
Automated Theorem Proving in a
Simple Meta-Logic for LF
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Abstract. Higher-order representation techniques allow elegant encod-
ings of logics and programming languages in the logical framework LF,
but unfortunately they are fundamentally incompatible with induction
principles needed to reason about them. In this paper we develop a meta-
logic M2 which allows inductive reasoning over LF encodings, and de-
scribe its implementation in Twelf, a special-purpose automated theorem
prover for properties of logics and programming languages. We have used
Twelf to automatically prove a number of non-trivial theorems, including
type preservation for Mini-ML and the deduction theorem for intuition-
istic propositional logic.

1 Introduction

The logical framework LF [HHP93] has been designed as a meta-language for
representing deductive systems which are common in the study of logics and
programming languages. It allows concise encodings of many common inference
systems, such as natural deduction and sequent calculi, type systems, opera-
tional semantics, compilers, abstract machines, etc. (see [Pfe96] for a survey).
These representations often lead directly to implementations, either via the con-
straint logic programming paradigm [Pfe94] or via general search using tactics
and tacticals.

The logical framework derives its expressive power from the use of depen-
dent types together with “higher-order” representation techniques which directly
support common concepts in deductive systems, such as variable binding and
capture-avoiding substitution, parametric and hypothetical judgments, and sub-
stitution properties. The fact that these notions are an integral part of the logical
framework would seem to make it an ideal candidate not only for reasoning within
various inference systems, but for reasoning about properties of such systems.

Unfortunately, higher-order representation techniques are fundamentally in-
compatible with the induction principles needed to reason about such encodings
(see [DPS97] for a detailed analysis). In the literature three approaches have been
studied in order to overcome these problems, while retaining the advantages a
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logical framework can offer. The first called schema-checking [Roh94,RP96] im-
plements meta-theoretic proofs as relations whose operational reading as logic
programs realizes the informal proofs. This has been applied successfully in many
case studies (see [Pfe96]), but lacks automation. The second is based on reflection
via a modal provability operator. At present it is unclear how this idea, developed
for simple types in [DPS97], interacts with dependent types, and if it is flexible
enough for many of the theorems that can be treated with schema-checking. The
third is to devise an explicit (meta-)meta-logic for reasoning about logical frame-
work encodings. For the simpler logical framework of hereditary Harrop formulas
this approach has been followed by McDowell and Miller [MM97,McD97] (see
Section 5 for a detailed comparison).

In this paper we follow the third approach and develop a simple meta-logic
M2 for LF and sketch its implementation in the Twelf system. M2 was de-
signed explicitly to support automated inductive theorem proving and has been
applied successfully to prove, for example, value soundness and type preserva-
tion for Mini-ML, completeness of a continuation stack machine with respect
to a natural semantics for Mini-ML, soundness and completeness of uniform
derivations with respect to resolution (which is a critical step in the correctness
of compilers for logic programming languages), the deduction theorem for intu-
itionistic propositional logic using Hilbert’s axiomatization, and the existence of
an embedding of Cartesian closed categories into the simply-typed λ-calculus.
In each case we specified only the theorem and the induction variable, the proof
was completely automatic in every other respect.

We view Twelf as a special-purpose automated theorem prover for the the-
ory of programming languages and logics. It owes its success to the expressive
power of the logical framework combined with the simplicity of the meta-logic
which nonetheless allows direct expression of informal mathematical arguments.
Its main current limitations are the lack of facilities for incorporating lemmas
and for proving properties which require reasoning about open LF objects, i.e.,
objects which may contain free variables. We plan to address the former by
adapting standard techniques from inductive and resolution theorem proving
and the latter by borrowing successful ideas from schema-checking.

This paper is organized as follows: In Section 2 we briefly describe the logi-
cal framework LF and introduce a programming language Mini-ML and a type
preservation result as running example. The meta-logicM2 is introduced in Sec-
tion 3 which is implemented in the Twelf system which we discuss in Section 4.
Section 5 compares the most closely related work before we assess the results
and discuss future work.

2 The Logical Framework LF

The type theory underlying the logical framework LF is an extension of the
simply-typed λ-calculus by dependent types. It is defined by three syntactic
categories of objects, type families, and kinds [HHP93]. We use a for type family
constants, c for object constants, and x for variables. Atomic types have the form
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a M1 . . .Mn and function types Πx :A1. A2, which we may write as A1 → A2

if x does not occur free in A2. We assume that constants and variables are
declared at most once in a signature and context, respectively. As usual we
apply tacit renaming of bound variables to maintain this assumption and to
guarantee capture-avoiding substitution.

The LF type theory is defined by a number of mutually dependent judgments
which we only summarize here. The main typing judgment is Γ

Σ̀
M : A and

expresses that object M has type A in context Γ with respect to signature Σ.
We generally assume that signature Σ is valid and fixed and therefore omit it
from the typing and other related judgments introduced below. We also need to
explicitly require the validity of contexts, written as ` Γ ctx. In a slight departure
from [HHP93] we take βη-conversion as our notion of definitional equality, since
this guarantees that every well-typed object has an equivalent canonical form,
that is, a long βη-normal form. The requisite theory may be found in [Coq91].

As a running example we will use Mini-ML in the formulation of [Pfe92] which
goes back to [MP91], culminating in an automatic proof of type preservation.
While space only permits showing the fragment including abstraction, applica-
tion, and recursion, our automatic proof also treats the remaining features of
Mini-ML including polymorphism and an inductively defined type.

Mini-ML is defined through expressions e, types τ , a typing judgment∆.e : τ ,
and an evaluation judgment e ↪→ v, which are represented as type families

exp : type,
tp : type,
of : exp→ tp→ type, and
ev : exp→ exp→ type,

respectively. Expressions, types, typing rules, and evaluation rules are encoded
as object-level constants. The encoding is adequate in the sense that there is a
compositional bijection between derivations and well-typed objects of appropri-
ate type. For example, using p.q for a generic representation function, we have
that derivations of e ↪→ v are in bijective correspondence with closed canoncial
objects of type ev peq pvq.

Compositionality of the encoding gives us the following substitution lemma
“for free”, since it can be represented simply by substitution in LF, whose cor-
rectness has been proven once and for all [HHP93].

Lemma 1 (Substitution). If ∆.e′ : τ ′ and ∆, x : τ ′ .e : τ then ∆.e[e′/x] : τ .

A substitution lemma of this or a similar form is an important ingredient
in many theorems in logic (e.g., cut-elimination, normalization, or the Church-
Rosser theorem) or the theory of programming languages (e.g., subject reduction
or type preservation).

To demonstrate our theorem prover, we consider the type preservation theo-
rem for Mini-ML. It is proven by structural induction, with repeated applications
of inversion, which is applicable when the shape of the conclusion determines
the inference rule which must have been applied last [Pfe92]. (This proof is also
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exactly the proof found automatically rendered into informal notation.) We write
D :: J if D is a derivation of a judgment J to avoid two-dimensional notation.

Theorem 1 (Type preservation). For all expressions e, v, types τ , and
derivations D :: (e ↪→ v) and P :: (·.e : τ), there exists a derivation Q :: (·.v : τ).

The inductive proof of this theorem is constructive and contains a method for
constructing a derivation Q :: (· . v : τ) from D :: (e ↪→ v) and P :: (· . e : τ). By
an extension of the Curry-Howard correspondence one might hope to represent
this as an LF function

tps : ΠE : exp. ΠV : exp. ΠT : tp. ev E V → of E T → of V T.

In fact, if we could exhibit a total function of this type, we would know that type
preservation holds. Unfortunately, such a function does not exist in LF, since it
would have to be defined by primitive recursion over its fourth argument (the
derivation of ev E V ), and primitive recursion is not available in LF. Moreover,
straightforward attempts to add primitive recursion render higher-order repre-
sentations inadequate, as discussed in [DPS97]. Instead we define a meta-logic
for LF in which it is possible to express and prove (over the signature encoding
Mini-ML):

For all closed LF objects E : exp, V : exp, T : tp, D : ev E V , and
P : of E T there exists a closed LF object Q : of V T .

By the adequacy of the encodings, the existence of such an LF object Q implies
the existence of a typing derivation Q of · . v : τ , where pvq = V and pτq = T ,
thereby guaranteeing the type preservation property for Mini-ML.

3 The Meta-LogicM2

The purpose of the meta-logic M2 is formal reasoning about properties of LF
signatures, with the goal of automating the proof of such properties. Since LF
signatures implement object languages and their semantics, this provides for
automatic proofs of properties of logics and programming languages.
M2 is a restricted constructive first-order logic where quantifiers range over

closed LF objects constructed over a given signature Σ. Its formal definition is
a sequent calculus endowed with realizing proof terms.

The formal system ofM2 in its full generality is rather complex. We therefore
present here only a restriction of M2, where pattern matching subjects must
be of atomic type. For a complete presentation of the meta-logic we refer the
interested reader to the technical report [SP98]. We introduceM2 in four steps:
in Section 3.1 we describe a constructive logic over LF with proof terms which
we augment by well-founded recursion in Section 3.2. In Section 3.3 we introduce
definition by cases and in Section 3.4 we state the meta-theoretic properties of
M2 which make it an appropriate meta-logic.
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Γ ` σ : Γ1 Γ ; (∆1,x ∈ ∀Γ1. F1,∆2,y ∈ F1[σ]) ` P ∈ F2

∀L
Γ ; (∆1,x ∈ ∀Γ1. F1,∆2) ` let y = x σ in P ∈ F2

(Γ, Γ1);∆ ` P ∈ F
∀R∗

Γ ;∆ ` ΛΓ1. P ∈ ∀Γ1. F

(Γ, Γ1); (∆1,x ∈ ∃Γ1.>,∆2) ` P ∈ F
∃L∗

Γ ; (∆1,x ∈ ∃Γ1.>,∆2) ` split x as 〈Γ1〉 in P ∈ F
Γ ` σ : Γ1

∃R
Γ ;∆ ` 〈σ〉 ∈ ∃Γ1.>

∗ Eigenvariable condition: ` Γ, Γ1 ctx

Fig. 1. M2 without recursion or pattern matching

3.1 A Constructive Sequent Calculus Over LF

Formulas inM2 have the form ∀x1 :A1. ...∀xn :An. ∃y1 :B1. ...∃ym :Bm.> (which
we write as ∀Γ1. ∃Γ2.>, where Γ1 = x1 : A1, ..., xn : An and Γ2 = y1 : B1, ..., ym :
Bm). Here all Ai and Bj are LF types, and for a formula to be well-formed the
combined context Γ1, Γ2 must be a valid LF context.

While this may not seem very expressive, it is sufficient for many theorems in
the realm of logic and the theory of programming languages we have examined,
since other connectives (such as disjunction) and even more complex quantifier
alternations can be incorporated at the level of LF. The main limitation is that
the quantifiers range only over closed LF objects of the given types; a general-
ization is the subject of current research. Assumptions are labelled with proof
term variables x which are used in the proof terms P .

Formulas F ::= ∀Γ1. ∃Γ2.>
Assumptions ∆ ::= · | ∆,x ∈ F

The main judgment of this sequent calculus is Γ ;∆ ` P ∈ F , where the
LF context Γ makes all Eigenvariables explicit together with their types. The
judgment is also indexed by an LF signature Σ which we suppress for the sake
of brevity.

The rules for the judgment are in the form of a sequent calculus and defined in
Figure 1. Because of the way our search engine actually works and the restriction
on quantifier alternations, it is convenient to instantiate all quantified variables
of the same kind simultaneously by means of a substitution σ explained below.
This applies to the ∀L and ∃R rules, where the latter also incorporates an axiom
rule for >. The reader may wish to ignore the proof terms in the first reading,
which are not essential until recursion is introduced in Section 3.2.

Substitutions σ ::= · | σ,M/x

Valid substitutions map variables in a context Γ ′ to valid objects in a context
Γ . This judgment is written as Γ ` σ : Γ ′ and defined by the following inference
rules, which guarantee that dependencies are respected.

subId
Γ ` · : ·

Γ ` σ : Γ ′ Γ `M : A[σ]
subDot

Γ ` (σ,M/x) : (Γ ′, x : A)

5



When Γ ` σ : Γ ′ and Γ ′ ` M : A then we write M [σ] for the result of
applying the substitution σ to M , and similarly for types, contexts, etc. The
result satisfies Γ ` M [σ] : A[σ]. This is also reflected in our implementation of
the system, which employs dependently typed explicit substitutions. We write
idΓ for the identity substitution on Γ satisfying Γ ` idΓ : Γ .

The formulation of the calculus incorporates the structural rules: weakening
is implicit in ∃R, contraction and exchange are implicit in the left rules ∀L and
∃L. The type preservation theorem (Theorem 1) can be expressed in M2 as

∀E : exp, V : exp, T : tp, D : ev E V, P : of E T. ∃Q : of V T .>

The variables E, V and T appear as index objects in the types of D, P ,
and Q and are therefore called index variables. Index variables are treated
differently from other variables during proof search, as we will see in Sec-
tion 4. We adopt the convention to omit their quantifier and denote them
with bold uppercase names. In this way the theorem can be abbreviated to
∀D : ev E V, P : of E T. ∃Q : of V T.>.

The system presented in Figure 1 is the core of the meta logicM2 for LF. In
the next two sections we strengthen M2 by introducing well-founded recursion
and definition by cases for closed LF objects. This will allow us to represent
many proofs by structural induction, case distinction, and inversion in M2. A
further extension ofM2 is the introduction of conjunction which is required for
the representation of mutually inductive proofs, but omitted here for the sake
of brevity (see [SP98]).

3.2 Adding Recursion

The recursion operator µx ∈ F. P is the standard fixed point operator at the
level of proof terms with the following introduction rule.

Γ ;∆,x ∈ F ` P ∈ F
fix (where µx ∈ F. P terminates in x)

Γ ;∆ ` µx ∈ F. P ∈ F

It is obvious that a proof term represents a total function only if it termi-
nates independently of the arguments it is applied to. Thus the side condition on
the rule. For termination we use arbitrary lexicographic extensions of the sub-
term ordering on LF objects described in [RP96], all of which are well-founded
orderings and easy to check due to the restricted nature of our meta-logic.

3.3 Adding Case Analysis

The context of Eigenvariables Γ in the judgment Γ ;∆ ` P ∈ F represents all LF
variables which might occur free in the proof term P . Because of the assumption
that proof terms are only applied to closed LF objects, all variables in Γ stand
for closed LF objects. It is therefore possible to determine all possible cases for
the top-level constructor of such objects.
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Assume we would like to distinguish all possible cases for a given LF variable
x of type A declared in Γ . For simplicity, we assume that A is a base type,
even though in the full system [SP98] function types are also permitted which
is needed, for example, in the proof of the deduction theorem. The top-level
structure of a closed canonical term of base type is always c x1 . . . xn, where xi
are new variables. If c has type Πx1 :A1. . . .Πxn :An. B, then this is a possible
candidate for the shape of x : A if B unifies with A.

This idea is very similar to the realization of partial inductive definitions and
definitional reflection [SH93], except that dependent types can eliminate more
cases statically. Also, because of the higher-order nature of the term language, we
need to deal with the undecidability of the full higher-order unification problem.
Our solution is to restrict the analysis of possible cases to Miller’s higher-order
patterns, generalized to the setting of dependent types [Pfe91]. However, we
do not restrict our system to patterns statically, since this would preclude, for
example, a direct appeal to substitution or substitution lemmas at the level
of LF. Instead, we simply rule out definition by cases where determining the
possible cases would require unification beyond the pattern fragment.

Formally, we extend the language of proof terms by a case construct.

Patterns R ::= Γ ′;Γ ′′ .M
Cases Ω ::= · | Ω,R 7→ P
Proof Terms P ::= ... | case x of Ω

The objects M in patterns are strongly restricted by the rules which check valid
patterns; usually it will be a constant applied to variable arguments, but because
of dependencies, it might be more complex than that. Contexts Γ ′ and Γ ′′ are
separated for technical reasons, where Γ ′ contains the variables which will be
instantiated when the case subject is matched against the object M , while Γ ′′

contains those variables which will not be instantiated (although their types
could still be instantiated). We always have that Γ ′, Γ ′′ `M : A′ for some type
A′ which is equal to or more specific than the type A of the case subject x.

The judgment for checking the validity of a case construct has the form
Γ1; x : Bx;Γ2;∆ `Σ Ω ∈ F , where we maintain the invariant that Bx depends
on all variables in Γ1, which therefore collects the variables which will be in-
stantiated by pattern matching. By using the limited permutation properties of
LF [HHP93] this can always be established. The following rule then completes
the definition of derivability inM2.

Γ (x) = Bx Γ1; x : Bx;Γ2;∆ `Σ Ω ∈ F
case

Γ ;∆ ` case x of Ω ∈ F

where Γ1, x : Bx, Γ2 must be a valid permutation of Γ , and Bx depends on all
variables in Γ1. The judgment Γ1; x : Bx;Γ2;∆ `Σ Ω ∈ F selects all constants
from Σ which are possible constructors for a closed object of type Bx. The
rules for the judgment are given in Figure 2. This judgment iterates through the
signature Σ, trying each constant c in turn. If the target type Bc unifies with
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sigempty
Γ1;x : Bx;Γ2;∆ `· · ∈ F

Γ1; x : Bx;Γ2;∆ `Σ Ω ∈ F
signonuni (Bx, Bc do not unify)

Γ1;x : Bx;Γ2;∆ `Σ,c:ΠΓc .Bc Ω ∈ F

Γ ′, Γ2[σ];∆[σ′] ` P ∈ F [σ′] Γ1;x : Bx;Γ2;∆ `Σ Ω ∈ F
siguni

Γ1;x : Bx;Γ2;∆ `Σ,c:ΠΓc .Bc Ω, (Γ ′;Γ2[σ] . (c Γc)[σ] 7→ P ) ∈ F

Γ ′ ` σ = mgu (Bx
.
= Bc, x

.
= c Γc) : (Γ1, x : Bx, Γc)

Γ ′, Γ2[σ] ` σ′ = (σ, idΓ2 ) : (Γ1, x : Bx, Γc, Γ2)

Fig. 2. Selection rules for Γ1;x : Bx;Γ2;∆ `Σ Ω ∈ F

the type Bx of the case subject (siguni), a new case is added to Ω. Otherwise, c
cannot be a top-level constructor for a closed term M of type Bx and no case is
added (signonuni).

In the rules we use ΠΓc. Bc as a compact notation for the type of the object
constant c, where Bc is an atomic type. We write c Γc for the result of applying
c to the variables in Γc in order, which gives us the most general form of a term
in canonical form whose head is c. The side conditions of siguni determine a sub-
stitution σ′, which instantiates all variables in Γ1 according to the unification of
Bc and Bx, x by c Γc, and acts on all variables in Γ2 as the identity substitution.

3.4 Properties of M2

The principal property ofM2 which justifies its use for reasoning about closed
LF objects is the following.

Theorem 2. If ·; · ` P ∈ ∀Γ1. ∃Γ2.> is derivable for some P , then for every
closed substitution · ` σ1 : Γ1 there exists a substitution · ` σ2 : Γ2[σ1].

As indicated at the end of Section 2, this, together with the adequacy of the
encodings, guarantees the meta-theoretic properties of the object languages we
can express in M2. Note that this is different from and in many ways simpler
than a full cut-elimination result forM2.

The proof of this central property is non-trivial. What we show is that the
realizing proof terms P can be used to calculate σ2 from σ1. For this purpose,
we define a small-step, call-by-value, continuation-passing operational semantics
for proof terms P with explicit environments and establish the following three
properties.

Type Soundness: Each step in the evaluation of P preserves types and prov-
ability inM2 (the critical idea here is the use of explicit environments rather
than substitution, since substitution may render some branches in a case dis-
tinction inapplicable, thereby invalidating it).
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Progress: At each step we either have a final result, or a rule in the opera-
tional semantics applies (the critical step here shows that all possibilities are
covered in a definition by cases).

Termination: All reduction sequences terminate (the critical step here uses the
well-foundedness restriction on recursion).

Unfortunately, space does not permit us to show the details of this proof or even
the definition of the operational semantics. The interested reader is referred
to [SP98].

4 Twelf

Twelf is a theorem prover for LF which directly implements the meta-logicM2

(including mutual induction and distinction by cases over functions). It provides
an interactive mode for experimentation and an automatic mode in which only
the theorem and the termination ordering are specified. The deduction engine
implements only a few elementary operations which are used to formalize the
three important basic proof principles: inversion (that is, determining all possible
shapes of an LF object from its type), direct proofs (that is, direct construction
of an LF object), and appeals to the induction hypothesis. The interactive mode
also supports lemma application.

4.1 Elementary Operations

We discuss the elementary operations using the proof of the type preservation
theorem as an example. The initial goal

∀D : ev E V, P : of E T. ∃Q : of V T.>

and the induction principle (induction over D) are specified by the user. Twelf
uses only outermost induction, so there is an implicit application of the recursion
rule before the real proof process is started. Then Twelf generates subgoals
by applying its elementary operations until all subgoals are solved, using the
strategy described in Section 4.2.

The most basic step directly constructs a substitution for the existentially
quantified variables using the constants from the signature and the universally
quantified variables. We call this step filling. It is basically a straightforward,
iterative-deepening search over an LF signature and is derived from a related
implementation of resolution for logic programming [Pfe94].

In our example, such a substitution does not exist for the current state, so
the system applies the splitting operation which performs a case analysis: it
inspects the signature for possible constructors for D and generates a list of
three subgoals, automatically updating the context of universal variables.

Case: D = ev lam:

∀P : of (lam E) T. ∃Q : of (lam E) T.>
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Case: D = ev app D3 D2 D1:

∀D3 : ev (E′1 V2) V, D2 : ev E2 V2, D1 : ev E1 (lam E′1),
P : of (app E1 E2) T. ∃Q : of V T.>

Case: D = ev fix D1:

∀D1 : ev (E (fix E)) V, P : of (fix E) T. ∃Q : of V T.>

For the sake of brevity, we skip the discussion of the first two subgoals, and
continue with the third. Inversion is now applied to P in the informal proof,
since there is only one typing rule with a conclusion of the form ·.fix x. e : τ . In
Twelf, inversion is realized by another splitting operation which generates only
one subgoal in this example. The other two potential cases (of lam, of app) do
not need to be considered by Twelf, because their types are incompatible with
the type of P . This leaves the subgoal

∀D1 : ev (E (fix E)) V, P1 : Πx : exp. of x T→ of (E x) T. ∃Q : of V T.>.

Note, that in this goal the variable P1 is functional and represents a hypothetical
derivation.

It is now possible to appeal to the induction hypothesis in an operation we
call recursion. The termination condition of the fix-rule requires that it is only
applied to a term smaller than D = ev fix D1. According to the termination
ordering in [RP96] there is only one possibility, namely D1.

We cannot appeal to the induction hypothesis without providing a typ-
ing derivation as second argument. Formally, the representation of this deriva-
tion must be of type ‘of (E (fix E)) T’. Twelf searches and finds the term
‘P1 (fix E) (of fix P1)’ which represents the result of applying the substitution
lemma (Lemma 1) as used in the proof of Theorem 1. If we call the result of the
appeal to the induction hypothesis Q2, we obtain the following subgoal.

∀D1 : ev (E (fix E)) V, P1 : Πx : exp. of x T→ of (E x) T, Q2 : of V T.
∃Q1 : of V T.>

Twelf is now able to determine in a simple filling step that Q2 is a possible
instantiation for Q1, thereby completing the ev fix-branch of the proof. The
other two branches can be solved similarly. Twelf then reports the proof term
(currently shown in a more readable relational notation as an LF signature,
rather than in the functional notation used to define M2).

4.2 Strategy

The proof strategy of Twelf is a simple combination of the three elementary
operations. But each operation must be applied with care because they are in-
herently expensive in time and space. In particular, we completely avoid back-
tracking except locally during the filling step. Splitting, filling, and recursion use
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unification to analyze cases and to select constants. Recursion triggers the cal-
culation of possible recursion arguments according to the termination ordering
[RP96].

For a given theorem and induction principle, Twelf attempts to construct a
derivation inM2 using the following strategy:

SplittingRecursionFillingSelect Subgoal
no

yes

nono

yes

Q.E.D.no

Unprovableyes

yes

There is a global store of yet to be proven subgoals, initialized with the for-
mula representing the theorem. Once the automated proof process is started,
the strategy activates a subgoal and tries to apply a filling operation.

Filling: The filling operation corresponds to an application of the ∃R-rule: it is
applicable if a substitution instantiating all existentially quantified variables can
be constructed. Because index variables occur in the types of non-index variables,
it is already enough to determine instantiations for all non-index variables (see
Section 2). In general, infinitely many substitutions must be examined, but since
our strategy is parameterized by a number to limit the depth of the search space,
the employed search algorithm is incomplete but will always terminate (even
though failure is sometimes slow).

If Twelf succeeds in constructing the substitution, the current subgoal is
successfully completed and the next subgoal is selected if available, otherwise
Twelf stops (Q.E.D.). If Twelf fails to construct the desired substitution the
strategy tries to apply the recursion operation.

Recursion: The recursion operation corresponds to an application of the ∀L-
rule, immediately followed by an application of the ∃L-rule: Twelf generates all
possible recursive calls by constructing substitutions which correspond to the ar-
guments of the recursive call. These substitutions must satisfy the side condition
of the fix-rule. Because lower-ranked arguments in a lexicographic termination
order actually may increase in size, there are potentially infinitely many different
ways to appeal to the induction hypothesis. Moreover results of recursive calls
can be used to form new ones. Hence, to avoid an infinite chain of applications
of induction hypotheses, our strategy is parameterized by an upper bound on
the number of recursive calls. If no new recursive calls can be generated, the
strategy tries to apply the splitting operation.

Splitting: The splitting operation corresponds to an application of the case-rule.
Twelf selects a universally quantified variable which is not an index variable (see
Section 2). Its type is then used to determine all of its possible shapes (sigempty,
siguni, and signonuni). For each shape, a new subgoal is created. Twelf then
selects among those an active subgoal and tries to apply the filling operation.
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Experiment Ind Lim Filling Splitting Recursion Total

Cartesian Closed Categories 1 4 1.000 0.004 0.036 1.099

CPM Completeness 1 20 0.916 0.010 0.117 1.134
CPM Proof equivalence: ⇒ 1 6 0.226 0.034 0.442 0.951
CPM Proof equivalence: ⇐ 1 6 0.280 0.033 0.647 1.235

Horn LP Soundness 3 4 4.336 0.004 0.049 4.501
Horn LP Canonical forms 3 4 0.028 0.009 0.107 0.303
Horn LP Completeness 2 4 0.015 0.005 0.039 0.195

Mini-ML Value soundness 1 3 0.016 0.041 0.061 0.172
Mini-ML Type preservation 1 6 0.062 0.521 0.150 0.799
Mini-ML Evaluation/Reduction 1 9 25.397 0.007 0.078 25.546

Hilbert’s abstraction theorem 1 4 0.197 0.004 0.010 0.322

Associativity of + 1 3 0.009 0.012 0.016 0.063
Commutativity of + 2 3 0.092 0.609 4.139 4.877

Fig. 3. Experimental results (in CPU seconds)

Among all universally quantified variables Twelf selects the one which gen-
erates the least number of subgoals first (which could be zero if a variable has
a dependent type which does not unify with any constructor type—the sub-
goal succeeds immediately in that case). This heuristic works surprisingly well
in all our examples, we leave a refinement to future research. To avoid an infi-
nite loop of splits (applying splits to the children of a previous split), Twelf is
parametrized by a splitting limit. Hence, there are two cases when the strategy
may stop unsuccessfully: Either there are no further splittable universally quan-
tified variables available, or their types fall outside Miller’s pattern fragment. In
both cases the strategy stops with the message that a proof could not be found.

4.3 Experimental Results

Twelf has successfully proved several non-trivial theorems automatically. In Fig-
ure 3 we give an overview over the experimental results from the areas of pro-
gramming languages and logics. “Ind” states how many simultaneous induction
hypotheses are necessary and “Lim” the maximal size for LF objects (counting
variables and constants, excluding index objects). In all examples the splitting
limit is 2, and the number of recursive calls in each case is limited to 10. “Total”
summarizes time spent for filling, splitting, recursion and miscellaneous tasks
such as parsing, and type reconstruction.

All timings are in CPU seconds, include garbage collection, and have been
taken on a 300 Mhz Pentium-II machine, running Linux 2.30, New Jersey SML
110, and Twelf 1.2.

In the area of Mini-ML, Twelf was used to prove value soundness, i.e., if
e ↪→ v then v is a value, and type preservation (Theorem 1). The third related
theorem, namely that if e ↪→ v then e reduces to v was particularly difficult with
our strategy, since the search space for reductions is rather unstructured. Most
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of the time here is spent in failed attempts to fill incomplete subgoals before
appeals to the induction hypothesis generate the necessary auxiliary reductions.
Twelf also proved completeness of a continuation passing machine (CPM) with
respect to a natural semantics for Mini-ML. The proof constitutes a mapping
from Mini-ML evaluations to computation traces of the abstract machine. But
Twelf cannot verify the soundness direction, because the proof requires complete
induction which is currently not supported. Nonetheless, Twelf could prove that
the soundness proof (coded by hand) can be mapped onto the completeness proof
and vice versa.

In the area of logic, Twelf was used to prove the deduction theorem for
intuitionistic propositional logic using Hilbert’s axiomatization which is used to
translate pure functional programs into combinators. It also proved soundness
and completeness of uniform derivations with respect to resolution for Horn-
logic. From the area of category theory, it proved that Cartesian closed categories
can be embedded into the simply-typed λ-calculus. Finally, we have carried out
some more traditional inductions, proving the associativity and commutativity
of addition on unary natural numbers. Especially the latter is interesting, since
Twelf spends most of its time exploring various ways to apply the rather general
induction hypothesis, while in most other examples filling is the most expensive
operation.

5 Related Work and Future Work

There have been many mechanized proofs of meta-theoretic properties of logics
or programming languages in the literature (see the survey [Pfe96]). Most of these
do not use techniques from logical frameworks, but represent the languages via
standard inductive types and their semantics by inductively defined predicates. A
popular choice for such encodings are de Bruijn indices, since they eliminate the
problem of α-conversion from consideration. However, various lemmas regarding
substitution must still be shown and used, which severely limits the degree of
automation which can be achieved. Most closely related to our own efforts in this
area is the work on ALF [Mag95], since ALF also employs dependently typed
pattern matching and termination orderings, although without the benefits of
higher-order abstract syntax.

Another approach is to represent meta-theoretic proofs as relations in LF,
which leaves the progress and termination properties above to an external check
on relations [PR92]. In this approach, there is no automation besides type re-
construction. The expressive power of LF makes this feasible, but it remains
tedious.

Most closely related to our approach is work by McDowell and Miller [MM97]
who also define a higher-order meta-logicFOλ∆IN for a logical framework (hered-
itary Harrop formulas) and then reason in the meta-logic. Their approach is
based entirely on simple types and does not incorporate proof terms, which
makes it less suitable for automation. Moreover, in order to establish consis-
tency for their meta-logic, they limit induction to natural numbers, which also
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complicates automation. In fact, their implementation based on the Pi proof ed-
itor [Eri94] is entirely interactive. On the other hand, FOλ∆IN does not restrict
itself to Π2-formulas. In addition, McDowell has demonstrated the flexibility
of his approach in his thesis [McD97] where he also treats a logical framework
incorporating linearity. Since the overall architecture is quite similar, this gives
us confidence that our approach may be extended to a linear logical frame-
work [CP96], which is planned in future work. We believe that the separation
between logical framework and meta-logic, and the separation between defini-
tion by cases and well-founded recursion are all critical ingredients in making
this idea successful for even richer logical frameworks than LF.

While the set of theorems we can prove at present is already surprisingly
rich, they are limited by three factors: (1) we do not attempt to automati-
cally use lemmas, (2) only lexicographic extensions of subterm orderings are
permitted to show termination, and (3) M2 does not support reasoning about
open LF objects. We believe that (1) and (2) can be addressed by incorporating
standard techniques from inductive theorem proving, efficiency improvements
such as indexing, and simply allowing more complex termination orderings.
Nonetheless, we have currently no plans for developing Twelf into a general-
purpose theorem prover, because we feel that its present success owes mostly
to its design as a special-purpose prover for properties of programming lan-
guages and logics. We are currently investigating how to incorporate ideas from
schema-checking [Roh94] and primitive recursion over higher-order abstract syn-
tax [DPS97] into our meta-logical framework in order to make progress on item
(3), that is, allow reasoning over terms which may have free variables from cer-
tain regular contexts which arise in many practical examples.
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pages 119–134, Linköping, Sweden, April 1996. Springer-Verlag LNCS 1059.
Invited talk.

[PR92] Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of
deductive systems. In D. Kapur, editor, Proceedings of the 11th International
Conference on Automated Deduction, pages 537–551, Saratoga Springs, New
York, June 1992. Springer-Verlag LNAI 607.

[Roh94] Ekkehard Rohwedder. Verifying the meta-theory of deductive systems. Thesis
Proposal, February 1994.

[RP96] Ekkehard Rohwedder and Frank Pfenning. Mode and termination checking for
higher-order logic programs. In Hanne Riis Nielson, editor, Proceedings of the
European Symposium on Programming, pages 296–310, Linköping, Sweden,
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