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TPS is a theorem proving system for first- and higher-order logic which runs in Common Lisp 
and can operate in automatic, semi-automatic, and interactive modes. As its logical language 
TPS uses the typed A-calculus [6], in which most theorems of mathematics can be expressed 
very directly. 

TPS can be used to search for an expansion proof [10, 11] of a theorem, which represents 
in a nonredtmdant way the basic combinatorial information required to construct a proof of 
the theorem in any style. TPS also has facilities based on the ideas in [10, 11, 12, 13, 14] for 
translating back and forth between expansion proofs and natural deduction proofs. 

When one is seeking an expansion proof for a theorem of higher-order logic, not all necessary 
substitution terms can be generated by unification of formulas already present, so certain expan- 
sion options [5] are applied, and then a search for a p-acceptable mating [2] is made, using Huet's 
higher-order unification algorithm [8] to generate all remaining substitution terms. The expan- 
sion options consist of quantifier duplications and projective and primitive substitutions (such as 

. • 1 2 3 4 5 those whxch substitute [ Awo~.Poco~W A Po(o~)w], [ AWo~.Po(o~,)w V Po(o~)w], [ Awo~.w[P~(o~ow]], 
[Awo~!3x.y.Pto.r(o~)WX], and [Awo~Vx~.P~(o~)WX] for a variable Po(o~)). These substitutions intro- 
duce a small amount of new structure, and contain variables for which additional substitutions 
can be made at a later stage. 

Different sets of expansion options are applied to create different expansion trees which are 
all subtrees of a master expansion tree. Smaller subtrees are explored before larger ones in 
an attempt to keep the search space manageable. The sets of expansion options are generated 
in a systematic and exhaustive way, except that at present the types of quantified variables in 
primitive substitutions (such as 7 above) are chosen from a small fixed set of types which is 
specified interactively. We conjecture that if this restrictive (but practical) method of specifying 
types were replaced by a general enumerative procedure, the search procedure implemented in 
TPS would be complete in principle for elementary type theory (the logical system of [ 1]). 

The second author has developed a matingsearch procedure (calledpath-focused duplication 
[9]) in which quantifier duplications are localized to vertical paths (thus reducing the enormous 
growth in the number of paths which accompanies duplications), and the duplications for each 
path are generated as needed to span that path. The search space grows and shrinks dynamically 
as different vertical paths are considered. 

TPs has various features designed to make it a versatile and friendly system. Many aspects of 
the program's behavior can be controlled by setting flags. There are over 150 of these flags, and 
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TPS has a facility called Review for examining and changing the settings of flags, and for defining 
and reusing groups of flag settings called modes. There is a formula editor which facilitates 
constructing new formulas from others already known to TPS. There is a library facility for 
saving formulas, definitions, and modes. Online documentation can be assembled automatically 
into a facilities guide which reflects the current state of the program. A program called ETPS 
containing the facilities of TPS for constructing natural deduction proofs interactively and many 
exercises from [3] is available for use by students in logic courses, and has been used extensively 
at our university. 
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