
T u t o r i a l o n

A P r o l o g

Amy Felty Elsa Gunter
INRIA Bell Laboratories

Dale Miller Frank Pfenning
University of Pennsylvania Carnegie Mellon University

The logic programming language AProlog extends Prolog by containing polymorphic
types, higher-order programming, A-terms as data structures, higher-order unification,
modules, lexical scope, abstract data types, and implicational and universally quantified
goals. These extensions are integrated into a single logical system and provide AProlog
with expressive strengths not found in Prolog. After surveying various aspects of this lan-
guage, we shall focus on its uses in specifying proof systems and implementing theorem
provers. In particular, we shall discuss how the syntax and inference rules of object logics
can be represented and on how tactic-style theorem provers can be written. We shall also
illustrate how proofs can be built and manipulated in rather natural ways.

T u t o r i a l o n

E q u a t i o n a l U n i f i c a t i o n

Claude Kirchner

INRIA Lorraine & CRIN
Nancy, France

This tutorial presents unification, or equation solving in abstract algebras. After an
introduction to the problems of the field, we present the general results on unification
theory, including the decidability and unification type of various theories and classes
of theories. Then, using a rule-based view of the equation-solving process, we show
different aspects of the field. For syntactic unification we describe, in an abstract fashion,
the classical algorithms of Robinson and Martelli-Montanari. Semantic unification (i.e.,
equational unification) is then studied. We first look at two examples, giving unification
algorithms for commutative and associative-commutative theories. Then we focus on the
combination of unification algorithms and on general equational unification. The notion
of syntactic theory, for which unification algorithms can be automatically computed, is
also introduced and its usefulness shown on several examples.

