
Elf: A Meta-Language for Deductive Systems
(System Description)

Frank Pfenning?

Department of Computer Science,
Carnegie Mellon University,

Pittsburgh, PA 15213, U.S.A.

1 Overview

Elf is a uniform meta-language for the formalization of the theory of programming
languages and logics. It provides means for

1. specifying the abstract syntax and semantics of an object language in a natural
and direct way;

2. implementing related algorithms (e.g., for type inference, evaluation, or proof
search); and

3. representing proofs of meta-theorems about an object language, its semantics,
and its implementation.

Its conceptual basis are deductive systems which are used pervasively in the study
of logic and the theory of programming languages. Logics and type systems for pro-
gramming languages, for example, are often specified via inference rules. Structured
operational semantics and natural semantics also employ deductive systems, and other
means for semantic specification (for example, by rewrite rules) can be easily cast into
this framework. Many meta-theorems can be proved by induction over the structure
of derivations.

Elf’s formal foundation is the logical framework LF [5] in which systems of natural
deduction can be concisely represented. LF employs the judgments-as-types encoding
technique for the representation of derivations in a type theory with dependent types.
In addition, Elf provides sophisticated type reconstruction and a constraint logic
programming interpretation for LF. The latter allows the execution of algorithms
when expressed as deductive systems. Proofs of meta-theorems can be represented
concisely as higher-level judgments relating derivations.

The most complete reference describing the Elf language is [10]. Gentler introduc-
tions can be found in [12] and [6]. Elf has also been used in a graduate course on
the theory of programming languages. A draft of the course notes may be available
from the author upon request. Below we provide a brief overview of how specifica-
tion, implementation, and meta-theory tasks are supported in the Elf language. The
subsequent sections list some case studies and describe the implementation of Elf.
Object Language Specification. LF generalizes first-order terms by allowing ob-
jects from a dependently typed λ-calculus to represent object language expressions.
This allows variables in the object language to be represented by variables in the meta-
language, using the technique of higher-order abstract syntax. Common operations

? Internet address: fp@cs.cmu.edu



(e.g., renaming of bound variables or substitution) and side-conditions on inference
rules (e.g., occurrence restrictions on variables) are thus built into the framework and
do not need to be coded up anew for each object language. Another important advan-
tage of this technique is that it greatly simplifies the representation of meta-theoretic
proofs.

For semantic specification LF uses the judgments-as-types representation tech-
nique: a judgment J is represented by a type A and a derivation D of J by an object
M of type A. Such an encoding is adequate if there is a bijection between canonical
LF objects of type A and derivations D of J . For adequate encodings, checking the
validity of a proposed derivation D for a judgment J is reduced to type-checking the
representation M of D in the LF type theory. As type-checking for LF is decidable,
this yields an effective procedure for checking derivations.

In combination with higher-order abstract syntax, this technique also allows direct
representation of parametric (sometimes called generic) and hypothetical judgments
without cumbersome, explicit side-conditions on inference rules.

Object Language Implementation. Once a language and its semantics have been
represented in LF, one would often like to program and execute related algorithms. In
other framework implementations, these algorithms are typically written in a different
(meta-)meta-language such as ML, for example using tactics and tacticals. This has
the disadvantage that it is difficult, if not impossible, to reason formally about these
algorithms.

Thus we pursue another approach in which deductive systems are given an op-
erational interpretation. This has been inspired by the logic programming language
λProlog [8] which gives an operational interpretation to hereditary Harrop formulas.
Similarly, Elf gives an operational interpretation to types. While λProlog aspires to
be a general purpose programming language and thus includes non-logical features
such as cut, primitives for input and output, etc., Elf remains pure. Consequently, not
all algorithms can be expressed faithfully or implemented efficiently, and Elf should
be considered a prototyping and experimentation tool. On the other hand the purity
and simplicity of the language enables us to represent proofs of some properties of Elf
programs within Elf itself.

Our experience with Elf has also shown that in many cases specifications them-
selves are executable. A good example of this phenomenon is natural semantics, which
is usually structured so that goal-oriented search for a derivation as performed by the
Elf interpreter corresponds directly to evaluation in the object language. We would
like to emphasize, however, that this is usually not the case for logics: an encoding of
natural deduction for a logic does not automatically give rise to a search procedure.
Theorem provers for object logics have to be programmed explicitly. Standard tech-
niques (e.g. iterative deepening, or tactics and tacticals) are readily implementable in
Elf. For truly interactive theorem proving, some ML programming is also necessary
due to the lack of input and output primitives in Elf.

Meta-Theory. Many proofs in the theory of programming languages proceed by in-
duction over the structure of terms or derivations. It is well-known that such proofs
give rise to primitive recursive functions. Unfortunately, the presence of induction
principles or primitive recursive function objects conflicts with higher-order abstract
syntax and the central encoding techniques for parametric and hypothetical judg-
ments.



Instead, we continue to follow ideas from logic programming by representing the
functions which could be extracted from meta-proofs as higher-level judgments relat-
ing derivations. This captures the computational contents of meta-proofs, i.e., they
can be executed. While type-checking in Elf guarantees local consistency of this kind of
representation, it cannot guarantee that a judgment represents a total function. Thus,
while we can implement, partially verify, and execute the meta-theory of deductive
systems, at present Elf cannot guarantee the validity of a meta-proof. We are currently
implementing a schema-checker that would verify that higher-level judgments follow
a schema akin to primitive recursion, thus, in combination with the type-checker, ver-
ifying meta-proofs. Some preliminary ideas related to schema-checking can be found
in [13].

2 Case Studies

A number of case studies have been carried out using Elf, most of which are dis-
tributed with the Elf source. Each example deals with a language, some aspects of
implementation, and some meta-theory. Among these examples are various logics and
logical interpretations, following the ideas laid out in [5]. We have also investigated the
theory of logic programming and uniform proofs in this context. We have further im-
plemented a small functional language with polymorphism and recursion and proved
various properties such as type preservation [6]. For a proof of compiler correctness
for essentially the same language, see [4]. Penny Anderson [1] has implemented a con-
structive logic, an extraction procedure for functional programs, and some aspects
of the correctness proof for this procedure. We have also implemented a proof of the
Church-Rosser theorem for the untyped λ-calculus [9]. Other unpublished experiments
include type reconstruction for the polymorphic λ-calculus, a proof of the equivalence
of Cartesian Closed Categories and the simply-typed λ-calculus (A. Filinski), an im-
plementation of Monads (W. Gehrke), and a correctness proof for CPS conversion
(O. Danvy).

3 The Elf Implementation

Elf is implemented in Standard ML of New Jersey; only a few minor changes would be
required for other implementations of SML. The implementation is highly modular,
taking advantage of the module system of SML. The core of the implementation is
a λ-calculus with type : type which is general enough to encompass the Calculus of
Constructions and the LF type theory. Precisely which quantifications are allowed is
specified in a separate module, giving rise to various concrete type theories.1 Building
upon this core, we have implemented a constraint solving algorithm [10, 11] for the
full core calculus and a pre-unification algorithm [3] for LF. The main constraint
solver simplifies equations between typed λ-terms. For reasons discussed in [7], the
pre-unification algorithm is currently not in use, although with the ML module system
it is easy to construct a system which employs it.

Based on the constraint solver, we have implemented an algorithm for type recon-
struction, again for the full core calculus. Because of the undecidability of the general

1 The current implementation is not general enough to encompass all Pure Type Systems.



reconstruction problem [2], the algorithm will either report a principal type, a type
error, or an indication that the source term contained insufficient type information for
unambiguous reconstruction. It is always possible to add enough types to the source
so that the typing becomes unambiguous.

Type reconstruction for Elf is practical: parsing and checking the types of the
meta-proof of the Church-Rosser theorem for the untyped λ-calculus, for example,
takes about 5 seconds on a SparcStation IPX. This proof, described in [9], consists of
1852 words (374 lines) of Elf source code. After type reconstruction, the proof consists
of 3922 words (439 dense lines). On many examples, the fully typed source expressions
will be 3–5 times larger than the actual input.

The logic programming module is specific to Elf. It implements an interpreter
using an interactive top-level similar to that of Prolog. Ignoring some of the more
advanced features, one may think of it as a typed version of a Prolog interpreter
which maintains derivations of queries in the form of λ-terms. Queries can be of the
form

?- M : A. or ?- A.

The type A represents a judgment, the object M its derivation. If M is given, this
represents a type-checking query; if M is a free variable, the query triggers search for an
object of type A, i.e., an object representing a derivation of the judgment represented
by A. In the second form, the derivation M need not be explicitly constructed, which
can be significantly more efficient than the first form. Queries in either form may
contain free variables that may be instantiated during constraint simplification or by
resolution. Search proceeds in a depth-first fashion as in Prolog and is thus predictable
though incomplete as a theorem prover. Unlike λProlog’s higher-order unification,
the constraint solver will never make non-deterministic choices; all choices are made
during subgoal and clause selection. As a consequence, constraints may remain even
after execution, where each solution to the constraints (possibly none) yields an answer
to the original query.

Even though Elf does not compile programs or queries, it applies some standard
optimizations known from logic programming interpreters and a few which are spe-
cific to Elf. Among the general optimizations are clause indexing, elimination of some
unnecessary occurs-checks, and the use of efficient global symbol tables. Among the
specific optimization are avoidance of redundant unifications and elimination of un-
necessary proof objects. Rationales for the various implementation design decisions
and an empirical analysis of the runtime behavior of Elf programs can be found in [7].

Together with the implementation we distribute some Emacs Lisp files that allow
Elf to run as an inferior process to GNU Emacs. This includes a recently completed
incremental type-checker which allows the programmer to check individual declara-
tions, thus tightening the usual feedback loop of editing, type-checking a whole file,
locating the source of a possible type error, etc. It can also be used to query types
of subterms or to obtain a menu of possible constructors for objects valid in a given
subterm location.

Elf can be retrieved by anonymous ftp from alonzo.tip.cs.cmu.edu, direc-
tory /afs/cs/user/fp/public. Copies of papers related to Elf can be found in
the elf-papers subdirectory. Please see the README files for further information.
There is also a mailing list with announcements regarding Elf; please send mail to
elf-request@cs.cmu.edu to join the list.



Acknowledgments. The author would like to acknowledge the contributions of Spiro
Michaylov, Ekkehard Rohwedder, Conal Elliott, and Ken Cline to the Elf implemen-
tation. This work was supported in part by NSF Grant CCR-9303383 and by the
U.S. Air Force under Contract F33615-90-C-1465, ARPA Order No. 7597.

References

1. Penny Anderson. Program Derivation by Proof Transformation. PhD thesis, Carnegie
Mellon University, October 1993. Available as Technical Report CMU-CS-93-206.

2. Gilles Dowek. The undecidability of typability in the lambda-pi-calculus. In M. Bezem
and J.F. Groote, editors, Proceedings of the International Conference on Typed Lambda
Calculi and Applications, TLCA’93, pages 139–145, Utrecht, The Netherlands, March
1993. Springer-Verlag LNCS 664.

3. Conal Elliott. Higher-order unification with dependent types. In N. Dershowitz, editor,
Rewriting Techniques and Applications, pages 121–136, Chapel Hill, North Carolina,
April 1989. Springer-Verlag LNCS 355.

4. John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov,
editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages 407–418,
Santa Cruz, California, June 1992. IEEE Computer Society Press.

5. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

6. Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-theory in
Elf. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors, Proceedings of the
Second International Workshop on Extensions of Logic Programming, pages 299–344,
Stockholm, Sweden, January 1991. Springer-Verlag LNAI 596.

7. Spiro Michaylov and Frank Pfenning. An empirical study of the runtime behavior of
higher-order logic programs. In D. Miller, editor, Proceedings of the Workshop on the
λProlog Programming Language, pages 257–271, Philadelphia, Pennsylvania, July 1992.
University of Pennsylvania. Available as Technical Report MS-CIS-92-86.

8. Gopalan Nadathur and Dale Miller. An overview of λProlog. In Robert A. Kowalski
and Kenneth A. Bowen, editors, Logic Programming: Proceedings of the Fifth Interna-
tional Conference and Symposium, Volume 1, pages 810–827, Cambridge, Massachusetts,
August 1988. MIT Press.

9. Frank Pfenning. A proof of the Church-Rosser theorem and its representation in a logical
framework. Journal of Automated Reasoning, 199? To appear.

10. Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet
and Gordon Plotkin, editors, Logical Frameworks, pages 149–181. Cambridge University
Press, 1991.

11. Frank Pfenning. Unification and anti-unification in the Calculus of Constructions. In
Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74–85, Amsterdam,
The Netherlands, July 1991.

12. Frank Pfenning. Dependent types in logic programming. In Frank Pfenning, editor,
Types in Logic Programming, chapter 10, pages 285–311. MIT Press, Cambridge, Mas-
sachusetts, 1992.

13. Frank Pfenning and Ekkehard Rohwedder. Implementing the meta-theory of deduc-
tive systems. In D. Kapur, editor, Proceedings of the 11th International Conference on
Automated Deduction, pages 537–551, Saratoga Springs, New York, June 1992. Springer-
Verlag LNAI 607.

This article was processed using the LaTEX macro package with LLNCS style


