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Abstract

In automated deduction systems that are intended for human use, the presenta-
tion of a proof is no less important than its discovery. For most of today’s automated
theorem proving systems, this requires a non-trivial translation procedure to extract
human-oriented deductions from machine-oriented proofs. Previously known trans-
lation procedures, though complete, tend to produce unintuitive deductions. One
of the major flaws in such procedures is that too often the rule of indirect proof is
used where the introduction of a lemma would result in a shorter and more intuitive
proof.

We present an algorithm, symmetric simplification, for discovering useful lemmas
in deductions of theorems in first- and higher-order logic. This algorithm, which
has been implemented in the TPS system, has the feature that resulting deductions
may no longer have the weak subformula property. It is currently limited, however,
in that it only generates lemmas of the form C ∨ ¬C ′, where C and C ′ have the
same negation normal form.

1 Introduction

In this paper we deal with the problem of proof presentation, a problem that is often
overlooked in automated reasoning: many of today’s automatic systems focus exclusively
on the search for the proof of a theorem. A presentation of the proof that is discovered is
often no more than a literal tracing of the search process. Such a proof presentation serves
more as a verification of the automatic procedure than as an intelligible argument for
the theorem’s veracity. For some applications (such as program verification) the answer
Yes! may be all that is desired, but in many other applications we would like more
information. For example, in decision support systems such as (E)MYCIN [25, 27] the
inability to provide a convincing argument that the machine has correctly diagnosed a
problem, deduced a consequence, or constructed a plan renders the program much less
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trustworthy and thus much less effective. In systems designed to support the teaching
of logic a flexible facility for giving advice should know how to construct good proofs in
the deductive system underlying the course. In systems where proofs are the data to
be manipulated to fit other tasks such as explanation-based generalization [10] or the
extraction of programs [5], the structure of proofs becomes of primary importance which,
unfortunately, in practice prohibits the use of state-of-the-art theorem proving technology
in such applications. Further evidence that proof presentation is a hard and important
problem is that mathematicians spend a large percentage of their time analyzing and
reformulating proofs.

In the literature one finds two basic approaches to the proof presentation problem.
One is to conduct the search for a proof in such a way that, when it is found, it can
be displayed intelligibly in a very straightforward manner. This requires the theorem
prover to be based on natural deduction [7, 6, 9], or at least to be very close to the
natural deduction format. The disadvantage of this approach is that, to date, other
theorem proving procedures are superior in that they can prove more theorems, and can
prove them faster. Moreover, even natural deduction proofs are not always “natural”
and many would profit tremendously from some transformations (Example 5 provides a
case in point). The second approach is to decouple the search process from the proof
presentation process, in which case proof presentation is reduced to translation from one
proof format, say, resolution, to another, typically natural deduction. This approach has
been taken by Lingenfelder [16, 17] for the connection graph method, Andrews [1] for
mating refutations, and Miller [18, 19], Felty [11], and Pfenning [21, 22] for the closely
related expansion proofs.

There are many subproblems one faces when trying to present a proof. What deductive
system should be used? How much detail should be presented? How do we measure how
“good” a presentation is? How do we interact with the user when presenting a deduction?
In this paper, we assume that we have chosen the natural deduction formalism as a target
for translation, since it appears to be intuitive to (most) humans and can also be used as
a basis for further transformation, for example into natural language (see Chester [8] and
Huang [14]) or into other, related deductive systems. We will ignore questions of detail
of presentation and user interaction and concentrate on improving “structural” qualities
of natural deductions.

In our experience with ETPS [23] (used as a teaching tool in logic classes) and TPS [3,
2] (used as a research tool in theorem proving for higher-order logic) and in the literature, it
seems that the problem of translating analytic proofs (normal proofs in natural deduction
terminology, cut-free proofs in sequent calculi) between different deductive systems is
relatively well understood for a number of systems, in particular for expansion proofs and
resolution refutations. The crucial property characterizing the deductions representing the
proofs is that they have the weak subformula property: only subformulas of the theorem
and instances thereof (possibly with an added negation, hence “weak”) will appear in the
final deduction. Though analytic deductions are often “right,” especially for many small
problems, they are also often “wrong” in the sense that a non-analytic deduction with a
judicious use of a lemma might have drastically reduced the size and complexity of the
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deduction.1 A word on terminology: we will use “lemma” to refer to a non-subformula in
a non-analytic deduction.

Thus we believe that in order to make further progress, we must study ways to intro-
duce lemmas into the presentation of a proof. In this paper, we present just one method
for introducing lemmas into deductions, but one which we have found to be of great prac-
tical value. Even though our deductions do not have the weak subformula property, the
lemmas are not very far-fetched, and we believe that this is but a small step towards the
overall goal of presenting intuitive deductions. Other, complementary approaches come
to mind, such as applying methods from the field of inductive inference [4] to achieve a
more global restructuring of deductions.

As our deductive systems we have chosen expansion proofs [2, 18, 19, 20, 21, 22] (on
the analytic side) to be translated into natural deductions. Expansion proofs simplify a
number of translation issues over, say, resolution. First and foremost, the structure of the
original formula is preserved rather than translated into clausal form. Secondly, certain
properties that our algorithm is required to check can be read off fairly directly. Thirdly,
TPS [3] is a theorem prover for first- and higher-order logic which generates expansion
proofs and thus allows for immediate experimentation with many examples in its library
of theorems. We emphasize, however, that, while details certainly would differ widely,
we believe that the basic idea of our translation procedure can be adapted to apply to
the problem of translating other forms of automatically generated proofs into natural
deduction. Moreover, other forms of analytic proofs such as resolution refutations, can be
translated into expansion proof format, though the value of such translations is unclear.

2 A Summary of the Method

We have been using a succession of translation algorithms from expansion proofs into
natural deductions in the TPS and ETPS systems for several years. ETPS is used in
logic classes in first-order and higher-order logic, TPS is a theorem proving system for
first-order and higher-order logic. The scale of the examples TPS typically deals with is
relatively small (5–50 line proofs), though the proofs, especially in higher-order logic, are
sometimes quite intricate (such as proofs of Cantor’s theorem). This gives us the luxury
of neglecting certain aspects of global proof restructuring, such as determining whether
a certain subproof could be done more directly with the use of some lemma stored in a
database. Level of detail of the proof can be controlled by the user to some extent, though
more work is certainly required on this aspect of the translation.

From our experience with the system it became obvious that the least intelligible
deductions arose from the use of the rule of indirect proof. But how can the application
of this rule be avoided? There are some answers to this question in the literature, since it
is exactly the rule of indirect proof which separates classical logic from intuitionistic logic.
But very general methods2 do not seem reasonable for our application. It is also well-
known that instead of a rule of indirect proof, we can include the axiom schema A ∨ ¬A

1A theoretical analysis of this phenomenon with precise bounds is given by Statman [26].
2For a discussion and further references see Kreisel & MacIntyre [15]
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of excluded middle in the deductive system. Many of our examples can be proven very
intuitively with a judicious use of the law of excluded middle, but the “right” formula is
not always a subformula of the theorem.

This basic observation led us to ask when and how we should use the law of excluded
middle in the construction of natural deductions from expansion proofs. We believe we
have found a good answer and it generates intuitive deductions in all of our motivating
examples and others.

The first step is to analyze when and why the translation procedure would have to use
a classical rule. A little analysis shows that there are exactly three types of situations in
which we need a classical rule of inference, and where the previous translation algorithm
would, as a last resort, fall back on the rule of indirect proof. Imagine that we have some
assumptions S and a conclusion C and our goal is to derive C from S. There are two
types of steps one can apply: one is to work forward from the assumptions; the other is to
work backward from the conclusion. Informally, the cases in which we will have to apply
a classical rule of inference are

1. C = A∨B and neither A nor B alone follow from the assumptions, and no progress
can be made by applying an intuitionistic rule to an assumption;

2. C = ∃x A and there is no single term t such that [t/x]A follows from the assumptions,
nor can progress be made by applying an intuitionistic rule to an assumption;

3. C is atomic and no progress can be made by applying an intuitionistic rule to an
assumption. In this case, for any assumption of the form A→B or ¬A, the formula
A does not follow from the remaining assumptions. Moreover, there must be at
least one such assumption.

The examples in Section 4 illustrate these impasses. We will see that the second type of
impasse actually encompasses two quite different situations.

Section 5 deals with the details of how we can sometimes employ the law of excluded
middle to our advantage in these situations. Let us illustrate here the general idea of the
procedure in the simplest of these cases where the conclusion is a disjunction. Since this
case is the simplest and our example is propositional, it may appear that the problem is
in general trivial, and that easier methods than symmetric simplification should apply.
Though we cannot rule out such a possibility, we have arrived at symmetric simplifica-
tion only after considering and discarding many more specialized and apparently simpler
methods. The list of “difficult” (in the sense that it is difficult to find an intuitive deduc-
tion) theorems at the end of this paper give a range for the kinds of problems which may
arise.

As an example, assume we are trying to prove [A∧B]∨ [A∧¬B] from the assumption
A. Clearly neither disjunct follows from A and the assumption A does not lend itself to
any useful forward reasoning, and thus we are at a disjunctive impasse.

What is an intuitive way of proving this theorem? Proof by contradiction is certainly
possible, but clearly not very intuitive. The following argument seems natural: (1) either
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B is true or false. (2) If B is true, we can conclude A ∧ B. (3) If B is false, we can
conclude A ∧ ¬B. (4) So the disjunction holds in either case.

In outline, here is how our translation algorithm arrives at the lemma (1). First we
observe that we can always pick either disjunct when trying to break a disjunctive impasse
and continue by distinguishing two cases: the disjunct might be true or it might be false.

If we picked the left disjunct, this would construct the lemma [A ∧ B] ∨ ¬[A ∧ B]
which we add to our assumptions and now proceed by cases and two ∨-introductions,
yielding the obligations (1) to prove A ∧ B from A and A ∧ B in the first case (which is
immediate), and (2) to prove A∧¬B from the assumptions A and ¬[A∧B]. Even though
this is clearly possible, this is also circuitous and not the desired proof.

The general idea underlying our translation procedure is to examine the subproof
obligations arising from this first attempt at a useful lemma, namely

1. to prove A ∧B from A and C = A ∧B in the first case, and

2. to prove A ∧ ¬B from the assumptions A and ¬C = ¬[A ∧B].

We have highlighted C and ¬C, since these two formed our lemma (application of excluded
middle). Note that we have the freedom to change and particularly simplify C as long as
both subproof obligations can still be fulfilled. This is a balancing act, since strengthening
C will weaken ¬C and vice versa. Here one can easily see that after erasing the left
conjunct A from both C and ¬C both remaining proof obligations can still be fulfilled,
and also that the proofs are much simpler now. In fact, we have arrived at the desired
intuitive deduction shown before.

The essence of symmetric simplification3 is to simplify C (and consequently ¬C) such
that both subgoals remain provable. This implies simultaneous changes to the proofs that
C implies one conclusion and ¬C implies the other conclusion, where C may be varied.
Our procedure does not require a general theorem prover (and it is hard to see how to
take advantage of one) but uses the original expansion proof as a strong guide.

To show the limitations of this method, let us reconsider the goal of deriving [A ∧
B] ∨ [A ∧ ¬B] from A. This time we proceed with an application of the distributivity
of conjunction over disjunction to change the goal to A ∧ [B ∨ ¬B] and then proceed in
the obvious fashion. This is a deduction beyond our current method, and we know of
no other general method which could produce this deduction. However, we believe that
the general problem of using previously proved lemmas both in theorem proving and in
proof presentation and the problem of finding useful “local” lemmas in a deduction are
orthogonal—it is only the latter we are addressing here.

3“Symmetric” since both C and ¬C remain identical. One could imagine “asymmetric simplification”
which simplifies the lemma C ∨ ¬C to C ′ ∨ C ′′ or even C ′ → C ′′ as long the lemma remains provable.
Currently we have no algorithm or heuristics for the asymmetric simplification problem.
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3 Natural Deductions

The formulation of natural deduction system we use is basically Gentzen’s NK [12], but
our implementation uses a variant with higher-order rules (as in Prawitz [24]) and rules
for equality. The additional complexity introduced into the proof presentation process
does not invalidate the analysis made here, but requires some separate considerations
(see [22, Chapters 4–6]).

The logical language contains the propositional constants and connectives ∧, ∨, ¬, →,
and ⊥ along with the quantifiers ∀ and ∃.

The inference rules of the system include the usual introduction and elimination rules
for each connective and quantifier. There are also two rules involving ⊥. The first is ⊥I ,
the intuitionistic absurdity rule (from falsehood we can conclude anything), the second
is ⊥C , or classical proof by contradiction. Below we also show the rule of proof by cases
(the ∨-elimination rule ∨E), since proof by cases is one of the more frequent inferences
generated by our proof presentation procedure which uses symmetric simplification.

⊥ ⊥IA

[[¬A]]1

...

⊥
⊥C

1

A
A ∨B

[[A]]1

...

C

[[B]]1

...

C
∨E1

C

As shown above in ⊥C and ∨E, cancelled assumptions are written as [[A]]. A numbered
assumption is cancelled in the inference with the same superscript. An inference may
cancel 0 or more assumptions with the same formula, so the inference remains correct if
the assumption does not occur in the deduction.

4 Translation from Expansion Proofs to Natural Deduction

Our general approach to the proof presentation problem is goal-oriented: at any stage
during the translation from an analytic proof4 we have a number of assumptions S (a list
of formulas, though their order is irrelevant) and a conclusion A. The goal is to fill in
the gap in the deduction which shows that A follows from S, given an expansion proof
which shows that the gap can indeed be filled. The implementation of the translation is
centered around tactics [13] which may consult the expansion proof to check if certain
conditions are satisfied. In return for this benefit of expansion proofs, the tactics also
have the obligation to construct expansion proofs for any subgoals they may produce.

A complete set of tactics for the translation process is described in [22, Chapter 6]. The
tactics decompose into five different categories: bookkeeping tactics (which do not apply
any inference rules), minimal conclusion tactics (which suggest introduction rules to be
applied to the conclusion), minimal assumption tactics (which suggest elimination rules

4Henceforth we will say expansion proof, since this is what our implementation actually uses.
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to be applied to assumptions), non-minimal tactics (which suggest use of the absurdity
rule or indirect proof), and lemma tactics (which suggest the use of a lemma). The set of
all tactics in the first four categories are sound and complete when tied together properly
using tacticals: they are guaranteed to produce a natural deduction of the original goal
without the use of any derived rules of inference. In this paper we concentrate on the
description of the lemma tactics, which, in their simplest form, generate lemmas of the
form A ∨ ¬A. In order to understand when and why lemma tactics are invoked, we give
a brief description of a few crucial minimal tactics in this section.

Tactic 1 (∨ Introduction Left) Assume our goal is to prove A∨B from S. If the expan-
sion proof for this goal provides a proof of A from S, infer A ∨ B by ∨IL, leading to the
subgoal of proving A from S.

This tactic and its obvious symmetric variant require that one of the disjuncts of the
conclusion by itself follows from the assumptions. What if neither disjunct follows? If
no assumption tactic applied, we would be forced to apply the rule of indirect proof ⊥C ,
unless we can find a good way of introducing a lemma. Such a situation occurs, for
example, when trying to prove [A∧B]∨ [A∧¬B] from A (see the example in Section 2).

Tactic 2 (∃ Introduction) Assume our goal is to prove ∃xA from S. If the expansion
proof for this goal contains a single instantiation term t for this occurrence of x, and the
instantiation term contains no parameter which has yet to be introduced into the deduction,
then infer ∃xA by ∃I from [t/x]A, leaving the subgoal to deduce [t/x]A from S.

This tactic may fail to apply for two different reasons (assuming no tactics can be
applied to the assumptions). The proofs of the formula ∃x∀y[Px → Py] and the ex-
ample in Section 7 illustrate one reason for failure, namely that there is more than one
instantiation term required for x, but at least one of them is free of parameters yet to be
introduced into the deduction. The other, more insiduous failure is when there are one
or more instantiation terms, but all of them still contain a parameter which has yet to be
introduced. An example of this is the goal to deduce ∃x¬Px from ¬∀xPx.

In either case we have to apply indirect proof or find a good lemma, though finding a
reasonable lemma with our symmetric simplification algorithm is much more likely in the
first situation.

As an example of an assumption tactic which may fail to be applicable, consider →
Elimination.

Tactic 3 (→ Elimination) Assume our goal is to prove some conclusion C from S and
A→ B. If the expansion proof for this goal provides a proof of A from S apply →E and
set up two new subgoals: one to deduce A from S and one to deduce C from S, A→ B,
and B.

Tactic 3 may fail to apply if the negation of the conclusion is necessary to prove the
antecedent A, for example when trying to deduce C from the assumption ¬C → C. In
such a case we have to apply proof by contradiction before →E.
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In the next section, we will analyze more thoroughly the cases in which these tactics
do not apply, and will discuss how we try to generate useful and intuitive lemmas in these
situations.

5 Setting up a Symmetric Simplification Problem

As outlined in Sections 2 and 4 and there are three situations in which symmetric simpli-
fication is of potential interest: they are exactly the situations in which one can no longer
make progress by applying intuitionistic rules of inference. We refer to this as a transla-
tion impasse. In this section we attempt to illustrate how the symmetric simplification
problem which is treated by our algorithm is set up, given that we have reached a trans-
lation impasse. It should be noted that these impasses are not mutually exclusive—we
will return to this point at the end of this section.

Imagine again that we have some assumptions S and a conclusion A and our goal is
to derive A from S. Different types of impasses can arise. It is a non-trivial theorem
which shows that these impasses are exhaustive, and thus at least one of these cases and
possibly more must be applicable.

Disjunctive Impasse. A = A′ ∨ A′′ and neither A′ nor A′′ alone follow from the
assumptions, and no progress can be made by applying an intuitionistic rule to an as-
sumption.

In this case, we have two symmetric opportunities for setting up a symmetric simpli-
fication problem. An obvious lemma is A′ ∨ ¬A′ with the intent to build the deduction

A′ ∨ ¬A′

S, [[A′]]1

D1

A′
∨IL

A′ ∨ A′′

S, [[¬A′]]1

D2

A′′
∨IR

A′ ∨ A′′

∨E1

A′ ∨ A′′

Since A′ ∨ A′′ follows from S it is easy to see that now A′′ must follow from S and
¬A′. Also, the corresponding guiding expansion proof is easily constructed. It is much
more difficult, though not impossible, to construct a normal natural deduction for this
subproof, given an original deduction which proceeded using the rule of indirect proof.

In either case, we end up with two subproofs, one (D1) showing that S and C = A′

implies A′, the other (D2) showing that S and ¬C = ¬A′ implies A′′. This problem is
now passed to the symmetric simplification algorithm with the goal of simplifying C and
¬C.

The symmetric case is where we pick C = A′′ ∨ ¬A′′. Currently, our heuristic for
choosing which disjunct to begin with is to choose the one which contains more negative
literals which are used in the expansion proof. This heuristic is aimed at minimizing
the number of negations in the lemma, and thereby reducing the number of negation
elimination steps in the subsequent subproofs.
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Existential Impasse. A = ∃x A′ and there is no single term t such that [t/x]A
follows from the assumptions, and no progress can be made by applying an intuitionistic
rule to an assumption. Moreover, there must be at least one instantiation term t0 for x
in the proof of A from S which does not contain any parameter not yet introduced.

In this case we again use the lemma [t0/x]A′ ∨ ¬[t0/x]A′ with the intent to build the
deduction

[t0/x]A′ ∨ ¬[t0/x]A′

S, [[[t0/x]A′]]1

D1

[t0/x]A′

∃I
∃x A′

S, [[¬[t0/x]A′]]1

D2

∃x A′

∨E1

∃x A′

Again, it is easy to construct an expansion proof showing that from S and ¬[t0/x]A′

we can prove ∃x A′ with one fewer instantiation term for x. Clearly, this can also be done
for natural deductions, though it is much more complicated.

In either case, we end up with two subproofs, one (D1) showing that S and C = [t0/x]A′

implies ∃x A′, and one (D2) showing that S and ¬C = ¬[t0/x]A′ implies ∃x A′. This
problem is now passed to symmetric simplification algorithm with the goal of simplifying
C and ¬C.

As in the disjunctive impasse, our heuristic for choosing which term to use for the
lemma (if more than one may be used) is to chose the one which contains the most
negative literals which are used in the expansion proof.

This leaves two kinds of impasses to which we will return in Section 8. Assuming that
no tactic can be applied to an assumption, they are: (1) The conclusion is atomic and (2)
the conclusion is existential and all of its substitution terms contain a parameter yet to
be introduced. An example of (1) is the goal to derive A from ¬A→ A, and an example
of (2) is to derive ∃x¬Px from ¬∀xPx.

6 An Abstract Description of Symmetric Simplification

The technical details of symmetric simplification and our implementation are very closely
tied to expansion proofs and their properties. In this section we will attempt to pro-
vide an intuition about the basic ideas behind symmetric simplification independently of
expansion proofs.

Assume, as discussed in Section 5, that we have reached a point where we have set up
the following problem:

Given two sets of assumptions S1 and S2, two conclusions A1 and A2, an initial formula
C, and two proofs D1 and D2 such that D1 shows that A1 follows from S1 and C, and D2

shows that A2 follows from S2 and ¬C.
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While keeping Si and Ai fixed, vary C and Di so as to “simplify” C and Di as much
as possible. In the absence of a formal measure of the degree of “intuitiveness” of the
modified deductions, we will just try to shorten them as outlined below.

Our symmetric simplification procedure combines three steps, each of which is com-
plex, but can be described in isolation. These steps are called single instantiation, single
deletion, and propositional restructure.

In the exposition below, we call an occurrence of a subformula in C and the corre-
sponding occurrence in ¬C dual occurrences.

Single Instantiation. Let us assume that we have a positive occurrence of ∀x C ′

somewhere in C which is instantiated to t in the deduction D1. This inference could be
avoided, if we could replace the occurrence of ∀x C ′ by [t/x]C ′. In the dual formula ¬C,
the dual occurrence is equivalent to ∃x¬C ′ which at some point in D2 might have been
instantiated with a parameter a. This would be transformed into ¬[t/x]C ′. The deduction
D2 then would also have to be changed: we may have to permute inferences, and also
substitute t for the parameter a in the deduction D2. The conditions on t guarantee that
this is possible.

There are a number of other conditions which must be satisfied for the transformation
outlined above to be valid.

1. the assumption ∀x C ′ and none of its instances can be used elsewhere in D1, since
it is replaced by [t/x]C ′. Similarly for the dual occurrence in D2.

2. the substitution term t must not contain any parameter b which is introduced some-
where in D1 or D2, since this would invalidate the occurrence condition on the
inference rule which introduced b (either an ∃-elimination or a ∀-introduction).

As one might imagine, it is difficult but not impossible to check these conditions
on natural deductions. It requires that we can trace occurrences as they multiply and
propagate through the deductions. In expansion proofs, it is trivial to check them. We
currently only apply single instantiation if ∀x C ′ does not lie below any other quantifier,
though it would be easy to generalize our algorithm to search for cases where such a
replacement would be legal.

Single Deletion. This is the most useful of the three steps. Let us assume we have
a positive subformula occurrence C ′ ∧ C ′′ in C. If none of the instances of C ′ is used in
the derivation D1 of A1, we can erase it from C and ¬C. Note that this weakens C and
thus strengthens ¬C, and thus no applicability checks need to be made in D2. However,
D2 often simplifies. For example, if the dual assumption ¬C ′ ∨ ¬C ′′ is strengthened to
¬C ′′, a proof by cases is simplified to one of its subproofs. Another case where essentially
the same method applies is a negative subformula occurrence C ′ ∨ C ′′ in C.

Propositional Restructure.5 This is the most complex of the steps, and also per-
haps the least intuitive. It was not part of the original algorithm we implemented, but we
found it necessary for many examples. Because of redundancies introduced when creating

5In [22] in the context of expansion proofs this is called single mating change.
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the lemma C ∨¬C it is often the case that an assumption C ′ (as in the scenario for single
deletion) is used in D1, even though its use could be avoided if we changed D1. A general
theorem prover is not very good at changing D1, since the goal is to avoid using any as-
sumption in C as much as possible (which is hard to communicate to a theorem prover),
and simply enumerating all subformulas and checking (with a theorem prover) whether
A1 still follows is completely impractical. This is not a completely accurate transcription
of what our single mating change procedure does, but roughly our solution is to look
through the places where forward reasoning and backward reasoning meet, that is, where
gaps in the proofs are completely filled. If an instance of a subformula D of C is the only
way the gap can be filled, we mark it as necessary, otherwise we locally restructure the
proof (with propositional inferences only) so that D is not used. This is iterated until no
more propositional restructure is possible, unless perhaps after a single deletion.

Propositional restructure may enable further single deletions and also single instanti-
ations, since all instances of some subformula C ′ of C may now be unnecessary and could
thus be deleted. In general, applying any of the above three steps may enable other steps
to further simplify the deduction. We impose the following control structure:

1. Repeatedly apply single instantiation in a top-down fashion (top-level quantifiers
first) until it is no longer applicable. Go to Step 2.

2. Repeatedly apply single deletion in a bottom-up fashion (leaves first) until it is no
longer applicable. Go to Step 3.

3. Attempt to apply propositional restructure. If this fails and Step 2 did not perform
any deletions, terminate: no further simplification is possible. Otherwise, go to
Step 1.

7 An Example of Symmetric Simplification

In this section, we explain by means of an example how a lemma is generated when we
have reached a translational impasse. Suppose we have three blocks, a, b, and c, such that
b is on a and c is on b. Moreover, assume that we know that a is red, while c is known
not to be red. From these assumptions, prove that there are some blocks x and y such
that x is red, y is on x, and y is not red. Symbolically:

From On c b, On b a, Red a, and ¬Red c conclude ∃x∃y [On y x ∧ ¬Red y ∧ Red x]

The following intuitive deduction which makes use of the law of excluded middle is the
one our algorithm eventually generates.

Deduction 4 1. Either b is red or it is not red.

2. If b is red, then b and c satisfy the criterion for x and y, respectively, since c is on
b and c is not red, while b is red.

3. If b is not red, then a and b satisfy the criterion for x and y, respectively, since b is
on a and b is not red, while a is red.
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A deduction which uses indirect proof will be much less intuitive. Here is one possible
version6.

Deduction 5 We proceed by contradiction, thus (after some rules commuting negations
with quantifiers and connectives) it remains to derive a contradiction from the assumptions

On c b, On b a, Red a, ¬Red c, and ∀x∀y [¬On y x ∨ Red y ∨ ¬Red x]

The final of these assumptions must be true for x = b and y = c and also for x = a and
y = c, leading to a contradictory propositional formula.

From examining either of these two deductions, we can see that the original goal is at
an existential impasse as described in Section 5; we cannot directly prove an instantiation
of the conclusion, nor can we apply an intuitionistic elimination rule to an assumption
and make progress. The reason is that x must somehow be instantiated to two different
terms (b and c) to complete the deduction. Instead of using indirect proof, we set up a
symmetric simplification problem and apply our earlier algorithm.

Examining the expansion proof, we find that b is an instantiation term for x such
that b contains no parameters selected in the proof. It also satisfies our heuristic of
containing more negative literals used in the expansion proof than does the tree for the
other instantiation term a.

Thus we begin with C0 = ∃y [On yb ∧ ¬Red y ∧ Red b], and the starting point for the
lemma is C0 ∨ ¬C0.

1. The existentially quantified subformula of ¬C0 is negative, so the quantifier (on y)
is essentially existential in the new subproof. In addition, it is instantiated with a
single term c. Hence we can use Single instantiation to instantiate y with c. C1 then
becomes On c b ∧ ¬Red c ∧ Red b; the lemma has now been simplified to C1 ∨ ¬C1.
Single instantiation cannot be applied again, so we go to step 2 of the algorithm.

2. Single deletion cannot be applied, since every literal of C1 and ¬C1 is being used
in the current subproofs. Thus we go to step 3 of the algorithm, propositional
restructure.

3. Note that C1 contains as conjuncts two literals, On c b and ¬Red c, which also appear
as assumptions. Hence we can restructure the proof so that instead of using the
literal occurrences in C1, we use the corresponding assumptions. Once we have done
that we go back to step 1 of the algorithm.

4. Single instantiation is not applicable (C1 contains no quantified subformulas).

5. Single deletion can now be applied to the two literals of C1 that were made unnec-
essary by the propositional restructure step above; we delete them and their dual
occurrences in ¬C1. C2 becomes Red b. The lemma now has been simplified to
Red b ∨ ¬Red b.

6A formal counterpart of this version would have been generated by an earlier version of the translation
procedure.
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6. Propositional restructure is no longer applicable; every literal in the lemma is nec-
essary. Seeing that single instantiation and single deletion are also not applicable,
we terminate.

Our lemma is C2∨¬C2, that is, Red b∨¬Red b; this is exactly the lemma our intuition
told us we should use. The resulting deduction is Deduction 4.

We chose this example because it illustrates each of the steps of the symmetric sim-
plification algorithm. The result of the algorithm is a propositional lemma, which could
leave the impression that lemmas could somehow be generated by looking at contradic-
tory propositional formulas only. However, this is not always the case. As a case in point,
consider the theorem ∃x∀y[Px → Py]. In the translation of this proof into a natural
deduction, we immediately run into an existential impasse. If symmetric simplification
is used rather than a proof by contradiction (which does not generate a nice proof) the
lemma which results is ∀y[Py] ∨ ¬∀yPy.

8 Conclusion

For many theorems, symmetric simplification will provide a lemma that makes the natural
deduction more intuitive. While we are guaranteed to make progress in the cases of
existential and disjunctive impasse, that is not the case for other impasses; sometimes
using indirect proof is “better” than using the lemma that our algorithm could create.
This is true specifically for the situations mentioned at the end of Section 5. More work
must be done in determining where symmetric simplification is useful in these cases,
and criteria must be developed for evaluating the intuitiveness of proofs and for deciding
whether using a given lemma yields an improvement or not. We have found one particular
tactic that is often useful, though we do not yet have a good heuristic on when to use
it. This tactic, which can be used when there is an implication in the assumptions,
but the → elimination tactic (Tactic 3) does not apply, involves setting up a symmetric
simplification problem from the left-hand side of the implication. The last two lemmas in
the table below were generated by using this tactic.

Another problem that has not been addressed is that of choosing the “best” lemma.
Instead of using a lemma of the form C ∨¬C, we could use any formula D ∨E such that
D ≡ C and E ≡ ¬C. This may make the resulting subproofs easier, at the expense of
more difficulty in proving the lemma. Thus this only appears reasonable when a certain
amount of sophistication has been achieved, that is, certain lemmas in a deduction can
be assumed without proof. In addition, the lemmas that our algorithm constructs are all
themselves theorems. Improvements may result if our lemmas are merely provable from
the current assumptions.

Given all tactics and heuristics we have developed and implemented, there are still
some remaining unintuitive deductions. They arise primarily due to negated, non-atomic
assumptions combined with existential conclusions. The prototypical example of such
situation is to derive ∃x¬Px from ¬∀xPx. The best way we could find to deal with
this problem is to assume that there are previously proven theorems or derived rules of
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inference which allow the permutation of negations with other connectives and quantifiers.

Finally, we end with some “benchmarks,” simple theorems for which one of the im-
passes described in Section 5 arises, along with the lemma (or lemmas, when several are
needed) which our algorithm generates.

Theorem Lemma derived
∃y∀x[Py→ Px] ∀xPx ∨ ¬∀xPx

Pa ∧ ¬P [f [fa]]→∃x[Px ∧ ¬P [fx]] ¬P [fa] ∨ P [fa]
Pa ∧ ¬P [f [f [f [fa]]]]→∃x[Px ∧ ¬P [fx]] ¬P [fa] ∨ P [fa]

¬P [f [fa]] ∨ P [f [fa]]
¬P [f [f [fa]]] ∨ P [f [f [fa]]]

∃x[Px→ P [fx]] ¬P [fa] ∨ P [fa]
A→ [A ∧B] ∨ [A ∧ ¬B] ¬B ∨B

[A→ [B ∨ C]]→ [[A→B] ∨ [A→ C]] C ∨ ¬C
[A→B]→ [¬A ∨B] A ∨ ¬A

∃PP P 0 ∨ ¬P 0

[A→∃xBx]→∃x[A→Bx] A ∨ ¬A
[∀xPx→B]→∃x[Px→B] ∀xPx ∨ ¬∀xPx
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