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Abstract. We present subsingleton logic as a very small fragment of
linear logic containing only @, 1, least fixed points and allowing cir-
cular proofs. We show that cut-free proofs in this logic are in a Curry—
Howard correspondence with subsequential finite state transducers. Con-
structions on finite state automata and transducers such as composition,
complement, and inverse homomorphism can then be realized uniformly
simply by cut and cut elimination. If we freely allow cuts in the proofs,
they correspond to a well-typed class of machines we call linear commu-
nicating automata, which can also be seen as a generalization of Turing
machines with multiple, concurrently operating read/write heads.

1 Introduction

In the early days of the study of computation as a discipline, we see funda-
mentally divergent models. On the one hand, we have Turing machines [16],
and on the other we have Church’s A-calculus [4]. Turing machines are based
on a finite set of states and an explicit storage medium (the tape) which can
be read from, written to, and moved in small steps. The A-calculus as a pure
calculus of functions is founded on the notions of abstraction and composition,
not easily available on Turing machines, and relies on the complex operation of
substitution. The fact that they define the same set of computable functions, say,
over natural numbers, is interesting, but are there deeper connections between
Turing-like machine models of computation and Church-like linguistic models?

The discovery of the Curry—Howard isomorphism [5, 12] between intuitionis-
tic natural deduction and the typed A-calculus adds a new dimension. It provides
a logical foundation for computation on A-terms as a form of proof reduction.
This has been tremendously important, as it has led to the development of type
theory, the setting for much modern research in programming languages since
design of a programming language and a logic for reasoning about its programs
go hand in hand. To date, Turing-like machine models have not benefited from
these developments since no clear and direct connections to logic along the lines
of a Curry-Howard isomorphism were known.

In this paper, we explore several connections between certain kinds of au-
tomata and machines in the style of Turing and very weak fragments of linear
logic [11] augmented with least fixed points along the lines of Baelde et al. [2]
and Fortier and Santocanale [9]. Proofs are allowed to be circular with some
conditions that ensure they can be seen as coinductively defined. We collectively



refer to these fragments as subsingleton logic because the rules naturally enforce
that every sequent has at most one antecedent and succedent (Sect. 2).

Our first discovery is a Curry—Howard isomorphism between so-called fized-
cut proofs in @,1,u-subsingleton logic and a slight generalization of deterministic
finite-state transducers that also captures deterministic finite automata (Sects. 3
and 4). This isomorphism relates proofs to automata and proof reduction to state
transitions of the automata. Constructions on automata such as composition,
complement, and inverse homomorphism can then be realized “for free” on the
logical side by a process of cut elimination (Sect. 5).

If we make two seemingly small changes — allowing arbitrary cuts instead
of just fixed cuts and removing some restrictions on circular proofs — proof
reduction already has the computational power of Turing machines. We can in-
terpret proofs as a form of linear communicating automata (LCAs, Sect. 6),
where linear means that the automata are lined up in a row and each automa-
ton communicates only with its left and right neighbors. Alternatively, we can
think of LCAs as a generalization of Turing machines with multiple read/write
heads operating concurrently. LCAs can be subject to deadlock and race con-
ditions, but those corresponding to (circular) proofs in @,1,u-subsingleton logic
do not exhibit these anomalies (Sect. 7). Thus, the logical connection defines
well-behaved LCAs, analogous to the way natural deduction in intuitionistic
implicational logic defines well-behaved A-terms.

We also illustrate how traditional Turing machines are a simple special case
of LCAs with only a single read/write head. Perhaps surprisingly, such LCAs
can be typed and are therefore well-behaved by construction: Turing machines
do not get stuck, while LCAs in general might (Sect. 7).

We view the results in this paper only as a beginning. Many natural questions
remain. For example, can we capture deterministic pushdown automata or other
classes of automata as natural fragments of the logic and its proofs? Can we
exploit the logical origins beyond constructions by cut elimination to reason
about properties of the automata or abstract machines?

2 A Subsingleton Fragment of Intuitionistic Linear Logic

In an intuitionistic linear sequent calculus, sequents consist of at most one conclu-
sion in the context of zero or more hypotheses. To achieve a pleasant symmetry
between contexts and conclusions, we can consider restricting contexts to have
at most one hypothesis, so that each sequent has one of the forms - -~y or A F ~.

Is there a fragment of intuitionistic linear logic that obeys this rather harsh
restriction and yet exists as a well-defined, interesting logic in its own right?
Somewhat surprisingly, yes, there is; this section presents such a logic, which we
dub @,1-subsingleton logic.

2.1 Propositions, Contexts, and Sequents
The propositions of @,1-subsingleton logic are generated by the grammar

A,B,C:I: A1 EBAQ | ]_7



where @ is additive disjunction and 1 is the unit of linear logic’s multiplicative
conjunction. Uninterpreted propositional atoms p could be included if desired,
but we omit them because they are unnecessary for this paper’s results. In Sect. 7,
we will see that subsingleton logic can be expanded to include more, but not all,
of the linear logical connectives.

Sequents are written A F . For now, we will have only single conclusions
and so v == C, but we will eventually consider empty conclusions in Sect. 7. To
move toward a pleasant symmetry between contexts and conclusions, contexts
A are empty or a single proposition, and so A == - | A. We say that a sequent
obeys the subsingleton context restriction if its context adheres to this form.

2.2 Deriving the Inference Rules of &,1-Subsingleton Logic

To illustrate how the subsingleton inference rules are derived from their coun-
terparts in an intuitionistic linear sequent calculus, let us consider the cut rule.
The subsingleton cut rule is derived from the intuitionistic linear cut rule as:

AFA A Ab~y AFA Ab~y
A Ay Al

cuT

In the original rule, the linear contexts A and A’ may each contain zero or
more hypotheses. When A’ is nonempty, the sequent A’, A F ~ fails to obey the
subsingleton context restriction by virtue of using more than one hypothesis.
But by dropping A’ altogether, we derive a cut rule that obeys the restriction.

The other subsingleton inference rules are derived from linear counterparts
in a similar way — just force each sequent to have a subsingleton context. Fig-
ure 1 summarizes the syntax and inference rules of a sequent calculus for &,1-
subsingleton logic.

2.3 Admissibility of Cut and Identity

From the previous examples, we can see that it is not difficult to derive sequent
calculus rules for A; & A and 1 that obey the subsingleton context restriction.
But that these rules should constitute a well-defined logic in its own right is
quite surprising!

Under the verificationist philosophies of Dummett [8] and Martin-Lof [13],
@,1-subsingleton logic is indeed well-defined because it satisfies admissibility of
CUT and ID, which characterize an internal soundness and completeness:

Theorem 1 (Admissibility of cut). If there are proofs of A+ A and AF ~,
then there is also a cut-free proof of AF ~.

Proof. By lexicographic induction, first on the structure of the cut formula A
and then on the structures of the given derivations.

Theorem 2 (Admissibility of identity). For all propositions A, the sequent
AF A is derivable without using 1D.



Propositions AB,C:=A1®d Az |1

Contexts Az=-1A
Conclusions yu=C
AFA At~y
ara'’® Ary YT
AF A OR A A OR
AFA @A, O AFA @A, 7
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AL @ A - %
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Fig. 1. A sequent calculus for @,1-subsingleton logic

Proof. By structural induction on A.

Theorem 2 justifies hereafter restricting our attention to a calculus without the
ID rule. The resulting proofs are said to be identity-free, or n-long, and are
complete for provability. Despite Theorem 1, we do not restrict our attention to
cut-free proofs because the CUT rule will prove to be important for composition
of machines.

2.4 Extending the Logic with Least Fixed Points

Thus far, we have presented a sequent calculus for @,1-subsingleton logic with
finite propositions A; & A and 1. Now we extend it with least fixed points
pna. A, keeping an eye toward their eventual Curry-Howard interpretation as the
types of inductively defined data structures. We dub the extended logic ®,1,u-
subsingleton logic.

Our treatment of least fixed points mostly follows that of Fortier and Santo-
canale [9] by using circular proofs. Here we review the intuition behind circular
proofs; please refer to Fortier and Santocanale’s publication for a full, formal
description.

Fixed Point Propositions and Sequents. Syntactically, the propositions are
extended to include least fixed points pua.A and propositional variables «:

AB,Cui=-|paA|«

Because the logic’s propositional connectives — just & and 1 for now — are all
covariant, least fixed points necessarily satisfy the usual strict positivity condi-
tion that guarantees well-definedness. We also require that least fixed points are



contractive [10], ruling out, for example, pa.a. Finally, we further require that
a sequent’s hypothesis and conclusion be closed, with no free occurrences of any
propositional variables a.

In a slight departure from Fortier and Santocanale, we treat least fixed points
equirecursively, so that po.A is identified with its unfoldings, [(ua.A)/a]A and
so on. When combined with contractivity, this means that pa.A may be thought
of as a kind of infinite proposition. For example, pa.1 @ o is something like
le(1a®---).

Circular Proofs. Previously, with only finite propositions and inference rules
that obeyed a subformula property, proofs in @,1-subsingleton logic were the
familiar well-founded trees of inferences. Least fixed points could be added to
this finitary sequent calculus along the lines of Baelde’s uMALL [1], but it will
be more convenient and intuitive for us to follow Fortier and Santocanale and
use an infinitary sequent calculus of circular proofs.

To illustrate the use of circular proofs, consider the following proof, which
has as its computational content the function that doubles a natural number.
Natural numbers are represented as proofs of the familiar least fixed point Nat =
pa. 1 @ a; the unfolding of Nat is thus 1 @ Nat.

Nat F Nat R
.|_11R Nat - 1 @ Nat 2
-F 1@ Nat ! Nat F Nat R
------------------------ _— 2
1+ Nat L Nat F Nat
Nat b Nat (1)

This proof begins by case-analyzing a Nat (@L rule). If the number is 0, then the
proof’s left branch continues by reconstructing 0. Otherwise, if the number is
the successor of some natural number NV, then the proof’s right branch continues
by first emitting two successors (BRs rules) and then making a recursive call to
double N, as indicated by the back-edge drawn with an arrow.

In this proof, there are several instances of unfolding Nat to 1 @ Nat. In
general, the principles for unfolding on the right and left of a sequent are

A [(ua.A)/al [(per.A)[a] v

Fortier and Santocanale adopt these principles as primitive right and left rules
for p. But because our least fixed points are equirecursive and a fixed point is
equal to its unfolding, unfolding is not a first-class rule of inference, but rather
a principle that is used silently within a proof. It would thus be more accurate,
but also more opaque, to write the above proof without those dotted principles.

Is p Correctly Defined? With proofs being circular and hence coinductively
defined, one might question whether pa.A really represents a least fixed point



and not a greatest fixed point. After all, we have no inference rules for u, only
implicit unfolding principles — and those principles could apply to any fixed
points, not just least ones.

Stated differently, how do we proscribe the following, which purports to rep-
resent the first transfinite ordinal, w, as a finite natural number?

- F Nat
-F1®Nat

DRo

To ensure that p is correctly defined, one last requirement is imposed upon
valid proofs: that every cycle in a valid proof is a left py-trace. A left u-trace
(i) contains at least one application of a left rule to the unfolding of a least fixed
point hypothesis, and (ii) if the trace contains an application of the CUT rule,
then the trace continues along the left premise of the cuT. The above Nat - Nat
example is indeed a valid proof because its cycle applies the @L rule to 1 ® Nat,
the unfolding of a Nat hypothesis. But the attempt at representing w is correctly
proscribed because its cycle contains no least fixed point hypothesis whatsoever,
to say nothing of a left rule.

Cut Elimination for Circular Proofs. Fortier and Santocanale [9] present a
cut elimination procedure for circular proofs. Because of their infinitary nature,
circular proofs give rise to a different procedure than do the familiar finitary
proofs.

Call a circular proof a fized-cut proof if no cycle contains the CUT rule. Notice
the subtle difference from cut-free circular proofs — a fixed-cut proof may contain
the cUT rule, so long as the cut occurs outside of all cycles. Cut elimination on
fized-cut circular proofs results in a cut-free circular proof.

Things are not quite so pleasant for cut elimination on arbitrary circular
proofs. In general, cut elimination results in an infinite, cut-free proof that is
not necessarily circular.

3 Subsequential Finite-State Transducers

Subsequential finite-state transducers (SFTs) were first proposed by Schiitzen-
berger [15] as a way to capture a class of functions from finite strings to finite
strings that is related to finite automata and regular languages. An SFT T is
fed some string w as input and deterministically produces a string v as output.
Here we review one formulation of SF'Ts. This formulation classifies each SFT
state as reading, writing, or halting so that SF'T computation occurs in small,
single-letter steps. Also, this formulation uses strings over alphabets with (po-
tentially several) endmarker symbols so that a string’s end is apparent from its
structure and so that SFTs subsume deterministic finite automata (Sect. 3.3).
Lastly, this formulation uses string reversal in a few places so that SFT config-
urations receive their input from the left and produce output to the right.



In later sections, we will see that these SF'Ts are isomorphic to a class of
cut-free proofs in subsingleton logic.

3.1 Definitions

Preliminaries. As usual, the set of all finite strings over an alphabet X is
written as X, with ¢ denoting the empty string. In addition, the reversal of a
string w € X* is written w”.

An endmarked alphabet is a pair Y= (X1, Xe), consisting of disjoint finite
alphabets X; and X of internal symbols and endmarkers, respectively, with X
nonempty. Under the endmarked alphabet Y, the set of finite strings terminated
with an endmarker is X X,, which we abbreviate as £T. It will be convenient

to also define * = £+ U {e} and £ = 55U ..

Subsequential Transducers. A subsequential finite-state string transducer
(SFT) is a 6-tuple T = (Q, 2. I',6,0, qo) where @ is a finite set of states that
is partitioned into (possibly empty) sets of read and write states, Q" and Q"
and halt states, Q"; ¥ = (X1, Xe) with X # ) is a finite endmarked alphabet
for input; I' = (I}, I%) with I, # 0 is a finite endmarked alphabet for output;
6: X x Q" = @ is a total transition function on read states; o: Q¥ — @Q x I is
a total output function on write states; and gy € @) is the initial state.
Configurations C of the SF'T T have one of two forms — either (i) w qv, where
wR € £* and ¢ € Q and v® € (I7* UT™*); or (ii) v, where v® € I'T. Let — be
the least binary relation on configurations that satisfies the following conditions.

READ waqu — wq,v if ¢ € Q" and d(a,q) = qq
WRITE wqv — wagbv if ¢ € Q" and o(q) = (g, b) and v € I}*
HALT qu — v iquQhaundUREf+

The SFT T is said to transduce input w € 2t to output v € It if there exists a
sequence of configurations Co, ...,C, such that (i) Co = w™qo; (ii) C; — Cit1
for all 0 < i < n; and (i) C, = v™.

3.2 Example of a Subsequential Transducer

Figure 2 shows the transition graph for an SFT over ¥ = ({a,b},{$}). The
edges in this graph are labeled ¢ or ¢ to indicate an input or output of sym-
bol ¢, respectively. This SFT compresses each run of bs into a single b. For
instance, the input string abbaabbb$ transduces to the output string abaab$ be-
cause $bbbaabba qg — T $baaba. We could even compose this SFT with itself,
but this SFT is an idempotent for composition.



[ read state
O write state
[J halt state

Fig.2. A subsequential finite-state transducer over the endmarked alphabet X =
({a,b}, {$}) that compresses each run of bs into a single b

3.3 Discussion

Acceptance and Totality. Notice that, unlike some definitions of SF'Ts, this
definition does not include notions of acceptance or rejection of input strings.
This is because we are interested in SF'Ts that induce a total transduction func-
tion, since such transducers turn out to compose more naturally in our proof-
theoretic setting.

Normal Form SFTs. The above formulation of SFTs allows the possibility
that a read state is reachable even after an endmarker signaling the end of the
input has been read. An SFT would necessarily get stuck upon entering such a
state because there is no more input to read.

The above formulation also allows the dual possibility that a write state
is reachable even after having written an endmarker signaling the end of the
output. Again, an SF'T would necessarily get stuck upon entering such a state
because the side condition of the WRITE rule, v € I}*, would fail to be met.

Lastly, the above formulation allows that a halt state is reachable before an
endmarker signaling the end of the input has been read. According to the HALT
rule, an SFT would necessarily get stuck upon entering such a state.

Fortunately, we may define normal-form SFTs as SF'Ts for which these cases
are impossible. An SFT is in normal form if it obeys three properties:

— For all endmarkers e € X, and read states ¢ € Q", no read state is reachable
from d(e, q).

— For all endmarkers e € I, write states ¢ € QV, and states ¢. € @, no write
state is reachable from g, if o(q) = (ge,€).

— For all halt states ¢ € @", all paths from the initial state gy to g pass through
d(e,q") for some endmarker e € X, and read state ¢’ € Q".

Normal-form SFTs and SFTs differ only on stuck computations. Because we are
only interested in total transductions, hereafter we assume that all SFTs are
normal-form.



Deterministic Finite Automata. By allowing alphabets with more than one
endmarker, the above definition of SF'Ts subsumes deterministic finite automata
(DFAs). A DFA is an SFT with an endmarked output alphabet I = (0, {a, 7}),
so that the valid output strings are only a or r; the DFA transduces its input
to the output string a or r to indicate acceptance or rejection of the input,
respectively.

3.4 Composing Subsequential Finite-State String Transducers

Having considered individual subsequential finite-state transducers (SFTs), we
may want to compose finitely many SFTs into a linear network that implements
a transduction in a modular way. Fortunately, in the above model, SFTs and
their configurations compose very naturally into chains.

An SFT chain (T;)?_, is a finite family of SFTs T; = (Q;, X1, 6;, 04, ;) such
that [ = fji—i—l for each i < n. Here we give a description of the special case
n = 2; the general case is notationally cumbersome without providing additional
insight.

Let Ty = (Ql, ﬁ, f,él, O'1,i1) and Ty = (QQ,ﬁ, Q, 0o, 09, iz) be two SFTs; let
Yy =%and I = ¥y = I and I = 2. A configuration of the chain (T})2_; is
a string whose reversal is drawn from either (£ U £2*)Qq (I U ™) Q1 X* or
(2ru f)*) Q> or 2F. Let —> be the least binary relation on configurations
that satisfies the following conditions.

READ waq;v — wqiv if 6;(a,q;) = ¢
WRITE  wq;v — wq, bv if 0;(q;) = (¢, b)
HALT qGU—> 0 if ¢; € Q? and v is a config.

Thus, composition of SFTs is accomplished by concatenating the states of the
individual SFTs. The composition of 77 and Ty transduces w € St tove QF
if w® 1109 —* o,

Notice that an asynchronous, concurrent semantics of transducer compo-
sition comes for free with this model. For example, in the transducer chain
wWq1 g2 -+ Gn, the state g1 can react to the next symbol of input while ¢5 is still

absorbing ¢;’s first round of output.

4 Curry—Howard Isomorphism for Subsingleton Proofs

In this section, we turn our attention from a machine model of subsequential
finite state transducers (SFTs) to a computational interpretation of the @,1,u-
subsingleton sequent calculus. We then bridge the two by establishing a Curry—
Howard isomorphism between SFTs and a class of cut-free subsingleton proofs
— propositions are languages, proofs are SFTs, and cut reductions are SFT com-
putation steps. In this way, the cut-free proofs of subsingleton logic serve as a
linguistic model that captures exactly the subsequential functions.



Types A, B,C
Contexts
Conclusions v
Proof terms PQ :
Signatures

(AFX=P:4) €O

O :
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(writeR k; P) >readlocr, (£ = Q¢) — P> Qu
closeR > (waitL; Q) — @

Fig.3. A proof term assignment and the principal cut reductions for the @,1,u-

subsingleton sequent calculus

4.1 A Computational Interpretation of @,1,u-Subsingleton Logic

Figure 3 summarizes our computational interpretation of the é,1,u-subsingleton

sequent calculus.

Now that we are emphasizing the logic’s computational aspects, it will be
convenient to generalize binary additive disjunctions to n-ary, labeled additive
disjunctions, @, {¢:A¢}. We require that the set L of labels is nonempty, so that
n-ary, labeled additive disjunction does not go beyond what may be expressed
(less concisely) with the binary form.! Thus, propositions are now generated by

the grammar

A,B,C = ®pcr{C:A} | 1| pa.A | .

! Notice that the proposition @{k:A} is distinct from A.

10



Contexts A still consist of exactly zero or one proposition and conclusions
are still single propositions. Each sequent A F « is now annotated with a proof
term P and a signature @, so that A kg P : v is read as “Under the definitions
of signature @, the proof term P consumes input of type A to produce output
of type «.” Already, the proof term P sounds vaguely like an SFT.

The logic’s inference rules now become typing rules for proof terms. The ®R
rule types a write operation, writeR k; P, that emits label k£ and then continues;
dually, the @L rule types a read operation, readLycy, (¢ = Q¢), that branches on
the label that was read. The 1R rule types an operation, closeR, that signals
the end of the output; the 1L rule types an operation, waitL; @), that waits for
the input to end and then continues with ). The CcUT rule types a composition,
P @, of proof terms P and @. Lastly, unfolding principles are used silently
within a proof and do not affect the proof term.

The circularities inherent to circular proofs are expressed with a finite sig-
nature @ of mutually corecursive definitions. Each definition in @ has the form
A X = P : v, defining the variable X as proof term P with a type declaration
of Atg X : . We rule out definitions of the forms X = X and X =Y. To
verify that the definitions in © are well-typed, we check that g © ok according
to the rules given in Fig. 3. Note that the same signature @’ (initially @) is used
to type all variables, which thereby allows arbitrary mutual recursion.

As an example, here are two well-typed definitions:

X = casel(a = writeR a; Xy X1 = casel(a = writeR b; writeR a; X
‘ b= X, | b= X,
| $ = waitL; | $ = waitL; writeR b;
writeR $; closeR) writeR $; closeR)

4.2 Propositions as Languages

Here we show that propositions are languages over finite endmarked alphabets.
However, before considering all freely generated propositions, let us look at one
in particular: the least fixed point Strg = po. ®rex{l:A¢} where A, = o for all
a € X; and A, =1 for all e € X. By unfolding,

Stry if 0 e X
Stry = @rex{l:A}}, where A) = {1 T iff 5
e

The proposition Stry, is a type that describes the language 2 of all finite
strings over the endmarked alphabet Y.

Theorem 3. Strings from the language 2t are in bijective correspondence with
the cut-free proofs of - - Stry.

A cut-free proof term P of type - - Str ¢ emits a finite list of symbols from Y. By
inversion on its typing derivation, P is either: writeR e; closeR, which terminates
the list by emitting some endmarker e € X.; or writeR a; P/, which continues
the list by emitting some symbol a € X} and then behaving as proof term P’ of

11



type - - Stry. The above intuition can be made precise by defining a bijection
[-]: £+ — (- F Stry) along these lines. As an example, the string ab$ € 2+
with X' = ({a, b}, {$}) corresponds to [ab$] = writeR a;writeR b; writeR $; closeR.

The freely generated propositions correspond to subsets of 3+, This can be
seen most clearly if we introduce subtyping [10], but we do not do so because
we are interested only in Strg hereafter.

4.3 Encoding SFTs as Cut-Free Proofs

Having now defined a type Stry and shown that It s isomorphic to cut-free
proofs of - - Stry, we can now turn to encoding SFTs as proofs. We encode
each of the SF'T’s states as a cut-free proof of Stry I Str; this proof captures
a (subsequential) function on finite strings.

Let T = (Q,f],f,c?, 0,q0) be an arbitrary SFT in normal form. Define a
mutually corecursive family of definitions [¢]r, one for each state ¢ € Q. There
are three cases according to whether ¢ is a read, a write, or a halt state.

— If ¢ is a read state, then [¢] = readl,cx(a = P,), where for each a

) l4d] if a € X and d(a,q) = ¢
| waitL; [q.] if @ € X and 6(a,q) = qa

When ¢ is reachable from some state ¢’ that writes an endmarker, we declare
[q] to have type Stry F [¢] : 1. Otherwise, we declare [¢] to have type
Stry b [q] : Strp.

— If ¢ is a write state such that o(q) = (g, b), then [¢] = writeR b; [¢5]. When
q is reachable from §(e,q’) for some e € X and ¢’ € Q", we declare [¢] to
have type - F Strs. Otherwise, we declare [g] to have type Strg b Strp.

— If ¢ is a halt state, then [¢q]] = closeR. This definition has type - F [¢] : 1.

When the SFT is in normal form, these definitions are well-typed. A type dec-
laration with an empty context indicates that an endmarker has already been
read. Because the reachability condition on read states in normal-form SFTs
proscribes read states from occurring once an endmarker has been read, the
type declarations Stry, = Strp or Stry - 1 for read states is valid. Because
normal-form SFTs also ensure that halt states only occur once an endmarker
has been read, the type declaration - - 1 for halt states is valid.
As an example, the SFT from Fig. 2 can be encoded as follows.

Stry = ®@{a:Stry, b:Stry, $:1}

Stry - [qo] : Stry Stry b [¢1] : Stry
[90] = readL(a = [qu] [ b= [(1]  [a1] = readL(a = [a] | b = [a1]

| $ = waitL; [¢s]) | § = waitL; [q])
Strg b [qa] [gs] : Stry - lap] [as] - stry “Flgn] : 1
[ga] = writeR a; [go] [g;] = writeR b; [gs] [grn] = closeR
[gv] = writeR b; [¢.] [gs] = writeR $; [g4]

12



If one doesn’t care about a bijection between definitions and states, some of
these definitions can be folded into [go]] and [q¢1].

Stry F [qo] : Stry Strg b [q1] : Stry
[go] = caselL(a = writeR a; [qo] [g1] = caselL(a = writeR b; writeR a; [qo]
b= [1] b= ]
| $ = waitL; | $ = waitL; writeR b;
writeR §; closeR) writeR §; closeR)

This encoding of SF'T's as proofs of type Stry I Strp is adequate at quite a
fine-grained level — each SFT transition is matched by a proof reduction.

Theorem 4. Let T = (Q, 2. I,6,0, qo) be a normal-form SFT. For all q € Q",
if A (writeR a; P) : Strg and 6(a,q) = qa, then (writeR a; P)>[q] — Pv[qa]-

Proof. By straightforward calculation.

Corollary 1. LetT = (Q, 3.1,5,0, qo) be a normal-form SFT. For allw € ot
and v € I'", if w® g9 —* =, then [w] > [qo] —* [v]-

With SFTs encoded as cut-free proofs, SFT chains can easily be encoded
as fixed-cut proofs — simply use the CUT rule to compose the encodings. For
example, an SFT chain (7;)" , is encoded as [g1]z, > - - > [gn] 1, - Because these
occurrences of CUT do not occur inside any cycle, the encoding of an SE'T chain
is a fixed-cut proof.

4.4 Completing the Isomorphism: From Cut-Free Proofs to SFTs

In this section, we show that an SFT can be extracted from a cut-free proof of
Strg e Strp, thereby completing the isomorphism.

We begin by inserting definitions in signature @ so that each definition of
type Stry - Strp has one of the forms

X =readl s (a = P,) where P, = X, ifa € X
and P, = waitL;Y if e € X

X = writeR b; X, if b e I;

X =writeRe; Z ifeel,

By inserting definitions we also put each Y of type - - Str and each Z of type
Strg F 1 into one of the forms

Y = writeR ;Y if be I
Y = writeRe; W ifee I,
Z =readl, s (a = Qu) where Q, = Z, ifa € X

and Q. = waitL; W if e € X,

where definitions W of type - F 1 have the form W = closeR. All of these forms
are forced by the types, except in one case: P, above has type 1 - Strp, which
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does not immediately force P, to have the form waitl; Y. However, by inversion
on the type 1 - Strp, we know that P, is equivalent to a proof of the form
waitL; Y, up to commuting the 1L rule to the front.

From definitions in the above form, we can read off a normal-form SFT. Each
variable becomes a state in the SFT. The normal-form conditions are manifest
from the structure of the definitions: no read definition is reachable once an end-
marker is read; no write definition is reachable once an endmarker is written; and
a halt definition is reachable only by passing through a write of an endmarker.

Thus, cut-free proofs (up to 1L commuting conversion) are isomorphic to
normal-form SFTs. Fixed-cut proofs are also then isomorphic to SFT chains
by directly making the correspondence of fixed-cuts with chain links between
neighboring SFTs.

5 SFT Composition by Cut Elimination

Subsequential functions enjoy closure under composition. This property is tra-
ditionally established by a direct SFT construction [14]. Having seen that SFTs
are isomorphic to proofs of type Strg I Strp, it’s natural to wonder how this
construction fits into this pleasing proof-theoretic picture. In this section, we
show that, perhaps surprisingly, closure of SF'Ts under composition can indeed
be explained proof-theoretically in terms of cut elimination.

5.1 Closure of SFTs under Composition

Composing two SFTs T} = (Ql,ﬁ’,f,él,al,ql) and Th = (Qg,f, Q,(Sg,og,qQ)
is simple: just compose their encodings. Because [q1]r, and [go]r, have types
Stry b Strp and Strp - Strg, respectively, the composition is [q1]7, > [g2] 7,
and is well-typed.

By using an asynchronous, concurrent semantics of proof reduction [7], par-
allelism in the SFT chain can be exploited. For example, in the transducer chain
[w] > [ ]m > [g2]m > [gs]l s > - - - > [gn] T, , the encoding of Ty then react to the
next symbol of input while 75 is still absorbing T3’s first round of output.

Simply composing the encodings as the proof [¢1]7, > [¢2] T, is suitable and
very natural. But knowing that subsequential functions are closed under compo-
sition, what if we want to construct a single SF'T that captures the same function
as the composition?

The proof [¢1]7, > [q2] 7, is a fixed-cut proof of Stry - Stry because [¢1]7,
and [g2]r, are cut-free. Therefore, we know from Sects. 4.3 and 4.4 that, when
applied to this composition, cut elimination will terminate with a cut-free cir-
cular proof of Strg I Strg. Because such proofs are isomorphic to SFTs, cut
elimination constructs an SFT for the composition of T and T5. What is inter-
esting, and somewhat surprising, is that a generic logical procedure such as cut
elimination suffices for this construction — no extralogical design is necessary!

In fact, cut elimination yields the very same SFT that is traditionally used
(see [14]) to realize the composition. We omit those details here.
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5.2 DFA Closure under Complement and Inverse Homomorphism

Recall from Sect. 3.3 that our definition of SFTs subsumes deterministic fi-
nite automata (DFAs); an SFT that uses an endmarked output alphabet of
I'=({},{a,r}) is a DFA that indicates acceptance or rejection of the input by
producing a or r as its output.

Closure of SFTs under composition therefore implies closure of DFAs under
complement and inverse homomorphism: For complement, compose the SFT-
encoding of a DFA with an SFT over I, not, that flips endmarkers. For inverse
homomorphism, compose an SET that captures homomorphism ¢ with the SFT-
encoding of a DFA; the result recognizes ¢~ !(L) = {w | p(w) € L} where L is
the language recognized by the DFA. (For endmarked strings, a homomorphism
© maps internal symbols to strings and endmarkers to endmarkers.) Thus, we
also have cut elimination as a proof-theoretic explanation for the closure of DFAs
under complement and inverse homomorphism.

6 Linear Communicating Automata

In the previous sections, we have established an isomorphism between the cut-
free proofs of subsingleton logic and subsequential finite-state string transducers.
We have so far been careful to avoid mixing circular proofs and general applica-
tions of the cUT rule. The reason is that cut elimination in general results in an
infinite, but not necessarily circular, proof [9]. Unless the proof is circular, we
can make no connection to machines with a finite number of states.

In this section, we consider the effects of incorporating the cuUT in its full
generality. We show that if we also relax conditions on circular proofs so that
u is a general — not least — fixed point, then proofs have the power of Turing
machines. The natural computational interpretation of subsingleton logic with
cuts is that of a typed form of communicating automata arranged with a linear
network topology; these automata generalize Turing machines in two ways — the
ability to insert and delete cells from the tape and the ability to spawn multiple
machine heads that operate concurrently.

6.1 A Model of Linear Communicating Automata

First, we present a model of communicating automata arranged with a linear
network topology. A linear communicating automaton (LCA) is an 8-tuple M =
(Q, X, 6,6 ot "R, p, qo) where:

— @ is a finite set of states that is partitioned into (possibly empty) sets of left-
and right-reading states, Q™ and QR; left- and right-writing states, Q"* and
Q"R; spawn states, Q°; and halt states, Q";

— X is a finite alphabet;

O™ X x Q™ — Q is a total function on left-reading states;

— 6 QR x ¥ — @ is a total function on right-reading states;

— " QW — X x @Q is a total function on left-writing states;
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— "R Q"R 5 Q x ¥ is a total function on right-writing states;
— p: Q°* = Q X @ is a total function on spawn states;

— qo € @ is the initial state.

Configurations of the LCA M are strings w and v drawn from the set (X2*Q)* X*.
Let — be the least binary relation on configurations that satisfies the following.

READ-L waqu — wgev  if g€ Q™ and 6 (a,q) = ¢4
READ-R wgbv — wqyv  if ¢ € Q™ and 6R(¢,b) = ¢
WRITE-L wqv — waguv if ¢ € Q™ and o' (¢) = (a, qa)

WRITE-R wqv — wg by  if ¢ € Q"R and oR(q) = (gy, D)

i

SPAWN wquv—wq ¢"v if g€ Q° and p(q) = (¢, q")
HALT wWQqU — W if ge Q"

The LCA M is said to produce output v € X* from input w € X* if there exists a
sequence of configurations uy, . . ., u, such that (i) ug = w™ qo; (i) w; — i1
for all 0 <4 < n; and (i) u, = v™.

Notice that LCAs can certainly deadlock: a read state may wait indefinitely
for the next symbol to arrive. LCAs also may exhibit races: two neighboring read
states may compete to read the same symbol.

6.2 Comparing LCAs and Turing Machines

This model of LCAs makes their connections to Turing machines apparent. Each
state ¢ in the configuration represents a read/write head. Unlike Turing ma-
chines, LCAs may create and destroy tape cells as primitive operations (READ
and WRITE rules) and create new heads that operate concurrently (SPAWN rule).
In addition, LCAs are Turing complete.

Turing Machines. A Turing machine is a 4-tuple M = (Q, X, 9, o) where @
is a finite set of states that is partitioned into (possibly empty) sets of editing
states, Q¢ and halting states, Q"; ¥ is a finite alphabet; §: (X' U {e}) x Q° —
Q x X x {L,R} is a function for editing states; and gy € @ is the initial state.

Configurations of the Turing machine M have one of two forms — either
(i) wqv, where w,v € X* and ¢ € Q; or (i) w, where w € X*. In other words,
the set of configurations is X*QX* U X*. Let — be the least binary relation on
configurations that satisfies the following conditions.

EDIT-L waqu — wqg bv if §(a,q) = (¢q,b,L)
qv — g.bv  if 0(e,q) = (ge, b, L)

EDIT-R wa qcv — wbeqq v if 6(a, q) = (¢a,b,R)
waq — wbq, if §(a,q) = (¢a4,b,R)
gev — beqev it 8(e,q) = (¢e,b,R)

q— byq. if 6(e,q) = (¢, b,R)

HALT wWqv — WU if g Q"
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LCAs are Turing Complete. A Turing machine can be simulated in a rela-
tively straightforward way. First, we augment the alphabet with $ and ~ symbols
as endmarkers. Each configuration w ¢ v becomes an LCA configuration $wqv”.
Each editing state ¢ becomes a left-reading state in the encoding, and each halt-
ing state ¢ becomes a halting state. If ¢ is an editing state, then for each a € X:

— If6(a, q) = (ga, b, L), introduce a fresh right-writing state g, and let 6(a, q) =
¢ and o®(gs) = (qa,b). In this case, the first EDIT-L rule is simulated by
$waqv” — Swq v — Swq, bv”.

— If 6(a,q) = (qa,b,R), introduce fresh left-writing states ¢, and g. for each
c € X, a fresh right-reading state ¢;, and a fresh right-writing state g-. Set
6 (a,q) = q» and o(qy) = (b, q;). Also, set R(gj,c) = g. for each ¢ € X,
and 0R(gj,”) = ¢-. Finally, set o'(g:.) = (c,qq) for each ¢ € X, and set
oR(q-) = (¢a, ")- In this case, the first and second EDIT-L rule are simulated
by $wagcv” — $wqycv” — Swbgq, cv” — $wbg.v” — Swbcg, v” and
Swaq” — Swq, " — Swbq, © — Swbg- — Swbyq, "

— The other cases are similar, so we omit them.

7 Extending ®,1,u-Subsingleton Logic

In this section, we explore what happens when the cUT rule is allowed to occur
along cycles in circular proofs. But first we extend @,1,u-subsingleton logic and
its computational interpretation with two other connectives: & and L.

7.1 Including & and L in Subsingleton Logic

Figure 4 presents an extension of &,1,u-subsingleton logic with & and L.

Once again, it will be convenient to generalize binary additive conjunctions
to their n-ary, labeled form: &¢cr,{¢:As} where L is nonempty. Contexts A still
consist of exactly zero or one proposition, but conclusions v may now be either
empty or a single proposition.

The inference rules for & and 1 are dual to those that we had for & and 1;
once again, the inference rules become typing rules for proof terms. The &R rule
types a read operation, readRycr, (¢ = P), that branches on the label that was
read; the label is read from the right-hand neighbor. Dually, the &L rule types
a write operation, writeL k; @, that emits label k to the left. The LR rule types
an operation, waitR; P, that waits for the right-hand neighbor to end; the 1L
rule types an operation, closel, that signals to the left-hand neighbor. Finally,
we restore ID as an inference rule, which types «» as a forwarding operation.

Computational Interpretation: Well-Behaved LCAs. Already, the syntax
of our proof terms suggests a computational interpretation of subsingleton logic
with general cuts: well-behaved linear communicating automata.

The readL and readR operations, whose principal cut reductions read and
consume a symbol from the left- and right-hand neighbors, respectively, become
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Types A, B,C = | &per{l:Ac} | L

Contexts Az=-|A
Conclusions yu=C -
Proof terms PQu=-|«

| readRycr, (¢ = Py) | writel k; Q
| waitR; P | closeL

Signatures O:i=...
Alg «: A b
VeeL: Alo Pp: Ap &R Ak}—@Q:’y (k‘EL) 2l
At readRecr({ = Po) : &eer{l:Ac} Buer{l:As} Fo writel k; Q : v
Akl P:- 1 1
Ao waitR; P: L 1 T Foclosel : - -
@ >Q —Q Ppe — P

readRecr, (¢ = Pp) > (writel k; Q) — Py > Q
(waitR; P) > closeL — P

Fig.4. A proof term assignment and principal cut reductions for the subsingleton
sequent calculus when extended with & and L

left- and right-reading states. Similarly, the writeL and writeR operations that
write a symbol to their left- and right-hand neighbors, respectively, become left-
and right-writing states. Cuts, represented by the > operation which creates a
new read/write head, become spawning states. The 1D rule, represented by the
<> operation, becomes a halting state.

Just as for SFTs, this interpretation is adequate at a quite fine-grained level
in that LCA transitions are matched by proof reductions. Moreover, the types
in our interpretation of subsingleton logic ensure that the corresponding LCA is
well-behaved. For example, the corresponding LCAs cannot deadlock because cut
elimination can always make progress, as proved by Fortier and Santocanale [9];
those LCAs also do not have races in which two neighboring heads compete to
read the same symbol because readR and readL have different types and therefore
cannot be neighbors. Due to space constraints, we omit a discussion of the details.

7.2 Subsingleton Logic Is Turing Complete

Once we allow general occurrences of CUT, we can in fact simulate Turing ma-
chines and show that subsingleton logic is Turing complete. For each state ¢ in
the Turing machine, define an encoding [g¢] as follows.
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If ¢ is an editing state, let [¢] = readLoes(a = Py o | $ = P;) where

[qa] > (writeL b; <) if 6(a,q) = (¢a, b, L)
p— JreadReex(c = (writeR c;writeR b; «») > [qa]  if 6(a, q) = (ga,0,R)
oo | © = (writeR b; <) > [[qa])
> (writel "; <)
and
(writeR $; «») > [gc]] > (writel b; <) if §(¢,q) = (¢, b,L)
Pé = 4 readR.cx(c = (writeR ¢; writeR b; «+) > [¢.] if 0(e,q) = (ge, b, R)
| © = (writeR b; <) > [[qc] > (writeL ;<))

If ¢ is a halt state, let [¢] = readR.cx(c = (writeR ¢;«») > [¢] | © = <»). Surpris-
ingly, these definitions [¢] are in fact well-typed at Tape - epaT, where

Tape = pa. Daex{a:a, $:1}
epaT = pa. &qex{a:a, ":Tape}.

This means that Turing machines cannot get stuck!

Of course, Turing machines may very well loop indefinitely. And so, for the
above circular proof terms to be well-typed, we must give up on p being an
inductive type and relax p to be a general recursive type. This amounts to
dropping the requirement that every cycle in a circular proof is a left u-trace.

It is also possible to simulate Turing machines in a well-typed way without
using &. Occurrences of &, readR, and writelL are removed by instead using
@ and its constructs in a continuation-passing style. This means that Turing
completeness depends on the interaction of general cuts and general recursion,
not on any subtleties of interaction between @& and &.

8 Conclusion

We have taken the computational interpretation of linear logic first proposed
by Caires et al. [3] and restricted it to a fragment with just @& and 1, but
added least fixed points and circular proofs [9]. Cut-free proofs in this fragment
are in an elegant Curry-Howard correspondence with subsequential finite state
transducers. Closure under composition, complement, inverse homomorphism,
intersection and union can then be realized uniformly by cut elimination. We
plan to investigate if closure under concatenation and Kleene star, usually proved
via a detour through nondeterministic automata, can be similarly derived.

When we allow arbitrary cuts, we obtain linear communicating automata,
which is a Turing-complete class of machines. Some preliminary investigation
leads us to the conjecture that we can also obtain deterministic pushdown au-
tomata as a naturally defined logical fragment. Conversely, we can ask if the
restrictions of the logic to least or greatest fixed points, that is, inductive or
coinductive types with corresponding restrictions on the structure of circular
proofs yields interesting or known classes of automata.
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Our work on communicating automata remains significantly less general than
Deniélou and Yoshida’s analysis using multiparty session types [6]. Instead of
multiparty session types, we use only a small fragment of binary session types;
instead of rich networks of automata, we limit ourselves to finite chains of ma-
chines. And in our work, machines can terminate and spawn new machines, and
both operational and typing aspects of LCAs arise naturally from logical origins.

Finally, in future work we would like to explore if we can design a subsingleton
type theory and use it to reason intrinsically about properties of automata.
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