith. “Polarized Substructural Session Types”. In: Proceed-
ings of the 18th International Conference on Foundations of Software Science and Compu-
tation Structures (FoSSaCS 2015). Ed. by A. Pitts. Invited talk. London, England: Springer
LNCS, Apr. 2015. DOI: [10.1007/978-3-662-46678-0_1.

[8] The Go Programming Language. URL: https://golang.org.

[9] Bernardo Toninho. “A Logical Foundation for Session-based Concurrent Computation”.

Available as Technical Report CMU-CS-15-109. Ph.D. Thesis. School of Computer Science,
Carnegie Mellon University, May 2015.

http://www.hboehm.info/gc
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/3-540-57208-2_35
http://c0.typesafety.net
http://dx.doi.org/10.1007/978-3-662-46678-0_1
https://golang.org

	Introduction
	Concurrent C0
	Concurrency
	Session Types
	Branching

	Linearity
	Forwarding

	Implementation
	Compiler
	Type Width
	Forwarding

	Runtime System

	Experimental Comparison and Analysis
	Future Work

