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Abstract. We exhibit a methodology for formulating and verifying meta-
theorems about deductive systems in the EIf language, an implementation
of the LF Logical Framework with an operational semantics in the spirit of
logic programming. It is based on the mechanical verification of properties of
transformations between deductions, which relies on type reconstruction and
schema-checking. The latter is justified by induction principles for closed LF
objects, which can be constructed over a given signature. We illustrate our
technique through several examples, the most extensive of which is an interpre-
tation of classical logic in minimal logic through a continuation-passing-style
transformation on proofs.

1 Introduction

Formal deductive systems have become an important tool in computer science. They
are used to specify logics, type systems, operational semantics and other aspects of
languages. The role of such specifications is three-fold. Firstly, inference rules serve
as a high-level notation which helps to explain the meaning of the language under
consideration. This was one of Gentzen’s original motivations for his calculus of nat-
ural deduction [10]. Secondly, they can form the basis for an implementation of a
deductive system. For example, it is not difficult to translate an operational seman-
tics presented in the style of natural deduction [18, 13, 4] into an implementation of
an interpreter. Thirdly, deductive systems help in developing the meta-theory of a
language. For example, the soundness of a type system with respect to an opera-
tional semantics is most easily expressed as a property of two inference systems.
The LF Logical Framework [16] has been designed to provide an appropriate
language for the high-level specification of deductive systems. In LF, judgments are
represented as types and deductions as objects. The validity of a deduction is reduced
to the well-typedness of the representing object. Since type-checking in the LF type
theory is decidable, purported deductions can be checked automatically for validity.
However, LF is a powerful basis for much more comprehensive tasks than mere
proof-checking. Unification and proof search algorithms have been developed [7, 27,
28, 24] and it has been amenable to an operational interpretation which is realized
in the Elf programming language [21, 23]. A wide range of deductive systems have



been specified in LF and implemented in EIf [1, 15, 19, 20].

In this paper we investigate the use of EIf to implement the meta-theory of
deductive systems, thus addressing the third of the principal applications listed
above. Our approach is based on three observations. Firstly, in LF deductions are
represented as objects and can thus be part of higher-level judgments. For example,
it is easy to write down rules defining the judgment of “normal form” as it applies to
natural deductions. Secondly, proofs of properties of deductive systems (henceforth
called meta-proofs) often rely on transformations between deductive systems. Such
transformations can be represented in LF (and implemented in Elf) as judgments
relating deductions. Thirdly, due to the rich type structure of LF, it is often possible
to check certain properties of such judgments purely mechanically.

Thus our methodology for the verification of meta-theorems presents itself as
follows. Stage 1 (Syntax) is the representation of the object languages under con-
sideration. Stage 2 (Judgments)is the definition of the deductive systems following
the LF methodology. Stage 3 (Deduction Transformations) is the formulation
of transformations between the deductive systems as higher-level judgments. Stage
4 (Schema-Checking) is the mechanical verification of a property of the transfor-
mations axiomatized in Stage 3. We have carried out this methodology for a number
of examples, the most intricate of which is a verification of the subject reduction
property for Mini-ML [5, 20]. Currently, Stage 4 is done mostly by hand, as we
have not yet implemented a general schema-checker. As we will illustrate, in the
current Elf implementation schema-checking can be directly achieved through a set
of queries which can be constructed from a signature on a case-by-case basis.

It is unclear if the methodology and implementation (when it is complete) as de-
scribed so far deserves the label “automated theorem prover”. Clearly, it can verify
many theorems far beyond the scope of current theorem provers. Moreover, a signif-
icant part of the verification is carried out automatically during term reconstruction,
type-checking, and schema-checking. On the other hand, for difficult meta-theorems,
the transformations constructed in Stage 3 must be carefully engineered so as to be
amenable to schema-checking.

The difficulty of constructing the crucial transformations at Stage 3 varies greatly
from problem to problem. In some cases —exemplified in Section 3— a routine au-
tomatic construction of the transformation from the inference systems given appears
feasible as well as sufficient for complete verification. In other cases it is difficult—
either because of the sheer intricacy and size of the systems involved, or because of
the inherent difficulty of the meta-proof. An example of the latter is the normal-
ization theorem for the polymorphic A-calculus, which is beyond the scope of our
techniques as we have developed them so far. We have been able to verify:

e evaluation of a Mini-ML expression results in a value if it terminates,

e equivalence of an algorithmic and a more declarative operational semantics for
Mini-ML,

e type-soundness of Mini-ML (sometimes called the subject reduction theorem),
including polymorphism,

e correctness of a compiler from Mini-ML to a variant of the Categorical Abstract
Machine [14],



e the deduction theorem for an axiomatic formulation of propositional logic in
the style of Hilbert,

e equivalence of natural deduction and Hilbert’s calculus,

e soundness of two theorem provers, one using Prolog-style depth-first search
and one employing bounded search,

e equivalence of two formulations of the Lambek-calculus,
e correctness of 8 different logic interpretations in the propositional calculus,

e soundness of an algorithm for deciding equality in the simply-typed A-calculus.

In each of these cases the meta-proofs turned out to be very natural, compact, and
relatively easy to construct, since they are operationally meaningful (as translations
between deductions). They are also very close to an informal argument one might
give to prove the corresponding meta-theorems and, with an appropriate interface,
could be used to explain the meta-theorems and their proofs.

Schema-checking as presented in this paper verifies properties of signatures.
Therefore, our work draws upon a calculus for LF signatures [17]. In that paper, it
is also shown how some simple meta-theoretic properties can be witnessed directly
by realizations (functions between signatures). The limitations of this alternative
approach are also discussed, but more work is required to understand the precise
relationship to schema-checking. Another line of investigation is followed by Basin
and Constable [2], who propose using inductively defined types in the NuPrl type
theory in order to represent deductive systems. However, their approach is not espe-
cially tailored towards developing the meta-theory of deductive systems, but applies
an already existing apparatus to a new and more difficult problem. We feel that
one can gain significantly by moving to a meta-language such as LF which has been
specifically designed for the task of formalizing deductive systems. One can then
take advantage of built-in support for such ubiquitous concepts as free and bound
variables, substitution, hypothetical reasoning, or schematic judgments.

The primary difficulty in applying our methodology is to construct the transfor-
mations between deductions. Due to the strong constraints imposed by the depen-
dent types, we believe that in many cases such transformations could be constructed
automatically. Other work in inductive theorem proving and logic programming
such as, for example [3, 12, 26], should be applicable in our setting to aid in the
construction of such transformations. Closely related to the ideas presented here is
work by Fribourg [9] in the simpler setting of Horn clauses. Again, his ideas could
add to the degree of automation available within our methodology.

The remainder of this paper is organized as follows: In Section 2 we present
some of the basic ideas behind Elf, schema-checking, and its connection to proof
by induction, using the natural numbers as a very simple example. In Section 3 we
illustrate the use of transformations between deductions and introduce the important
notion of unit refinement. As an example we demonstrate that evaluation of an
expression in a simple functional language always returns a value. In Section 4 we
sketch a more comprehensive example, verifying an interpretation of classical logic
in minimal logic by way of a continuation-passing-style (CPS) transformation on
proofs. We end with a summary and some speculation about future directions in
Section 5.



2 LF Signatures and Induction

Syntax. The first stage in the representation of a deductive system is to declare the
underlying languages. We begin with a particularly simple and familiar example:
the natural numbers.

nat : type.
z : nat.
s : nat -> nat.

nat is declared as a type and z and s as constructors for data of this type. Valid
(that is, well-typed), closed objects of type nat represent natural numbers. We
refer to a list of declarations such as the ones above as a signature. A calculus of
signatures for Elf is described in [17]. As this module calculus has not yet been
implemented, we only use the Elf core language in this exposition.

Judgments. The calculus of functions underlying LF is not very rich: it permits
only A-abstraction and application, and functions cannot be defined by primitive
recursion, for example. This is an important requirement and cannot easily be
relaxed, because it would destroy the adequacy of encodings of deductive systems in
LF (see [16] and [17] for further discussion). Thus, non-trivial operations on objects
must be defined as relations. Fortunately, such relations are operationally adequate
within the Elf programming language, as Elf gives them an operational reading in
the style of Prolog. We consider a simple double predicate.

double : nat -> nat -> type.
dbl_z : double z z.
dbl_s : double (s N) (s (s M)) <- double N M.

The relation double is realized as a so-called type family indexed by two objects
which are natural numbers. For readers familiar with the Curry-Howard isomor-
phism between propositions and types, it should come as no great surprise that we
can represent relations this way. The left-arrow is mere syntactic sugar, and B <- A
and A -> B are parsed into the same internal form. The constants dbl_z and dbl_s
construct objects which represent deductions. For example,

dbl_s (dbl_s (dbl_z)) : double (s (s z)) (s (s (s (s 2)))).

represents a deduction which establishes that 4 is the double of 2. This object would
be constructed by the Elf interpreter when executing the query

?- double (s (s z)) M.

Here M is a free variable which is treated as a logic variable. That is, we simultane-
ously search for objects M : nat and P : double (s (s z)) M.

Free variables in declarations are implicitly quantified as in Prolog. In Elf, such
implicit quantifiers are inferred during parsing. The explicit form for the last decla-
ration above would be



dbl_s : {N:nat} {M:nat} double N M -> double (s N) (s (s M)).

{x:A} B is Elf’s concrete syntax for Ilz:A. B, where II is the dependent function
type constructor. Thus, dbl_s is really a function of three arguments: it accepts a
natural number N, a natural number M, and then a deduction establishing that M is
the double of N. It constructs a deduction showing that (s (s M)) is the double of
(s N). Implicit quantifiers give rise to implicit arguments, and in its full form the
proof object from the example above would be

(dbl_s (s z) (s (s z)) (dbl_s z z (dbl_z)))
double (s (s z)) (s (s (s (58 2)))).

The gaps in the first form shown above are filled during term reconstruction in Elf,
which employs an algorithm for solving constraints between types, described in [24].
For a further discussion on term reconstruction and the operational semantics of Elf,
the reader is referred to [23].

Schema-Checking — Induction. In this first example, we will directly verify a
property of double, so there is no need to formulate a translation between deductions
as they arise in Sections 3 and 4. The meta-theorem we verify states that double is
total in its first argument.

For every valid, closed object n of type nat, there exists a valid, closed
object M of type nat and a valid, closed object P of type double n M.

Implicit in this statement is the signature from which the constants in n, M, and
P can be drawn, which consists of all the declarations we have considered so far.
Henceforth we will omit the adjective “valid” and only consider valid objects. This
meta-theorem can be proven by an induction over the canonical forms of LF types
and objects constructible from constants in the given signature. This induction
argument cannot be internalized. That is, there are no closed objects M and P such
that P: {n:nat} double n (M n).

Now we are at an important crossroads. One choice is to formalize LF and build
meta-theorem proving tools so that statements about signatures of the form above
can be expressed and verified. This option appears prohibitively complex. The
second choice is to identify general, decidable criteria for the totality of relations.
A desired theorem is then verified if we can show that it is equivalent to one which
satisfies such a schematic criterion.

These alternatives have a connection to the ideas behind primitive recursion.
If we would like to show that a function is total, we can either reason about the
function within an appropriate logic, or we can present its definition in the form of
a primitive recursion. Interestingly, neither choice is a priori weaker than the other.
For example, the functions provably total in second-order arithmetic are exactly
the functions which can be defined using a schema of primitive recursion at higher
types [8].

As we hope to illustrate in this paper, the latter choice is a very natural one,
and many examples can be treated very elegantly. Moreover, it does not preclude
the application of automated theorem proving methods, as they can be used to
synthesize schematic relations. This is one of Fribourg’s basic observations [9] and



illustrated in Section 3. But even without any automatic assistance beyond term
reconstruction it is feasible to demonstrate non-trivial meta-theorems.

We now return to the example. The induction principle for objects constructed
over the given signature is just the familiar induction principle for natural numbers.

For any property P, if P holds for z, and, whenever P holds for a closed
object n of type nat then it also holds for (s n), then P holds for every
closed object of type nat.

Interestingly, even though this principle cannot be internalized, instances of this
schema for a certain P can be checked by formulating an appropriate Elf query. In
this simple case, we can prove that double must be total in its first argument if the
queries

7- double z Qz.
?- {n:nat} {m:nat} double n m -> double (s n) (Qs n m).

both succeed. Note that the substitution terms for Qz and Qs, namely
Qz = z, Qs = [n:nat] [m:nat] s (s m)

can be used to synthesize a schema of primitive recursion for the functional version
dbl of double:

dbl z = Qz = z
dbl (s n) = Qs n (dbl n) = dbl (s (s n))

Here, [x:A] B is Elf concrete syntax for A\z:A. B.

Many types, such as the type of exp defined below, are not inductive in the usual
sense (see, for example, [6]). However, we can still derive a form of an induction
principle for those types, as we limit ourselves to closed LF terms constructed over
a fixed given signature.

3 A Functional Language Fragment

To illustrate our technique further, consider a fragment of some functional language
(here () represents a unit constant):

Ezpressions e = x| Xx.e|ee]| ()] (ee)|mi(e)]|m(e)

Syntax. The above syntax can be formulated directly with the following decla-
rations:

exp : type. unit: exp.
lam : (exp -> exp) -> exp. pair: exp -> exp -> exp.
app : exp -> exp -> exp. pil : exp —-> exp. pi2 : exp —> exp.

The binding construct Az.e is represented using higher-order abstract syntaz,
whereby meta-language abstraction represents object-level binding. This also means
that EIf variables of type exp serve as variables of our object language.



Judgments. The following is an inference system defining (call-by-value) eval-
uation of expressions:

e1 <= \z. e} €9 <> Vs [ve/z]€] — v
——  lam app
AT.e = A\x.e €1 ey — v
) er — v €2 > vy e = (v1,v2)
unit pair —pj;
()=0 (e1,€2) = (v1,v2) i€ — V;

Three more rules determine which expressions are considered to be values:

ler les |
—— unit —lam ——————————— palr
L) Iz e 1 (er, e2)
These inference rules can be transcribed directly into Elf.

eval : exp —-> exp -> type.
eval_unit : eval unit unit.
eval_pair : eval (pair E1 E2) (pair V1 V2) <- eval E1 V1 <- eval E2 V2.
eval_pil : eval (pil E) V1 <- eval E (pair V1 V2).
eval_pi2 : eval (pi2 E) V2 <- eval E (pair V1 V2).
eval_lam : eval (lam E) (lam E).

eval_app_lam : eval (app E1 E2) V
<- eval E1 (lam E1’)
<- eval E2 V2
<- eval (E1’ V2) V.

value : exp —-> type.

val_unit : value unit.

val_pair : value E1 -> value E2 -> value (pair E1 E2).
val_lam : value (lam E).

Deduction Transformations. We would now like to state and verify a simple
property relating evaluation and values, namely that the evaluation of an expression
always yields a value. This is accomplished via the relation:

vr : eval E V -> value V -> type.

We have to write this relation in such a way that it can be used to establish the
following:

For every closed object p of type eval e v (where e, v are closed objects
of type exp), there exists a closed object VP of type value v and a closed
object R of type vr p VP.

To substantiate the above claim we need to define the transformation vr by covering
the possible cases for eval, i.e., for each proof that some expression E evaluates to V
we have to supply a deduction showing that V is indeed a value. This is accomplished
with the following clauses:



vr_unit : vr (eval_unit) (val_unit).

vr_pair : vr (eval_pair P2 P1) (val_pair VP1 VP2)
<- vr P1 VP1
<- vr P2 VP2.

vr_pil : vr (eval_pil P) VP1 <- vr P (val_pair VP1 VP2).
vr_pi2 : vr (eval_pi2 P) VP2 <- vr P (val_pair VP1 VP2).
vr_lam : vr (eval_lam) (val_lam).

vr_app_lam : vr (eval_app_lam P3 P2 P1) VP3 <- vr P3 VP3.

Schema-Checking As in the previous section, schema-checking can be per-
formed by formulating a sequence of queries which check the various cases of the
induction proof.

?7- vr (eval_unit) Qunit.
?7- vr (eval_lam) Qlam.
?7- {el:exp} {e2:exp} {vi:exp} {v2:exp} {m:eval e2 v2} {n: eval el vi}
{q: value v2} {q’:value vi}
vrmq ->vranq’
-> vr (eval_pair m n) (Qpair el e2 vl v2mn q q’).
?7- {e:exp} {vi:exp} {v2:exp} {m:eval e (pair vl v2)} {q: value (pair v1 v2)}
vr m q -> vr (eval_pil m) (Qpil e vl v2 m q).
?- {el:exp} {el’:exp -> exp} {e2:exp} {v:exp} {v2:exp} {m:eval (el’ v2) v}
{n: eval e2 v2} {o: eval el (lam el’)} {q: value v} {q’: value v2}
{q’’: value (lam el’)}
vrmqg ->vrngq’ ->vroq’’
-> vr (eval_app_lam m n o) (Qapp_lam el el’ e2 vv2mn oqq’ q’’).

Unfortunately, the cases for eval_pil and eval_pi2 fail, while the others suc-
ceed. When analyzing the rule

vr_pil : vr (eval_pil P) VP1 <- vr P (val_pair VP1 VP2).

the reason becomes clear: in order to show totality of vr in its first argument, we need
to know that, in this case, vr P (val_pair VP1 VP2) always succeeds! But this re-
lies on a subtle point: P has type eval E (pair V1 V2) for some E, V1, and V2, and
therefore the second argument of vr P VP must have type value (pair V1 V2).
But there is only one rule constructing a deduction with this conclusion, and there-
fore any closed VP of this type must have the form (val_pair VP1 VP2) for some
VP1 and VP2. This observation gives rise to the following unit refinement principle:

For any property P such that P holds of q : value (pair v1 v2)
there exist q1 : value vl and g2 : value v2 such that P holds of
value_pair ql g2.

Note that such a principle holds whenever the principal constructor of deductions of
a given judgment is uniquely determined from the judgment. This kind of reasoning
arises quite often in informal meta-proofs, sometimes in a more general form using
an auxiliary induction. It is closely related to the notion of iff-completion of logic
programs.

If we Skolemize this unit refinement principle and refine our induction accord-
ingly, the queries can now be executed successfully. The additional assumptions
appear as constants q1 and q2.



?7- {e:exp} {vi:exp} {v2:exp} {m:eval e (pair v1 v2)} {q:value (pair vi v2)}
{ql:value (pair v1 v2) -> value vi} {g2:value (pair v1 v2) -> value v2}
({Q:value (pair v1 v2)} vr m Q -> vr m (val_pair (q1 Q) (g2 Q)))
->vrmq
-> vr (eval_pil m) (Qpil e vl v2 m q q1 g2).

This succeeds with substitution Qpil = [e] [v1] [v2] [m] [q] [q1] [92] q1 q.

4 Logic Interpretations and CPS Transform

In [11], Griffin presents a number of interpretations between logics and shows how
they can be viewed as computational simulations. We have transcribed and verified
8 of these interpretations. In this section we will verify the type-soundness of the
continuation-passing-style (CPS) transform of Plotkin [25], which is one of Griffin’s
examples.

Syntax. Once more, the first task will be to represent the logics under considera-
tion. Here we deal with a propositional logic, which allows their direct interpretation
as types of a programming language (using the Curry-Howard isomorphism). We
use « and 3 to range over formulas.

Formulas o« == p|lla—alaha|laVa

The representation of these in Elf is straightforward. Propositional variables p are
not directly represented, but become meta-variables, that is, variables in the meta-
language Elf.

form : type.
bot : form. imp : form -> form -> form.
and : form -> form -> form. or : form -> form -> form.

Judgments. Now we would like to formulate the necessary judgments. These
are provability in minimal and classical propositional logic. Instead of separating ex-
pressions in a programming language and proofs in the propositional calculi, we can
think of the deductions of formulas in these logics directly as functional programs.

Proofs M = x| x.M|MM|(M,M)|m(M)|n(M)
| inj; (M) | inj (M) | case(M, Az. M, Az.M)

Not all expressions which follow this grammar are actually meaningful. For example,
m1(Az.z) does not make sense as a proof. In the Elf representation below we directly
capture the conditions under which a proof is meaningful or valid. Essentially, a
proof is indexed by the formula that it establishes. This can also be thought of as
a refinement of the representation of untyped programs in Section 3, by indexing
expressions by their type, thus dividing and restricting the space of legal programs.
For a further discussion of such issues of representation, the reader is referred to [16].

pf : form -> type.



%% minimal logic

lam : (pf A -> pf B) -> pf (imp A B).

app : pf (imp A B) -> pf A -> pf B.

pair : pf A -> pf B -> pf (and A B).

pil : pf (and A B) -> pf A.

pi2 : pf (and A B) -> pf B.

inj1 : pf A -> pf (or A B).

inj2 : pf B -> pf (or A B).

case : pf (or A B) -> (pf A -> pf C) -> (pf B -> pf C) -> pf C.
aa : pf bot -> pf A. %% intuitionistic logic
kk : pf (imp (imp A bot) A) -> pf A. %% classical logic

For example, app takes a proof of a — (8 and a proof of a and returns a proof
of 3.1 This representation is adequate in the sense that every natural deduction of
a formula o can be represented by an object of type pf A and vice versa. Here A is
the representation of a.

The proof constructors aa (representing the intuitionistic rule of absurdity) cor-
responds to an aborting operator, and kk corresponds to Scheme’s call/cc, though
this correspondence is not explored here.

Deduction Transformations. We now present the interpretation () which
maps classically provable formulas into formulas provable in minimal logic.

*

a = o

1* = 1

pr = p
(anp)* = a*Ap*
(avp) = a*Vvp
(a—=pB)* = a* =8

The mutually recursive definitions of translations () and ()* are easily repre-
sented relationally in Elf.2 This representation is operationally adequate.

cps- : form -> form -> type.
cps* : form -> form -> type.

dblneg : cps— A (imp (imp A* bot) bot) <- cps* A Ax.

cps*_bot : cps* bot bot.

cps*_and : cps*x (and A B) (and A* B*) <- cps* A A* <- cps* B B*.
cps*_or : cpsx (or A B) (or Ax Bx) <- cps*x A A* <- cps* B B*.
cps*_imp : cps* (imp A B) (imp A* B-) <- cps* A A* <- cps- B B-.

This represents the translations above in the following sense: a* = 3 holds
iff cps* A B, where A is the representation of o, and B is the representation of 3.
Similary, translation () is represented by cps-. We will verify the following theorem:

! The familiar rules for natural deduction are easily recognized: lam ~ D-Intro, app ~ D-Elim,
pair ~ A-Intro, pi; >~ A-Elim, inj; ~ V-Intro, and case ~ V-Elim.
2Note that A%, B-, etc. are EIf variables.

10



If « is provable in classical logic, then @ is provable in minimal logic.

This is shown by a translation on the deductions: every classical deduction of « is
transformed into an minimal deduction of a.

T = Mk
e M = MNek(Ax.D)

MN = Xe.M(\m.N(\n.mnk))
(M,N) = XMe.M(Am.N(An.k(m,n)))
w00 = Ao IM(mk(mi(m)
inj, = Me.M(\m.k(inj;(m)))
case(M, A\z.N, \y.Q) = k.M (Am.case(m, A\z.Nk, \y.Qk))
AM) = Me.M(Am.m)
KM) = XMe.M(m.m(\z.\d.k2)k)

The representation of this translation in Elf is very direct and reproduced below.
It is worth noting that the higher-level judgment connecting deductions of a and @
must explicitly refer to this translation. It would not suffice to specify

cps : pf A -> pf A- -> type.

since we need to show how to relate a proof of A to a proof of A-, where A- is the
translation of A under (). Thus the main judgment is

cps : pf A -> cps- A A- -> pf A- -> type.

where A and A- are implicitly quantified. This judgment can be specified with the
following rules (omitting the symmetric cases for w5 and injs,):

cps_lam: cps (lam M) (dblneg (cps*_imp CpsB- CpsAx*)) (lam [k] app k (lam M-))
<= ({x} {x-} cps x (dblneg CpsAx*) (lam [k] app k x-)
-> cps (M x) CpsB- (M- x-)).
cps_app: cps (app M N) CpsB-
(lam [k] app M- (lam [m-] app N- (lam [n-] app (app m- n-) k)))
<- cps M (dblneg (cps*_imp CpsB- CpsAx)) M-
<- cps N (dblneg CpsA*) N-.
cps_pair: cps (pair M N) (dblneg (cps*_and CpsB* CpsAx))
(lam [k] app M- (lam [m-] app N- (lam [n-Japp k (pair m- n-))))
<- cps M (dblneg CpsA*) M-
<- cps N (dblneg CpsB*) N-.
cps_pil: cps (pil M) (dblneg CpsAx)
(lam [k] app M- (lam [m-] app k (pil m-)))
<- cps M (dblneg (cps*_and CpsB* CpsAx*)) M-.
cps_injl: cps (injl1 M) (dblneg (cps*_or CpsB* CpsAx))
(lam [k] app M- (lam [m-] app k (injl m-)))
<- cps M (dblneg CpsA*) M-.
cps_case: cps (case M N Q) (dblneg CpsCx)
(lam [k] app M- (lam [m-] case m- ([x-] app (N- x-) k)
(L[y-1 app (@- y-) k)))
<- cps M (dblneg (cps*_or CpsB* CpsA*)) M-
<= ({x} {x-} cps x (dblneg CpsA*) (lam [k] app k x-)

11



-> cps (N x) (dblneg CpsCx) (N- x-))
<= ({y} {y-} cps y (dblneg CpsB*) (lam [k] app k y-)
-> cps (Q y) (dblneg CpsCx) (Q- y-)).
cps_aa: cps (aa M) (dblneg CpsAx)
(lam [k] app M- (lam [m-] m-))
<- cps M (dblneg cps*_bot) M-.
cps_kk: cps (kk M) (dblneg CpsAx)
(lam [k] app M- (lam [m-Japp (app m- (lam [z]lam [dlapp k z)) k))
<- cps M (dblneg (cps*_imp (dblneg CpsAx)
(cps*_imp (dblneg cps*_bot) CpsAx)))
M-.

What does type-checking of this signature guarantee for us here? Reexamining
the type of cps

cps : pf A -> cps- A A- -> pf A- -> type.

shows us that if a query ?- cps M CpsA N. succeeds for some M, CpsA, and N, then
M will be a proof of some formula A, N will be a proof of A-, and CpsA will be a
deduction showing that A- is the translation of A. This is an important property,
and many obviously incorrect translations will be caught at this stage because of
type-checking errors, but it does not guarantee our theorem in any way—this is
where additional schema-checking is required.

Schema-Checking. In order to demonstrate the theorem, we need to show that
cps- is total in its first argument, and we also need to show that cps is total in its
first two arguments.

Showing the totality of cps— demonstrates that for a given A we can construct
an A- and a deduction showing that cps-— A A-. This amounts to showing that ()
is a total function on formulas.

Showing that cps is total in its first two arguments means that for a given proof M
of type pf A and translation cps—- A A- there exists a proof M- of type pf A-. That
such translations always exist almost verifies the claimed theorem: It remains to be
shown that the translated proof lies within the minimal fragment of the logic under
consideration. This can be guaranteed through proper use of the module system for
Elf, which is beyond the scope of this paper and can be found in [17].

Translations () and ()" are mutually recursive. We add the induction hypothe-
ses for both functions in constructing the query for this particular case (the other
cases can be proven similarly):

?- {m:form} {n:form} {p:form} {q:form} {r:form} {s:form}
Cps* mp -> cps-mq -> cps*nr ->cps-n s
-> cps* (imp m n) (Qand m n p q r).

Qand = [m] [n] [p] [q] [r] imp p (imp (imp r bot) bot)

In the induction proof for the totality of cps we will have to employ unit refine-
ment again: Any proof q : cps- A A- will necessarily use the clause dblneg. In
Skolemized form, this means that there is a total function which maps any deduc-
tion of q : cps- A A- to a deduction q’ : cps* A Ax such that q has the form
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dblneg q’. A special case of this can be expressed by the first two of the following
six declarations—the others express the totality of cps- and cps*.?

cps-_refine: cps- A A- -> cps* A Ax.

cps-_refine_lemma: cps X Q Z -> cps X (dblneg (cps-_refine Q)) Z.
cps*_tot: form -> form. cps*_tot_lemma: cps* M (cps*_tot M).
cps-_tot: form -> form. cps-_tot_lemma: cps- N (cps—_tot N).

Representative for schema-checking we display the query for the case of pairs
and its result:

?7- {a:form} {b:form} {a*: form} {b*: form} {x:pf a} {y:pf b}
{m:cps- a (imp (imp a* bot) bot)} {p:pf (imp (imp a* bot) bot)}
{n:cps- b (imp (imp b* bot) bot)} {q:pf (imp (imp b* bot) bot)}

cps xmp->cpsynq
-> cps (pair x y) (Qpair a b a*x bx x ymp n q)
(Rpair a b a* b* x ymp n q).

Rpair = [a] [b] [a*] [bx] [x] [y] [m] [p] [n] [ql
lam ([k:pf (imp (and a* b*) bot)]
app p
(lam ([m-:pf a*]
app q (lam ([n-:pf bx] app k (pair m- n-)))))),
Qpair = [a] [b]l [a*x] [b*] [x] [yl [m] [p] [n] [ql

dblneg (cps*_and (cps-_refine n) (cps-_refine m)).

5 Conclusion

We have outlined a practical methodology for the implementation and verification
of the meta-theory of deductive systems. This methodology employs the LF logical
framework as a basis and consists of four stages: (1) representation of syntax, (2)
specification of judgments, (3) implementation of transformations between deduc-
tions, and (4) checking that the transformations are total in some of their arguments.
This last stage is called schema-checking and relies on induction over the closed valid
terms which can be constructed over a signature in the LF type theory. While a
significant part of the verification is automatic through term reconstruction, type-
checking, and schema-checking, much of the work is still mechanical and, we hope,
amenable to methods from the field of inductive theorem proving. This would mean
that an Elf theorem prover would try to synthesize an appropriate deduction trans-
formation, such as tr or cps above.

We currently have a small prototype implementation of schema-checking as an
extension of the current Elf core language [22]. Several further verifications of stan-
dard meta-theorems in logic and computer science using the methods described here
are subject of current work.

3We omit from this discussion the unit refinements for the different cases of cps* that are needed
in other parts of the proof.
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